WO2012040929A1 - 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用 - Google Patents

一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用 Download PDF

Info

Publication number
WO2012040929A1
WO2012040929A1 PCT/CN2010/077517 CN2010077517W WO2012040929A1 WO 2012040929 A1 WO2012040929 A1 WO 2012040929A1 CN 2010077517 W CN2010077517 W CN 2010077517W WO 2012040929 A1 WO2012040929 A1 WO 2012040929A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymerized
nonwoven fabric
residue
nanofiber nonwoven
diamine
Prior art date
Application number
PCT/CN2010/077517
Other languages
English (en)
French (fr)
Inventor
侯豪情
程楚云
陈水亮
周小平
吕晓义
何平
匡晓明
任金生
Original Assignee
江西先材纳米纤维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西先材纳米纤维科技有限公司 filed Critical 江西先材纳米纤维科技有限公司
Priority to PCT/CN2010/077517 priority Critical patent/WO2012040929A1/zh
Priority to CZ20130219A priority patent/CZ2013219A3/cs
Priority to DE112010005915.2T priority patent/DE112010005915B4/de
Priority to US13/877,106 priority patent/US20130196562A1/en
Priority to JP2013530522A priority patent/JP2013540208A/ja
Priority to KR1020137010952A priority patent/KR20130065720A/ko
Publication of WO2012040929A1 publication Critical patent/WO2012040929A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • Copolymerized polyimide nanofiber nonwoven fabric and preparation method and application thereof
  • the present invention relates to a copolymerized polyimide, a process for the preparation thereof and an application thereof, and more particularly to a polyimide nanofiber nonwoven fabric, a preparation method thereof, and use thereof as a battery separator.
  • Still another object of the present invention is to apply a polyimide nanofiber nonwoven fabric to a battery separator.
  • a copolymerized polyimide nanofiber nonwoven fabric of the present invention which is as follows
  • the residue structure of the tetraacid or dianhydride monomer, R 2 and R 4 are C 6 -C 3 .
  • the residue structure of the diamine monomer, the ratio of the total amount of the tetraacid dianhydride monomer to the total amount of the dianhydride monomer is always maintained at 1:1.
  • a preferred copolymerized polyimide nanofiber nonwoven fabric is copolymerized by a tetrabasic dianhydride monomer and two diamine monomers, namely (I), ( ⁇ ), (IV) or (II) above. ),
  • a preferred copolymerized polyimide is a nanofiber nonwoven fabric, which may also be copolymerized by two tetracarboxylic dianhydride monomers and two diamine monomers, namely (I), ((), (III) above. ,
  • R 3 is each selected from the group consisting of the following four acid dianhydride residue structures:
  • R 2 and R 4 are each selected from one of the following diamine residue structures:
  • the chemical composition of the copolymerized quinone imine nanofiber of the invention may be a dianhydride monomer and two diamine monomers.
  • the copolymerization product may also be a compound of two dianhydride monomers and a diamine, and also a compound of two dianhydrides and two diamines.
  • Ri and R 3 may be the same residue or different residues
  • R 2 and R 4 may be the same residue or different residues.
  • R 2 is different from R 4 , and when R 2 and R 4 are the same, the sum must be different to ensure that the chemical composition of the copolymerized quinone imine nanofiber is obtained by copolymerization of at least three monomers.
  • the copolymerized quinone imine nanofiber nonwoven fabric of the invention has a thickness of 10_60 ⁇ m, an elongation at break of not less than 20%, no dissolution at all in an ordinary organic solvent, a glass transition temperature of not lower than 210 ° C, thermal decomposition.
  • the temperature is not lower than 510. (, the melting temperature is greater than 350. C, even
  • the electrospun copolymerized polyimine nanofiber nonwoven fabric having such characteristics has tear resistance, heat shrinkage resistance, high temperature resistance, high voltage resistance and high current overcharge (electricity), and the yttrium imine nanofiber nonwoven fabric of the present invention It is used in a variety of high-capacity and high-power battery separators and capacitor separators, such as automotive power batteries and supercapacitors in the huge potential market.
  • Another object of the present invention is to provide a method for preparing a copolymerized polyimine nanofiber nonwoven fabric, the steps of which include:
  • the solvent used therein is a highly polar solvent, preferably one of N, N-dimercaptodecylamine (DMF) 'N,N-didecylacetamide (DMAC);
  • the stirring reaction time is 1 -10 hours, preferably the reaction time is 5-10 hours;
  • the reaction temperature is 0-30 ° C, preferably the reaction temperature is 5 ⁇
  • the electric field strength is preferably between 0.5 and 300 kV / m;
  • the copolymerized polyaminic acid nanofiber nonwoven obtained above is placed in a high temperature furnace to be heated and imidized.
  • the imidization is carried out in a nitrogen atmosphere, and the heating process of the heating process is: heating from room temperature to 200-250 ° C at a temperature increase rate of 20 ° C / min, staying at this temperature for 30 min, and then at 5 ° C /
  • the heating rate of min is heated to 330-370 ° C, and the book stays at this temperature
  • the specific surface area of the copolymerized polyimide nanofiber porous film or nonwoven fabric of the present invention is determined by JW-K type pore distribution and specific surface area measuring instrument (Beijing Jingwei Gaobo Science and Technology Co., Ltd.); copolymerized polyimide
  • the electrical breakdown strength of the nanofiber nonwoven fabric was measured by a dielectric breakdown tester DJD-20KV (Beijing Crown Test Equipment Co., Ltd.).
  • is the density (g/cm 3 ) of the copolymerized polyimide nanofiber nonwoven fabric, p. It is the density (g/cm 3 ) of a copolymerized polyimide solid film (prepared by solution casting).
  • Still another object of the present invention is to apply a copolymerized polyimide nanofiber nonwoven fabric to a battery separator.
  • a dianhydride and a diamine are used as a reaction raw material, and a highly polar solvent is used as a reaction medium, and condensation polymerization is carried out under mechanical stirring to form a solution of a copolymerized polyamic acid (a precursor polymer of co-PI).
  • the total number of dianhydride monomers and diamine monomers is three or more, and the total number of dianhydride functional groups and the total number of diamine functional groups are equal or substantially equal.
  • the above-mentioned synthetically obtained solution was processed into a copolymerized polyamic acid nanofiber nonwoven fabric by a high-voltage electrospinning technique at 300. It is imidized at a temperature higher than C to form a high temperature resistant nanofiber nonwoven battery separator that can isolate the electrodes in the chemical power source.
  • the copolymerized polyimide nanofiber nonwoven fabric has the characteristics of strong tear resistance, high porosity, high temperature resistance and excellent mechanical properties, and is applied to the battery separator to have good heat resistance and heat shrinkage resistance, and is overheated and overheated. In the case of charging, etc., there is no phenomenon that the battery separator is broken due to thermal contraction or even melting, and the internal short circuit of the battery causes thermal runaway. In addition, the copolymerized polyimide nanofiber nonwoven fabric is applied to various high-capacity materials. There are huge potential markets for volume and high power battery separators and capacitor separators, such as automotive power batteries and supercapacitors.
  • the method for preparing a copolymerized polyamidamine nanofiber nonwoven fabric of the present invention comprises the following steps:
  • a proper amount of a dianhydride monomer and two diamine monomers or two dianhydrides are taken.
  • the mixture is mixed with a diamine monomer or two dianhydride monomers and two diamine monomers, and added to the polymerization reactor together with an appropriate amount of solvent, and the reaction is stirred for a while.
  • a copolymerized polyamic acid (polyimide precursor) solution is obtained, and the copolymerized polyamic acid solution is subjected to electrospinning in a high-voltage electric field, and a stainless steel roller is used as a collector to collect a polyamic acid nanofiber porous film or Non-woven.
  • the solvent used is preferably ⁇ , ⁇ - two Yue Yue-yl amide (DMF), ⁇ ⁇ two Yue-yl acetamide (0 ⁇ of one; reactor temperature is 0_ 3 0 ° C; reaction time was stirred 5 ⁇
  • the electric field strength of the high-voltage electric field is preferably from 250 to 300kV / m;
  • the copolymerized polyamic acid nanofibers obtained as described above were non-woven in a high-temperature furnace and heated to imidization in a nitrogen atmosphere.
  • the heating process of the heating process is: heating from room temperature to 200-250 ° C at a heating rate of 20 ° C / min, staying at this temperature for 30 min, and then heating to 330-370 ° at a heating rate of 5 ° C / min C, and stay at this temperature for 30min, then cut off the power.
  • Performance characterization including determining the absolute viscosity of the copolymerized polyamic acid solution and the spinning solution, the diameter of the electrospun copolymerized polyamic acid nanofiber, the thermal decomposition temperature of the copolymerized polyimide nanofiber nonwoven, and the copolyamide Mechanical properties (strength, elongation at break, etc.) of the imine nanofiber porous film or nonwoven fabric, glass transition temperature of the copolymerized polyimide nanofiber nonwoven fabric, specific surface area of the copolymerized polyimide nanofiber nonwoven fabric The electrical breakdown strength of the copolymerized polyimide nanofiber nonwoven fabric.
  • Example 1 Example 1:
  • the comonomer is selected as a tetraacid dianhydride monomer and two diamine monomers.
  • BPDA biphenyl dianhydride
  • PPD p-phenylenediamine
  • DMF diphenyl ether diamine
  • the temperature of the reactor in the embodiment is 10 ° C, and the stirring reaction time is 6 hours; the electric field strength of the high-voltage electric field used in the electrospinning process is 300 kV/m; in the reaction step (2), the temperature increasing procedure is The temperature rise rate of 20 ° C / min is heated from room temperature to 200 ° C, stay at this temperature for 30 min, then heat to 350 ° C at a temperature increase rate of 5 ° C / min, and stay at 350 ° C for 30 min, then cut off Power, naturally cooled to the room
  • the copolymerized polyamic acid (polyimide precursor) solution has a mass concentration of ⁇ , an absolute viscosity of 5. 2 Pa-S, and a copolymerized polyamic acid nanofiber having a diameter of 100-400, mainly distributed in 2 Around 5 Onm, the copolymerized polyimide nanofiber nonwoven fabric has a tensile strength of 25 MPa and an elongation at break of 24°/.
  • the glass transition temperature is 285° (the thermal decomposition temperature is 530.), the porosity is 84.2%, the specific surface area is 37. 4 m 2 /g, and the electrical breakdown strength is 1. 2xl 0 5 V/cm. Or 12 ⁇ / ⁇ .
  • Example 2 The comonomer was selected as a tetraacid dianhydride monomer and two diamine monomers.
  • the base amide (DMF) is used as a solvent, and the reaction is carried out according to the above steps.
  • the temperature of the reaction vessel of the embodiment is 5 ° C, and the stirring reaction time is 6 hours; the electric field strength of the high-voltage electric field is used for electrospinning processing. 250kV / m; in the reaction step (2), the temperature program is heated from room temperature to 250 ° C at a temperature increase rate of 20 ° C / min,
  • the copolymerized polyamic acid (polyimide precursor) solution has a mass concentration of 5%, an absolute viscosity of 4. 8 Pa-S, and a copolymerized polyamic acid nanofiber having a diameter of 100-300 nm, mainly distributed at 200.
  • the copolymerized polyimide nanofiber nonwoven fabric has a tensile strength of 24 MPa and an elongation at break of 23 °/.
  • the glass transition temperature is 298.
  • the thermal decomposition temperature is 560.
  • the porosity is 82.0%, the specific surface area is 38.8 m 2 /g, and the electrical breakdown strength is 1. 3xl 0 5 V/cm or 1 3 ⁇ / ⁇ .
  • Example 3 The comonomer is a tetracarboxylic dianhydride monomer and two diamine monomers.
  • the purified pyromellitic dianhydride (PMDA) is a molar ratio of 1:0.5:0.5.
  • reaction step (1) diphenyl decane diamine ( MDA ) and diphenyl ether diamine (0DA) are mixed, and hydrazine, hydrazine hydrazinyl amide (DMF) is used as a solvent, and reacted according to the above steps, in the reaction step (1)
  • the temperature of the reactor was 5 ° C and the stirring reaction time was 10 hours; the electric field strength of the high-voltage electric field used in electrospinning was 250 kV/m; and the temperature rising procedure in the reaction step (2) was from 20 ° C /min.
  • Copolyimine precursor co-polyamine acid, co-PAA
  • Co-PAA polyamine acid
  • the main distribution is about 250, and the copolymerized polyamidene nanofiber nonwoven fabric has a tensile strength of 20 MPa and an elongation at break of 21 °/.
  • glass transition temperature is the book
  • Example 4 The comonomer was selected as a tetraacid dianhydride monomer and two diamine monomers.
  • the purified diphenyl sulfone dianhydride (DSDA), diphenoxydiphenyl sulfone diamine (BAPS) and diphenyl ether diamine (0DA) in a molar ratio of 1:0.3:0.7 are mixed with N, N_ Dimercaptodecylamine (DMF) is used as a solvent, and reacted according to the above steps.
  • DSDA diphenoxydiphenyl sulfone diamine
  • BAPS diphenoxydiphenyl sulfone diamine
  • DMF diphenyl ether diamine
  • the temperature of the reaction vessel of the embodiment is 5 ° C, and the stirring reaction time is 10 hours; the high-voltage electric field used in the electrospinning process The electric field strength is 250kV/m; in the reaction step (2), the temperature rising program is heated from room temperature to 200 ° C at a temperature rising rate of 20 ° C /min, and is kept at this temperature for 30 min, and then heated at a heating rate of 5 ° C /min. To 330 ° C, and stay at 330 ° C for 30 min, then cut off the power, and naturally cool to room temperature.
  • Copolyimine precursor (co-polyamine acid, co-PAA) solution has a mass concentration of 8%, an absolute viscosity of 4.2 Pa-S, and a copolymerized polyamido nanofiber diameter of 100-300 nm. , mainly distributed around 180 jin, copolymerized polyamidene nanofibers
  • the woven fabric had a tensile strength of 20 MPa and an elongation at break of 25 °/.
  • the glass transition temperature is 238. Cx
  • the thermal decomposition temperature is 520 o C
  • the porosity is 81.3%
  • the specific surface area is 36.9 m 2 /g
  • the electrical breakdown strength is 1.
  • Example 5 Polymerized monomers were selected as two kinds of tetraacid dianhydride monomers and one diamine monomer. The molar ratio of 0. 5: 0. 5: 1 purified biphenyl dianhydride (BPDA), pyromellitic dianhydride (PMDA) and diphenyl ether diamine (0DA) mixed with an appropriate amount of hydrazine, ⁇ _ Dimercaptodecylamine (DMF) as a solvent, according to the book
  • BPDA biphenyl dianhydride
  • PMDA pyromellitic dianhydride
  • DMF diphenyl ether diamine
  • the temperature of the reaction vessel of the embodiment is 5 ° C, and the stirring reaction time is 10 hours; the electric field strength of the high-voltage electric field used in the electrospinning process is 250 kV/m; and the temperature increasing procedure in the reaction step (2)
  • the temperature rise rate of 20 ° C / min is heated from room temperature to 250 ° C, stay at this temperature for 30 min, then heat to 370 ° C at a temperature increase rate of 5 ° C / min, and stay at 370 ° C for 30 min, then cut off Power, naturally cooled to room temperature.
  • Characterization The mass concentration of the copolymerized polyaminic acid solution is 6%, the absolute viscosity is 5.
  • Example 6 The polymerized monomer is selected from the two tetracarboxylic dianhydride monomers and a diamine monomer.
  • Phenylenediamine dianhydride HQDPA
  • PMDA pyromellitic dianhydride
  • DMF diphenyl ether diamine
  • the temperature of the reaction vessel of the embodiment is 10 ° C, and the stirring reaction time is 5 hours; the electric field strength of the high-voltage electric field used in the electrospinning process is 300 kV/m; in the reaction step (2), the temperature increasing procedure is The heating rate of 20 ° C / min is heated from room temperature to 200 ° C, staying at this temperature for 30 min, then heating to 350 ° C at a heating rate of 5 ° C / min, and staying at 350 ° C for 30 min, then cutting Power, naturally cooled to room temperature.
  • Said performance characterization the concentration of the copolymerized polyaminic acid solution is 8%, the absolute viscosity is 4.2
  • copolymerized polyaminic acid nanofibers have a diameter of 80-300 nm, mainly distributed at about 150 nm, and the copolymerized polyimine nanofiber nonwoven fabric has a tensile strength of 23 MPa and an elongation at break of 24°/ .
  • the glass transition temperature was 278° (the thermal decomposition temperature was 540° (the porosity was 81.4%, the specific surface area was 41.8 m 2 /g, and the electrical breakdown strength was 1.4 ⁇ 10 5 V/cm or 14 ⁇ / ⁇ .
  • Example 7 The comonomer was selected as two tetraacid dianhydrides and two diamines.
  • the benzophenone dianhydride (BTDA) and pyromellitic dianhydride were purified after a molar ratio of 1: 1: 1:1.
  • PMDA biphenyldiamine
  • hydrazine biphenyldiamine
  • diphenylether diamine (0DA) diphenylether diamine
  • DMAc hydrazine-dimercaptoacetamide
  • the temperature of the reaction vessel is 5 ° C, and the stirring reaction time is 6 hours; the electric field strength of the high-voltage electric field used in the electrospinning process is 250 kV/m; and the temperature rising procedure in the reaction step (2) is 20 ° C /
  • the heating rate of min is heated from room temperature to 250 ° C, staying at this temperature for 30 min, then heating to 370 ° C at a heating rate of 5 ° C / min, and staying at 370 ° C for 30 min, then cutting off the power supply, cooling naturally To room temperature.
  • Characterization The mass concentration of the copolymerized polyamic acid solution is 6%, the absolute viscosity is 4.
  • the diameter of the copolymerized polyamic acid nanofiber is 100-300 nm, mainly distributed at about 150 nm, copolymerized polyimide nanometer.
  • the fiber nonwoven fabric had a tensile strength of 22 MPa and an elongation at break of 24 °/.
  • the glass transition temperature is 288.
  • the thermal decomposition temperature is 540.
  • the porosity is 80.5%, the specific surface area is 41.8 m 2 /g, and the electrical breakdown strength is 1. 5xl 0 5 V/cm or 15 ⁇ / ⁇ .
  • Example 8 Example 8:
  • the comonomers are selected from two tetraacid dianhydrides and two diamines.
  • BTDA purified biphenyl dianhydride
  • HQPDA triphenyldiether dianhydride
  • PPD p-phenylenediamine
  • DMAc diphenyl ether diamine
  • the temperature of the reactor in the embodiment is 10 ° C, and the stirring reaction time is 10 hours; the electric field strength of the high-voltage electric field used in the electrospinning process is 300 kV/m; in the reaction step (2), the temperature increasing procedure is The temperature rise rate of 20 ° C / min is heated from room temperature to 250 ° C, stay at this temperature for 30 min, then heat to 350 ° C at a temperature increase rate of 5 ° C / min, and stay at 320 ° C for 30 min, then cut off Power, naturally cooled to room temperature.
  • the copolymerized polyamic acid solution has a mass concentration of 8%, an absolute viscosity of 4.0 Pa-S, and a copolymerized polyamic acid nanofiber having a diameter of 50-250 nm, mainly distributed at about 150 nm, copolymerized polyimide nanometer.
  • the fiber nonwoven fabric had a tensile strength of 21 MPa and an elongation at break of 23 °/.
  • the glass transition temperature is 284° (the thermal decomposition temperature is 530° (the porosity is 80.2%, the specific surface area is 42.0 m7g, and the electrical breakdown strength is 1. 5xl 0 5 V/cm or 15 ⁇ / ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Artificial Filaments (AREA)

Description

一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
技术领域 本发明涉及一种共聚聚酰亚胺及其制备方法和应用,具体涉及一 种聚酰亚胺纳米纤维非织造布、 制备方法及其作为电池隔膜的应用。
说 背景技术
化学电源是现代生活中极其重要的组成部分, 如手机电池、正在 发展中的汽车动力电池等都是人类追求高质量生活不可或缺的产品。 而电池的安全性是人们关注的重大科技问题和社会责任问题,开发安 全电池隔膜是解决电池安全性问题的一个技术关键。 目前电池工业中 使用的聚乙烯 (PE) , 聚丙烯(PP )之类的电池隔膜由于熔融温度低 及热收缩比过高的原因而不能保证其在较高温度下的完整性, 在过 热、过充电等情况下, 经常出现由于热致收缩甚至融化造成电池隔膜 破裂, 发生电池内部短路导致热失控和爆炸等严重事故。 因此, 开发 耐热性好和抗热收缩的材料并将其应用于电池隔膜成为解决化学电 源安全性问题的关键。
发明内容 本发明的目的是提供一种抗撕裂性强、 孔隙率高、 能耐高低温及 机械性能优异等特性的共聚聚酰亚胺纳米纤维非织造布。 本发明的另一目的是提供本发明的一种聚酰亚胺纳米纤维非织 造布的制备方法。
本发明的又一目的是将聚酰亚胺纳米纤维非织造布应用于电池 隔膜。
为达到以上目的, 本发明采用的技术方案如下:
本发明的一种共聚聚酰亚胺纳米纤维非织造布, 其是由下述
( I ) 、 ( II ) 、 (III)、 ( IV) 四类单体中的三种以上单体共聚成共 聚聚酰胺酸, 再经静电纺丝、 亚胺化而成:
Figure imgf000003_0001
H2N— R2-NH2 (πΐ) , Η9Ν ~ R4— ΝΗ ( IV) 其中共聚聚酰亚胺具有以下化学结构:
Figure imgf000003_0002
n为 50 ~ 300的之间的自然数; m为 50 ~ 300之间的自然数; 、 R3为 C4-C3。的四酸或者二酐单体的残基结构, R2、 R4为 C6-C3。二胺 单体的残基结构,四酸二酐单体总物质的量与二酐单体的总物质的量 之比始终保持为 1: 1。
优选的一种共聚聚酰亚胺纳米纤维非织造布,是通过一种四酸二 酐单体和两种二胺单体共聚, 即上述( I )、 (ΠΙ)、 ( IV )或者( II ),
(III)、 (IV)三种单体共聚而成。其中三种单体的摩尔比为(I): (III):
(IV)或(II): (ΠΙ): (IV) = [1]: [0.05-0.95]: [0.05 —0.95]。 优选的一种共聚聚酰亚胺纳米纤维非织造布,也可以是通过两种 四酸二酐单体和一种二胺单体共聚, 上述( I ) 、 ( Π ) 、 (III)或者 ( I ) 、 ( Π ) 、 ( IV)三种单体共聚, 其中三种单体的摩尔比为 ( I ): (II) : (III)或(II) : (III): (IV) = [0.05-0.95 ]: [0.05- 0.95 ]:
优选的一种共聚聚酰亚胺说纳米纤维非织造布,还可以是通过两种 四酸二酐单体和两种二胺单体共聚, 即上述( I ) 、 ( Π ) 、 (III) ,
( IV)四种单体共聚,其中四种单体的摩尔比关系为 [( I ) + ( 11 )]:
[(πΐ)+ ( IV) ]=1: 1。 优选的 、 R3分别选自下列四酸二酐残基结构中的一种:
Figure imgf000004_0001
二苯酮二酐残基 均苯四酸二酐残基 联苯二酐残基
萘四酸二酐残基
Figure imgf000004_0002
环丁四酸二酐残基 三苯二醚二酐残基 3, 6桥婦环己四
Figure imgf000004_0003
三联苯四酸二酐残基 环己四酸二酐残基 二苯 醚二酐残基 优选的 R2、 R4分别选自下列二胺残基结构中的一种:
Figure imgf000005_0001
-苯基甲烷二胺残基 间苯二胺残基
说 书
二 二苯砜二胺残基
Figure imgf000005_0002
二苯氧基三苯氧膦二胺残基
Figure imgf000005_0003
二苯氧基双酚 A二胺残基 -吡啶二胺残基
Figure imgf000005_0004
2, 6-嘧啶联二苯二胺残基 ( 3, 3'-二甲基)二苯甲烷二胺残基
Figure imgf000005_0005
二苯氧基二苯甲酮二胺残基 5-甲基间苯二胺残基 本发明的共聚的酖亚胺纳米纤维的化学成分可以是一种二酐单 体与两种二胺单体的共聚产物,也可以是两种二酐单体与一种二胺单 休的 物, 还.可以 两种二酐单休和两种二胺单休的 物,. 具体来说就是其中的 Ri和 R3可以为相同残基也可以为不同的残基、 R2和 R4可以为相同的残基也可以为不同的残基, 当 Ri和 R3相同时, R2和 R4不同, 同样 R2和 R4相同时, 和 必定不同, 以保证所述 的共聚的酖亚胺纳米纤维的化学成分由至少三种单体共聚而得。
本发明共聚的酖亚胺纳米纤维非织造布的厚度为 10_60μπι、断裂 伸长率不低于 20 %、 在普通说有机溶剂中完全不溶解、 玻璃化转变温 度不低于 210 °C , 热分解温度不低于 510。 (、 熔融温度大于 350。C ,甚
至在分解温度以下都不熔融、孔隙率高于 80%、机械强度高于 20 MPa、 电击穿强度大于 l xl O7 V/m。 具有这种特性的电纺共聚聚酖亚胺纳米 纤维非织造布具有抗撕裂、 抗热收缩、 耐高温、 耐高压大电流过充 (电),本发明的酖亚胺纳米纤维非织造布应用于各种高容量和高动 力电池隔膜及电容器隔膜,如汽车动力电池和超级电容器行业中具有 巨大的潜在市场。
本发明的另一目的是提供一种共聚聚酖亚胺纳米纤维非织造布 的制备方法, 其步骤包括:
(一)将三种以上的单体提纯后 , 与适量的溶剂一起加入到聚合 反应釜中, 搅拌反应一段时间。 得到共聚聚酖胺酸(聚酖亚胺前体) 溶液, 并将该共聚聚酖胺酸溶液在高压电场中实施静电纺丝, 用不锈 钢滚筒为收集器, 收集得到共聚聚酖胺酸纳米纤维非织造布。
其中所用的溶剂为高极性溶剂,优选为 N, N-二曱基曱酖胺( DMF )' N,N_二曱基乙酖胺(DMAC )中的一种; 搅拌反应的时间为 1-10小时, 优选反应时间为 5-10小时; 反应的温度为 0-30°C , 优选反应温度为 5-10°C; 电纺丝加工所用的电场强度优选在 250-300kV/m之间; 不锈 钢滚筒收集器的直径为 0. 3米。
(二)将上述所得的共聚聚酖胺酸纳米纤维非织造布置于高温炉 中, 加热亚胺化。 其中亚胺化在氮气气氛中进行, 加热过程的升温程序为: 以 20°C /min的升温速度从室温加热到说 200-250°C , 在该温度下停留 30min , 然后以 5°C /min的升温速度加热至 330-370°C , 并在该温度下停留 书
30min, 然后切断电源。
(三)性能表征:包括测定共聚聚酖胺酸溶液和纺丝液的绝对粘 度、 电纺共聚聚酖胺酸纳米纤维的直径、共聚聚酖亚胺纳米纤维非织 造布的热分解温度、共聚聚酖亚胺纳米纤维非织造布的机械性质(强 度、 断裂伸长等) 、 共聚聚酖亚胺纳米纤维非织造布的玻璃化温度、 共聚聚酖亚胺纳米纤维非织造布的比表面积、共聚聚酖亚胺纳米纤维 非织造布的电击穿强度。 本发明中采用 NDJ-8S粘度计(上海精密科学仪器公司) 测定聚 酖胺酸溶液和纺丝液的绝对粘度; 通过扫描电子显敖镜 VEGA 3 SBU
(捷克共和国)测定电纺聚酖胺酸纳米纤维的直径;采用 WRT-3P热失 重分析仪( TGA ) (上海精密科学仪器有限公司)测定共聚聚酖亚胺纳 米纤维非织造布的热分解温度; 采用 CMT8102型电子万能试验机(深 圳 SANS材料检测有限公司)测定共聚聚酖亚胺纳米纤维非织造布的 机械性质(强度、 断裂伸长等 );使用 Diamond动态机械分析仪( DMA )
( Perk in-E lmer , 美国)测定共聚聚酖亚胺纳米纤维的玻璃化温度; 本发明所述的共聚聚酰亚胺纳米纤维多孔膜或非织造布的比表面积 采用 JW-K型孔分布及比表面积测定仪(北京精微高博科学技术有限 公司)测定; 共聚聚酰亚胺纳米纤维非织造布的电击穿强度用介电击 穿试验仪 DJD-20KV (北京冠测试验仪器有限公司)测定。 本发明所述的共聚聚酰亚胺纳米纤维非织造布的孔隙率是通过 下列算式计算得到: 说 孔隙率 β = [1 - (ρ/ρο) ] χ100
式中 ρ为共聚聚酰亚胺纳米纤维非织造布的密度(克 /cm3) , p。为共聚 聚酰亚胺实体薄膜(通过溶液浇铸法制备) 的密度 (克 /cm3)。 本发明的又一目的是将共聚聚酰亚胺纳米纤维非织造布的应用 于电池隔膜。 本发明以二酐和二胺为反应原料, 以高极性溶剂为反应媒质, 在机械搅拌下进行缩合聚合, 形成共聚聚酰胺酸( co-PI的前体聚合 物)溶液。 其中, 二酐单体和二胺单体总种类为三种以上, 二酐功能 基团总数和二胺功能基团总数相等或大致相等。通过高压静电纺丝技 术将上述合成所得溶液加工成共聚聚酰胺酸纳米纤维非织造布, 在 300。C 以上高温下亚胺化,形成可隔离化学电源中电极的耐高温纳米 纤维非织造布电池隔膜。该共聚聚酰亚胺纳米纤维非织造布具有抗撕 裂性强、 孔隙率高、 能耐高低温及机械性优异等特性, 应用于电池隔 膜具有耐热性好和抗热收缩, 在过热、 过充电等情况下, 不会出现由 于热致收缩甚至融化造成电池隔膜破裂,发生电池内部短路而导致热 失控等现象。此外该共聚聚酰亚胺纳米纤维非织造布应用于各种高容 量和高动力电池隔膜及电容器隔膜,如汽车动力电池和超级电容器行 业中具有巨大的潜在市场。
下面结合实施例对该发明做进一步详细说明。 具体实施方式
本发明的一种共聚聚酰亚说胺纳米纤维非织造布的制备方法,其步 骤包括:
(一)以二酐官能基团的摩尔总量与二胺官能基团的摩尔总量相 等为原则 ,适量地取一种二酐单体和两种二胺单体混合或两种二酐单 体和一种二胺单体混合或两种二酐单体和两种二胺单体混合,与适量 的溶剂一起加入到聚合反应釜中,搅拌反应一段时间。得到共聚聚酰 胺酸(聚酰亚胺前体 )溶液, 并将该共聚聚酰胺酸溶液在高压电场中 实施静电纺丝, 用不锈钢滚筒为收集器, 收集得到共聚聚酰胺酸纳米 纤维多孔膜或非织造布。 其中所用的溶剂优选为 Ν, Ν-二曱基曱酰胺 ( DMF )、 ^ ^二曱基乙酰胺(0^^ 中的一种;反应釜的温度为 0_30 °C ; 搅拌反应的时间优选在 1-10小时, 高压电场的电场强度为 250-300kV/m; 不锈钢滚筒收集器的直径为 0. 3米。
(二)将上述所得的共聚聚酰胺酸纳米纤维非织造布置于高温炉 中, 在氮气气氛中加热亚胺化。 其中加热过程的升温程序为: 以 20°C /min的升温速度从室温加热到 200-250°C , 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 330-370°C , 并在该温度下停留 30min, 然后切断电源。 (三)性能表征:包括测定共聚聚酰胺酸溶液和纺丝液的绝对粘 度、 电纺共聚聚酰胺酸纳米纤维的直径、共聚聚酰亚胺纳米纤维非织 造布的热分解温度、共聚聚酰亚胺纳米纤维多孔膜或非织造布的机械 性质(强度、 断裂伸长等)、 共聚聚酰亚胺纳米纤维非织造布的玻璃 化温度、共聚聚酰亚胺纳米纤维非织造布的比表面积、共聚聚酰亚胺 纳米纤维非织造布的电击穿强说度。 实施例 1 :
选用共聚单体为一种四酸二酐单体和两种二胺单体。将摩尔比为 1 : 0. 5: 0. 5的提纯后的联苯二酐( BPDA ) 、 对苯二胺( PPD )和二苯 醚二胺(0DA)混合, 以 N, N_二曱基曱酰胺( DMF )做溶剂, 按上述反 应步骤进行。 在反应步骤(一) 中该实施例反应釜的温度为 10 °C , 搅拌反应时间为 6小时; 电纺加工所用高压电场的电场强度为 300 kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速度从室温加 热到 200°C , 在该温度下停留 30min , 然后以 5°C /min的升温速度加 热至 350°C , 并在 350°C下停留 30min , 然后切断电源, 自然冷却至室
性能表征: 其中共聚聚酰胺酸(聚酰亚胺前体 )溶液的质量浓度 为 Ί , 绝对粘度为 5. 2 Pa-S , 共聚聚酰胺酸纳米纤维直径为 100-400 謹, 主要分布在 25 Onm左右, 共聚聚酰亚胺纳米纤维非织造布的拉伸 强度为 25 MPa、 断裂伸长率为 24°/。、 玻璃化转变温度为 285° (、 热分 解温度为 530。 (、 孔隙率为 84. 2%、 比表面积为 37. 4 m2/g、 电击穿强 度为 1. 2xl 05 V/cm或 12 ν/μπι。 实施例 2 : 选用共聚单体为一种四酸二酐单体和两种二胺单体。 将摩尔比 1 : 0. 6: 0. 4的提纯后的均苯四酸二酐(PMDA)、 二苯醚二胺(0DA)和联 苯二胺(Bz)混合 以 N, N-二曱基曱酰胺( DMF )做溶剂, 按上述步骤 反应, 在反应步骤(一) 中该实施例反应釜的温度为 5 °C , 搅拌反应 时间为 6小时; 电纺加工所用说高压电场的电场强度为 250kV/m; 反应 步骤(二) 中升温程序以 20°C /min的升温速度从室温加热到 250°C, 书
在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C , 并在 370°C下停留 30min, 然后切断电源, 自然冷却至室温。 性能表征: 共聚聚酰胺酸(聚酰亚胺前体) 溶液的质量浓度为 5% ,绝对粘度为 4. 8 Pa-S ,共聚聚酰胺酸纳米纤维直径为 100-300 nm, 主要分布在 200謹左右,共聚聚酰亚胺纳米纤维非织造布的拉伸强度 为 24 MPa、 断裂伸长率为 23°/。、 玻璃化转变温度为 298。 (、 热分解温 度为 560。 (、 孔隙率为 82. 0%、 比表面积为 38. 8 m2/g、 电击穿强度为 1. 3xl 05 V/cm或 1 3 ν/μπι。 实施例 3: 选用共聚单体为一种四酸二酐单体和两种二胺单体。将摩尔比为 1 : 0. 5: 0. 5的提纯后的均苯四酸二酐(PMDA)、 二苯曱烷二胺( MDA ) 和二苯醚二胺(0DA)混合, 以 Ν, Ν_二曱基曱酰胺( DMF )做溶剂, 按 上述步骤反应, 在反应步骤(一) 中该实施例反应釜的温度为 5 °C , 搅拌反应时间为 10小时; 电纺加工所用高压电场的电场强度为 250kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速度从室 温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速 度加热至 370°C, 并在 370°C下停留 30min, 然后切断电源, 自然冷却 至室温。 性能表征: 共聚聚酖亚胺前体(共聚聚酖胺酸, co-PAA)溶液的 质量浓度为 6%, 绝对粘度为 4.8 Pa-S, 共聚聚酖胺酸纳米纤维直径 为 100- 400 nm, 主要分布在说 250謹左右, 共聚聚酖亚胺纳米纤维非 织造布的拉伸强度为 20MPa、 断裂伸长率为 21°/。、 玻璃化转变温度为 书
296。C、热分解温度为 510oC、孔隙率为 85.1%、比表面积为 36.9 m2/g, 电击穿强度为 1. lxlO5 V/cm或 11 ν/μπι。 实施例 4: 选用共聚单体为一种四酸二酐单体和两种二胺单体。将摩尔比为 1: 0.3: 0.7的提纯后的二苯砜二酐(DSDA)、 二苯氧基二苯砜二胺 ( BAPS )和二苯醚二胺(0DA)混合, 以 N, N_二曱基曱酖胺( DMF )做 溶剂, 按上述步骤反应, 在反应步骤(一)中该实施例反应釜的温度 为 5°C, 搅拌反应时间为 10小时; 电纺加工所用高压电场的电场强 度为 250kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速度 从室温加热到 200°C, 在该温度下停留 30min, 然后以 5°C /min的升 温速度加热至 330°C, 并在 330°C下停留 30min, 然后切断电源, 自然 冷却至室温。 性能表征: 共聚聚酖亚胺前体(共聚聚酖胺酸, co-PAA)溶液的 质量浓度为 8%, 绝对粘度为 4.2 Pa-S, 共聚聚酖胺酸纳米纤维直径 为 100- 300 nm, 主要分布在 180謹左右, 共聚聚酖亚胺纳米纤维非 织造布的拉伸强度为 20 MPa、 断裂伸长率为 25°/。、 玻璃化转变温度为 238。C、热分解温度为 520oC、孔隙率为 81. 3%、比表面积为 36. 9 m2/g, 电击穿强度为 1. 4xl 05 V/cm或 14 ν/μπι。 实施例 5 : 选用聚合单体为两种种四酸二酐单体和一种二胺单体。将摩尔比 0. 5: 0. 5: 1提纯后的联苯二酐说( BPDA ) 、 均苯四酸二酐(PMDA)和二苯 醚二胺(0DA)混合, 以适量的 Ν, Ν_二曱基曱酖胺( DMF )做溶剂, 按 书
上述步骤进行。 其中在反应步骤(一) 中该实施例反应釜的温度为 5 °C , 搅拌反应时间为 10小时; 电纺加工所用高压电场的电场强度为 250kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速度从室 温加热到 250°C , 在该温度下停留 30min , 然后以 5°C /min的升温速 度加热至 370°C , 并在 370°C下停留 30min, 然后切断电源, 自然冷却 至室温。 性能表征: 共聚聚酖胺酸溶液的质量浓度为 6%, 绝对粘度为 5. 5 Pa-S ,聚酖胺酸纳米纤维直径为 150- 400 nm,主要分布在 280nm左右, 共聚聚酖亚胺纳米纤维非织造布的拉伸强度为 23 MPa、 断裂伸长率 为 22°/。、 玻璃化转变温度为 295° (、 热分解温度为 550° (、 孔隙率为 85. 0°/。、比表面积为 36. 9 m2/g、电击穿强度为 1. l xl O5 V/cm或 11 ν/μπι。 实施例 6 : 选用聚合单体为两种四酸二酐单体和一种二胺单体。 将摩尔比 0. 5: 0. 5: 1提纯后的三苯二醚二酐(HQDPA)、 均苯四酸二酐(PMDA)和 二苯醚二胺(0DA)及适量的溶剂 Ν,Ν-二曱基曱酖胺(DMF ) , 按上述 步骤反应。 其中在反应步骤(一) 中该实施例反应釜的温度为 10 °c, 搅拌反应时间为 5小时; 电纺加工所用高压电场的电场强度为 300kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速度从室 温加热到 200°C, 在该温度下停留 30min, 然后以 5°C /min的升温速 度加热至 350°C, 并在 350°C下停留 30min, 然后切断电源, 自然冷却 至室温。 说 性能表征: 共聚聚酖胺酸溶液的质量浓度为 8%, 绝对粘度为 4.2 书
Pa-S, 共聚聚酖胺酸纳米纤维直径为 80-300 nm, 主要分布在 150nm 左右, 共聚聚酖亚胺纳米纤维非织造布的拉伸强度为 23 MPa、 断裂 伸长率为 24°/。、 玻璃化转变温度为 278° (、 热分解温度为 540° (、 孔隙 率为 81.4%、 比表面积为 41.8 m2/g、 电击穿强度为 1.4xl05 V/cm或 14 ν/μπι。 实施例 7: 选用共聚单体为两种四酸二酐和两种二胺。 将摩尔比为 1: 1: 1: 1 提纯后的二苯酮二酐(BTDA)、 均苯四酸二酐(PMDA)、 联苯二胺(Βζ) 和二苯醚二胺(0DA)混合, 以适量的 Ν, Ν_二曱基乙酖胺( DMAc )为溶 剂, 按上述步骤反应。 其中在反应步骤(一) 中该实施例反应釜的温 度为 5°C, 搅拌反应时间为 6小时; 电纺加工所用高压电场的电场强 度为 250kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速度 从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升 温速度加热至 370°C, 并在 370°C下停留 30min, 然后切断电源, 自然 冷却至室温。 性能表征: 共聚聚酰胺酸溶液的质量浓度为 6%, 绝对粘度为 4. 3 Pa-S , 共聚聚酰胺酸纳米纤维直径为 100-300 nm, 主要分布在 150nm 左右, 共聚聚酰亚胺纳米纤维非织造布的拉伸强度为 22 MPa、 断裂 伸长率为 24°/。、 玻璃化转变温度为 288。 (、 热分解温度为 540。 (、 孔隙 率为 80. 5%、 比表面积为 41. 8 m2/g、 电击穿强度为 1. 5xl 05 V/cm或 15 ν/μπι。 说 实施例 8 :
选用共聚单体为两种四酸二酐和两种二胺。 将摩尔比为 1 : 1 : 1 : 1 提纯后的联苯二酐(BTDA )、 三苯二醚二酐(HQPDA)、 对苯二胺(PPD) 和二苯醚二胺(0DA)混合, 以适量的 Ν, Ν_二曱基曱酰胺( DMAc )做溶 剂, 按上述步骤反应。 其中在反应步骤(一) 中该实施例反应釜的温 度为 10 °C , 搅拌反应时间为 10小时; 电纺加工所用高压电场的电场 强度为 300kV/m; 反应步骤(二) 中升温程序以 20°C /min的升温速 度从室温加热到 250°C , 在该温度下停留 30min , 然后以 5°C /min的 升温速度加热至 350°C , 并在 320°C下停留 30min, 然后切断电源, 自 然冷却至室温。 性能表征: 共聚聚酰胺酸溶液的质量浓度为 8%, 绝对粘度为 4. 0 Pa-S , 共聚聚酰胺酸纳米纤维直径为 50-250 nm, 主要分布在 150nm 左右, 共聚聚酰亚胺纳米纤维非织造布的拉伸强度为 21 MPa、 断裂 伸长率为 23°/。、 玻璃化转变温度为 284° (、 热分解温度为 530° (、 孔隙 率为 80. 2%、 比表面积为 42. 0 m7g、 电击穿强度为 1. 5xl 05 V/cm或 15 ν/μπι。 说 明 书
以上实施实例不能理解为对本发明保护范围的限制。本领域的技 调整, 仍属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种共聚聚酰亚胺纳米纤维非织造布, 其特征在于: 其是由 下述( I ) 、 ( Π ) 、 (III)、 ( IV)四类单体中的三种以上单体共聚 成共聚聚酰胺酸, 再经静电纺丝、 亚胺化而成:
Figure imgf000017_0001
R2— ΝΗ2 (πΐ) H2N— R4— NH2 ( iv ) 其中共聚聚酰亚胺具有以下化学结构通式:
Figure imgf000017_0002
n值为 50-300之间的自然数, m值为 50-300之间的自然数, 为 C4-C3。的四酸二酐单体的残基结构, R2、 R4为 C6-C3。二胺单体 的残基结构,共聚反应中四酸二酐单体总物质的量与二胺单体的总物 质的量之比始终保持为 1: 1。
2.根据权利要求 1所述的一种共聚聚酰亚胺纳米纤维非织造布, 其特征在于: 所述的共聚聚酰亚胺纳米纤维是由上述( I ) 、 (III)、
( IV )或者( II ) 、 (III)、 ( IV)三种单体共聚, 其中三种单体的摩 尔比为(I): (III): (IV)或(II): (III): (IV) = [1]: [0.05-0.95]: [0.05 - 0.95]。
3.根据权利要求 1所述的一种共聚聚酰亚胺纳米纤维非织造布, 其特征在于: 所述的共聚聚酰亚胺纳米纤维是由上述( I ) 、 ( II ) , (III)或者( I ) 、 ( II ) 、 ( IV)三种单体共聚, 其中三种单体的摩 权 利 要 求 书
尔比为 (I ): (II): (III)或(II): (III): (IV) = [0.05-0.95 ]: [0.05- 0.95 ]: [1]。
4.根据权利要求 1所述的一种共聚聚酰亚胺纳米纤维非织造布, 其特征在于: 所述的共聚聚酰亚胺纳米纤维是由上述( I ) 、 ( II ) , (III)、 ( IV) 四种单体共聚, 其中四种单体的摩尔比关系为 [ ( I ) + ( II ) ] : [(ΠΙ)+ ( IV) ]=1: 1。
5. 根据权利要求 1-4任一项所述的一种共聚聚酰亚胺纳米纤维 非织造布, 其特征在于: 其中 Ri、 R3分别选自以下四酸二酐残基结 构:
Figure imgf000018_0001
二笨酮二酐残基 均苯四酸二酐残基 联苯二酐残基
Figure imgf000018_0002
环丁四酸二酐残基 三笨二醚二酐残基 3 6桥烯 基
Figure imgf000018_0003
三联苯四酸二酐残基 环己四酸二酐残基 二苯石克醚二酐残基 一种。 权 利 要 求 书
6. 根据权利要求 1-4任一项所述的一种共聚聚酰亚胺纳米纤维 非织造布, 其特征在于: 其中 R2、 R4分别选自以下二胺残基结构:
Figure imgf000019_0001
二苯醚二胺残基 对 二胺残基
Figure imgf000019_0002
-苯基曱烷二胺歹 ϋ 间苯二胺
Figure imgf000019_0003
2-曱基二苯酸二胺歹 ϋ
Figure imgf000019_0004
二苯氧基双酚 A二胺残基 -吡啶二胺残基
Figure imgf000019_0005
-嘧啶联二苯二胺残基 ( 3, 3' -二曱基)二 二胺残基
Figure imgf000019_0006
二苯氧基二苯曱酮二胺残基 5-曱基间苯二胺残基 中的一种,
7. 根据权利要求 1-4任一项所述的一种共聚聚酰亚胺纳米纤维 非织造布, 其特征在于: 所述的共聚的酰亚胺纳米纤维非织造布的断 权 利 要 求 书
裂伸长率为 20-30 %、 孔隙率为 80-86°/。、 拉伸强度 20_25MPa、 电击 穿强度 l xl O7- 1. 5xl 07V/m、 热分解温度为 510- 560 °C。
8. 如权利要求 1所述的一种共聚聚酖亚胺纳米纤维非织造布的 制备方法, 其特征在于: 该制备方法包括
( 1 )将三种以上的所述的二酐、 二胺单体提纯后, 与适量的溶 剂一起加入到聚合反应釜中, 搅拌反应一段时间。得到共聚聚酖胺酸
(聚酖亚胺前体)溶液, 并将该共聚聚酖胺酸溶液在高压电场中实施 静电纺丝, 用不锈钢滚筒为收集器, 收集得到共聚聚酖胺酸纳米纤维 非织造布;
(2) 将上述所得的共聚聚酖胺酸纳米纤维非织造布置于高温炉 中, 加热亚胺化。
9根据权利要求 8所述的一种共聚聚酖亚胺纳米纤维非织造布的 制备方法, 其特征在于: 所述的溶剂为极性溶剂。
10根据权利要求 8所述的一种共聚聚酖亚胺纳米纤维非织造布 的制备方法,其特征在于:所述的极性溶剂为 N, N-二曱基曱酖胺( DMF ) 或者 N,N_二曱基乙酖胺(DMAC ) 。
11.根据权利要求 8所述的一种共聚聚酖亚胺纳米纤维非织造布 的制备方法, 其特征在于: 所述的反应釜的聚合反应温度为 0-30 °C , 反应时间为 1-10小时, 高压电场的电场强度为 250-300Kv。
12. 根据权利要求 8或 11所述的一种共聚聚酖亚胺纳米纤维非 织造布的制备方法, 其特征在于: 所述的亚胺化过程的升温程序为: 以 20°C /min的升温速度从室温加热到 200-250°C , 在该温度下停留 权 利 要 求 书
30min, 然后以 5°C /min的升温速度加热至 330_370°C , 并在该温度 下停留 30min, 然后切断电源。
13.如权利要求 1所述的一种共聚聚酖亚胺纳米纤维非织造布用 于电池隔膜。
PCT/CN2010/077517 2010-09-30 2010-09-30 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用 WO2012040929A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2010/077517 WO2012040929A1 (zh) 2010-09-30 2010-09-30 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
CZ20130219A CZ2013219A3 (cs) 2010-09-30 2010-09-30 Netkaná textilie z kopolymerního imidového nanovlákna, zpusob výroby a pouzití
DE112010005915.2T DE112010005915B4 (de) 2010-09-30 2010-09-30 Nichtgewebtes Tuch aus Copolyimid-Nanofaser und dazugehöriges Herstellungsverfahren
US13/877,106 US20130196562A1 (en) 2010-09-30 2010-09-30 Copolymide nano-fiber non-woven fabric, process for producing the same and the use thereof
JP2013530522A JP2013540208A (ja) 2010-09-30 2010-09-30 共重合ポリイミド・ナノファイバー不織布、その製造方法および応用
KR1020137010952A KR20130065720A (ko) 2010-09-30 2010-09-30 코폴리이미드 나노-섬유 부직포, 이의 제조 방법 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077517 WO2012040929A1 (zh) 2010-09-30 2010-09-30 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012040929A1 true WO2012040929A1 (zh) 2012-04-05

Family

ID=45891826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077517 WO2012040929A1 (zh) 2010-09-30 2010-09-30 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用

Country Status (6)

Country Link
US (1) US20130196562A1 (zh)
JP (1) JP2013540208A (zh)
KR (1) KR20130065720A (zh)
CZ (1) CZ2013219A3 (zh)
DE (1) DE112010005915B4 (zh)
WO (1) WO2012040929A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122555A (zh) * 2012-12-25 2013-05-29 浙江大东南集团有限公司 一种基于pet无纺布的纳米纤维膜的制备方法
CN114606654A (zh) * 2022-04-18 2022-06-10 江西昌大高新能源材料技术有限公司 一种三维交联聚酰亚胺纤维膜的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289014B2 (ja) * 2013-10-11 2018-03-07 ソマール株式会社 ポリイミド繊維および集合体
US9000122B1 (en) * 2013-12-16 2015-04-07 Uop Llc Aromatic poly (ether sulfone imide) membranes for gas separations
US11038184B2 (en) * 2014-12-24 2021-06-15 Kolon Fashion Material. Inc. Porous support having excellent filling characteristics of ion conductor, method for manufacturing the same, and reinforced membrane including the same
KR101984724B1 (ko) * 2016-09-09 2019-05-31 주식회사 엘지화학 리튬-황 전지
CN109096505B (zh) * 2018-07-04 2021-04-20 大连理工大学 一种多羧基聚氨酯接枝提高复合材料界面性能的方法
TWI709592B (zh) * 2018-11-22 2020-11-11 達勝科技股份有限公司 聚醯亞胺膜以及聚醯亞胺膜的製造方法
CN112086606A (zh) * 2019-06-13 2020-12-15 南京林业大学 一种分级多孔聚酰亚胺锂电池隔膜的制备方法
CN112448098A (zh) * 2020-10-23 2021-03-05 广东工业大学 一种静电纺聚酰亚胺基纳米纤维多孔膜及其制备方法和应用
CN113241500A (zh) * 2020-11-27 2021-08-10 广东工业大学 一种具有抗褶皱特性的耐高温型电池隔膜及其制备方法和应用
CN113708007A (zh) * 2021-08-27 2021-11-26 北京宇程科技有限公司 一种聚酰亚胺/聚醚酰亚胺复合膜及其制备方法
CN114717751B (zh) * 2021-12-09 2023-06-20 中国地质大学(北京) 一种耐原子氧聚酰亚胺纳米纤维膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166311A1 (en) * 2003-02-25 2004-08-26 Clemson University Electrostatic spinning of aromatic polyamic acid
JP2004308031A (ja) * 2003-04-03 2004-11-04 Teijin Ltd ポリアミド酸不織布、それから得られるポリイミド不織布およびそれらの製造方法
CN101139746A (zh) * 2006-09-04 2008-03-12 哈尔滨理工大学 一种聚酰亚胺(pi)无纺布的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535405B2 (ja) * 1989-04-18 1996-09-18 帝人株式会社 コポリアミック酸
US20050112462A1 (en) * 2003-11-21 2005-05-26 Marple Jack W. High discharge capacity lithium battery
DE10336380B4 (de) * 2003-08-06 2005-08-25 Carl Freudenberg Kg Ultradünner, poröser und mechanisch stabiler Vliesstoff und dessen Verwendung
JP2008002011A (ja) * 2006-06-22 2008-01-10 Toyobo Co Ltd ポリイミド不織布およびその製造方法
JP2008120398A (ja) * 2006-11-09 2008-05-29 Atsugi Plastic Kk カップ状容器本体および包装方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166311A1 (en) * 2003-02-25 2004-08-26 Clemson University Electrostatic spinning of aromatic polyamic acid
JP2004308031A (ja) * 2003-04-03 2004-11-04 Teijin Ltd ポリアミド酸不織布、それから得られるポリイミド不織布およびそれらの製造方法
CN101139746A (zh) * 2006-09-04 2008-03-12 哈尔滨理工大学 一种聚酰亚胺(pi)无纺布的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122555A (zh) * 2012-12-25 2013-05-29 浙江大东南集团有限公司 一种基于pet无纺布的纳米纤维膜的制备方法
CN114606654A (zh) * 2022-04-18 2022-06-10 江西昌大高新能源材料技术有限公司 一种三维交联聚酰亚胺纤维膜的制备方法
CN114606654B (zh) * 2022-04-18 2023-09-19 江西昌大高新能源材料技术有限公司 一种三维交联聚酰亚胺纤维膜的制备方法

Also Published As

Publication number Publication date
US20130196562A1 (en) 2013-08-01
JP2013540208A (ja) 2013-10-31
CZ2013219A3 (cs) 2013-06-12
KR20130065720A (ko) 2013-06-19
DE112010005915B4 (de) 2016-10-20
DE112010005915T5 (de) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2012040929A1 (zh) 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
KR101504245B1 (ko) 폴리이미드 블렌드 나노섬유 및 배터리 분리막에 있어 이의 용도
CN101974828B (zh) 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
Yao et al. Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend
CN102251307B (zh) 聚酰亚胺基纳米纤维膜及制法和应用
CN112062989B (zh) 一种聚酰亚胺气凝胶锂电池隔膜及其制备方法
TWI661004B (zh) 聚醯亞胺薄膜及其製備方法
CN104309232B (zh) 聚酰亚胺纳米纤维增强的耐酸耐碱多孔薄膜及其制备方法和用途
TW201313783A (zh) 黑色聚亞醯胺薄膜及其製造方法
TWI775102B (zh) 用於石墨片之聚醯亞胺膜及此聚醯亞胺膜之製造方法
CN109792019B (zh) 非水电解质电池用隔膜及非水电解质电池
CN109438735A (zh) 一种高导热聚酰亚胺基复合薄膜及其制备方法
JP2018032627A (ja) 蓄電素子電極用ポリアミドイミド溶液、蓄電素子電極の製造方法および蓄電素子電極
CN102816431B (zh) 一种超细纤维多孔膜及其制备方法和应用
CN112585198A (zh) 包含结晶性聚酰亚胺树脂和导热性填料的聚酰亚胺薄膜以及其制备方法
JP6289014B2 (ja) ポリイミド繊維および集合体
CN111234224A (zh) 具有聚酰亚胺结构的改性芳纶聚合体、芳纶铸膜液、锂电池隔膜及制备方法和锂电池
CN113718536B (zh) 一种具有交联形貌的聚酰亚胺隔膜及其制备方法
JP4078630B2 (ja) 炭素フィルムの製造方法及びそれによって得られる炭素フィルム
KR20100080301A (ko) 폴리아믹산 용액 및 폴리이미드 코팅층
CN113708007A (zh) 一种聚酰亚胺/聚醚酰亚胺复合膜及其制备方法
TW202122467A (zh) 石墨片用之聚醯亞胺膜、其製備方法及由此製得之石墨片
JP2010265559A (ja) ポリイミド繊維及びその製造方法
US20230076583A1 (en) Polyimide precursor solution, porous polyimide film, and insulated wire
CN117374510A (zh) 一种含有无机材料的聚酰亚胺复合隔膜及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857692

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: PV2013-219

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2013530522

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877106

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005915

Country of ref document: DE

Ref document number: 1120100059152

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137010952

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10857692

Country of ref document: EP

Kind code of ref document: A1