WO2012040951A1 - 降低多晶铸锭应力缺陷的方法 - Google Patents

降低多晶铸锭应力缺陷的方法 Download PDF

Info

Publication number
WO2012040951A1
WO2012040951A1 PCT/CN2010/078511 CN2010078511W WO2012040951A1 WO 2012040951 A1 WO2012040951 A1 WO 2012040951A1 CN 2010078511 W CN2010078511 W CN 2010078511W WO 2012040951 A1 WO2012040951 A1 WO 2012040951A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingot
polycrystalline
crystal
cavity wall
polycrystal
Prior art date
Application number
PCT/CN2010/078511
Other languages
English (en)
French (fr)
Inventor
张志强
黄强
黄振飞
Original Assignee
常州天合光能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州天合光能有限公司 filed Critical 常州天合光能有限公司
Publication of WO2012040951A1 publication Critical patent/WO2012040951A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • This invention relates to the field of semiconductor silicon polycrystalline ingot production, and more particularly to a method for reducing stress defects in ingot polycrystalline bodies.
  • the use of directional solidification to produce polycrystalline silicon ingots is a commonly used method.
  • the basic principle is: placing polycrystalline silicon raw materials in quartz ceramic crucibles, placing them in a specific thermal field system, heating to complete melting; The bottom of the crucible begins to cool, and the silicon solution begins to crystallize at the bottom of the crucible and gradually grows upward (coagulation); after the growth process is completed, the thermal field is usually reclosed, and the polycrystalline ingot is kept warm for a while and then cooled.
  • the traditional cooling method is to start cooling from the bottom space of the polycrystalline ingot, so that, like the cooling method of the crystal growth process, the disadvantages are: due to the five sides of the ingot (hexahedron) and the bottom of the five sides and the quartz crucible and protection
  • the graphite crucible is in contact with each other to form a U-shaped insulating layer, thereby forming a centrally convex temperature gradient in the ingot body, and the temperature gradient formed in the crystal during the crystal growth is uniform, thereby deteriorating the thermal stress during the crystallization process.
  • the release of crystal defects such as slip stacking in the crystal, and the conversion efficiency of the solar cell produced by the solar cell is also affected. Summary of the invention
  • the technical problem to be solved by the present invention is: In order to overcome the deficiencies in the prior art, a method for reducing stress defects in an ingot polycrystal is provided.
  • the technical solution adopted by the present invention to solve the technical problems thereof is: a method for reducing stress defects in an ingot polycrystal, and the method for reducing the stress defect in the ingot polycrystal is to start from the upper portion of the polycrystalline ingot cool down.
  • the cooling method forms a centrally convex temperature step distribution in the crystal.
  • the method for reducing stress defects in an ingot polycrystal is as follows: the polycrystalline silicon raw material is placed in a quartz ceramic crucible, and after the polycrystalline ingot is completed, the thermal field is closed; the crystal is annealed after heating After the annealing treatment, the top cover of the polycrystalline ingot thermal field is opened, so that the upper surface of the polycrystalline ingot is radiated and exchanged with the cavity wall surface of the quartz ceramic crucible; the temperature of the cavity wall surface outside the quartz ceramic crucible is lowered, In the way of water cooling, since the temperature of the cavity wall surface is lower than the temperature of the polycrystalline ingot, the polycrystalline ingot gradually releases heat to the cavity wall surface, forming a superposition effect of mainly upward and secondary heat dissipation to the periphery.
  • the invention has the beneficial effects that the invention improves the cooling process of the ingot polycrystal, so that the temperature gradient formed in the crystal during the cooling process is opposite to the temperature gradient distribution in the crystal body during the crystal growth process, so that the stress of the crystallization process is effective. Release, reduce crystal defects such as sliding dislocation in the crystal, thereby improving the conversion efficiency of the battery, reducing the ratio of warpage, cracking, etc. during the cutting of the ingot into the silicon wafer, and improving the yield of the silicon wafer process.
  • Figure 1 is a diagram showing the state of heat retention of the ingot polycrystalline cooling process of the present invention.
  • Quartz ceramic crucible 1-1. top cover, 1-2. cavity wall surface, 2. polycrystalline ingot.
  • a method for reducing stress defects in an ingot polycrystal is as follows: a polycrystalline silicon raw material is placed in a quartz ceramic crucible 1 , and after the polycrystalline ingot 2 completes a long crystal process, the thermal field is closed; The crystal is heated to a certain temperature for annealing; after annealing, the top cover 1-1 of the polycrystalline ingot 2 is opened, and the upper surface of the polycrystalline ingot 2 and the cavity wall surface 1-2 of the quartz ceramic crucible are irradiated. Heat transfer The cavity wall surface 1-2 outside the ceramic ceramics is cooled by water.
  • the polycrystalline ingot 2 Since the temperature of the cavity wall surface 1-2 is lower than the temperature of the polycrystalline ingot 2, the polycrystalline ingot 2 gradually releases heat to the cavity wall surface 1 - 2, Because the ingot is surrounded by a protective layer such as enamel, it plays a role of heat preservation to a certain extent, and the heat dissipation intensity of the polycrystalline ingot to the periphery is less, and the superposition effect of the main upward and secondary heat dissipation to the periphery forms a center in the crystal.
  • the convex temperature step distribution, the direction of the generated thermal stress is upward, and the direction of the thermal stress formed by the crystal growth process is opposite, so that the thermal stress formed in the crystal growth process is eliminated, and crystals such as stacking faults due to thermal stress in the crystal are avoided. defect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

说 明 书 降低多晶铸锭应力缺陷的方法 技术领域
本发明涉及半导体硅多晶铸锭生产的技术领域, 尤其是一种降低铸锭多晶 体内应力缺陷的方法。
背景技术
在太阳能光伏领域, 利用定向凝固的方法生产多晶硅锭是普遍采用的方法, 其基本原理是: 将多晶硅原料放置在石英陶瓷坩埚中, 放置在特定的热场系统 中, 加热至完全融化; 然后从坩埚的底部开始冷却, 硅溶液在坩埚底部开始结 晶, 逐渐向上生长 (凝固); 完成生长过程后, 通常会将热场重新闭合, 并将多 晶铸锭保温一段时候后开始冷却。 传统的冷却方式是, 从多晶铸锭的底部空间 开始冷却, 这样, 如同长晶过程的冷却方式一样, 其弊端是: 由于晶锭 (六面 体) 的四周及底部共五面和石英坩埚及保护石墨坩埚相接触, 形成一个 U型的 保温层, 从而在晶锭体内形成中心上凸的温度梯度, 和长晶过程中在晶体中形 成的温度梯度分布规律一致, 从而不利于结晶过程中热应力的释放, 在晶体中 产生滑移层错等晶体缺陷, 利用其制作的太阳能电池转换效率也会受到影响。 发明内容
本发明要解决的技术问题是: 为了克服现有技术中之不足, 提供一种降低 铸锭多晶体内应力缺陷的方法。
本发明解决其技术问题所采用的技术方案是: 一种降低铸锭多晶体内应力 缺陷的方法, 其降低铸锭多晶体内应力缺陷的方法采取的冷却方式为自多晶铸 锭的上部开始冷却。
所述的冷却方式在晶体中形成了中心下凸的温度阶梯分布。 降低铸锭多晶体内应力缺陷的方法, 其方法歩骤为: 所述的将多晶硅原料 放入石英陶瓷坩埚中, 多晶铸锭完成长晶过程后, 将热场封闭; 晶体加热后进 行退火处理; 退火处理后, 将多晶铸锭热场的顶盖开启, 使多晶铸锭的上表面 与石英陶瓷坩埚的腔壁面发生辐射换热; 降低石英陶瓷坩埚外的腔壁面的温度, 采用水冷却的方式, 由于腔壁面的温度低于多晶铸锭的温度, 多晶铸锭将热量 逐渐释放给腔壁面, 形成主要向上、 次要向四周散热的叠加效果。
本发明的有益效果是: 本发明改善了铸锭多晶的冷却过程, 使得冷却过程 在晶体内形成的温度梯度与长晶过程中晶体体内的温度梯度分布方式相反, 使 得结晶过程的应力得以有效释放, 减少晶体内滑移位错等晶体缺陷, 从而提高 电池的转化效率, 降低晶锭切成硅片过程中翘曲、 隐裂片等的比率, 提高硅片 制程的成品率。
附图说明
下面结合附图和实施例对本发明进一歩说明。
图 1是本发明铸锭多晶冷却过程保温状态图。
图中: 1.石英陶瓷坩埚, 1-1.顶盖, 1-2.腔壁面, 2.多晶铸锭。
具体实施方式
现在结合附图和优选实施例对本发明作进一歩的说明。 这些附图均为简化 的示意图, 仅以示意方式说明本发明的基本结构, 因此其仅显示与本发明有关 的构成。
如图 1 所示的一种降低铸锭多晶体内应力缺陷的方法, 其方法为: 将多晶 硅原料放入石英陶瓷坩埚 1 中, 多晶铸锭 2完成长晶过程后, 将热场封闭; 晶 体加热至一定温度进行退火处理; 退火处理后, 将多晶铸锭 2 热场的顶盖 1-1 开启, 使多晶铸锭 2的上表面与石英陶瓷坩埚的腔壁面 1-2发生辐射换热; 石 英陶瓷坩埚外的腔壁面 1-2降低温度采用水冷却的方式, 由于腔壁面 1-2的温 度低于多晶铸锭 2的温度, 多晶铸锭 2将热量逐渐释放给腔壁面 1-2, 由于铸锭 四周有坩埚等保护层, 一定程度上起到了保温作用, 多晶锭向四周的散热强度 较少, 以主要向上、 次要向四周散热的叠加效果, 在晶体中形成了中心下凸的 温度阶梯分布, 产生的热应力方向向上, 与长晶过程形成的热应力方向相反, 使得形成于长晶过程的热应力得以消除, 避免了晶体中由于热应力产生的层错 等晶体缺陷。
上述实施例只为说明本发明的技术构思及特点, 其目的在于让熟悉此项技 术的人士能够了解本发明的内容并加以实施, 并不能以此限制本发明的保护范 围, 凡根据本发明精神实质所作的等效变化或修饰, 都应涵盖在本发明的保护 范围内。

Claims

权 利 要 求 书
1、 一种降低铸锭多晶体内应力缺陷的方法, 其特征在于: 其降低铸锭多晶 体内应力缺陷的方法采取的冷却方式为自多晶铸锭的上部开始冷却。
2、根据权利要求 1所述的降低铸锭多晶体内应力缺陷的方法,其特征在于: 所述的冷却方式在晶体中形成了中心下凸的温度阶梯分布。
3、 根据权利要求 1所述的降低铸锭多晶体内应力缺陷的方法, 其方法歩骤 为: 所述的将多晶硅原料放入石英陶瓷坩埚中, 多晶铸锭完成长晶过程后, 将 热场封闭; 晶体加热后进行退火处理; 退火处理后, 将多晶铸锭热场的顶盖开 启, 使多晶铸锭的上表面与石英陶瓷坩埚外的腔壁面发生辐射换热; 降低石英 陶瓷坩埚的腔壁面的温度, 采用水冷却的方式, 由于腔壁面的温度低于多晶铸 锭的温度, 多晶铸锭将热量逐渐释放给腔壁面, 形成主要向上、 次要向四周散 热的叠加效果。
PCT/CN2010/078511 2010-09-28 2010-11-08 降低多晶铸锭应力缺陷的方法 WO2012040951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010294194 CN102094238A (zh) 2010-09-28 2010-09-28 降低铸锭多晶体内应力缺陷的方法
CN201010294194.2 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012040951A1 true WO2012040951A1 (zh) 2012-04-05

Family

ID=44127499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078511 WO2012040951A1 (zh) 2010-09-28 2010-11-08 降低多晶铸锭应力缺陷的方法

Country Status (2)

Country Link
CN (1) CN102094238A (zh)
WO (1) WO2012040951A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013201B2 (ja) * 2012-03-22 2016-10-25 三菱マテリアル電子化成株式会社 多結晶シリコンインゴット及び多結晶シリコンインゴットの製造方法
CN102925971B (zh) * 2012-11-29 2015-08-05 常州亿晶光电科技有限公司 高效多晶铸锭热场
CN104502166A (zh) * 2014-12-15 2015-04-08 首钢总公司 一种用来制备能表征钢铁材料晶粒滑移的样片的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201183846Y (zh) * 2008-01-28 2009-01-21 常州天合光能有限公司 多晶硅铸锭炉的热场结构
CN101498039A (zh) * 2008-12-26 2009-08-05 苏州市万泰真空炉研究所有限公司 多晶硅铸锭梯度冷却升降机构
CN101624187A (zh) * 2009-07-22 2010-01-13 管悦 一种多晶硅生长铸锭炉
CN101660208A (zh) * 2009-06-25 2010-03-03 南安市三晶阳光电力有限公司 一种减少多晶硅铸锭应力的方法
CN101696514A (zh) * 2009-09-30 2010-04-21 常州天合光能有限公司 一种多晶锭的生产方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520957B2 (ja) * 1997-06-23 2004-04-19 シャープ株式会社 多結晶半導体インゴットの製造方法および装置
JPH11310496A (ja) * 1998-02-25 1999-11-09 Mitsubishi Materials Corp 一方向凝固組織を有するシリコンインゴットの製造方法およびその製造装置
JP2002293526A (ja) * 2001-03-29 2002-10-09 Kawasaki Steel Corp 多結晶シリコンの製造装置
CN100595352C (zh) * 2007-07-17 2010-03-24 佳科太阳能硅(龙岩)有限公司 太阳能级多晶硅大锭的制备方法
CN101311345A (zh) * 2008-03-11 2008-11-26 上海汉虹精密机械有限公司 多晶硅制造方法及制造装置
CN101311341B (zh) * 2008-03-17 2010-04-07 中国电子科技集团公司第四十八研究所 一种用于多晶硅铸锭工艺的真空压力连续控制方法及其控制系统
CN101768775A (zh) * 2008-12-26 2010-07-07 谭文运 一种定向凝固生长多晶硅锭工艺
CN101660209B (zh) * 2009-06-25 2012-05-30 南安市三晶阳光电力有限公司 一种减少多晶硅铸锭应力的方法和装置
CN101812727B (zh) * 2010-04-13 2011-12-28 上海太阳能电池研究与发展中心 一种直流电场下定向凝固提纯多晶硅的方法
CN101805921B (zh) * 2010-04-22 2011-11-30 孙国志 一种多晶硅的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201183846Y (zh) * 2008-01-28 2009-01-21 常州天合光能有限公司 多晶硅铸锭炉的热场结构
CN101498039A (zh) * 2008-12-26 2009-08-05 苏州市万泰真空炉研究所有限公司 多晶硅铸锭梯度冷却升降机构
CN101660208A (zh) * 2009-06-25 2010-03-03 南安市三晶阳光电力有限公司 一种减少多晶硅铸锭应力的方法
CN101624187A (zh) * 2009-07-22 2010-01-13 管悦 一种多晶硅生长铸锭炉
CN101696514A (zh) * 2009-09-30 2010-04-21 常州天合光能有限公司 一种多晶锭的生产方法

Also Published As

Publication number Publication date
CN102094238A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
CN102877117A (zh) 基于多加热器的铸锭炉热场结构及运行方法
CN102108544A (zh) 一种控制长晶界面的多晶炉热场结构
TWI493082B (zh) 矽晶鑄錠之製造方法
CN101591808A (zh) 掺锗的定向凝固铸造单晶硅及其制备方法
CN103882517A (zh) 多晶硅锭的制备方法
WO2013149560A1 (zh) 一种多晶硅锭及其制备方法和多晶硅片
CN103343387B (zh) 一种多晶硅铸锭炉及其铸锭方法
CN202989351U (zh) 基于多加热器的铸锭炉热场结构
CN102877129A (zh) 一种晶体硅及其制备方法
CN103451726A (zh) 一种水致冷铸锭炉及其铸锭工艺
JP2014527013A5 (zh)
WO2012040951A1 (zh) 降低多晶铸锭应力缺陷的方法
CN102965727A (zh) 多晶硅锭及其铸造方法
US9938633B2 (en) System for manufacturing a crystalline material by directional crystallization provided with an additional lateral heat source
CN108754602B (zh) 一种多晶硅半熔铸锭用坩埚及其喷涂工艺和应用
CN104203845A (zh) 通过定向凝固制备铸造硅的方法
JP6286514B2 (ja) 多結晶シリコンインゴットの製造方法
CN106676628A (zh) 一种<100>晶向小晶粒铸造多晶硅的制备方法
CN103628126A (zh) 一种类单晶晶体硅锭的制作方法和多晶硅铸锭炉
CN106048718B (zh) 一种多晶硅半熔铸锭用排杂方法
CN106119956B (zh) 一种多晶硅半熔铸锭方法
CN103334154A (zh) 一种应用热交换生产多晶硅铸锭的方法
CN102653881A (zh) 一种铸造大晶粒硅锭的方法
TWI541390B (zh) 類單晶之製備方法
CN201183849Y (zh) 具有石墨冷却块保温条的多晶硅铸锭炉热场结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857714

Country of ref document: EP

Kind code of ref document: A1