WO2012043618A1 - ガラス壜の検査装置および方法 - Google Patents

ガラス壜の検査装置および方法 Download PDF

Info

Publication number
WO2012043618A1
WO2012043618A1 PCT/JP2011/072163 JP2011072163W WO2012043618A1 WO 2012043618 A1 WO2012043618 A1 WO 2012043618A1 JP 2011072163 W JP2011072163 W JP 2011072163W WO 2012043618 A1 WO2012043618 A1 WO 2012043618A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass bottle
inspection
camera
bubble
illumination
Prior art date
Application number
PCT/JP2011/072163
Other languages
English (en)
French (fr)
Inventor
正明 沼津
Original Assignee
キリンテクノシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンテクノシステム株式会社 filed Critical キリンテクノシステム株式会社
Priority to US13/877,116 priority Critical patent/US9194814B2/en
Priority to EP11829171.5A priority patent/EP2623962B1/en
Priority to JP2012536503A priority patent/JP5799356B2/ja
Priority to KR1020137011069A priority patent/KR101707270B1/ko
Publication of WO2012043618A1 publication Critical patent/WO2012043618A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9036Investigating the presence of flaws or contamination in a container or its contents using arrays of emitters or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9054Inspection of sealing surface and container finish

Definitions

  • the present invention relates to a glass bottle inspection apparatus and method, and more particularly to a glass bottle inspection apparatus and method capable of detecting a defect at a specific position such as a glass bottle mouth by imaging.
  • a crack such as a crack may be formed in the wall thickness of the mouthpiece, and this crack is called “billi”.
  • a returnable jar that collects and reuses the jar after use. This returnable jar can be brought into contact with each other or in contact with other articles during use or transportation. There may be billiards.
  • Glass bottles regardless of whether they are molded or returnable, have a limited number of places where wrinkles occur at the mouth. There are bills that occur in the mountains and bills that occur in the skirts of the mouth. Depending on the direction of the crack, there are vertical bills extending in the vertical direction (substantially vertical direction) and horizontal bills extending in the horizontal direction (substantially horizontal direction). Since the above-mentioned bill causes damage to the glass bottle, the presence or absence of the bill is detected by taking an image of the mouth portion, and the glass bottle with the bill is excluded as a defective bottle.
  • a glass bottle inspection apparatus that automatically inspects the presence or absence of billiards by imaging the mouth of the glass bottle.
  • one illumination is installed above the glass bottle opening, and a large number (for example, seven) of cameras are arranged around the bottle opening so as to surround the bottle opening. It is constituted by. Diffuse light from the illumination is incident on the mouth of the glass jar, and when there is a bilge in the jar, it reflects off the crack surface of the bilge and shines brightly. The obtained image portion becomes a brighter area than the other image portions. Image processing is performed to detect this bright region, and it is determined that the region is dull.
  • the billy is detected by imaging the reflected light reflected by the crack surface of the glass bottle with a camera.
  • the direction in which the reflected light is reflected depends on the direction of the crack surface of the billet, and therefore varies depending on the billet.
  • the accuracy of detecting the blur is increased, but there is a problem that light interference occurs between the lights.
  • the apparatus cost is also a factor.
  • the present invention has been made in view of the above circumstances, and provides a glass bottle inspection apparatus and method that can improve inspection accuracy by increasing the number of lights, and can reduce costs by reducing the number of cameras. The purpose is to do.
  • the glass bottle inspection apparatus of the present invention includes an inspection unit having one or a plurality of lights and at least one camera, and illuminates the glass bottle with the lights,
  • An inspection apparatus for a glass bottle that detects a defect in a specific part of the glass bottle by photographing reflected light from the glass bottle with a controller that controls the operation of the one or a plurality of lights and the camera.
  • the controller is configured to control the one or a plurality of illuminations to individually light pulses in accordance with the photographing timing of the camera.
  • the method for inspecting a glass bottle according to the present invention includes an inspection unit having one or a plurality of illuminations and at least one camera, illuminating the glass bottle with the illumination, and reflecting light from the glass bottle with the camera.
  • an inspection unit having one or a plurality of illuminations and at least one camera, illuminating the glass bottle with the illumination, and reflecting light from the glass bottle with the camera.
  • one illumination pulse is lit at the same timing as the photographing timing of the camera, and then another illumination is pulsed at the next photographing timing of the same camera.
  • Light since the lighting is individually pulsed one by one in accordance with the shooting timing of the camera, the number of lights can be increased with respect to one camera, and the accuracy of detecting bills can be improved. it can. Even when the number of lights is increased for one camera, the lights do not interfere with each other.
  • pulse lighting means that lighting is repeatedly turned on and off at intervals by supplying a pulse current to the lighting.
  • One preferable aspect of the present invention is characterized in that the one or a plurality of illuminations and the camera are substantially opposed to each other with a glass bottle interposed therebetween.
  • one or a plurality of lights and one camera are positioned substantially opposite to each other so that the glass bottle is illuminated with pulsed illumination and the reflected light from the glass bottle reaches the camera. Has been placed.
  • the defect in the specific part of the glass bottle is a bill of the mouth part of the glass bottle, and the one or a plurality of lights are arranged obliquely above or side of the mouth part.
  • the camera is arranged obliquely above or laterally of the mouth portion.
  • the light from the illumination is incident on the mouth portion of the glass jar, and when the heel portion has a chatter, the light incident on the jar portion is reflected by the crack surface of the bill and this reflection.
  • the light is photographed with a camera.
  • an image portion corresponding to a bill is a brighter region than other image portions.
  • the image processing unit of the controller processes the image to detect this bright area, and determines that this is dull.
  • a preferred embodiment of the present invention is characterized by comprising a gantry that supports the glass jar in an upright state and rotates the glass jar around an axis.
  • the glass bottle rotates by rotating the glass bottle around the axis by the table, and the bottle mouth is photographed over the entire circumference by the camera while the glass bottle rotates once.
  • a large number of captured images are sequentially processed by the image processing unit of the controller, and a round test is performed on the entire circumference of the top surface of the mouth portion and the entire circumference of the side surface of the mouth including the screw portion and the skirt portion.
  • the plurality of inspection units are capable of detecting burrs in directions with different crack surfaces.
  • the bills and crack surfaces generated near the top surface of the mouth are in the vertical direction (substantially vertical direction). It is possible to detect a vertical bill extending and a horizontal bill extending in the horizontal direction (substantially horizontal direction).
  • the plurality of inspection units have different camera photographing timings between the inspection units.
  • the shooting timings of the cameras are different among the inspection units, and the pulse lighting timings of a plurality of lights are different in each inspection unit according to the shooting timing of one camera.
  • the defect in the specific part of the glass bottle is a bubble in the mouth part of the glass bottle, and one of the plurality of lights is a bubble disposed above the mouth part.
  • the illumination is dedicated to inspection, and the camera is disposed obliquely above or laterally of the mouth portion.
  • the light from the dedicated bubble inspection illumination arranged above the mouth opening is incident on the bubble and reflected and scattered in various directions. For this reason, the light reflected and scattered by the bubbles is incident on a camera disposed obliquely above or laterally from the mouth portion and photographed.
  • an image portion corresponding to a bubble is a brighter region than the other image portions.
  • the image processing unit of the controller processes the image to detect this bright area and determines this as a bubble.
  • the captured image is sequentially processed by the image processing unit of the controller, and if there is a bright image portion in a dark background in the image captured by the camera during the pulse lighting of the bubble inspection dedicated illumination, This bright area is detected, this is determined as a bubble defect, and then the position of the bubble detected in the bubble detection process from the image taken by the camera during the pulse lighting of illumination other than the bubble inspection illumination.
  • the image portion corresponding to is masked and excluded from the inspection region, and if there is a bright image portion in the remaining inspection region, this bright region is detected, and this is determined to be a billiard defect.
  • FIG. 1 is a plan view showing a glass bottle inspection apparatus.
  • FIG. 2 is a schematic diagram showing a basic configuration of the glass bottle inspection apparatus shown in FIG.
  • FIG. 3 is a schematic elevation view showing an optical path when light from the illumination is incident on the mouth part of the glass bottle and the light from the bottle part is photographed by the camera.
  • FIG. 4 is a schematic elevation view showing the first inspection unit.
  • FIG. 5 is a schematic elevation view showing the second inspection unit.
  • FIG. 6 is a schematic elevation view showing the third inspection unit.
  • FIG. 7 is a timing chart showing operation timings of the cameras CAM1 to CAM4 and the illumination LEDs 1 to 6.
  • FIG. 8 is an elevation view showing a specific configuration of the inspection unit.
  • FIG. 8 is an elevation view showing a specific configuration of the inspection unit.
  • the apparatus and method for inspecting a glass bottle according to the present invention will explain the case of the mouth part as the specific part of the glass bottle to be inspected, and will explain the case where the defect to be inspected is a burr in the mouth part.
  • the glass bottle to be inspected is held on an inspection star wheel (not shown) and conveyed along a conveyance path on the circumference of the star wheel.
  • the glass bottle inspection device according to the present invention is arranged at one inspection station in the middle of the conveyance path on the circumference of the star wheel. In this inspection station, the glass bottles conveyed by the star wheel are indexed (rotational indexing), and the glass bottle inspection device according to the present invention is inspected for the presence or absence of wrinkles at the mouth opening.
  • the illumination LED 3 is disposed at a position of 300 °
  • the illumination LED 4 is disposed at a position of 0 °
  • the camera CAM2 is disposed at a position of 150 °.
  • the third inspection unit U3 is composed of two illumination LEDs 5 and 6 and two cameras CAM3 and CAM4.
  • the illumination LED 5 is disposed at a position of 180 °
  • the illumination LED 6 is disposed at a position of 240 °
  • the camera CAM3 is disposed at a position of 90 °
  • the camera CAM4 is disposed at a position of 330 °.
  • Each of the illumination LEDs 1 to 6 is composed of red LED illumination.
  • Each of the cameras CAM1 to CAM4 is composed of a CCD camera.
  • the lighting LEDs 1 to 6 and the cameras CAM1 to CAM4 are connected to the controller 4 and controlled by the controller 4 so that the lighting LEDs 1 to 6 are sequentially turned on in pulses. It is supposed to take an image. That is, while one of the illumination LEDs 1 to 6, for example LED 1, is lit in pulses, the other illumination LEDs 2 to 6 are not lit. Next, the illumination LED 2 is pulse-lit, and the other illumination LEDs 1, 3 to 6 are not lit while this pulse is lit. In this way, the illumination LEDs 3 to 6 are sequentially pulsed.
  • the illumination LEDs 1 to 6 are pulse-lit in accordance with the photographing timing of the cameras CAM1 to CAM4.
  • FIG. 3 is a schematic elevation view showing an optical path when light from the illumination LED 3 or LED 4 is incident on the mouth part 2 of the glass bottle 1 and the light from the mouth part 2 is photographed by the camera CAM2. is there.
  • the light from the illumination LED 3 or LED 4 is incident on the opening 2 of the glass bottle 1, and when there is a hole B in the opening 2, the light incident on the opening 2 is Reflected by the crack surface of B, the reflected light LR is captured by the camera CAM2.
  • the image portion corresponding to the chatter becomes a brighter region than the other image portions.
  • the image processing unit of the controller 4 processes the image to detect this bright area, and determines that this is dull.
  • the mechanism for imaging the buzz of the mouth portion 2 by the combination of the illumination LEDs 1, LED2 and the camera CAM1, and the mechanism for imaging the buzz of the mouth portion 2 by the combination of the illumination LEDs 5, LED6 and the cameras CAM3, CAM4 are the light from the illumination. It is the same in that the reflected light reflected on the crack surface of the bill is incident on the bill.
  • FIG. 4 to 6 are schematic diagrams showing the arrangement of the illumination LEDs 1 to 6 and the cameras CAM1 to 4 of the first to third inspection units U1 to U3 in the glass bottle inspection apparatus shown in FIGS. 4 to 6, the shed portion 2 is schematically illustrated.
  • FIG. 4 is a schematic elevation view showing the first inspection unit U1.
  • the two illumination LEDs 1 and LED2 in the first inspection unit U1 illuminate the top surface 2a of the throat portion 2 and the inside of the shed from the upper side of the throat portion 2 of the glass jar 1.
  • the camera CAM1 in the first inspection unit U1 is disposed obliquely above the top surface 2a of the throat portion 2, and images light from the top surface 2a of the throat portion 2.
  • the first inspection unit U1 can link the camera CAM1 and the illumination LED 1 and also link the camera CAM1 and the illumination LED 2 to image the top surface 2a and detect the burr on the top surface 2a. It is like that.
  • FIG. 5 is a schematic elevation view showing the second inspection unit U2.
  • the two illumination LEDs 3 and LED4 in the second inspection unit U2 are arranged at positions to illuminate the top surface and the inside of the shed from the upper side of the shed portion 2 of the glass jar 1.
  • the camera CAM2 in the second inspection unit U2 is disposed obliquely above the side surface of the shed portion 2 and shoots light from the top and side surfaces of the shed portion 2.
  • the second inspection unit U2 interlocks the camera CAM2 and the illumination LED 3, and interlocks the camera CAM2 and the illumination LED 4, and includes the top surface 2a, the screw portion 2n, and the skirt portion 2s. It is possible to detect the horizontal play of the throat portion 2 by imaging.
  • FIG. 6 is a schematic elevation view showing the third inspection unit U3.
  • the two illumination LEDs 5 and 6 in the third inspection unit U ⁇ b> 3 are arranged at positions that illuminate the mouth part from the side of the mouth part 2 of the glass bottle 1.
  • the cameras CAM3 and CAM4 in the third inspection unit U3 are arranged on the side of the side surface of the shed portion 2 so as to capture light from the side surface of the shed portion 2.
  • the third inspection unit U3 interlocks the camera CAM3 and the illumination LED 5, and interlocks the camera CAM4 and the illumination LED6, and images the side of the mouth including the screw portion 2n and the skirt portion 2s. The vertical chatter of the mouth 2 can be detected.
  • the camera CAM1 is turned on (exposure is started), the illumination LED1 is pulsed at the same timing, and when imaging is completed, the camera CAM1 is turned off (exposure is completed), and the illumination LED1 is turned on at the same timing. Turns off. Thereafter, the camera CAM1 is turned on, the illumination LED 2 is pulsed at the same timing, and when the imaging is completed, the camera CAM1 is turned off, and the illumination LED 2 is turned off at the same timing. Thereafter, the camera CAM2 is turned on, the illumination LED 3 is pulsed at the same timing, the camera CAM2 is turned off when the imaging is completed, and the illumination LED 3 is turned off at the same timing.
  • the camera CAM2 is turned on, the illumination LED 4 is pulsed at the same timing, and when the imaging is completed, the camera CAM2 is turned off, and the illumination LED 4 is turned off at the same timing.
  • the camera CAM3 is turned on, the illumination LED 5 is pulsed at the same timing, and when the imaging is completed, the camera CAM3 is turned off, and the illumination LED 5 is turned off at the same timing.
  • the camera CAM4 is turned on, the illumination LED 6 is pulsed at the same timing, the camera CAM4 is turned off when the imaging is completed, and the illumination LED 6 is turned off at the same timing.
  • FIG. 8 is an elevational view showing a specific configuration of the inspection unit U1 in the glass bottle inspection apparatus of the present invention.
  • the glass bottle 1 to be inspected is held by an inspection star wheel (not shown) and is conveyed along a conveyance path on the circumference of the star wheel.
  • An inspection unit U1 is installed in the middle of the transport path on the circumference of the star wheel.
  • the inspection unit U1 includes a support shaft 11 fixed to the frame 10 of the inspection apparatus, and a support member 12 fixed to the support shaft 11 so as to be movable up and down.
  • Two illumination LEDs 1 and 2 and one camera CAM 1 are supported on the support member 12 via a bracket 13.
  • the present invention shown in FIG. 1 to FIG. 8 arranges the illumination diagonally above or side of the mouth portion of the glass bottle, and arranges the camera obliquely above or side of the mouth part corresponding to the illumination. Since the light is incident on the mouth part and the reflected light reflected by the crack surface in the mouth part is photographed with a camera, even if the defect is a bubble, The reflected light reflected by the irregular curved surface that is the boundary enters the camera and is photographed.
  • the configuration of the present invention shown in FIGS. 1 to 8 can detect both the chatter and the foam in the mouth portion as defects, but does not distinguish between the chatter and the foam.
  • FIG. 9 is a schematic diagram showing a glass bottle inspection device in which a lighting LED 7 dedicated to bubble inspection is added to the glass bottle inspection apparatus shown in FIG.
  • the illumination LED 7 dedicated to the bubble inspection is arranged above the mouth opening 2 of the glass bottle 1.
  • the illumination LED 7 has a disk shape and is arranged so that the center thereof coincides with the axis 1x of the glass bottle 1.
  • the illumination LED 7 is connected to the controller 4 and controlled by the controller 4 so as to light up in pulses.
  • the arrangement relationship between the illumination LEDs 1 to 6 and the cameras CAM1 to CAM4 is as shown in FIG. 1. However, in FIG. 9, the illumination LEDs 1 to 6 and the cameras CAM1 to CAM4 are not shown separately but are collectively shown. Show.
  • the lighting LEDs 1 to 6 and the cameras CAM1 to CAM4 are connected to the controller 4 and controlled by the controller 4 so that the lighting LEDs 1 to 6 are sequentially turned on in pulses.
  • the imaging is the same as in the embodiment shown in FIG. Since the illumination LED 7 is disposed above the mouth opening 2 of the glass bowl 1, no reflected light from the bills is incident on the cameras CAM1 to CAM4 when the illumination LED 7 is lit in pulses. Only the image portion corresponding to the bubble is formed in the image photographed by the above.
  • FIG. 10 is a timing chart in which the operation timings of the cameras CAM1 to CAM4 and the illumination LED 7 are added to the timing chart showing the operation timings of the cameras CAM1 to CAM4 and the illumination LEDs 1 to 6 shown in FIG.
  • the cameras CAM1, CAM2, CAM3, and CAM4 are turned on (exposure start), the illumination LED 7 is pulsed at the same timing, and when the imaging is completed, the cameras CAM1, CAM2, CAM3, and CAM4 are turned off (exposure).
  • the illumination LED 7 is turned off at the same timing.
  • the subsequent operation timings of the cameras CAM1 to CAM4 and the illumination LEDs 1 to 6 are the same as the operation timings shown in FIG. Then, as described in FIG.
  • an image portion corresponding to bubbles is not formed, and only an image portion corresponding to bubbles is formed.
  • the captured image is sequentially processed by the image processing unit of the controller 4, and if there is a bright image portion in a dark background in the images captured by the cameras CAM1 to CAM4 when the illumination LED 7 dedicated to bubble inspection is turned on, this A bright area is detected and determined to be a bubble. Then, from the images photographed by the cameras CAM1 to CAM4 while the pulses of the illumination LEDs 1 to 6 are turned on, the image portion corresponding to the position of the bubbles detected in the bubble detection process is masked and excluded from the inspection area. If there is a bright image portion in the remaining inspection area, this bright area is detected and determined to be dull.
  • the illumination LED 7 dedicated to the bubble inspection is provided, the bubble defect is detected from the images photographed by the cameras CAM1 to 4 while the illumination LED 7 dedicated to the bubble inspection is turned on, and the pulses of the illumination LEDs 1 to 6 are detected.
  • the image portion corresponding to the position of the bubble defect from the images photographed by the cameras CAM1 to CAM4 during lighting, only the billiform defect can be detected. Therefore, according to the present invention, it is possible to distinguish and detect a bubble defect and a billiard defect.
  • the present invention can be used for a glass bottle inspection apparatus and method that can detect a defect at a specific position such as a mouth part of a glass bottle by imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 本発明は、ガラス壜の壜口部等の特定位置にある欠陥を撮像により検出することができるガラス壜の検査装置に関するものである。ガラス壜の検査装置は、1台又は複数台の照明(LED1~6)と少なくとも1台のカメラ(CAM1~4)とを有した検査ユニットを備え、照明(LED1~6)によりガラス壜(1)を照明し、ガラス壜(1)からの反射光をカメラ(CAM1~4)により撮影してガラス壜の特定部位の欠陥を検出するガラス壜の検査装置であって、1台又は複数台の照明(LED1~6)とカメラ(CAM1~4)の作動を制御するコントローラ(4)を備え、コントローラ(4)は、カメラ(CAM1~4)の撮影タイミングに合わせて1台又は複数台の照明(LED1~6)が1台ずつ個別にパルス点灯するように制御する。

Description

ガラス壜の検査装置および方法
 本発明は、ガラス壜の検査装置および方法に係り、特にガラス壜の壜口部等の特定位置にある欠陥を撮像により検出することができるガラス壜の検査装置および方法に関するものである。
 ガラス壜の成形に際して、壜口部の肉厚内にひび割れのような亀裂(クラック)が入ることがあり、この亀裂はビリと称されている。また、ガラス壜は、使用後の壜を回収して再利用するリターナブル壜もあり、このリターナブル壜は使用中や輸送中等において壜同士が接触したり他の物品に接触したりして壜口部にビリが入ることがある。ガラス壜は、成形後の壜およびリターナブル壜に拘らず、壜口部にビリが発生する箇所はある程度限られていて、代表的には壜口の天面付近に発生するビリ、壜口のねじ山部に発生するビリ、壜口のスカート部に発生するビリがある。ビリには亀裂の方向によって、縦方向(略垂直方向)に延びる縦ビリ、横方向(略水平方向)に延びる横ビリがある。
 上述したビリはガラス壜の破損の原因になるため壜口部を撮像することによりビリの有無を検出し、ビリがあるガラス壜を不良壜として排除するようにしている。
 従来から、ガラス壜の壜口部を撮像してビリの有無を自動的に検査するガラス壜の検査装置が知られている。このガラス壜の検査装置は、1台の照明をガラス壜の壜口部の上方に設置し、壜口部の周囲に壜口部を取り囲むように多数(例えば、7台)のカメラを配置することにより構成されている。照明からの拡散光はガラス壜の壜口部に入射し、壜口部にビリがある場合には、ビリの亀裂面で反射して明るく光るため、カメラで撮影した画像中では、ビリに対応した画像部分が他の画像部分より明るい領域となる。画像処理を行って、この明るい領域を検出し、これをビリであると判定している。
特許第4478786号公報
 上述したように、ガラス壜の壜口部のビリ検査は、ビリの亀裂面で反射した反射光をカメラで撮像することによりビリを検出するようにしている。反射光がどの方向に反射するかは、ビリの亀裂面の方向に依存するため、ビリによって異なる。この場合、1台のカメラに対して照明の個数を増やせば、ビリを検出する精度は高くなるが、照明同士の光の干渉が起こるという問題点がある。
 また、従来の検査装置にあっては、多数(例えば、7台)のカメラを設置しており、カメラ用の大きな設置スペースが必要であり、またカメラは照明等の他の部品に比べて高価であるため、装置コストが上昇する要因にもなっている。
 本発明は、上述の事情に鑑みなされたもので、照明の台数を増やすことにより検査精度を向上させることができ、カメラの台数を減らすことによりコストを低減できるガラス壜の検査装置および方法を提供することを目的とする。
 上述した目的を達成するために、本発明のガラス壜の検査装置は、1台もしくは複数台の照明と少なくとも1台のカメラとを有した検査ユニットを備え、前記照明によりガラス壜を照明し、ガラス壜からの反射光を前記カメラにより撮影してガラス壜の特定部位の欠陥を検出するガラス壜の検査装置であって、前記1台もしくは複数台の照明と前記カメラの作動を制御するコントローラを備え、前記コントローラは、前記カメラの撮影タイミングに合わせて前記1台もしくは複数台の照明が1台ずつ個別にパルス点灯するように制御することを特徴とするものである。
 本発明のガラス壜の検査方法は、1台もしくは複数台の照明と少なくとも1台のカメラとを有した検査ユニットを備え、前記照明によりガラス壜を照明し、ガラス壜からの反射光を前記カメラにより撮影してガラス壜の特定部位の欠陥を検出するガラス壜の検査方法であって、前記カメラの撮影タイミングに合わせて前記1台もしくは複数台の照明を1台ずつ個別にパルス点灯させることを特徴とするものである。
 本発明のガラス壜の検査装置および方法によれば、カメラの撮影タイミングと同一のタイミングで一つの照明がパルス点灯し、次に、同一のカメラの次の撮影タイミングで他の一つの照明がパルス点灯する。このように、カメラの撮影タイミングに合わせて照明を1台ずつ個別にパルス点灯させるようにしたため、1台のカメラに対して照明の個数を増やすことができ、ビリの検出精度を向上させることができる。そして、1台のカメラに対して照明の個数を増やした場合でも照明同士の干渉が起こることがない。
 ここで、パルス点灯とは、照明にパルス電流を流すことにより、照明が間隔をおいて点灯と消灯を繰り返すことを云う。
 本発明の好ましい一態様は、前記1台もしくは複数台の照明と前記カメラとは、ガラス壜を挟んで概略対向した位置にあることを特徴とする。
 本発明によれば、照明のパルス点灯でガラス壜を照明し、ガラス壜からの反射光がカメラに到達するように、1台もしくは複数台の照明と1台のカメラとは概略対向した位置に配置されている。
 本発明の好ましい一態様は、前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部のビリであり、前記1台もしくは複数台の照明は壜口部の斜め上方または側方に配置され、前記カメラは壜口部の斜め上方または側方に配置されていることを特徴とする。
 本発明によれば、照明からの光は、ガラス壜の壜口部に入射し、壜口部にビリがあった場合、壜口部に入射した光はビリの亀裂面で反射し、この反射光はカメラで撮影される。カメラで撮影した画像中では、ビリに相当する画像部分は他の画像部分より明るい領域となる。コントローラの画像処理部は、画像を処理してこの明るい領域を検出し、これをビリであると判定する。
 本発明の好ましい一態様は、ガラス壜を直立状態で支持してガラス壜を軸心の回りに回転させる壜台を備えたことを特徴とする。
 本発明によれば、壜台によりガラス壜を軸心の回りに回転させることにより、ガラス壜は自転し、ガラス壜が1回転する間に壜口部はカメラにより全周に亘って撮影される。撮影された多数の画像をコントローラの画像処理部により順次処理し、壜口部の天面の全周、およびねじ部,スカート部を含む壜口側面の全周のビリ検査が行われる。
 本発明の好ましい一態様は、前記検査ユニットを複数個備え、複数の検査ユニットは壜口部を取り囲むように互いに角度をずらして配置されていることを特徴とする。
 本発明によれば、複数の検査ユニットを互いに角度をずらして配置することにより、物理的に干渉することなく複数の検査ユニットを配置することができる。
 本発明の好ましい一態様は、前記複数の検査ユニットは、亀裂面が異なった方向のビリを検出可能であることを特徴とする。
 本発明によれば、複数の検査ユニットにより亀裂面が異なった方向のビリを検出することができるために、壜口の天面付近に発生するビリ、亀裂面が縦方向(略垂直方向)に延びる縦ビリ、横方向(略水平方向)に延びる横ビリを検出できる。
 本発明の好ましい一態様は、前記複数の検査ユニットは、検査ユニット間でカメラの撮影タイミングが異なっていることを特徴とする。
 本発明によれば、複数の検査ユニットにおいて、検査ユニット間でカメラの撮影タイミングを異ならせ、かつ各検査ユニットにおいて1台のカメラの撮影タイミングに合わせて複数台の照明のパルス点灯のタイミングを異ならせることにより、複数の検査ユニットにおける複数台のカメラと複数台の照明について、1台のカメラの撮影タイミングに合わせて照明を1台ずつ個別にパルス点灯させることができる。
 本発明の好ましい一態様は、前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部の泡であり、前記複数台の照明のうち1つの照明は壜口部の上方に配置された泡検査専用照明であり、前記カメラは壜口部の斜め上方または側方に配置されていることを特徴とする。
 本発明によれば、壜口部の上方に配置された泡検査専用照明からの光は、泡に入射してさまざまな方向に反射散乱する。そのため、泡で反射散乱した光は壜口部の斜め上方または側方に配置されたカメラに入射して撮影される。カメラで撮影した画像中では、泡に相当する画像部分は他の画像部分より明るい領域となる。コントローラの画像処理部は、画像を処理してこの明るい領域を検出し、これを泡であると判定する。
 本発明の好ましい一態様は、前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部の泡であり、前記複数台の照明のうち1つの照明は泡検査専用照明であり、前記コントローラは、前記泡検査専用照明のパルス点灯中に前記少なくとも1台のカメラで撮影された画像中から泡欠陥を検出し、前記泡検査専用照明以外の照明のパルス点灯中に前記少なくとも1台のカメラで撮影された画像中から泡欠陥の位置に該当する画像部分をマスクして検査領域から除外し、残りの検査領域からビリ欠陥を検出することを特徴とする。
 本発明によれば、撮影された画像をコントローラの画像処理部により順次処理し、泡検査専用照明のパルス点灯中にカメラにより撮影された画像中に暗い背景の中に明るい画像部分があれば、この明るい領域を検出し、これを泡欠陥であると判定し、その後、泡検査専用照明以外の照明のパルス点灯中にカメラにより撮影された画像中から、泡検出工程で検出された泡の位置に該当する画像部分をマスクして検査領域から除外し、残った検査領域中に明るい画像部分があれば、この明るい領域を検出し、これをビリ欠陥であると判定する。
 本発明は、以下に列挙する効果を奏する。
(1)カメラの撮影タイミングに合わせて1台もしくは複数の照明を1台ずつ個別にパルス点灯させるようにしたため、1台のカメラに対して照明の個数を増やすことができ、ビリの検出精度を向上させることができる。そして、1台のカメラに対して照明の個数を増やした場合でも照明同士の干渉が起こることがない。
(2)従来の検査装置に比べてカメラの台数を減らすことができ、装置コストを低減することができるとともにカメラの設置スペースを縮減することができる。
(3)泡検査専用照明のパルス点灯中にカメラで撮影された画像中から泡欠陥を検出し、泡検査専用照明以外の照明のパルス点灯中にカメラで撮影された画像中から泡欠陥の位置に該当する画像部分をマスクして検査領域から除外することによりビリ欠陥のみを検出することができる。したがって、泡欠陥とビリ欠陥の両方を峻別して検出することができる。
図1は、ガラス壜の検査装置を示す平面図である。 図2は、図1に示すガラス壜の検査装置の基本構成を示す模式図である。 図3は、照明からの光がガラス壜の壜口部に入射し、壜口部からの光がカメラにより撮影されている場合の光路を示す模式的立面図である。 図4は第1検査ユニットを示す模式的立面図である。 図5は第2検査ユニットを示す模式的立面図である。 図6は第3検査ユニットを示す模式的立面図である。 図7は、カメラCAM1~4と照明LED1~6との動作タイミングを示すタイミングチャートである。 図8は、検査ユニットの具体的構成を示す立面図である。 図9は、図2に示すガラス壜の検査装置に泡検査専用の照明を追加した構成のガラス壜の検査装置を示す模式図である。 図10は、図7に示すカメラCAM1~4と照明LED1~6との動作タイミングを示すタイミングチャートにカメラCAM1~4と照明LED7との動作タイミングを追加したタイミングチャートである。
 以下、本発明に係るガラス壜の検査装置および方法の実施態様を図1乃至図10を参照して説明する。本発明のガラス壜の検査装置および方法は、検査すべきガラス壜の特定部位として壜口部の場合を説明し、検査すべき欠陥が壜口部におけるビリである場合を説明する。
 検査対象となるガラス壜は、検査用のスターホイール(図示せず)に保持され、スターホイールの円周上の搬送経路に沿って搬送される。このスターホイールの円周上の搬送経路の途中の1つの検査ステーションに、本発明に係るガラス壜の検査装置が配置されている。この検査ステーションにおいて、スターホイールにより搬送されるガラス壜がインデックス(回転割出し)され、本発明に係るガラス壜の検査装置によって壜口部におけるビリの有無が検査される。
 図1は、ガラス壜の検査装置を示す平面図である。図1に示すように、ガラス壜の検査装置は、ガラス壜1の壜口部2を取り囲むように配置された3つの検査ユニットU1,U2,U3を備えている。図1において、壜口部2は斜線で示している。第1検査ユニットU1は、2台の照明LED1,LED2と、1台のカメラCAM1とから構成されている。照明LED1は60°の位置に配置され、照明LED2は120°の位置に配置され、カメラCAM1は270°の位置に配置されている。第2検査ユニットU2は、2台の照明LED3,LED4と、1台のカメラCAM2とから構成されている。照明LED3は300°の位置に配置され、照明LED4は0°の位置に配置され、カメラCAM2は150°の位置に配置されている。第3検査ユニットU3は、2台の照明LED5,LED6と、2台のカメラCAM3,CAM4とから構成されている。照明LED5は180°の位置に配置され、照明LED6は240°の位置に配置され、カメラCAM3は90°の位置に配置され、カメラCAM4は330°の位置に配置されている。各照明LED1~LED6は、赤色LED照明から構成されている。また、各カメラCAM1~CAM4は、CCDカメラから構成されている。
 図2は、図1に示すガラス壜の検査装置の基本構成を示す模式図である。照明LED1~6とカメラCAM1~4との配置関係は、図1に示した通りであるが、図2においては照明LED1~6およびカメラCAM1~4については、個別に図示せず集合的に図示している。
 図2に示すように、ガラス壜1は壜台3に載置されており、壜台3を回転させることによりガラス壜1は軸心1x回りに自転するようになっている。ガラス壜1の壜口部2は、ねじ部2nとねじ部2nの下方にあるスカート部2sとを有している。ガラス壜1の壜口部2の斜め上方または側方には、照明LED1~6が配置されている。また、ガラス壜1の壜口部2の斜め上方または側方には、カメラCAM1~4が配置されている。
 照明LED1~6およびカメラCAM1~4はコントローラ4に接続されており、コントローラ4により制御されて照明LED1~6は順次パルス点灯するようになっており、カメラCAM1~4は壜口部2を順次撮像するようになっている。すなわち、照明LED1~6のうち一つの照明、例えばLED1がパルス点灯している間は、他の照明LED2~6は点灯しない。次に、照明LED2がパルス点灯し、このパルス点灯している間は、他の照明LED1,3~6は点灯しない。このようにして、順次、照明LED3~6がパルス点灯する。照明LED1~6は、カメラCAM1~4の撮影タイミングに合わせてパルス点灯するようになっている。すなわち、カメラCAM1の撮影タイミングと同一のタイミングで照明LED1がパルス点灯し、次にカメラCAM1の撮影タイミングと同一のタイミングで照明LED2がパルス点灯する。その後、カメラCAM2の撮影タイミングと同一のタイミングで照明LED3がパルス点灯し、カメラCAM2の撮影タイミングと同一のタイミングで照明LED4がパルス点灯する。その後、カメラCAM3の撮影タイミングと同一のタイミングで照明LED5がパルス点灯し、次にカメラCAM4の撮影タイミングと同一のタイミングで照明LED6がパルス点灯する。コントローラ4は、カメラCAM1~4で撮影された画像を処理する画像処理部を備えており、カメラCAM1~4により撮像された画像は画像処理部により処理されるようになっている。
 図3は、照明LED3又はLED4からの光がガラス壜1の壜口部2に入射し、壜口部2からの光がカメラCAM2により撮影されている場合の光路を示す模式的立面図である。図3に示すように、照明LED3又はLED4からの光は、ガラス壜1の壜口部2に入射し、壜口部2にビリBがあった場合、壜口部2に入射した光はビリBの亀裂面で反射し、この反射光LはカメラCAM2で撮影される。カメラCAM2で撮影した画像中では、ビリに相当する画像部分は他の画像部分より明るい領域となる。コントローラ4の画像処理部は、画像を処理してこの明るい領域を検出し、これをビリであると判定する。
 照明LED1,LED2とカメラCAM1の組合せにより壜口部2のビリを撮像するメカニズム、および照明LED5,LED6とカメラCAM3,CAM4の組合せにより壜口部2のビリを撮像するメカニズムは、照明からの光がビリに入射してビリの亀裂面で反射した反射光を撮像する点において同様である。
 図4乃至図6は、図1および図2に示すガラス壜の検査装置における第1~第3検査ユニットU1~U3の照明LED1~6とカメラCAM1~4の配置構成を示す模式図である。図4乃至図6においては、壜口部2は概略的に図示している。
 図4は第1検査ユニットU1を示す模式的立面図である。図4に示すように、第1検査ユニットU1における2台の照明LED1,LED2は、ガラス壜1の壜口部2の斜め上方から壜口部2の天面2aおよび壜口内を照明する位置に配置されている。また、第1検査ユニットU1におけるカメラCAM1は、壜口部2の天面2aの斜め上方に配置されており、壜口部2の天面2aからの光を撮影するようになっている。第1検査ユニットU1は、このような配置構成により、カメラCAM1と照明LED1とを連動させ、またカメラCAM1と照明LED2とを連動させ、天面2aを撮像して天面2aのビリを検出できるようになっている。
 図5は第2検査ユニットU2を示す模式的立面図である。図5に示すように、第2検査ユニットU2における2台の照明LED3,LED4は、ガラス壜1の壜口部2の斜め上方から天面および壜口内を照明する位置に配置されている。また、第2検査ユニットU2におけるカメラCAM2は、壜口部2の側面の斜め上方に配置されており、壜口部2の天面および側面からの光を撮影するようになっている。第2検査ユニットU2は、このような構成により、カメラCAM2と照明LED3とを連動させ、またカメラCAM2と照明LED4とを連動させ、天面2a、ねじ部2nとスカート部2sを含む壜口側面を撮像して壜口部2の横ビリを検出できるようになっている。
 図6は第3検査ユニットU3を示す模式的立面図である。図6に示すように、第3検査ユニットU3における2台の照明LED5,LED6は、ガラス壜1の壜口部2の側方から壜口部を照明する位置に配置されている。また、第3検査ユニットU3におけるカメラCAM3,CAM4は、壜口部2の側面の側方に配置されており、壜口部2の側面からの光を撮影するようになっている。第3検査ユニットU3は、このような構成により、カメラCAM3と照明LED5と連動させ、またカメラCAM4と照明LED6とを連動させ、ねじ部2nおよびスカート部2sを含む壜口側面を撮像して壜口部2の縦ビリを検出できるようになっている。
 図7は、カメラCAM1~4と照明LED1~6との動作タイミングを示すタイミングチャートである。
 カメラCAM1~4はCCDカメラから構成されており、本実施形態で使用しているCCDカメラは、例えば、毎秒数千枚の画像を形成することが可能である。そして、CCDカメラの露光時間(露出時間)を基準に照明をパルス点灯させている。カメラCAM1~4および照明LED1~6は、コントローラ4により制御される。図2では、コントローラ4はカメラとは別のユニットとして図示されているが、コントローラ4は1台のカメラに内蔵するようにしてもよい。コントローラ4を1台のカメラに内蔵した場合には、このコントローラを内蔵したカメラは、いわゆる親機になって、他のカメラの撮影タイミングも制御することになる。
 図7に示すように、まずカメラCAM1がON(露光開始)し、同一のタイミングで照明LED1がパルス点灯し、撮像が完了するとカメラCAM1がOFF(露光終了)になり、同一のタイミングで照明LED1がOFFになる。その後、カメラCAM1がONし、同一のタイミングで照明LED2がパルス点灯し、撮像が完了するとカメラCAM1がOFFになり、同一のタイミングで照明LED2がOFFになる。その後、カメラCAM2がONし、同一のタイミングで照明LED3がパルス点灯し、撮像が完了するとカメラCAM2がOFFになり、同一のタイミングで照明LED3がOFFになる。次に、カメラCAM2がONし、同一のタイミングで照明LED4がパルス点灯し、撮像が完了するとカメラCAM2がOFFになり、同一のタイミングで照明LED4がOFFになる。その後、カメラCAM3がONし、同一のタイミングで照明LED5がパルス点灯し、撮像が完了するとカメラCAM3がOFFになり、同一のタイミングで照明LED5がOFFになる。次に、カメラCAM4がONし、同一のタイミングで照明LED6がパルス点灯し、撮像が完了するとカメラCAM4がOFFになり、同一のタイミングで照明LED6がOFFになる。
 カメラCAM4が撮像を完了してOFFになると、検査工程の1サイクルが終了し、その後、このサイクルが繰り返される。これらのサイクル中、壜台3が回転することにより、ガラス壜1は軸心1x回りに自転し、ガラス壜1が1回転する間に壜口部2はカメラCAM1~4により全周に亘って撮影される。撮影された多数の画像をコントローラ4の画像処理部により順次処理し、壜口部2の天面2aの全周、およびねじ部2n,スカート部2sを含む壜口側面の全周のビリ検査が行われる。
 図8は、本発明のガラス壜の検査装置における検査ユニットU1の具体的構成を示す立面図である。
 検査対象となるガラス壜1は、検査用のスターホイール(図示せず)に保持され、スターホイールの円周上の搬送経路に沿って搬送される。このスターホイールの円周上の搬送経路の途中に検査ユニットU1が設置されている。
 図8に示すように、検査ユニットU1は、検査装置のフレーム10に固定された支持軸11と、支持軸11に昇降可能に固定された支持部材12とを備えている。支持部材12には、ブラケット13を介して2台の照明LED1,LED2と1台のカメラCAM1とが支持されている。照明LED1,LED2およびカメラCAM1は、検査対象のガラス壜1に対して垂直方向、水平方向および斜め方向に位置調整が可能なように、ガイド部材14とスライダ15からなるスライダ機構、および複数のガイド棒16と複数のスライダ17からなるスライダ機構によりブラケット13に取り付けられている。
 2台の照明LED1,LED2と1台のカメラCAM1は、支持部材12を支持軸11から取り外すことにより着脱可能になっている。そのため、2台の照明LED1,LED2と1台のカメラCAM1は、容易に取り替えができるようになっている。
 図1乃至図8に示す実施形態においては、1台のカメラに対して2台の照明を設置するか、または1台のカメラに対して1台の照明を設置する例を説明したが、1台のカメラに対して3台以上の照明を設置し、これら3台以上の照明をカメラの撮影タイミングに合わせて個別にパルス点灯させるようにしてもよい。
 また、図1乃至図8に示す実施形態においては、ガラス壜の壜口部のビリを検出する場合を説明したが、壜口部以外の部位、例えば、壜底部などのビリを検出する場合も本発明を適用することができる。
 上記実施形態においては、ガラス壜の成形時等に生じるビリを検出する場合を説明したが、ガラス壜の成形時に生じる欠陥として泡がある。泡は壜の内部に残留する気泡であり、金属の鋳物で生じる巣のようなものである。泡欠陥はビリ欠陥のように壜の破損に至るような重大な欠陥ではないため、見た目に重きを置かないような製品にあっては、泡欠陥があるガラス壜を欠陥品として取り扱わなくてもよい場合がある。
 図1乃至図8に示す本発明は、ガラス壜の壜口部の斜め上方または側方に照明を配置し、照明に対応して壜口部の斜め上方又は側方にカメラを配置し照明からの光が壜口部に入射し、壜口部にあるビリの亀裂面で反射した反射光をカメラで撮影するように構成したものであるため、欠陥が泡の場合にも気泡とガラスとの境界である不規則な曲面で反射した反射光がカメラに入射して撮影されることになる。すなわち、図1乃至図8に示す本発明の構成は、壜口部のビリも泡も欠陥として検出することが可能であるが、ビリと泡とを峻別してはいない。
 そこで、本発明者は、ビリを検出する場合には、ビリの亀裂面が概略平面的であり、反射光の方向が限られているため、照明とカメラとの配置関係は、図1乃至図6に示すように、概略1対1に対応して限られた配置となるが、泡を検出する場合には、泡が不規則な曲面を形成しているため、泡に入射した光がさまざまな方向に反射散乱することに着目し、ビリ検査に影響しない位置に泡検査専用の照明を配置することにより泡を単独で検出することを着想したものである。
 図9は、図2に示すガラス壜の検査装置に泡検査専用の照明LED7を追加した構成のガラス壜の検査装置を示す模式図である。図9に示すように、泡検査専用の照明LED7は、ガラス壜1の壜口部2の上方に配置されている。照明LED7は、円板状の形状を有し、その中心がガラス壜1の軸心1xと一致するように配置されている。照明LED7はコントローラ4に接続されており、コントローラ4により制御されてパルス点灯するようになっている。照明LED1~6とカメラCAM1~4との配置関係は、図1に示した通りであるが、図9においては照明LED1~6およびカメラCAM1~4については、個別に図示せず集合的に図示している。照明LED1~6およびカメラCAM1~4はコントローラ4に接続されており、コントローラ4により制御されて照明LED1~6は順次パルス点灯するようになっており、カメラCAM1~4は壜口部2を順次撮像するようになっていることは、図2に示す実施形態と同様である。照明LED7はガラス壜1の壜口部2の上方に配置されているため、照明LED7がパルス点灯している時にビリからの反射光がカメラCAM1~4に入射することはなく、カメラCAM1~4により撮影される画像中には、泡に相当する画像部分のみが形成される。
 図10は、図7に示すカメラCAM1~4と照明LED1~6との動作タイミングを示すタイミングチャートにカメラCAM1~4と照明LED7との動作タイミングを追加したタイミングチャートである。図10に示すように、カメラCAM1,CAM2,CAM3,CAM4がON(露光開始)し、同一のタイミングで照明LED7がパルス点灯し、撮像が完了するとカメラCAM1,CAM2,CAM3,CAM4がOFF(露光終了)になり、同一のタイミングで照明LED7がOFFになる。その後のカメラCAM1~4と照明LED1~6との動作タイミングは、図7に示す動作タイミングと同様である。そして、図7において説明したように、カメラCAM4が撮像を完了してOFFになり、同一のタイミングで照明LED6がOFFになると、検査工程の1サイクルが終了し、その後、このサイクルが繰り返される。これらのサイクル中、壜台3が回転することにより、ガラス壜1は軸心1x回りに自転し、ガラス壜1が1回転する間に壜口部2はカメラCAM1~4により全周に亘って撮影される。
 この場合、照明LED7がパルス点灯中にカメラCAM1~4により撮影された画像中には、ビリに対応する画像部分は形成されることなく、泡に対応する画像部分のみが形成される。撮影された画像をコントローラ4の画像処理部により順次処理し、泡検査専用の照明LED7のパルス点灯時にカメラCAM1~4により撮影された画像中に暗い背景の中に明るい画像部分があれば、この明るい領域を検出し、これを泡であると判定する。そして、その後、照明LED1~6のパルス点灯中にカメラCAM1~4により撮影された画像中から、泡検出工程で検出された泡の位置に該当する画像部分をマスクして検査領域から除外し、残った検査領域中に明るい画像部分があれば、この明るい領域を検出し、これをビリであると判定する。
 本発明によれば、泡検査専用の照明LED7を設け、この泡検査専用の照明LED7のパルス点灯中にカメラCAM1~4で撮影された画像中から泡欠陥を検出し、照明LED1~6のパルス点灯中にカメラCAM1~4で撮影された画像中から泡欠陥の位置に該当する画像部分をマスクして検査領域から除外することによりビリ欠陥のみを検出することができる。したがって、本発明によれば、泡欠陥とビリ欠陥とを峻別して検出することができる。
 なお、照明LED1~6のパルス点灯中にカメラCAM1~4で撮影した画像を先に得て、次に、泡検査専用の照明LED7のパルス点灯中にカメラCAM1~4で撮影した画像中から泡欠陥を検出し、その後、照明LED1~6のパルス点灯中にカメラCAM1~4で撮影した画像中から泡欠陥の位置に該当する画像部分をマスクして検査領域から除外することによりビリ欠陥のみを検出するようにしてもよい。
 図9および10に示す実施形態においては、ガラス壜の壜口部の泡を検出する場合を説明したが、壜口部以外の部位、例えば、壜底部などの泡を検出する場合も本発明を適用することができる。
 これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。
 本発明は、ガラス壜の壜口部等の特定位置にある欠陥を撮像により検出することができるガラス壜の検査装置および方法に利用可能である。
 1  ガラス壜
 1x 軸心
 2  壜口部
 2a 天面
 2n ねじ部
 2s スカート部
 3  壜台
 4  コントローラ
10  フレーム
11  支持軸
12  支持部材
13  ブラケット
14  ガイド部材
15,17  スライダ
16  ガイド棒
CAM1~4  カメラ
LED1~7  照明
U1~3  検査ユニット

Claims (18)

  1.  1台もしくは複数台の照明と少なくとも1台のカメラとを有した検査ユニットを備え、前記照明によりガラス壜を照明し、ガラス壜からの反射光を前記カメラにより撮影してガラス壜の特定部位の欠陥を検出するガラス壜の検査装置であって、
     前記1台もしくは複数台の照明と前記カメラの作動を制御するコントローラを備え、
     前記コントローラは、前記カメラの撮影タイミングに合わせて前記1台もしくは複数台の照明が1台ずつ個別にパルス点灯するように制御することを特徴とするガラス壜の検査装置。
  2.  前記1台もしくは複数台の照明と前記カメラとは、ガラス壜を挟んで概略対向した位置にあることを特徴とする請求項1記載のガラス壜の検査装置。
  3.  前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部のビリであり、前記1台もしくは複数台の照明は壜口部の斜め上方または側方に配置され、前記カメラは壜口部の斜め上方または側方に配置されていることを特徴とする請求項1または2記載のガラス壜の検査装置。
  4.  ガラス壜を直立状態で支持してガラス壜を軸心の回りに回転させる壜台を備えたことを特徴とする請求項1乃至3のいずれか1項に記載のガラス壜の検査装置。
  5.  前記検査ユニットを複数個備え、複数の検査ユニットは壜口部を取り囲むように互いに角度をずらして配置されていることを特徴とする請求項1乃至4のいずれか1項に記載のガラス壜の検査装置。
  6.  前記複数の検査ユニットは、亀裂面が異なった方向のビリを検出可能であることを特徴とする請求項5記載のガラス壜の検査装置。
  7.  前記複数の検査ユニットは、検査ユニット間でカメラの撮影タイミングが異なっていることを特徴とする請求項5または6記載のガラス壜の検査装置。
  8.  前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部の泡であり、前記複数台の照明のうち1つの照明は壜口部の上方に配置された泡検査専用照明であり、前記カメラは壜口部の斜め上方または側方に配置されていることを特徴とする請求項1記載のガラス壜の検査装置。
  9.  前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部の泡であり、前記複数台の照明のうち1つの照明は泡検査専用照明であり、前記コントローラは、前記泡検査専用照明のパルス点灯中に前記少なくとも1台のカメラで撮影された画像中から泡欠陥を検出し、前記泡検査専用照明以外の照明のパルス点灯中に前記少なくとも1台のカメラで撮影された画像中から泡欠陥の位置に該当する画像部分をマスクして検査領域から除外し、残りの検査領域からビリ欠陥を検出することを特徴とする請求項1記載のガラス壜の検査装置。
  10.  1台もしくは複数台の照明と少なくとも1台のカメラとを有した検査ユニットを備え、前記照明によりガラス壜を照明し、ガラス壜からの反射光を前記カメラにより撮影してガラス壜の特定部位の欠陥を検出するガラス壜の検査方法であって、
     前記カメラの撮影タイミングに合わせて前記1台もしくは複数台の照明を1台ずつ個別にパルス点灯させることを特徴とするガラス壜の検査方法。
  11.  前記1台もしくは複数台の照明と前記カメラとは、ガラス壜を挟んで概略対向した位置にあることを特徴とする請求項10記載のガラス壜の検査方法。
  12.  前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部のビリであり、前記1台もしくは複数台の照明は壜口部の斜め上方または側方に配置され、前記カメラは壜口部の斜め上方または側方に配置されていることを特徴とする請求項10または11記載のガラス壜の検査方法。
  13.  壜台によりガラス壜を直立状態で支持してガラス壜を軸心の回りに回転させることを特徴とする請求項10乃至12のいずれか1項に記載のガラス壜の検査方法。
  14.  前記検査ユニットを複数個備え、複数の検査ユニットは壜口部を取り囲むように互いに角度をずらして配置されていることを特徴とする請求項10乃至13のいずれか1項に記載のガラス壜の検査方法。
  15.  前記複数の検査ユニットは、壜口部において亀裂面が異なった方向のビリを検出可能であることを特徴とする請求項14記載のガラス壜の検査方法。
  16.  前記複数の検査ユニットは、検査ユニット間でカメラの撮影タイミングが異なっていることを特徴とする請求項14または15記載のガラス壜の検査方法。
  17.  前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部の泡であり、前記複数台の照明のうち1つの照明は壜口部の上方に配置された泡検査専用照明であり、前記カメラは壜口部の斜め上方または側方に配置されていることを特徴とする請求項10記載のガラス壜の検査方法。
  18.  前記ガラス壜の特定部位の欠陥は、ガラス壜の壜口部の泡であり、前記複数台の照明のうち1つの照明は泡検査専用照明であり、前記泡検査専用照明のパルス点灯中に前記少なくとも1台のカメラで撮影された画像中から泡欠陥を検出し、前記泡検査専用照明以外の照明のパルス点灯中に前記少なくとも1台のカメラで撮影された画像中から泡欠陥の位置に該当する画像部分をマスクして検査領域から除外し、残りの検査領域からビリ欠陥を検出することを特徴とする請求項10記載のガラス壜の検査方法。
PCT/JP2011/072163 2010-10-01 2011-09-28 ガラス壜の検査装置および方法 WO2012043618A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/877,116 US9194814B2 (en) 2010-10-01 2011-09-28 Glass bottle inspection apparatus and method
EP11829171.5A EP2623962B1 (en) 2010-10-01 2011-09-28 Inspection device and method for glass bottle
JP2012536503A JP5799356B2 (ja) 2010-10-01 2011-09-28 ガラス壜の検査装置および方法
KR1020137011069A KR101707270B1 (ko) 2010-10-01 2011-09-28 글래스 보틀의 검사 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010223477 2010-10-01
JP2010-223477 2010-10-01

Publications (1)

Publication Number Publication Date
WO2012043618A1 true WO2012043618A1 (ja) 2012-04-05

Family

ID=45893057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072163 WO2012043618A1 (ja) 2010-10-01 2011-09-28 ガラス壜の検査装置および方法

Country Status (5)

Country Link
US (1) US9194814B2 (ja)
EP (1) EP2623962B1 (ja)
JP (1) JP5799356B2 (ja)
KR (1) KR101707270B1 (ja)
WO (1) WO2012043618A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066628A (ja) * 2016-10-19 2018-04-26 ソリッドビジョン株式会社 画像処理システム及び画像処理方法
CN110431405A (zh) * 2017-02-06 2019-11-08 东洋玻璃株式会社 玻璃瓶的检查装置
CN113767279A (zh) * 2019-04-29 2021-12-07 蒂阿马公司 空玻璃容器的检查线

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234110B2 (ja) * 2013-08-12 2017-11-22 株式会社キーエンス 画像処理センサシステム
DE102014216188A1 (de) * 2014-08-14 2016-02-18 Krones Ag Optisches Inspektionsverfahren und optische Inspektionsvorrichtung für Behälter
US10012598B2 (en) 2015-07-17 2018-07-03 Emhart S.A. Multi-wavelength laser check detection tool
US10788314B2 (en) 2016-01-07 2020-09-29 Arkema Inc. Object position independent method to measure the thickness of coatings deposited on curved objects moving at high rates
CN108474739B (zh) 2016-01-07 2021-10-01 阿科玛股份有限公司 测量基材上沉积的涂层的厚度的光学方法
US11125549B2 (en) 2016-01-07 2021-09-21 Arkema Inc. Optical intensity method to measure the thickness of coatings deposited on substrates
WO2017204765A2 (en) * 2016-05-26 2017-11-30 Turkiye Sise Ve Cam Fabrikalari A. S. A quality control system for household glass products
WO2017204766A2 (en) * 2016-05-26 2017-11-30 Turkiye Sise Ve Cam Fabrikalari A. S. A quality control system for semi-finished glass products
US20180232875A1 (en) * 2017-02-13 2018-08-16 Pervacio Inc Cosmetic defect evaluation
PL422915A1 (pl) * 2017-09-20 2019-03-25 Konrad Zbigniew Grzeszczyk Sposób i urządzenie do kompleksowej kontroli opakowań szklanych
KR102294899B1 (ko) 2020-05-26 2021-08-27 (주)티엘씨테크퍼스트 딥 러닝을 이용한 ai 기반 자동차용 선루프의 결함 검사 시스템 및 그 방법
EP3968012A1 (en) * 2020-09-11 2022-03-16 Schott Ag Apparatus for the inspection of a circular elongated element
CN114295631B (zh) * 2021-12-31 2023-11-14 江苏壹利特机器人科技有限公司 玻璃瓶口裂缝检测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294262A (ja) * 1991-03-22 1992-10-19 Yamamura Glass Co Ltd ガラス壜口部の欠陥検査装置
JPH09119902A (ja) * 1995-09-13 1997-05-06 Nippon Glass Kk 瓶口部・ネジ部ビリ検査装置
JPH1082624A (ja) * 1996-09-05 1998-03-31 Precision:Kk 瓶口部・ネジ部ビリ検査装置
JPH11108854A (ja) * 1997-10-06 1999-04-23 Precision:Kk ガラス容器の口部・ネジ部ビリ検査装置
JPH11344451A (ja) * 1998-03-31 1999-12-14 Nihon Yamamura Glass Co Ltd ガラス壜口部のびり検査装置
JP2004271205A (ja) * 2003-03-05 2004-09-30 Precision:Kk 容器口部の欠陥検査装置
JP2008107348A (ja) * 2006-10-23 2008-05-08 Emhart Glass Sa ガラス容器を検査するための機械
JP4478786B2 (ja) 2002-10-18 2010-06-09 キリンテクノシステム株式会社 ガラス壜の検査方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077300A (en) * 1965-05-19 1967-07-26 General Precision Systems Ltd Improvements in or relating to visual simulation apparatus
US6275287B1 (en) * 1998-04-25 2001-08-14 Nihon Yamamura Glass Co., Ltd. Check detector for glass bottle neck and finish portion
DE29907762U1 (de) * 1999-04-27 1999-10-21 Horst Michael Vorrichtung zur Untersuchung eines Behälters auf Oberflächenfehler
US6512239B1 (en) * 2000-06-27 2003-01-28 Photon Dynamics Canada Inc. Stereo vision inspection system for transparent media
NO315264B1 (no) * 2001-01-23 2003-08-11 Tomra Systems Asa Deteksjonssystem
US6643009B2 (en) * 2001-06-20 2003-11-04 Japan Crown Cork Co. Ltd. Method of inspecting a wrap-fitted state of a cap wrap-fitted to a neck of a bottle and apparatus therefor
US9149175B2 (en) * 2001-07-26 2015-10-06 Given Imaging Ltd. Apparatus and method for light control in an in-vivo imaging device
US6903814B1 (en) * 2003-03-05 2005-06-07 Owens-Brockway Glass Container Inc. Container sealing surface inspection
US7626158B2 (en) * 2006-10-23 2009-12-01 Emhart Glass S.A. Machine for inspecting glass containers
US7876951B2 (en) * 2006-10-23 2011-01-25 Emhart Glass S. A. Machine for inspecting glass containers
US7816639B2 (en) 2006-10-23 2010-10-19 Emhart Glass S.A. Machine for inspecting glass containers at an inspection station using an addition of a plurality of illuminations of reflected light
JP5349521B2 (ja) * 2011-03-29 2013-11-20 富士フイルム株式会社 撮影装置、撮影プログラム、及び撮影方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294262A (ja) * 1991-03-22 1992-10-19 Yamamura Glass Co Ltd ガラス壜口部の欠陥検査装置
JPH09119902A (ja) * 1995-09-13 1997-05-06 Nippon Glass Kk 瓶口部・ネジ部ビリ検査装置
JPH1082624A (ja) * 1996-09-05 1998-03-31 Precision:Kk 瓶口部・ネジ部ビリ検査装置
JPH11108854A (ja) * 1997-10-06 1999-04-23 Precision:Kk ガラス容器の口部・ネジ部ビリ検査装置
JPH11344451A (ja) * 1998-03-31 1999-12-14 Nihon Yamamura Glass Co Ltd ガラス壜口部のびり検査装置
JP4478786B2 (ja) 2002-10-18 2010-06-09 キリンテクノシステム株式会社 ガラス壜の検査方法
JP2004271205A (ja) * 2003-03-05 2004-09-30 Precision:Kk 容器口部の欠陥検査装置
JP2008107348A (ja) * 2006-10-23 2008-05-08 Emhart Glass Sa ガラス容器を検査するための機械

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066628A (ja) * 2016-10-19 2018-04-26 ソリッドビジョン株式会社 画像処理システム及び画像処理方法
CN110431405A (zh) * 2017-02-06 2019-11-08 东洋玻璃株式会社 玻璃瓶的检查装置
CN113767279A (zh) * 2019-04-29 2021-12-07 蒂阿马公司 空玻璃容器的检查线

Also Published As

Publication number Publication date
EP2623962B1 (en) 2018-07-04
KR20130099129A (ko) 2013-09-05
KR101707270B1 (ko) 2017-02-15
US9194814B2 (en) 2015-11-24
JPWO2012043618A1 (ja) 2014-02-24
JP5799356B2 (ja) 2015-10-21
US20130222575A1 (en) 2013-08-29
EP2623962A4 (en) 2017-05-03
EP2623962A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5799356B2 (ja) ガラス壜の検査装置および方法
JP4101555B2 (ja) 異物検査装置
JP5760275B2 (ja) ガラス壜の検査方法および装置
US7816639B2 (en) Machine for inspecting glass containers at an inspection station using an addition of a plurality of illuminations of reflected light
JP4093460B2 (ja) 複雑な形状をもつ物品の外観検査装置
JP4829936B2 (ja) 容器の外観検査装置
JP2004517319A (ja) びんの光学式検査方法および装置
US10371644B2 (en) Apparatus and method for optical inspection of objects, in particular metal lids
JP7382519B2 (ja) ガラスびんの検査方法及びガラスびんの製造方法並びにガラスびんの検査装置
KR102287992B1 (ko) 유리병 검사장치
JP2020038066A (ja) 歯車の歯面の外観検査システム
JP4986255B1 (ja) 容器口部検査方法及び装置
TW202113339A (zh) 環形產品的外觀檢查裝置
JP2020122738A (ja) 欠陥検査装置および欠陥検査方法
JP5425387B2 (ja) ガラス容器を検査するための機械
JP6295401B2 (ja) ガラス壜の検査装置
JP2007071895A (ja) 異物検査装置
JP2017067630A (ja) 外観検査装置
WO2016071708A1 (en) Apparatus and method for inspecting contact lenses
JP6073261B2 (ja) びん底検査装置
JP2003021602A (ja) プラスチックボトル底部の検査方法及び装置
JP2010175558A (ja) 検査装置
JP2006084481A5 (ja)
JP2021043220A (ja) ガラスびんの検査装置
TWM594135U (zh) 多光源光學檢測系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137011069

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877116

Country of ref document: US