WO2012039203A1 - 冷媒輸送用ホース - Google Patents

冷媒輸送用ホース Download PDF

Info

Publication number
WO2012039203A1
WO2012039203A1 PCT/JP2011/068058 JP2011068058W WO2012039203A1 WO 2012039203 A1 WO2012039203 A1 WO 2012039203A1 JP 2011068058 W JP2011068058 W JP 2011068058W WO 2012039203 A1 WO2012039203 A1 WO 2012039203A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
layer
group
mass
parts
Prior art date
Application number
PCT/JP2011/068058
Other languages
English (en)
French (fr)
Inventor
賀津人 山川
裕昭 篠田
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2011546355A priority Critical patent/JP4985878B2/ja
Priority to EP11826649.3A priority patent/EP2620273B1/en
Priority to CN201180045724.2A priority patent/CN103124632B/zh
Priority to US13/825,805 priority patent/US8715801B2/en
Publication of WO2012039203A1 publication Critical patent/WO2012039203A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/18Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]

Definitions

  • the present invention relates to a refrigerant transport hose.
  • a laminate of a resin and rubber obtained by combining a resin material such as polyamide having low gas permeability and a rubber material has come to be generally used. It was.
  • the applicant of the present application has heretofore been a hose that joins resin and rubber without using an adhesive or the like (Patent Document 1), a low gas-permeable thermoplastic resin composition (gas barrier resin) layer in addition to flexibility.
  • Patent Document 1 a low gas-permeable thermoplastic resin composition (gas barrier resin) layer in addition to flexibility.
  • Patent Document 2 A low gas permeable thermoplastic elastomer resin composition composed of a rubber / matrix resin / gas barrier resin and a method for producing the composition (Patent Document 2) have been proposed.
  • Patent Document 3 has been proposed as a hose for bonding an innermost layer and an intermediate rubber layer without using an adhesive.
  • an object of the present invention is to provide a hose that can directly bond a resin layer and a rubber layer to the resin layer and / or the rubber layer without pre-bonding treatment, and has excellent adhesion between the gas barrier layer and the rubber layer. There is to do.
  • a refrigerant transport hose comprising an inner tube layer comprising a gas barrier layer and a rubber layer adjacent to the outer surface thereof,
  • the gas barrier layer is formed using a thermoplastic resin composition containing a polyamide resin (A) and a modified rubber (B) having an acid anhydride group or an epoxy group, and the modified rubber (B) is an acid anhydride.
  • the rubber layer is formed using a rubber composition containing alkylphenol formaldehyde resin: 1 to 15 parts by mass with respect to 100 parts by mass of raw rubber, and the raw rubber is made of BIMS and butyl rubber and / or halogenated butyl rubber.
  • the refrigerant transport hose contains at least one copolymer rubber selected from the group consisting of the raw rubber and / or the alkylphenol formaldehyde resin having a halogen without pre-bonding to the resin layer and / or the rubber layer. It was found that the resin layer and the rubber layer can be vulcanized and bonded, and the adhesiveness between the gas barrier layer and the rubber layer is excellent, and the present invention has been completed.
  • a refrigerant transport hose comprising an inner tube layer comprising a gas barrier layer and a rubber layer adjacent to the outer surface thereof,
  • the gas barrier layer is formed using a thermoplastic resin composition containing a polyamide resin (A) and a modified rubber (B) having an acid anhydride group or an epoxy group, and the modified rubber (B) is an acid anhydride.
  • the rubber layer is formed using a rubber composition containing alkylphenol formaldehyde resin: 1 to 15 parts by mass with respect to 100 parts by mass of raw rubber, and the raw rubber is made of BIMS and butyl rubber and / or halogenated butyl rubber.
  • the functional group that reacts with an acid anhydride group or an epoxy group is at least one selected from the group consisting of an amino group, a hydroxyl group, a carboxyl group, and a mercapto group, and the functional group capable of hydrogen bonding with an amide bond or a hydroxyl group is 2.
  • the refrigerant transport hose according to 1 above which is at least one selected from the group consisting of a sulfone group, a carbonyl group, an ether bond, a hydroxyl group, and a nitrogen-containing heterocyclic ring. 3.
  • the refrigerant transport hose according to 1 or 2 wherein the rubber composition further contains hydrotalcite, and the amount of the hydrotalcite is 1 to 8 parts by mass with respect to 100 parts by mass of the raw rubber. 4).
  • the rubber composition further contains 30 to 80 parts by mass of carbon black with respect to 100 parts by mass of the raw rubber, and the carbon black satisfies N 2 SA ⁇ 75 m 2 / g and DBP oil absorption is the amount ⁇ 90cm 3 / 100g
  • the raw rubber contains BIMS, copolymer rubber (1) which is butyl rubber and / or halogenated butyl rubber, and EPDM,
  • the BIMS content is 5 to 40 parts by mass
  • the total content of the BIMS and the copolymer rubber (1) is 20 to 80 parts by mass
  • the EPDM content is 5.
  • the refrigerant transport hose according to any one of 1 to 4, which is 80 to 20 parts by mass. 6).
  • the polyamide resin (A) is melt-blended with 100 parts by mass of a polyamide resin and 0.05 to 5 parts by mass of a compound (D) capable of binding to a terminal amino group of the polyamide resin at a melting point or higher of the polyamide resin. 6.
  • the amount of the modified raw rubber is 90 parts by weight with respect to 100 parts by weight of the polyamide resin (A) or 100 parts by weight of the total of the polyamide resin (A) and the ethylene-vinyl alcohol copolymer (E).
  • the mass ratio [polyamide resin (A) / ethylene-vinyl alcohol copolymer (E)] of the polyamide resin (A) and the ethylene-vinyl alcohol copolymer (E) is 90/10 to 10/90.
  • the refrigerant transport hose according to any one of 1 to 9, wherein a reinforcing layer is provided on the inner tube layer and an outer tube layer is provided on the reinforcing layer. 11.
  • the thermoplastic resin composition and the rubber composition are laminated, and the thermoplastic resin composition and the rubber composition are vulcanized and / or cross-linked and bonded to each other.
  • the refrigerant transport hose of the present invention can directly bond the resin layer and the rubber layer to the resin layer and / or the rubber layer without pre-bonding treatment, and has excellent adhesion between the gas barrier layer and the rubber layer.
  • FIG. 1 is a perspective view schematically showing a preferred embodiment of the hose of the present invention.
  • FIG. 2 is a perspective view schematically showing another preferred embodiment of the hose of the present invention.
  • the refrigerant transport hose of the present invention is a refrigerant transport hose comprising an inner tube layer comprising a gas barrier layer and a rubber layer adjacent to the outer surface thereof,
  • the gas barrier layer is formed using a thermoplastic resin composition containing a polyamide resin (A) and a modified rubber (B) having an acid anhydride group or an epoxy group, and the modified rubber (B) is an acid anhydride.
  • the rubber layer is formed using a rubber composition containing alkylphenol formaldehyde resin: 1 to 15 parts by mass with respect to 100 parts by mass of raw rubber, and the raw rubber is made of BIMS and butyl rubber and / or halogenated butyl rubber.
  • the refrigerant transport hose of the present invention may be referred to as “the hose of the present invention”.
  • the raw material rubber and / or the alkylphenol formaldehyde resin having a halogen means that the raw material rubber and / or the alkylphenol formaldehyde resin is halogenated (for example, chlorinated or brominated).
  • the adhesion mechanism between the gas barrier layer and the rubber layer is such that the modified rubber (B) having an acid anhydride group or an epoxy group as a rubber component contained in the thermoplastic resin composition used for forming the gas barrier layer is adjacent. It reacts with the halogen (for example, bromine) contained in the raw rubber and / or alkylphenol formaldehyde resin, which is blended in the rubber composition used to form the rubber layer, so that the resin and the rubber can be directly bonded.
  • the halogen for example, bromine
  • the rubber layer contains a halogen and the gas barrier layer contains an acid anhydride group or an epoxy group
  • the gas barrier layer and the rubber layer are firmly bonded to each other without using an adhesive [for example, vulcanization and / or Or by crosslinking and heating], and can exhibit high adhesiveness (with high adhesive strength and high rubber).
  • the hydrotalcite when hydrotalcite is further blended into the rubber composition, the hydrotalcite is a strong halogen catcher, so the halogens blended on the rubber layer side [for example, halogenated butyl rubber, BIMS, halogenated alkylphenols]
  • the halogens of the formaldehyde resin for example, chlorine atoms and bromine atoms
  • the halogens are actively extracted from the halide
  • the amount of reaction with the modified rubber (B) having an epoxy group is increased, and the resin / rubber bond strength can be further improved.
  • the hose of the present invention is a refrigerant transport hose provided with an inner tube layer comprising a gas barrier layer and a rubber layer adjacent to the outer surface thereof.
  • an adhesive layer for example, one formed using an adhesive
  • the gas barrier layer and the rubber layer can be directly bonded.
  • the hose of the present invention includes the case where it consists only of the inner tube layer and does not have other layers.
  • the hose of the present invention is not particularly limited in its configuration except that it includes an inner tube layer composed of a gas barrier layer and a rubber layer adjacent to the outer surface thereof.
  • an inner tube layer composed of a gas barrier layer and a rubber layer adjacent to the outer surface thereof.
  • the hose of the present invention includes a reinforcing layer on the inner tube layer and an outer tube layer on the reinforcing layer.
  • FIG. 1 is a perspective view schematically showing a preferred embodiment of the hose of the present invention.
  • the hose 1 of the present invention has only an inner tube layer 2 composed of a gas barrier layer 21 and a rubber layer 22 adjacent to the outer surface thereof.
  • FIG. 2 is a perspective view schematically showing another preferred embodiment of the hose of the present invention.
  • the hose 5 of the present invention has an inner tube layer 2 composed of a gas barrier layer 21 and a rubber layer 22 adjacent to the outer surface thereof, and a reinforcing layer 3 on the upper surface of the rubber layer 22.
  • the outer tube layer 4 is provided on the upper surface of the.
  • the hose of the present invention is not particularly limited as long as it has the inner tube layer.
  • the hose may have another layer on the outer side of the outer tube layer in the preferred embodiment described with reference to FIG.
  • the hose of the present invention does not necessarily have the reinforcing layer as described above, but if the reinforcing layer is provided, the tensile breaking strength of the hose, the usable pressure range, and the fitting property of the hose are improved. preferable.
  • the hose of the present invention when used as a hose for transporting high-pressure fluid, it is preferable to have a reinforcing layer.
  • the gas barrier layer is formed using a thermoplastic resin composition containing a polyamide resin (A) and a modified rubber (B) having an acid anhydride group or an epoxy group, and the modified rubber (B ) Is a hydrogen bonding compound (C) having a functional group capable of reacting with the acid anhydride group or epoxy group and a functional group capable of hydrogen bonding with an amide bond or a hydroxyl group. ).
  • a hydrogen bonding compound (C) having a functional group capable of reacting with the acid anhydride group or epoxy group and a functional group capable of hydrogen bonding with an amide bond or a hydroxyl group.
  • the low temperature durability of the thermoplastic resin composition can be improved without deteriorating the film moldability.
  • the gas barrier layer formed using the thermoplastic resin composition and the rubber layer formed using the rubber composition can be bonded, and the adhesion between the gas barrier layer and the rubber layer is excellent.
  • the thermoplastic resin composition used in forming (manufacturing) the gas barrier layer contains a polyamide resin (A) and a modified rubber (B) having an acid anhydride group or an epoxy group, and the modified rubber (B) is A hydrogen-bonding compound (C) having a functional group capable of reacting with the acid anhydride group or the epoxy group and a functional group capable of hydrogen bonding with an amide bond or a hydroxyl group. It is denatured by.
  • the polyamide resin (A) contained in the thermoplastic resin composition is not particularly limited as long as it is a polymer having an amide bond.
  • examples thereof include polyamide resins such as nylon 11, nylon 12, nylon 6, nylon 66, nylon 666, nylon 612, nylon 610, nylon 46, nylon 66612, and aromatic nylon.
  • nylon 6 and nylon 666 are preferable in terms of both fatigue resistance and gas barrier properties.
  • the polyamide resin (A) examples include a modified polyamide resin obtained by melt blending a polyamide resin and a compound (D) that can be bonded to an amino group (for example, terminal amino group: —NH 2 ) of the polyamide resin. It is done.
  • the polyamide resin (A) can contain a modified polyamide resin.
  • the polyamide resin (A) can be highly filled with the modified rubber (B) in the polyamide resin (A), and from the viewpoint of excellent adhesion between the gas barrier layer and the rubber layer, the amino group possessed by the polyamide resin and the polyamide resin. It is preferable to contain at least a modified polyamide resin obtained by melt-blending a compound (D) that can bind to the compound.
  • the polyamide resin (A) contains at least the modified polyamide resin
  • the modified raw rubber [or modified rubber (B)] that occurs during mixing of the polyamide resin (A) and the modified raw rubber [or modified rubber (B)]. Since the reaction between the amino group (terminal amino group) of the polyamide and the polyamide is suppressed, it becomes possible to form hydrogen bonds at the interface between the matrix resin and the modified rubber dispersed phase more effectively. Thereby, the low temperature durability of a thermoplastic resin composition can be improved more, without deteriorating film moldability.
  • the polyamide resin (A) contains at least a modified polyamide resin
  • the reaction between the modified raw rubber [or modified rubber (B)] and the amino group (terminal amino group) of the polyamide is suppressed, so that it has fluidity.
  • a thermoplastic resin composition can be obtained, and when such a thermoplastic resin composition is used, the thermoplastic resin composition is easily extruded into, for example, a film shape or a tube shape (the thickness of the film or tube is about 150 ⁇ m). be able to.
  • the polyamide resin used in producing the modified polyamide resin is not particularly limited.
  • the same polyamide resin as described above can be used.
  • the compound (D) capable of binding to the amino group of the polyamide resin include monofunctional epoxy compounds, isocyanate group-containing compounds, acid anhydride group-containing compounds, and halogenated alkyl group-containing compounds. From the viewpoint of excellent reactivity with the amino group (terminal amino group) of the polyamide resin, a monofunctional epoxy compound is preferable.
  • Monofunctional epoxy compounds include ethylene oxide, epoxy propane, 1,2-epoxybutane, 2,3-epoxybutane, 3methyl-1,2-epoxybutane, 1,2-epoxypentane, 4-methyl-1,2 -Epoxypentane, 2,3-epoxypentane, 3-methyl-1,2-epoxypentane, 4-methyl-1,2-epoxypentane, 4-methyl-2,3-epoxypentane, 3-ethyl-1,2 -Epoxypentane, 1,2-epoxyhexane, 2,3-epoxyhexane, 3,4-epoxyhexane, 5-methyl-1,2-epoxyhexane, 4-methyl-1,2-epoxyhexane, 5-methyl -1,2-epoxyhexane, 3-ethyl-1,2-epoxyhexane, 3-propyl-1,2-epoxyhexane, 4-ethyl -1,2-epoxyhex
  • an epoxy compound having 3 to 20 carbon atoms, preferably 3 to 13 carbon atoms, and having an ether and / or a hydroxyl group is particularly preferable.
  • a compound (D) can be used individually or in combination of 2 types or more, respectively.
  • the amount of the compound (D) is preferably 0.05 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the polyamide resin. If the amount of the compound (D) that can bind to the amino group (terminal amino group) of the polyamide resin is too small, the effect of improving fluidity when the modified rubber (B) is highly filled is small, which is not preferable. On the other hand, if the amount is too large, the low temperature durability (repeated fatigue property) of the polyamide resin is deteriorated, which is not preferable.
  • the polyamide resin and the compound (D) are charged into a twin-screw kneader and melt blended at a temperature equal to or higher than the melting point of the polyamide resin, preferably higher than 20 ° C., for example, 240 ° C.
  • the method of doing is mentioned.
  • the melt blending time is, for example, 1 to 10 minutes, preferably 2 to 5 minutes.
  • the compound (D) When a monofunctional epoxy compound is used as the compound (D), two monofunctional epoxy compounds are bonded to the amino group (terminal amino group) of the polyamide resin.
  • the amino group changes as follows.
  • the amino group (terminal amino group) of the polyamide resin disappears or decreases. Therefore, the modified raw material rubber having an acid anhydride group or epoxy group [or modified rubber (B)] is highly filled in the modified polyamide resin.
  • the fluidity is maintained and film formation becomes possible.
  • the modified rubber (B) contained in the thermoplastic resin composition comprises a modified raw rubber having an acid anhydride group or an epoxy group, a functional group that reacts with the acid anhydride group or the epoxy group, and an amide bond or a hydroxyl group. It is modified with a hydrogen bonding compound (C) having a functional group capable of hydrogen bonding, and has an acid anhydride group or an epoxy group. Since the modified rubber (B) is modified with the hydrogen bonding compound (C), the interface between the resin forming the matrix and the modified rubber dispersed phase is reinforced by hydrogen bonding, which deteriorates the film moldability. It is possible to improve the low temperature durability of the thermoplastic resin composition.
  • the modified rubber (B) has an acid anhydride group or an epoxy group.
  • the modified rubber (B) preferably has an acid anhydride group from the viewpoint of excellent compatibility with the polyamide resin (A) and excellent adhesion between the gas barrier layer and the rubber layer.
  • Rubber that can be used for producing a modified raw rubber having an acid anhydride group or an epoxy group [rubber constituting the modified rubber (B). ] Includes ethylene- ⁇ -olefin copolymers, ethylene-unsaturated carboxylic acid copolymers or derivatives thereof, and the like.
  • Examples of the ethylene- ⁇ -olefin copolymer include an ethylene-propylene copolymer, an ethylene-butene copolymer, an ethylene-hexene copolymer, and an ethylene-octene copolymer.
  • ethylene-unsaturated carboxylic acid copolymers or derivatives thereof include ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene-methyl acrylate copolymers, ethylene-methyl methacrylate copolymers, and the like.
  • the modified raw rubber having an acid anhydride group can be produced, for example, by reacting an acid anhydride and a peroxide with the rubber.
  • the modified raw rubber having an acid anhydride group is commercially available, and a commercially available product can be used.
  • the modified raw rubber having an epoxy group can be produced, for example, by copolymerizing glycidyl methacrylate with rubber.
  • the modified raw rubber having an epoxy group is commercially available, and a commercially available product can be used.
  • Examples of commercially available products include an epoxy-modified ethylene methyl acrylate copolymer (Esprene (registered trademark) EMA2752) manufactured by Sumitomo Chemical Co., Ltd.
  • Particularly preferred modified raw rubber is an ethylene- ⁇ -olefin copolymer graft-modified with an acid anhydride group.
  • Examples thereof include maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc.) Tuffmer (registered trademark) MP-0620).
  • the amount of the modified raw rubber is excellent in the adhesion between the gas barrier layer and the rubber layer, and is excellent in the balance between the barrier performance and flexibility of the gas barrier layer, preferably 100 parts by mass of the polyamide resin (A), 90 to 175 parts by mass, more preferably 95 to 155 parts by mass. If the amount of the modified raw rubber is too small, the low temperature durability is inferior. On the other hand, if the amount is too large, the fluidity at the time of melting is extremely lowered and the film-forming property is greatly deteriorated.
  • the hydrogen bonding compound (C) used when producing the modified rubber (B) is a compound having a functional group that reacts with an acid anhydride group or an epoxy group, and a functional group that can hydrogen bond with an amide bond or a hydroxyl group. It is.
  • the functional group that reacts with an acid anhydride group or an epoxy group include an amino group, a hydroxyl group, a carboxyl group, and a mercapto group.
  • Examples of the functional group capable of hydrogen bonding with an amide bond or a hydroxyl group include a sulfone group, a carbonyl group, an ether bond, a hydroxyl group, and a nitrogen-containing heterocyclic ring.
  • the gas barrier layer has an amino group and / or a hydroxyl group as a functional group that reacts with an acid anhydride group or an epoxy group, and has an amide bond or a hydrogen bond with a hydroxyl group.
  • a compound having a sulfone group, a carbonyl group and / or a nitrogen-containing heterocyclic ring as the functional group to be obtained is preferred.
  • Examples of the hydrogen bonding compound (C) include 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diamino- 4,4'-dihydroxydiphenyl sulfone, (4- (4-aminobenzoyl) oxyphenyl) 4-aminobenzoate, 3-amino-1,2,4-triazole, tris (2-hydroxyethyl) isocyanurate, etc. Can be mentioned.
  • 3,3′-diaminodiphenylsulfone, tris (2-hydroxyethyl) isocyanurate, and 3-amino-1,2,4-triazole are preferable from the viewpoint of improving cost, safety, and low-temperature durability.
  • the compound When a compound having two or more amino groups is used as the hydrogen bonding compound (C), the compound also functions as a cross-linking agent, and the modified raw material is melt blended with the modified raw rubber and the compound (C).
  • the modified raw rubber [or modified rubber (B)] phase is further increased with respect to the resin phase [polyamide resin (A)]
  • the modified raw rubber [or modified rubber (B)] It is considered that there is an effect of promoting the island phase of the phase and fixing the dispersion state of the modified raw rubber [or modified rubber (B)] in the thermoplastic composition.
  • fine dispersion of the modified raw rubber [or modified rubber (B)] is maintained, and fluidity is maintained even when the modified raw rubber [or modified rubber (B)] is highly filled, and film formation is possible.
  • a thermoplastic resin composition having excellent low-temperature durability can be obtained.
  • the amount of the hydrogen-bonding compound (C) is 0.000 relative to 100 parts by mass of the modified raw rubber from the viewpoint that the adhesion between the gas barrier layer and the rubber layer is excellent and the balance between the barrier performance and flexibility of the gas barrier layer is excellent.
  • the amount is preferably 1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass. If the amount of the hydrogen bonding compound (C) is too small, the interfacial reinforcement between the matrix resin and the dispersed rubber due to hydrogen bonding becomes insufficient, and the fine dispersion of the modified raw rubber [or modified rubber (B)] cannot be maintained. Durability and gas barrier properties are reduced. On the contrary, if the amount of the hydrogen bonding compound (C) is too large, the durability is lowered, which is not preferable.
  • Production of the modified rubber (B) [modification of the modified raw rubber with the hydrogen bonding compound (C)] is carried out by using, for example, an acid anhydride group (for example, in the polyamide resin (A)) or a biaxial kneader. This can be performed by melt blending the modified raw rubber having an epoxy group together with the hydrogen bonding compound (C).
  • the temperature of the melt blending can be set to a temperature equal to or higher than the melting point of the polyamide resin (A), and preferably 20 ° C. higher than the melting point of the polyamide resin, for example, 200 to 250 ° C.
  • the melt blending time is usually 1 to 10 minutes, preferably 2 to 5 minutes.
  • the polyamide resin (A) forms a continuous phase and the modified rubber (B) forms a dispersed phase from the viewpoint of excellent balance between gas barrier performance and low temperature durability performance.
  • the thermoplastic resin composition further contains an ethylene-vinyl alcohol copolymer (E).
  • E ethylene-vinyl alcohol copolymer
  • the ethylene-vinyl alcohol copolymer to be used is not particularly limited, and a commercially available one can be used.
  • EVAL manufactured by Kuraray Co., Ltd.
  • Soarnol manufactured by Nippon Synthetic Chemical Industry Co., Ltd. can be used. .
  • the thermoplastic resin composition further contains an ethylene-vinyl alcohol copolymer (E)
  • the mass ratio of the polyamide resin (A) and the ethylene-vinyl alcohol copolymer (E) [polyamide resin (A) / ethylene-vinyl The alcohol copolymer (E)] is preferably 90/10 to 10/90, more preferably 80/20 to 20/80.
  • the amount of the ethylene-vinyl alcohol copolymer (E) is small, the gas barrier property is hardly improved, and when the amount is large, the low temperature durability is extremely deteriorated.
  • the amount of the modified raw rubber is 100 parts by mass of the total amount of the polyamide resin (A) and the ethylene-vinyl alcohol copolymer (E).
  • the amount is preferably 90 to 175 parts by mass, more preferably 95 to 155 parts by mass. If the amount of the modified raw rubber is too small, the low temperature durability is inferior. On the other hand, if the amount is too large, the fluidity at the time of melting is extremely lowered and the film-forming property is greatly deteriorated.
  • the thermoplastic resin composition can further contain a plasticizer.
  • the plasticizer is not particularly limited.
  • the timing of adding the plasticizer is not particularly limited, but is preferably added to the polyamide resin (A) and kneaded in advance.
  • thermoplastic resin composition can further contain hydrotalcite.
  • Hydrotalcite is not particularly limited. Hydrotalcite is synonymous with what is demonstrated in the rubber composition mentioned later.
  • thermoplastic resin composition includes other reinforcing agents (fillers) such as carbon black and silica, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, anti-aging agents, and the like.
  • Fillers such as carbon black and silica, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, anti-aging agents, and the like.
  • Additives generally blended for resin and rubber compositions can be blended. As long as the amount of the additive is not contrary to the object of the present invention, a conventional general amount can be used.
  • thermoplastic resin composition further contains an ethylene-vinyl alcohol copolymer (E)
  • the production thereof is, for example, a polyamide resin (A), an ethylene-vinyl alcohol copolymer (E), and a modified rubber (B).
  • the thermoplastic resin composition of the present invention can be produced by melt blending [or modified raw rubber and hydrogen bonding compound (C)]. The timing of adding the hydrogen bonding compound (C) may be simultaneous with the melt blend of the polyamide resin (A) and the modified raw rubber, or after the melt blend of the polyamide resin (A) and the modified raw rubber.
  • the polyamide resin (A), the modified raw material rubber and the hydrogen bonding compound (C) may be melt blended at the same time, or the polyamide resin (A) and the modified raw material rubber are melt blended.
  • the hydrogen bonding compound (C) may be added and further melt blended.
  • the polyamide resin (A) and the modified raw rubber are melt blended, and when the modified raw rubber is sufficiently dispersed in the polyamide resin (A), the hydrogen bonding compound (C) is added and further melt blended.
  • the temperature of the melt blending is a temperature equal to or higher than the melting point of the polyamide resin, but is preferably 20 ° C. higher than the melting point of the polyamide resin, for example, 200 to 250 ° C.
  • the melt blending time is usually 1 to 10 minutes, preferably 2 to 5 minutes.
  • the modified polyamide resin is used as the polyamide resin (A), for example, 100 parts by mass of the polyamide resin and 0.05 to 5 parts by mass of the compound (D) capable of binding to the amino group of the polyamide resin are melt-blended in advance.
  • a polyamide resin (A ′) is prepared, and the modified polyamide resin (A ′) is melt blended with a modified rubber (B) previously modified with a hydrogen bonding compound (C), or the modified polyamide resin (A ′). Can be melt blended with the modified raw rubber and the hydrogen bonding compound (C) to produce a thermoplastic resin composition.
  • the thermoplastic resin composition uses a modified polyamide resin as the polyamide resin (A) and further contains an ethylene-vinyl alcohol copolymer (E), the ethylene-vinyl alcohol copolymer (E) is preferably a polyamide resin. Or it mix
  • a typical method for producing the thermoplastic resin composition is, for example, as follows. First, a polyamide resin, a compound (D) capable of binding to an amino group (terminal amino group) of the polyamide resin, and a plasticizer are kneaded at a preset temperature of 200 to 250 ° C. for 1 to 10 minutes with a twin-screw kneader for 1 to 10 minutes. Then, the produced modified polyamide resin and the modified raw material rubber are put into a twin-screw kneader at a set temperature of 200 to 250 ° C., and when the modified raw material rubber is dispersed in the system, the hydrogen bonding compound (C) is added. Add to modify the modified raw rubber, and finally add other compounding agents.
  • thermoplastic resin composition further contains an ethylene-vinyl alcohol copolymer (E), for example, a polyamide resin, a compound (D) that can bind to an amino group (terminal amino group) of the polyamide resin, and a plasticizer are added.
  • E ethylene-vinyl alcohol copolymer
  • a modified polyamide resin is produced by kneading at a preset temperature of 200 to 250 ° C. for 1 to 10 minutes using a shaft kneader, and then the produced modified polyamide resin, ethylene-vinyl alcohol copolymer (E) and modified raw material rubber are set at a preset temperature. Charged into a twin-screw kneader at 200 to 250 ° C. When the modified raw rubber is dispersed in the system, the hydrogen bonding compound (C) is charged to modify the modified raw rubber, and finally other compounding agents are added. .
  • the thermoplastic resin composition can be formed into a film-like layer using an extruder with a T-shaped die, an inflation molding machine, or the like.
  • the layer (film) obtained by using the thermoplastic resin composition is excellent in adhesiveness with a halogen-containing rubber, and excellent in gas barrier properties, heat resistance, and bending fatigue resistance. Therefore, the innermost layer of a refrigerant transport hose, air It can be suitably used as an inner liner of a entering tire.
  • the layer (film) obtained using the thermoplastic resin composition can be laminated with a rubber composition sheet containing a halogen or diene component to form a laminate.
  • the gas barrier layer can be formed by extruding a thermoplastic resin composition into a tubular shape, for example.
  • the method of extrusion molding is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the thickness of the gas barrier layer is not particularly limited, but is preferably 0.01 to 0.50 mm, more preferably 0.05 to 0.30 mm, and even more preferably 0.05 to 0.20 mm. Within such a range, molding workability, refrigerant permeation resistance, and flexibility tend to be better.
  • the Young's modulus of the cured product formed from the thermoplastic resin composition is preferably 300 MPa or less, and more preferably 270 MPa or less.
  • the Young's modulus of the cured product is 300 MPa or less, it is excellent in flexibility and non-vibration transmission.
  • the Young's modulus of the cured product exceeds 300 MPa, the bending rigidity of the hose itself is increased, the handling performance in the engine room is poor, the vibration of the compressor for refrigerant compression is transmitted to the vehicle body side, and vibration and sound Problems are likely to occur.
  • cured material can be 300 Mpa or less by being the compounding range of this invention.
  • the Young's modulus is obtained by preparing a sheet under the condition of 230 ° C. using the thermoplastic resin composition, and cutting out a test piece having a width of 5 mm, a length of 80 mm, and a thickness of 0.15 mm from the sheet.
  • the test body obtained was measured according to JIS K 7161 at a tensile speed of 50 mm / min.
  • the rubber layer is formed by using a rubber composition containing alkylphenol formaldehyde resin: 1 to 15 parts by mass with respect to 100 parts by mass of the raw rubber,
  • the raw rubber includes BIMS and at least one copolymer rubber selected from the group consisting of butyl rubber and / or halogenated butyl rubber, and the raw rubber and / or the alkylphenol formaldehyde resin has a halogen.
  • the raw rubber contained in the rubber composition contains BIMS and at least one copolymer rubber selected from the group consisting of butyl rubber and / or halogenated butyl rubber.
  • the raw rubber can be crosslinked with a phenolic resin.
  • BIMS is a bromide of a copolymer rubber of p-alkylstyrene and isomonoolefin.
  • BIMS includes, for example, a p-alkylstyrene (PAS) content of 5 to 25% by mass, a bromine (Br) content of 1.5% by mass or more, and a mass ratio of p-alkylstyrene units to bromine units.
  • PAS p-alkylstyrene
  • Br bromine
  • Is a bromide of a copolymer rubber of an isomonoolefin having 4 to 7 carbon atoms and p-alkylstyrene, wherein is 0.15 ⁇ Br / PAS ⁇ 0.40.
  • Specific examples include brominated isobutylene p-methylstyrene copolymer rubber.
  • BIMS has a Mooney viscosity (ML1 + 8, 125 ° C.)
  • Examples of the isomonoolefin having 4 to 7 carbon atoms include isobutylene.
  • Examples of p-alkylstyrene include styrene having an alkyl group having 1 to 5 carbon atoms in the para position, such as p-methylstyrene and p-ethylstyrene.
  • the content of p-alkylstyrene in BIMS is 5 to 25% by mass, preferably 5 to 10% by mass, for all those having a p-alkylstyrene skeleton including brominated products of alkyl groups of p-alkylstyrene. .
  • When it is 25% by mass or less, the rubber composition does not become brittle at a low temperature and is excellent in cold resistance.
  • Exxpro 3745 manufactured by the same company, which is a bromide of a copolymer rubber of isobutylene and p-methylstyrene, can be mentioned.
  • the butyl rubber and halogenated butyl rubber as the copolymer rubber that can be contained in the raw rubber will be described.
  • the raw rubber can contain butyl rubber and / or halogenated butyl rubber, and preferably contains halogenated butyl rubber. It is because the adhesiveness of the hose of the present invention obtained is more excellent and the durability is increased.
  • a common copolymer (rubber) of isobutylene and isoprene can be used, and is not particularly limited, but the content of isoprene is 0.6 to 2.5 mol% as the degree of unsaturation, and the molecular weight is Mooney.
  • the viscosity is preferably 35 to 60 (125 ° C.).
  • halogenated butyl rubber examples include chlorinated butyl rubber and brominated butyl rubber. These halogenated butyl rubbers can also be general ones.
  • chlorinated butyl rubber the chlorine content is 1 to 2.5% by mass
  • the isoprene content is 0.6 to 0.6 as the degree of unsaturation. It is preferably 2.5 mol% and the molecular weight is 30 to 60 (125 ° C.) in Mooney viscosity.
  • bromine content is 1 to 2.5 mass%
  • the isoprene content is 0.6 to 2.5 mol% as the degree of unsaturation
  • the molecular weight is 25 to 55 (125 ° C.) in Mooney viscosity.
  • the raw rubber can further contain EPDM.
  • the EPDM that can be further contained in the raw rubber is not particularly limited as long as it is a general copolymer rubber obtained by polymerizing a monomer containing ethylene, propylene, and a diene.
  • An example of a commercially available product is Mitsui EPT 4070 manufactured by Mitsui Chemicals.
  • the propylene content is preferably 10 to 70 mol%, more preferably 15 to 50 mol%.
  • Examples of the diene component include ethylidene norbornene, dicyclopentadiene, and 1,4-hexadiene. Among these, ethylidene norbornene having a high crosslinking rate is preferable.
  • the amount of the diene component is preferably from 3 to 25 in terms of iodine value, and more preferably from 5 to 20.
  • the combination of the raw rubbers is BIMS and butyl rubber and / or halogenated butyl rubber [copolymer rubber (1)]. Further, it is preferable to further contain EPDM.
  • the content of BIMS in the raw rubber is preferably 5 to 40 parts by mass.
  • the total content of BIMS and copolymer rubber (1) which is butyl rubber and / or halogenated butyl rubber in the raw rubber is 20 to 80 parts by mass. Is preferred.
  • the EPDM content in the raw rubber is preferably 80 to 20 parts by mass.
  • the content of BIMS is less than 5 parts by mass, it is difficult to obtain the required rubber attachment. That is, it becomes difficult to form an adhesive rubber layer (evaluated with rubber described later) on the surface of the gas barrier layer with a required thickness. Moreover, when it exceeds 40 mass parts, the required adhesive force will be hard to be obtained. That is, it becomes difficult to firmly adhere the rubber layer to the surface of the gas barrier layer.
  • the content of the above EPDM is more preferably 70 to 50 parts by mass.
  • the content of EPDM is less than 20 parts by mass, it is difficult to obtain the required adhesion and rubber attachment.
  • it exceeds 80 mass parts a vulcanization
  • the alkylphenol formaldehyde resin acts as a crosslinking agent for the raw rubber and can crosslink the raw rubber.
  • the alkylphenol formaldehyde resin also includes a halogenated alkylphenol formaldehyde resin (halogenated alkylphenol formaldehyde resin).
  • a halogenated alkylphenol formaldehyde resin is preferable and a brominated alkylphenol formaldehyde resin is more preferable from the viewpoint of excellent adhesion between the gas barrier layer and the rubber layer.
  • a commercially available product such as Takiroll 250-I manufactured by Taoka Chemical Co., Ltd. can be used.
  • the compounding amount of the alkylphenol formaldehyde resin is 1 to 15 parts by mass, and 2 to 10 parts by mass with respect to 100 parts by mass of the raw rubber from the viewpoint of excellent adhesion between the gas barrier layer and the rubber layer.
  • the amount is preferably 2 to 7 parts by mass. If it is less than 1 part by mass, it may be difficult to obtain the required adhesive strength. That is, it may be difficult to firmly adhere the rubber layer to the surface of the gas barrier layer. Moreover, when it exceeds 15 mass parts, the physical property (hardness) of a rubber layer may be impaired.
  • the rubber composition can further contain hydrotalcite. From the standpoint of superior adhesion between the gas barrier layer and the rubber layer, the rubber composition preferably further contains hydrotalcite.
  • the hydrotalcite that the rubber composition can further contain is not particularly limited.
  • the hydrotalcite may be a natural product or a synthetic product. Specifically, for example, Mg 3 ZnAl 2 (OH) 12 CO 3 .wH 2 O (w represents a positive real number), Mg x Al y (OH) 2x + 3y-2 CO 3 ⁇ wH 2 O (where x is 1 ⁇ 10, y is 1 ⁇ 10, w represents a positive real number.), Mg x Al y (OH) 2x + 3y-2 CO 3 [ where x is 1-10, y represents 1 to 10.
  • Mg 4.3 Al 2 (OH) 12.6 CO 3 (trade name DHT-4A-2, manufactured by Kyowa Chemical Industry Co., Ltd.)] Mg 1-x Al x O 3.83x (0.2 ⁇ x ⁇ 0.5.
  • Mg 0.7 Al 0.3 O 1.15 (trade name KW-2200, manufactured by Kyowa Chemical Industry Co., Ltd.))].
  • hydrotalcite is superior in adhesion between the gas barrier layer and the rubber layer and has a high halogen catching ability, so that the hydrotalcite has a small amount of OH (for example, not a hydrate, the above In the formula, those having no wH 2 O.), Mg 1-x Al x O 3.83x are preferred, and Mg 0.7 Al 0.3 O 1.15 is more preferred.
  • Hydrotalcite having a small amount of OH in the chemical structure can be produced, for example, by firing (for example, hydrotalcite obtained by synthesis) raw material hydrotalcite (under high temperature conditions).
  • hydrotalcite Commercial products can be used as hydrotalcite.
  • DHT series manufactured by Kyowa Chemical Industry Co., Ltd.
  • DHT-4A, DHT-4A-2 fired, but about KW-2200 of the KW series described later is heated.
  • No, DHT-4C KW series manufactured by the same company (grade in which DHT series is fired at a higher temperature, and tends to have higher halogen catching capacity than DHT series.
  • STABIACE HT series manufactured by Sakai Chemical Industry Co., Ltd.
  • hydrotalcite is a synthetic product
  • examples of its production method include conventionally known ones.
  • hydrotalcite hydrotalcite that has been surface-treated or hydrotalcite that has not been surface-treated (one that has a hydrotalcite surface that is not treated) can be used.
  • examples of the surface treatment agent used when surface-treating hydrotalcite include fatty acids (including higher fatty acids) and fatty acid esters.
  • the hydrotalcite is preferably a hydrotalcite that has not been surface-treated from the viewpoint that its halogen catching ability is high and it is superior in the adhesion between the gas barrier layer and the rubber layer.
  • hydrotalcite examples include KW-2200 (manufactured by Kyowa Chemical Industry Co., Ltd.) and DHT-4C (manufactured by Kyowa Chemical Industry Co., Ltd.).
  • hydrotalcite has excellent mechanical properties of the rubber layer such as tensile strength (T B ) [MPa], elongation at break (E B ) [%], and 100% modulus (M 100 ).
  • T B tensile strength
  • E B elongation at break
  • M 100 100% modulus
  • hydrotalcite examples include DHT-4A (surface-treated with higher fatty acids, manufactured by Kyowa Chemical Industry Co., Ltd.), DHT-4A-2 (Mg 4.3 Al 2 (OH) 12.6 CO 3 is surface-treated with a higher fatty acid (manufactured by Kyowa Chemical Industry Co., Ltd.). Hydrotalcite can be used alone or in combination of two or more.
  • the amount of hydrotalcite contained in the rubber composition is 1 to 8 parts by mass with respect to 100 parts by mass of the raw rubber from the viewpoint that the adhesiveness between the gas barrier layer and the rubber layer is excellent. Is preferred. In such a range, the vulcanization time and the physical properties of the rubber layer are in an appropriate range. Further, the amount of hydrotalcite is 2 to 6 parts by mass with respect to 100 parts by mass of the raw rubber from the viewpoint that the adhesiveness between the gas barrier layer and the rubber layer is excellent and the vulcanization time becomes an appropriate length. It is preferably 2 to 4 parts by mass.
  • the rubber composition preferably further contains carbon black from the viewpoint of excellent adhesion between the gas barrier layer and the rubber layer and excellent reinforcement of the rubber layer.
  • the colloidal characteristics of the carbon black that can be used in the present invention are N 2 SA ⁇ 75 m 2 / g and DBP oil absorption from the viewpoint that the adhesion between the gas barrier layer and the rubber layer is excellent and the rubber layer is excellent in reinforcement. preferably in the range of ⁇ 90cm 3 / 100g.
  • N 2 SA is 75 m 2 / g or less than DBP absorption is less than 90cm 3/100 g, it is difficult to firmly bond the rubber layer on the surface of the gas barrier layer.
  • N 2 SA is preferably 80 to 150 m 2 / g, and more preferably 80 to 120 m 2 / g.
  • DBP oil absorption amount is 95 ⁇ 140cm 3 / 100g, and more preferably 100 ⁇ 130cm 3 / 100g.
  • N 2 SA means the molecular weight of nitrogen adsorbed on the surface of carbon black, and specifically means a value obtained by measurement by a method prescribed in JIS K 6217-2.
  • the DBP oil absorption amount means the amount of oil absorbed by the carbon black aggregate, and specifically means the value obtained by measurement by the method specified in JIS K 6217-4.
  • N 2 SA ⁇ 75m 2 / g , and a carbon black as a DBP oil absorption ⁇ 90cm 3 / 100g, for example, ISAF, include those of the above grade HAF.
  • the blending amount of the carbon black is preferably 30 to 80 parts by mass, and preferably 40 to 65 parts by mass with respect to 100 parts by mass of the raw rubber from the viewpoint that the adhesion between the gas barrier layer and the rubber layer is excellent. It is more preferable. If it is less than 30 parts by mass, it is difficult to obtain the required adhesive force. That is, it becomes difficult to firmly adhere the rubber layer to the surface of the gas barrier layer. On the other hand, when the amount exceeds 80 parts by mass, the viscosity of the unvulcanized rubber becomes high and the workability is impaired.
  • the rubber composition is a cross-linking agent other than alkylphenol formaldehyde resin, zinc white (ZnO), vulcanization aid, and vulcanization accelerator.
  • the vulcanization aid include fatty acids such as acetyl acid, propionic acid, butanoic acid, stearic acid, acrylic acid, and maleic acid; zinc acetylate, zinc propionate, zinc butanoate, zinc stearate, zinc acrylate, Examples include fatty acid zinc such as zinc maleate.
  • vulcanization accelerator examples include thiurams such as tetramethylthiuram disulfide (TMTD) and tetraethylthiuram disulfide (TETD); aldehydes and ammonia such as hexamethylenetetramine; guanidines such as diphenylguanidine; dibenzothiazyl disulfide; (DM) and the like; sulfenamides such as cyclohexylbenzothiazylsulfenamide and the like.
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • aldehydes and ammonia such as hexamethylenetetramine
  • guanidines such as diphenylguanidine
  • dibenzothiazyl disulfide dibenzothiazyl disulfide
  • sulfenamides such as cyclohexylbenz
  • additives include fillers such as clay, reinforcing agents other than carbon black, softeners such as paraffinic oil, plasticizers, processing aids, anti-aging agents, pigments, tackifiers, lubricants, dispersants, and the like. Is mentioned.
  • the method for producing the rubber composition is not particularly limited.
  • carbon black and the above additives are added to BIMS, butyl rubber and / or halogenated butyl rubber, and EPDM, if necessary, and mixed by a roll, a Banbury mixer, etc., followed by alkylphenol formaldehyde resin, hydrotalcite If necessary, it can be obtained by adding and mixing other zinc oxide, a vulcanization aid, and a vulcanization accelerator.
  • the tensile strength (T B ) of the vulcanized sheet obtained from the obtained rubber composition is preferably 6 MPa or more, more preferably 8 to 25 MPa, from the viewpoint of excellent strength balance with the adjacent member. preferable.
  • the measuring method of tensile strength (T B ) is the same as that shown in the examples.
  • the strength balance with the adjacent member means the balance between the strength of the rubber layer and the strength of the gas barrier layer adjacent to the rubber layer or the strength of the reinforcing layer and the outer tube layer that can be adjacent to the rubber layer.
  • the gas barrier layer and the reinforcing layer Is adjacent to the rubber layer.
  • the strength of the rubber layer is low (less than 6 MPa)
  • the rubber layer is sandwiched between a harder gas barrier layer and a reinforcing layer, and the hose is subjected to fatigue such as repeated vibration.
  • the rubber layer is easily broken.
  • T B tensile strength
  • the rubber layer can be formed by extruding a rubber composition into a tubular shape, for example.
  • the thickness of the rubber layer is not particularly limited, but is preferably 0.5 to 3.0 mm.
  • the hose of the present invention can further have a reinforcing layer.
  • the reinforcing layer that the hose of the present invention can further have may be formed in a blade shape or a spiral shape, and is not particularly limited.
  • Examples of the material to be used include a thread and a wire.
  • Examples of the reinforcing yarn include yarns made of vinylon fiber, rayon fiber, polyester fiber, nylon fiber, aromatic polyamide fiber and the like.
  • a hard steel wire is exemplified, and more specifically, a brass plated wire or a galvanized wire is exemplified for rust prevention and adhesion imparting.
  • the hose of the present invention can further have an outer tube layer.
  • the outer tube layer is formed on the outer side of the inner tube layer or the reinforcing layer, and the material, structure, thickness and the like are not particularly limited, and generally used rubber compositions, resins, Metal wires or the like can be used.
  • the rubber composition the same rubber composition as that used for the rubber layer of the inner tube layer can be used.
  • the rubber composition contains appropriate crosslinking agents, fillers, reinforcing agents, plasticizers, anti-aging agents, vulcanization accelerators, softeners, tackifiers, lubricants, dispersants, processing aids, etc. May be.
  • the resin examples include polyamide resin, polyester resin, polyurethane resin, polyacetal resin, vinyl chloride resin, polypropylene, and polyethylene.
  • a metal and a fiber can also be contained for the improvement of the vibration absorption performance by weight increase, and the strength improvement.
  • the outer tube layer can be, for example, solid or sponge. Further, the outer tube layer may be, for example, a cylindrical type that is used by inserting the hose of the present invention, a spiral type, or a spring type that is wound around the hose of the present invention.
  • the thickness of the outer tube layer is preferably 1 to 5 mm, more preferably 0.5 to 3 mm, and even more preferably 1 to 2 mm.
  • the outer tube layer may be formed of a plurality of layers.
  • the inner diameter, outer diameter, and length of the hose of the present invention are not particularly limited.
  • the inner diameter of the hose is preferably 5 to 20 mm, and more preferably 7 to 17 mm.
  • the manufacturing method of the hose of this invention is demonstrated.
  • the manufacturing method of the hose of this invention is not specifically limited, A conventionally well-known method can be used.
  • the gas barrier layer and the rubber layer can be obtained by extrusion molding and coextrusion molding, respectively.
  • the rubber layer should just be formed using said rubber composition.
  • the gas barrier layer should just be formed using said polyamide resin composition.
  • the hose of the present invention can directly bond a gas barrier layer and a rubber layer by vulcanizing and / or crosslinking a laminate obtained by laminating a thermoplastic resin composition and a rubber composition.
  • the gas barrier layer and the rubber layer are bonded by laminating the thermoplastic resin composition and the rubber composition and vulcanizing and / or cross-linking the thermoplastic resin composition and the rubber composition.
  • the refrigerant transport hose can be manufactured. Vulcanization and / or crosslinking can be performed, for example, by heating under conditions of about 150 to 180 ° C.
  • a rubber layer is laminated on the outer surface of the gas barrier layer, and further on the rubber layer, for example, by braiding or spiral winding, It can be obtained by laminating the reinforcing layer and then laminating the outer tube layer (outer rubber layer) and then vulcanizing the whole.
  • Vulcanization (crosslinking) can be carried out under conditions of about 150 to 180 ° C.
  • a gas barrier layer, a rubber layer, a reinforcing layer, and an outer tube layer are laminated in this order on a mandrel, and then the laminated body on the mandrel is heated to 30 to 30 ° C. under a condition of 140 to 190 ° C.
  • the hose can be manufactured by vulcanization and adhesion by press vulcanization, steam vulcanization, oven vulcanization (hot air vulcanization) or hot water vulcanization for 180 minutes.
  • the hose of the present invention is excellent in adhesion between the gas barrier layer and the rubber layer, no gas or liquid stays at the adhesion interface between the gas barrier layer and the rubber layer, and the gas barrier layer in that portion does not swell.
  • the hose of the present invention does not require the gas barrier layer and the rubber layer to be bonded with an adhesive or the like, the adverse effect on the environment due to the solvent contained in the adhesive or the like is eliminated, and the manufacturing process of the hose is reduced to reduce the cost. Can be lowered.
  • the refrigerant-containing composition that can be used for the hose of the present invention is not particularly limited.
  • coolant like a fluorine-type compound and a lubricant is mentioned.
  • the refrigerant contained in the refrigerant-containing composition include fluorine having a double bond such as 2,3,3,3-tetrafluoropropene (structural formula: CF 3 —CF ⁇ CH 2 , HFO-1234yf). And a saturated hydrofluorocarbon such as HFC-134a (structural formula: CF 3 —CFH 2 ).
  • the lubricating oil contained in the refrigerant-containing composition is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the hose of the present invention is a hose that can be used for transporting a refrigerant, and can be applied to a fluid transport hose such as an air conditioner hose (for example, a car air conditioner). Moreover, the hose of this invention can be used for the hose for warm water (for temperature control apparatuses) besides the hose for an air conditioner.
  • a fluid transport hose such as an air conditioner hose (for example, a car air conditioner).
  • the hose of this invention can be used for the hose for warm water (for temperature control apparatuses) besides the hose for an air conditioner.
  • HAF Carbon black, SHOWBLACK N330, Showa Cabot Co. Ltd., N 2 SA ⁇ 75m 2 / g, DBP oil absorption ⁇ 90cm 3 / 100g ⁇ C.
  • GPF carbon black, SEAST V, Tokai Carbon Co., Ltd., N 2 SA ⁇ 75m 2 / g, DBP oil absorption of ⁇ 90cm 3 / 100g ⁇ C. B.
  • -Paraffin oil Process oil 123, manufactured by Showa Shell Sekiyu KK-Aroma oil: A-OMIX, manufactured by Sankyo Oil Chemical Co., Ltd.
  • -Zinc stearate Zinc stearate, manufactured by Shodo Chemical Co., Ltd.
  • -Anti-aging agent 1 Non-flex OD-3, manufactured by Seiko Chemical Co., Ltd.
  • ⁇ Aging inhibitor 2 Ozonon 6C, manufactured by Seiko Chemical Co., Ltd.
  • Zinc oxide three types of zinc oxide, manufactured by Shodo Chemical Industry Co., Ltd.
  • Magnesium oxide Kyowa Mag 150, Kyowa Chemical • Brominated alkylphenol formaldehyde resin: Tacrol 250-I, manufactured by Taoka Chemical Co., Ltd. • Condensation product of m-cresol and formaldehyde: Sumikanol 610, manufactured by Taoka Chemical Co., Ltd. • Multivalent methylolmelamine resin: Sumicanol 507A , BARA CHEMICALCO. , LTD.
  • modified polyamide resin (modified polyamide resin 1) Nylon 6 “UBE nylon” 1022B manufactured by Ube Industries, Ltd. as a raw material polyamide resin: 100 parts by mass, and glycidol [Epiol (registered trademark) manufactured by NOF CORPORATION] as a compound (D) capable of binding to the terminal amino group of the polyamide resin OH] 1 part by mass and 30 parts by mass of n-butylbenzenesulfonamide (BM-4, manufactured by Daihachi Chemical Industry Co., Ltd.) as a plasticizer were mixed into a twin-screw kneader (TEX44 manufactured by Nippon Steel).
  • TEX44 twin-screw kneader
  • modified polyamide resin 1 contains a plasticizer.
  • Modified polyamide resin 2 Nylon 666 “UBE nylon” 5033B manufactured by Ube Industries, Ltd.
  • polyamide resin 100 parts by mass, and p-sec-butylphenylglycidyl ether [NOF Co., Ltd.] as a compound (D) capable of binding to the terminal amino group of the polyamide resin 1 part by mass of Epiol (registered trademark) SB] manufactured by the company and 30 parts by mass of n-butylbenzenesulfonamide (BM-4 manufactured by Daihachi Chemical Industry Co., Ltd.) as a plasticizer.
  • a modified polyamide resin nylon masterbatch, blended with end-capping agent
  • the obtained modified polyamide resin is referred to as modified polyamide resin 2.
  • the modified polyamide resin 2 contains a plasticizer.
  • thermoplastic resin composition thermoplastic resin composition 1:52 parts by mass of the modified polyamide resin obtained as described above, As ethylene-vinyl alcohol copolymer (E), 60 parts by mass of an ethylene-vinyl alcohol copolymer [Soarnol (registered trademark) A4412B manufactured by Nippon Synthetic Chemical Industry Co., Ltd.] Maleic anhydride modified ethylene-propylene copolymer [Tafmer (registered trademark) MP-0620 manufactured by Mitsui Chemicals, Inc.] as a modified raw rubber.
  • MA-EPM modified raw rubber
  • thermoplastic resin composition 1,3′-diaminodiphenylsulfone [made by Mitsui Chemical Fine Co., Ltd.] as a hydrogen bonding compound (C) having a functional group that reacts with an acid anhydride group or an epoxy group and an amide bond or a functional group that can hydrogen bond with a hydroxyl group 3,3′-DAS]
  • Thermoplastic resin composition 2 Modified polyamide resin 2: 131 parts by mass obtained as described above, 140 parts by mass of maleic anhydride-modified ethylene-propylene copolymer [Tafmer (registered trademark) MP-0620 manufactured by Mitsui Chemicals, Inc.] as a modified raw rubber is put into a twin-screw kneader and melted at a kneader temperature of 220 ° C.
  • thermoplastic resin composition 2,3′-diaminodiphenylsulfone [Mitsui Chemical Co., Ltd.] as a hydrogen bonding compound (C) having a functional group that is blended and then reacted with an acid anhydride group or an epoxy group and an amide bond or a functional group capable of hydrogen bonding with a hydroxyl group Fine Co., Ltd. 3,3′-DAS] 1.4 parts by mass is melt blended, then discharged continuously from the extruder into strands, cooled with water, and cut with a cutter to make pellets thermoplastic A resin composition was obtained. Let the obtained thermoplastic resin composition be the thermoplastic resin composition 2.
  • thermoplastic resin compositions 1 and 2 obtained as described above were prepared using an electrothermal press at 230 ° C, and the sheet was 5 mm wide and long. A test piece having a size of 80 mm and a thickness of 0.15 mm was cut out and used as a test specimen.
  • the Young's modulus of the obtained test specimen was measured according to JIS K 7161 at a tensile speed of 50 mm / min.
  • the Young's modulus of the test body obtained from the thermoplastic resin composition 1 was 270 MPa.
  • the Young's modulus of the test body obtained from the thermoplastic resin composition 2 was 250 MPa.
  • T B Tensile strength [MPa], elongation at break (E B ) [ %] And 100% modulus (M 100 ) [MPa] were measured at room temperature.
  • T B tensile strength
  • E B elongation at break
  • M 100 100% modulus
  • a hose was produced using the rubber composition and thermoplastic resin composition of each Example and each Comparative Example. Specifically, first, the thermoplastic resin composition 1 or 2 or nylon 6 obtained as described above (“UBE nylon” 1030B manufactured by Ube Industries, Ltd., Comparative Examples 1-1, 1-2, and 2). was used by being drawn down onto a mandrel (outer diameter: 11 mm) using an extruder to form a gas barrier layer having a thickness of 0.1 mm. Next, using the rubber composition obtained as described above, a rubber layer having a thickness of 1.4 mm was formed on the outer surface of the gas barrier layer obtained above.
  • the adhesive strength and rubber attachment when the rubber layer was peeled off at a peeling speed of 50 mm / min were measured.
  • the adhesive force means an adhesive force (N) per 25 mm in width.
  • the thing with an adhesive force of 30 N / 25 mm or more was evaluated as “ ⁇ ”, and the adhesive force of less than 30 N / 25 mm was evaluated as “x”.
  • the area with rubber was evaluated for its area and thickness. With rubber (area) means the area ratio (%) where the rubber peeled off from the rubber layer adheres on the peeled gas barrier layer after the evaluation of the adhesive strength.
  • Example 1-1 the rubber attachment was thinned, and the resin was peeled in the delamination test, and the adhesion between the gas barrier layer and the rubber layer was insufficient.
  • Comparative Example 1-2 having a gas barrier layer obtained by using a material other than the thermoplastic resin composition has low adhesive strength, poor rubber attachment, peeling of the resin in the delamination test, and the gas barrier layer and the rubber layer. The adhesion of was insufficient.
  • Comparative Examples 2 and 3 having a gas barrier layer obtained using a material other than the thermoplastic resin composition the adhesive strength is low, the rubber attachment is thin, the resin is peeled off in the delamination test, and the gas barrier layer and the rubber layer Adhesion with was insufficient.
  • Comparative Example 2 corresponds to the aspect described in Patent Document 2.
  • Comparative Examples 4 to 6 having a rubber layer obtained by using a material other than the rubber composition used in the hose of the present invention have low adhesive strength, poor rubber attachment, and peeling of the resin occurred in the delamination test, Adhesion between the gas barrier layer and the rubber layer was insufficient.
  • Comparative Example 7 having a rubber layer obtained using a rubber composition containing SBR and natural rubber, the breaking elongation (EB) of the rubber layer was 100 MPa or less, and the heat resistance of the rubber was low.
  • the resin layer and the rubber layer can be vulcanized and bonded to each other without pre-bonding the resin layer and / or the rubber layer. Excellent adhesion.
  • Examples 4 to 11, 14, and 15 in which the raw material rubber contains BIMS, Br-IIR as a halogenated butyl rubber, and further EPDM have high adhesive strength and are excellent in adhesiveness.
  • Examples 6 to 11 and 15 in which the rubber composition further contains hydrotalcite have high adhesive strength and excellent adhesiveness.
  • the amount of hydrotalcite is 1 part by mass or more with respect to 100 parts by mass of the raw rubber (Examples 7 to 11 and 15)
  • the adhesive strength is high and the adhesiveness is excellent.
  • the resin does not peel even in the delamination test.
  • Example 12 ⁇ Manufacture of hose having reinforcing layer and outer tube layer> Using a resin extruder on the surface of a thermoplastic resin mandrel having an outer diameter of 11 mm, the gas barrier layer was extruded to a thickness of 0.15 mm with the thermoplastic resin composition 1 of Example 4 (extrusion temperature 240 ° C.), and the surface A rubber layer (rubber composition of Example 4) having a thickness of 1.2 mm was extruded into an inner tube layer, and PET (polyethylene terephthalate) fibers having a total yarn amount of 80,000 dtex were alternately wound in a spiral shape on the inner tube layer.
  • a 1.0 mm thick cover rubber layer (the following butyl rubber composition A is used) is extruded thereon to form an extruded outer tube layer.
  • a polymethylpentene resin was extruded to make an outer skin, and the obtained tubular laminate was vulcanized for 100 minutes at 160 ° C., and then the outer skin and mandrel were removed from the tubular laminate to produce a hose.
  • the obtained hose is referred to as a hose 1.
  • the hose 1 is excellent in adhesion between the gas barrier layer and the rubber layer.
  • Butyl rubber composition A (cover rubber layer): 100 parts by weight of butyl rubber, 80 parts by weight of carbon black (HAF), 3 parts by weight of stearic acid, 10 parts by weight of paraffin oil, 2 parts by weight of zinc oxide, and brominated alkylphenol formaldehyde resin 8 A composition containing parts by mass.
  • Example 13 ⁇ Manufacture of hose having reinforcing layer and outer tube layer> A hose 2 was produced in the same manner as in Example 12 except that the inner tube layer was formed in Example 9. The hose 2 is excellent in adhesion between the gas barrier layer and the rubber layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

 ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える冷媒輸送用ホースであって、前記ガスバリア層がポリアミド樹脂(A)と酸無水物基またはエポキシ基を有する変性ゴム(B)とを含有する熱可塑性樹脂組成物を用いて形成され、前記変性ゴム(B)は酸無水物基またはエポキシ基を有する変性原料ゴムを前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものであり、前記ゴム層が原料ゴム:100質量部に対してアルキルフェノールホルムアルデヒド樹脂:1~15質量部を含有するゴム組成物を用いて形成され、前記原料ゴムがBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含み、前記原料ゴムおよび/または前記アルキルフェノールホルムアルデヒド樹脂がハロゲンを有し、前記ガスバリア層と前記ゴム層との間に接着剤層を有さない、冷媒輸送用ホースを提供する。

Description

冷媒輸送用ホース
 本発明は、冷媒輸送用ホースに関する。
 近年、カーエアコン等に使用される冷媒輸送用のホースとして、ガス透過性の低いポリアミド等の樹脂材料とゴム材料とを組合せた樹脂とゴムとの積層体が一般的に用いられるようになってきた。本願出願人はこれまでに、接着剤等を使用せずに樹脂とゴムとを接合するホース(特許文献1)、柔軟性に加えて、低気体透過性熱可塑性樹脂組成物(ガスバリア樹脂)層の分散構造(モルフォロジー)を制御することで耐ガス透過性を大幅に向上させ、それによって空気入りタイヤやホースの空気(ガス)透過防止層を薄膜にすることができ、タイヤの軽量化に寄与することができるゴム/マトリックス樹脂/ガスバリア樹脂より成る低気体透過性熱可塑性エラストマー樹脂組成物並びに該組成物の製造方法(特許文献2)を提案した。従来、接着剤を使用せずに最内層と中間ゴム層とを接着させるホースとして特許文献3が提案された。
特許第4365454号公報 特開平10-114840号公報 特開2000-220770号公報
 しかしながら本願発明者らが検討したところ樹脂層とゴム層との間に接着前処理(例えば樹脂層および/またはゴム層に対する接着剤の塗布、樹脂層の表面処理等)をすることなく樹脂層とゴム層とを加硫接着で直接接着させることは困難であり、また、その接着性に関し改善の余地があることが分かった。
 したがって本発明の目的は、樹脂層および/またはゴム層に接着前処理することなく樹脂層とゴム層とを直接接着させることができ、ガスバリア層とゴム層との接着性に優れたホースを提供することにある。
 本願発明者らは上記課題を解決すべく鋭意研究した結果、
 ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える冷媒輸送用ホースであって、
 前記ガスバリア層が、ポリアミド樹脂(A)と酸無水物基またはエポキシ基を有する変性ゴム(B)とを含有する熱可塑性樹脂組成物を用いて形成され、前記変性ゴム(B)は酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものであり、
 前記ゴム層が、原料ゴム:100質量部に対してアルキルフェノールホルムアルデヒド樹脂:1~15質量部を含有するゴム組成物を用いて形成され、前記原料ゴムがBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含み、前記原料ゴムおよび/または前記アルキルフェノールホルムアルデヒド樹脂がハロゲンを有する、冷媒輸送用ホースが、樹脂層および/またはゴム層に接着前処理することなく樹脂層とゴム層とを加硫接着させることができ、ガスバリア層とゴム層との接着性に優れることを見出し、本発明を完成させた。
 すなわち、本発明は以下の1~11を提供する。
 1. ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える冷媒輸送用ホースであって、
 前記ガスバリア層が、ポリアミド樹脂(A)と酸無水物基またはエポキシ基を有する変性ゴム(B)とを含有する熱可塑性樹脂組成物を用いて形成され、前記変性ゴム(B)は酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものであり、
 前記ゴム層が、原料ゴム:100質量部に対してアルキルフェノールホルムアルデヒド樹脂:1~15質量部を含有するゴム組成物を用いて形成され、前記原料ゴムがBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含み、前記原料ゴムおよび/または前記アルキルフェノールホルムアルデヒド樹脂がハロゲンを有し、
 前記ガスバリア層と前記ゴム層との間に接着剤層を有さない、冷媒輸送用ホース。
 2. 酸無水物基またはエポキシ基と反応する前記官能基がアミノ基、水酸基、カルボキシル基およびメルカプト基からなる群から選ばれる少なくとも1種であり、かつアミド結合または水酸基と水素結合し得る前記官能基がスルホン基、カルボニル基、エーテル結合、水酸基および含窒素複素環からなる群から選ばれる少なくとも1種である、上記1に記載の冷媒輸送用ホース。
 3. 前記ゴム組成物がさらにハイドロタルサイトを含有し、前記ハイドロタルサイトの量が前記原料ゴム:100質量部に対して、1~8質量部である上記1または2に記載の冷媒輸送用ホース。
 4. 前記水素結合性化合物(C)の量は、前記変性原料ゴム100質量部に対して0.1~5質量部である上記1~3のいずれかに記載の冷媒輸送用ホース。
 5. 前記ゴム組成物が、さらに、前記原料ゴム:100質量部に対して、カーボンブラック:30~80質量部を含有し、前記カーボンブラックは、N2SA≧75m2/gであり、かつDBP吸油量≧90cm3/100gであり、
 前記原料ゴムが、BIMSと、ブチルゴムおよび/またはハロゲン化ブチルゴムである共重合ゴム(1)と、さらにEPDMとを含み、
 前記原料ゴムにおいて、前記BIMSの含有量が5~40質量部であり、前記BIMSと前記共重合ゴム(1)との含有量の合計が20~80質量部であり、前記EPDMの含有量が80~20質量部である、上記1~4のいずれかに記載の冷媒輸送用ホース。
 6. 前記ポリアミド樹脂(A)が、ポリアミド樹脂100質量部と、前記ポリアミド樹脂の末端アミノ基と結合し得る化合物(D)0.05~5質量部とを、前記ポリアミド樹脂の融点以上で溶融ブレンドさせて得られる変性ポリアミド樹脂(A′)を含む、上記1~5のいずれかに記載の冷媒輸送用ホース。
 7. 熱可塑性樹脂組成物が、さらにエチレン-ビニルアルコール共重合体(E)を含む、上記1~6のいずれかに記載の冷媒輸送用ホース。
 8. 前記変性原料ゴムの量は、前記ポリアミド樹脂(A)100質量部に対して、または前記ポリアミド樹脂(A)および前記エチレン-ビニルアルコール共重合体(E)の合計100質量部に対して、90~175質量部である上記1~7のいずれかに記載の冷媒輸送用ホース。
 9. 前記ポリアミド樹脂(A)と前記エチレン-ビニルアルコール共重合体(E)の質量比[ポリアミド樹脂(A)/エチレン-ビニルアルコール共重合体(E)]は90/10~10/90である上記7まはた8に記載の冷媒輸送用ホース。
 10. 前記内管層の上に補強層があり、前記補強層の上に外管層がある上記1~9のいずれかに記載の冷媒輸送用ホース。
 11. 前記熱可塑性樹脂組成物と前記ゴム組成物とを積層し、前記熱可塑性樹脂組成物と前記ゴム組成物とを加硫および/または架橋して接着させることによって、上記1~10のいずれかに記載の冷媒輸送用ホースを製造する、冷媒輸送用ホースの製造方法。
 本発明の冷媒輸送用ホースは樹脂層および/またはゴム層に接着前処理をすることなく樹脂層とゴム層とを直接接着させることができガスバリア層とゴム層との接着性に優れる。
図1は本発明のホースの好適実施例を模式的に表す斜視図である。 図2は本発明のホースの別の好適実施例を模式的に表す斜視図である。
 本発明について詳細に説明する。
 本発明の冷媒輸送用ホースは、ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える冷媒輸送用ホースであって、
 前記ガスバリア層が、ポリアミド樹脂(A)と酸無水物基またはエポキシ基を有する変性ゴム(B)とを含有する熱可塑性樹脂組成物を用いて形成され、前記変性ゴム(B)は酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものであり、
 前記ゴム層が、原料ゴム:100質量部に対してアルキルフェノールホルムアルデヒド樹脂:1~15質量部を含有するゴム組成物を用いて形成され、前記原料ゴムがBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含み、前記原料ゴムおよび/または前記アルキルフェノールホルムアルデヒド樹脂がハロゲンを有し、
 前記ガスバリア層と前記ゴム層との間に接着剤層を有さない、冷媒輸送用ホースである。
 以下本発明の冷媒輸送用ホースを「本発明のホース」ということがある。
 本発明において、原料ゴムおよび/またはアルキルフェノールホルムアルデヒド樹脂がハロゲンを有するとは、原料ゴムおよび/またはアルキルフェノールホルムアルデヒド樹脂がハロゲン化(例えば、塩素化、臭素化)されていることをいう。
 ガスバリア層とゴム層との接着のメカニズムは、ガスバリア層の形成に使用される熱可塑性樹脂組成物に含有されるゴム成分としての酸無水物基またはエポキシ基を有する変性ゴム(B)が、隣接するゴム層の形成に使用されるゴム組成物に配合されている、原料ゴムおよび/またはアルキルフェノールホルムアルデヒド樹脂が有するハロゲン(例えば、臭素)と反応するので樹脂とゴムとが直接接着することができると考えられる。
 このように、ゴム層がハロゲンを含み、ガスバリア層が酸無水物基またはエポキシ基を含む場合、接着剤を使用することなしにガスバリア層とゴム層とを強固に接着[例えば、加硫および/または架橋、加熱によって]させることができ、高接着性(高接着力および高ゴム付き)を発現することができる。
 また、ゴム組成物にさらにハイドロタルサイトを配合する場合、ハイドロタルサイトは強力なハロゲンキャッチャーなので、ゴム層側に配合されている上記のハロゲン[例えば、ハロゲン化ブチルゴム、BIMS、ハロゲン化されたアルキルフェノールホルムアルデヒド樹脂が有するハロゲン(例えば、塩素原子、臭素原子)]をキャッチし(すなわちハロゲン化物からハロゲンを積極的に引き抜く。)、その結果、ゴム層と、ガスバリア層に含有される、酸無水物基またはエポキシ基を有する変性ゴム(B)との反応量がより多くなり、さらに樹脂/ゴム接着強度を向上させることができる。
 本発明のホースは、ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える冷媒輸送用ホースである。本発明においてガスバリア層と前記ゴム層との間には接着剤層(例えば接着剤を用いて形成されるもの)を有さない。つまりガスバリア層とゴム層との間には接着剤層は存在しない。本発明においてガスバリア層とゴム層とは直接に接着することができる。
 本発明のホースは、内管層のみからなり他の層を有さない場合を含む。本発明のホースは、ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える以外はその構成について特に制限されない。例えば内管層の他に、さらに補強層や外管層を有するものが挙げられる。本発明のホースは、内管層の上に補強層があり、補強層の上に外管層があるのが好ましい態様の1つとして挙げられる。
 本発明のホースを添付の図を用いて説明する。本発明は添付の図面に限定されない。添付の図面においてホースは各層が切り欠いた状態で示される。
 図1は本発明のホースの好適実施例を模式的に表す斜視図である。図1において本発明のホース1は、ガスバリア層21とその外表面に隣接したゴム層22とからなる内管層2のみを有する。
 図2は本発明のホースの別の好適実施例を模式的に表す斜視図である。図2において本発明のホース5は、ガスバリア層21とその外表面に隣接したゴム層22とからなる内管層2と、ゴム層22の上面に補強層3を有し、さらに、補強層3の上面に外管層4を有する。
 本発明のホースは前記内管層を備えるものであれば特に限定されず例えば図2を用いて説明した好適実施例における外管層のさらに外側に他の層を有するものであってもよい。
 また、本発明のホースは上記のように補強層を必ずしも有している必要はないが、補強層を備えていると、ホースの引張り破断強度、使用可能圧力範囲および金具装着性が向上するので好ましい。特に本発明のホースを高圧流体を輸送するホースに用いる場合は補強層を有することが好ましい。
 ガスバリア層について以下に説明する。
 本発明のホースにおいて、ガスバリア層は、ポリアミド樹脂(A)と酸無水物基またはエポキシ基を有する変性ゴム(B)とを含有する熱可塑性樹脂組成物を用いて形成され、前記変性ゴム(B)は酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものである。
 本発明によれば、変性原料ゴムを水素結合性化合物(C)で変性することにより、マトリックスを形成するポリアミド樹脂(A)と変性ゴム(B)の分散相の界面が水素結合により補強されるため、フィルム成形性を悪化させることなく、熱可塑性樹脂組成物の低温耐久性を向上させることができる。本発明において、熱可塑性樹脂組成物を用いて形成されるガスバリア層とゴム組成物を用いて形成されるゴム層とは接着することができ、ガスバリア層とゴム層との接着性に優れる。
 ガスバリア層を形成(製造)する際に使用される熱可塑性樹脂組成物は、ポリアミド樹脂(A)および酸無水物基またはエポキシ基を有する変性ゴム(B)を含有し、変性ゴム(B)は、酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものである。
 熱可塑性樹脂組成物に含有されるポリアミド樹脂(A)はアミド結合を有するポリマーであれば特に制限されない。例えば、ナイロン11、ナイロン12、ナイロン6、ナイロン66、ナイロン666、ナイロン612、ナイロン610、ナイロン46、ナイロン66612、芳香族ナイロンのようなポリアミド樹脂が挙げられる。なかでも、ナイロン6、ナイロン666が耐疲労性とガスバリア性の両立という点で好ましい。
 またポリアミド樹脂(A)として、例えば、ポリアミド樹脂とポリアミド樹脂が有するアミノ基(例えば末端アミノ基:-NH2)と結合し得る化合物(D)とを溶融ブレンドさせて得られる変性ポリアミド樹脂が挙げられる。ポリアミド樹脂(A)は変性ポリアミド樹脂を含むことができる。ポリアミド樹脂(A)は、変性ゴム(B)をポリアミド樹脂(A)に高充填することができ、ガスバリア層とゴム層との接着性により優れるという観点から、ポリアミド樹脂とポリアミド樹脂が有するアミノ基と結合し得る化合物(D)とを溶融ブレンドさせて得られる変性ポリアミド樹脂を少なくとも含むのが好ましい。さらに、ポリアミド樹脂(A)が変性ポリアミド樹脂を少なくとも含むことによって、ポリアミド樹脂(A)と変性原料ゴム[または変性ゴム(B)]の混合中に起こる変性原料ゴム[または変性ゴム(B)]とポリアミドが有するアミノ基(末端アミノ基)の反応が抑制されるため、より効果的にマトリックス樹脂と変性ゴム分散相の界面に水素結合を形成させることが可能となる。これにより、フィルム成形性を悪化させることなく、熱可塑性樹脂組成物の低温耐久性をより向上させることができる。
 また、ポリアミド樹脂(A)が変性ポリアミド樹脂を少なくとも含む場合、変性原料ゴム[または変性ゴム(B)]とポリアミドが有するアミノ基(末端アミノ基)の反応が抑制されるため、流動性のある熱可塑性樹脂組成物を得ることができ、このような熱可塑性樹脂組成物を用いる場合、熱可塑性樹脂組成物を例えばフィルム状やチューブ状(フィルム、チューブの厚さは150μm程度)に容易に押し出すことができる。
 変性ポリアミド樹脂を製造する際に使用されるポリアミド樹脂は特に制限されない。例えば、上記と同様なポリアミド樹脂が挙げられる。
 ポリアミド樹脂が有するアミノ基と結合し得る化合物(D)としては、単官能エポキシ化合物、イソシアネート基含有化合物、酸無水物基含有化合物、ハロゲン化アルキル基含有化合物などが挙げられる。ポリアミド樹脂のアミノ基(末端アミノ基)との反応性に優れるという観点から、好ましくは、単官能エポキシ化合物である。
 単官能エポキシ化合物としては、エチレンオキシド、エポキシプロパン、1,2-エポキシブタン、2,3-エポキシブタン、3メチル-1,2-エポキシブタン、1,2-エポキシペンタン、4-メチル-1,2-エポキシペンタン、2,3-エポキシペンタン、3-メチル-1,2-エポキシペンタン、4-メチル-1,2エポキシペンタン、4-メチル-2,3-エポキシペンタン、3-エチル-1,2-エポキシペンタン、1,2-エポキシヘキサン、2,3-エポキシヘキサン、3,4-エポキシヘキサン、5-メチル-1,2-エポキシヘキサン、4-メチル-1,2-エポキシヘキサン、5-メチル-1,2-エポキシヘキサン、3-エチル-1,2-エポキシヘキサン、3-プロピル-1,2-エポキシヘキサン、4-エチル-1,2-エポキシヘキサン、5-メチル-1,2-エポキシヘキサン、4-メチル-2,3-エポキシヘキサン、4-エチル-2,3-エポキシヘキサン、2-メチル-3,4-エポキシヘキサン、2,5-ジメチル-3,4-エポキシヘキサン、3-メチル-1,2-エポキシへプタン、4-メチル-1,2-エポキシヘプタン、5-メチル-1,2-エポキシへプタン、6-メチル-1,2-エポキシヘプタン、3-エチル-1,2-エポキシヘプタン、3-プロピル-1,2-エポキシヘプタン、3-ブチル1,2-エポキシヘプタン、4-プロピル-2,3-エポキシヘプタン、5-エチル-1,2-エポキシへプタン、4-メチル-2,3-エポキシヘプタン、4-エチル-2,3-エポキシへプタン、4-プロピル-2,3-エポキシヘプタン、2-メチル-3,4エポキシヘプタン、5-メチル-3,4-エポキシヘプタン、6エチル-3,4-エポキシヘプタン、2,5-ジメチル-3,4エポキシヘプタン、2-メチル-5-エチル-3,4-エポキシへプタン、1,2-エポキシヘプタン、2,3-エポキシヘプタン、3,4-エポキシへプタン、1,2-エポキシオクタン、2,3エポキシオクタン、3,4-エポキシオクタン、4,5-エポキシオクタン、1,2-エポキシノナン、2,3-エポキシノナン、3,4-エポキシノナン、4,5-エポキシノナン、1,2-エポキシデカン、2,3-エポキシデカン、3,4-エポキシデカン、4,5-エポキシデカン、5,6-エポキシデカン、1,2-エポキシウンデカン、2,3-エポキシウンデカン、3,4-エポキシウンデカン、5,6-エポキシウンデカン、1,2-エポキシドデカン、2,3-エポキシドデカン、3,4-エポキシドデカン、4,5-エポキシドデカン、5,6-エポキシドデカン、6,7-エポキシドデカン、エポキシエチルベンゼン、1-フェニル-1,2エポキシプロパン、3-フェニル-1,2-エポキシプロパン、1-フェニル-1,2-エポキシブタン、3-フェニル-1,2-エポキシブタン、4-フェニル-1,2-エポキシブタン、3-フェニル-1,2-エポキシペンタン、4-フェニル-1,2-エポキシペンタン、5-フェニル-1,2-エポキシペンタン、1-フェニル-1,2-エポキシヘキサン、3-フェニル-1,2-エポキシヘキサン、4-フェニル-1,2-エポキシヘキサン、5-フェニル-1,2-エポキシヘキサン、6-フェニル-1,2-エポキシヘキサン、グリシドール、3,4-エポキシ-1-ブタノール、4,5-エポキシ-1-ペンタノール、5,6-エポキシ-1-ヘキサノール、6,7-エポキシ-1-ヘプタノール、7,8-エポキシ-1-オクタノール、8,9-エポキシ-1-ノナノール、9,10-エポキシ-1-デカノール、10,11-エポキシ-1ウンデカノール、3,4-エポキシ-2-ブタノール、2,3-エポキシ-1-ブタノール、3,4-エポキシ-2-ペンタノール、2,3-エポキシ-1-ペンタノール、1,2-エポキシ-3-ペンタノール、2,3-エポキシ-4-メチル-1-ペンタノール、2,3-エポキシ-4,4-ジメチル-1-ペンタノール、2,3-エポキシ-1-ヘキサノール、3,4-エポキシ-2-ヘキサノール、4,5-エポキシ-3-ヘキサノール、1,2-エポキシ3-ヘキサノール、2,3-エポキシ-4-メチル-1-ヘキサノール、2,3-エポキシ-4-エチル-1-ヘキサノール、2,3-エポキシ-4,4-ジメチル-1-ヘキサノール、2,3-エポキシ-4,4-ジエチル-1-ヘキサノール、2,3-エポキシ4-メチル-1-ヘキサノ-ル、3,4-エポキシ-5-メチル2-ヘキサノール、3,4-エポキシ-5,5-ジメチル-2-ヘキサノール、3,4-エポキシ-3-ヘプタノール、2,3-エポキシ-1-へプタノール、4,5-エポキシ-3-ヘプタノール、2,3-エポキシ-4-ヘプタノール、1,2-エポキシ-3-ヘプタノール、2,3-エポキシ-1-オクタノール、3,4-エポキシ-3-オクタノール、4,5-エポキシ-3-オクタノール、5,6-エポキシ-4-オクタノール、2,3-エポキシ-4-オクタノール、1,2-エポキシ-3-オクタノール、2,3-エポキシ-1-ノナノール、3,4-エポキシ-2-ノナノール、4,5-エポキシ-3-ノナノール、5,6-エポキシ-5-ノナノール、3,4-エポキシ-5-ノナノール、2,3-エポキシ-4ノナノール、1,2-エポキシ-3-ノナノール、2,3-エポキシ-1-デカノール、3,4-エポキシ-2-デカノール、4,5-エポキシ-3-デカノール、5,6-エポキシ-4-デカノール、6,7-エポキシ-5-デカノール、3,4-エポキシ-5-デカノール、2,3-エポキシ-4-デカノール、1,2-エポキシ-3-デカノール、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロヘプタン、1,2-エポキシシクロオクタン、1,2-エポキシシクロノナン、1,2-エポキシシクロデカン、1,2-エポキシシクロウンデカン、1,2-エポキシシクロドデカン、3,4-エポキシシクロペンテン、3,4-エポキシシクロヘキセン、3,4-エポキシシクロヘプテン、3,4-エポキシシクロオクテン、3,4-エポキシシクロノネン、1,2-エポキシシクロデセン、1,2-エポキシシクロウンデセン、1,2-エポキシシクロドデセン、1-ブトキシ2,3-エポキシプロパン、1-アリルオキシ-2,3-エポキシプロパン、ポリエチレングリコールブチルグリシジルエーテル、2-エチルへキシルグリシジルエーテル、フェニルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル等が挙げられる。なかでも、ポリアミド樹脂の相溶性に優れるという観点から、炭素数が3~20、好ましくは3~13であり、エーテルおよび/または水酸基を有するエポキシ化合物が特に好ましい。
 化合物(D)はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 化合物(D)の量は、ポリアミド樹脂100質量部に対して、0.05~5質量部であるのが好ましく、より好ましくは1~3質量部である。ポリアミド樹脂のアミノ基(末端アミノ基)と結合し得る化合物(D)の量が少なすぎると、変性ゴム(B)を高充填した際の流動性改善効果が小さいため好ましくない。逆に、多すぎると、ポリアミド樹脂の低温耐久性(繰り返し疲労性)を悪化させるので好ましくない。
 変性ポリアミド樹脂の製造としては、例えば、ポリアミド樹脂と化合物(D)とを2軸混練機に投入し、ポリアミド樹脂の融点以上、好ましくは融点より20℃以上高い温度で、たとえば240℃で溶融ブレンドする方法が挙げられる。溶融ブレンドする時間は、たとえば、1~10分、好ましくは2~5分である。
 化合物(D)として単官能エポキシ化合物を使用した場合は、ポリアミド樹脂のアミノ基(末端アミノ基)に単官能エポキシ化合物が2個結合し、たとえばアミノ基は次のように変化する。
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002
 この反応により、ポリアミド樹脂のアミノ基(末端アミノ基)は消滅または減少するので、酸無水物基またはエポキシ基を有する変性原料ゴム[または変性ゴム(B)]を変性ポリアミド樹脂に高充填しても流動性を維持し、フィルム製膜が可能になる。
 熱可塑性樹脂組成物に含有される変性ゴム(B)は、酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものであり、酸無水物基またはエポキシ基を有する。
 変性ゴム(B)が水素結合性化合物(C)で変性されたものであることによって、マトリックスを形成する樹脂と変性ゴム分散相の界面が水素結合により補強されるため、フィルム成形性を悪化させることなく、熱可塑性樹脂組成物の低温耐久性を向上させることができる。
 本発明において、変性ゴム(B)は酸無水物基またはエポキシ基を有する。変性ゴム(B)は、ポリアミド樹脂(A)との相溶性に優れ、ガスバリア層とゴム層との接着性により優れるという観点から、特に好ましくは酸無水物基を有する。
 酸無水物基またはエポキシ基を有する変性原料ゴムを製造する際に使用することができるゴム[変性ゴム(B)を構成するゴム。]としては、エチレン-α-オレフィン共重合体、またはエチレン-不飽和カルボン酸共重合体もしくはその誘導体などが挙げられる。エチレン-α-オレフィン共重合体としては、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体などが挙げられる。エチレン-不飽和カルボン酸共重合体もしくはその誘導体としては、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体などが挙げられる。
 酸無水物基を有する変性原料ゴムは、たとえば、酸無水物とペルオキシドをゴムに反応させることにより製造することができる。また、酸無水物基を有する変性原料ゴムは、市販されており、市販品を用いることができる。市販品としては、三井化学株式会社製無水マレイン酸変性エチレン-プロピレン共重合体(タフマー(登録商標)MP-0620)、無水マレイン酸変性エチレン-ブテン共重合体(タフマー(登録商標)MP-7020)などがある。
 エポキシ基を有する変性原料ゴムは、たとえば、グリシジルメタクリレートをゴムに共重合させることにより製造することができる。また、エポキシ基を有する変性原料ゴムは、市販されており、市販品を用いることができる。市販品としては、住友化学株式会社製エポキシ変性エチレンアクリル酸メチル共重合体(エスプレン(登録商標)EMA2752)などがある。
 特に好ましい変性原料ゴムは、酸無水物基でグラフト変性されたエチレン-α-オレフィン共重合体であり、その例としては、前述の三井化学株式会社製無水マレイン酸変性エチレン-プロピレン共重合体(タフマー(登録商標)MP-0620)がある。
 変性原料ゴムの量は、ガスバリア層とゴム層との接着性により優れ、ガスバリア層のバリア性能と柔軟性のバランスに優れるという観点から、ポリアミド樹脂(A)100質量部に対して、好ましくは、90~175質量部であり、より好ましくは95~155質量部である。変性原料ゴムの量が少なすぎると、低温耐久性に劣り、逆に多すぎると、溶融時の流動性が極端に低下し、フィルム製膜性が大幅に悪化する。
 変性ゴム(B)を製造する際に使用される水素結合性化合物(C)は、酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する化合物である。
 酸無水物基またはエポキシ基と反応する官能基としては、例えば、アミノ基、水酸基、カルボキシル基、メルカプト基が挙げられる。
 アミド結合または水酸基と水素結合し得る官能基としては、例えば、スルホン基、カルボニル基、エーテル結合、水酸基、含窒素複素環が挙げられる。
 なかでも、ガスバリア層とゴム層との接着性により優れるという観点から、酸無水物基またはエポキシ基と反応する官能基としてアミノ基および/または水酸基を有し、かつアミド結合または水酸基と水素結合し得る官能基としてスルホン基、カルボニル基および/または含窒素複素環を有する化合物が好ましい。
 水素結合性化合物(C)としては、例えば、3,3′-ジアミノジフェニルスルホン、4,4′-ジアミノジフェニルスルホン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3′-ジアミノ-4,4′-ジヒドロキシジフェニルスルホン、(4-(4-アミノべンゾイル)オキシフェニル)4-アミノベンゾエート、3-アミノ-1,2,4-トリアゾール、トリス(2-ヒドロキシエチル)イソシアヌレートなどが挙げられる。なかでも3,3′-ジアミノジフェニルスルホン、トリス(2-ヒドロキシエチル)イソシアヌレート、3-アミノ-1,2,4-トリアゾールが、コスト、安全性、低温耐久性の向上の観点で好ましい。
 水素結合性化合物(C)としてアミノ基を2個以上有する化合物を用いた場合は、その化合物は架橋剤としても機能し、変性原料ゴムと該化合物(C)を溶融ブレンドすることによって、変性原料ゴムが動的架橋され、変性原料ゴム[または変性ゴム(B)]相の粘度が樹脂相[ポリアミド樹脂(A)]に対してさらに増大するため、変性原料ゴム[または変性ゴム(B)]相の島相化を促進し、熱可塑性組成物中の変性原料ゴム[または変性ゴム(B)]の分散状態を固定する効果もあると考えられる。その結果、変性原料ゴム[または変性ゴム(B)]の微分散が維持され、変性原料ゴム[または変性ゴム(B)]を高充填しても流動性を維持し、フィルム製膜が可能であり、かつ低温耐久性に優れる熱可塑性樹脂組成物を得ることができる。
 水素結合性化合物(C)の量は、ガスバリア層とゴム層との接着性により優れ、ガスバリア層のバリア性能と柔軟性のバランスに優れるという観点から、変性原料ゴム100質量部に対して0.1~5質量部が好ましく、より好ましくは0.5~3質量部である。水素結合性化合物(C)の量が少なすぎると、水素結合によるマトリックス樹脂と分散ゴムとの界面補強性が不十分となり、変性原料ゴム[または変性ゴム(B)]の微分散を維持できず、耐久性、ガスバリア性が低下する。逆に、水素結合性化合物(C)の量が多すぎても耐久性が低下するため、好ましくない。
 変性ゴム(B)の製造[水素結合性化合物(C)による変性原料ゴムの変性]は、例えば、2軸混練機を用いて、(例えばポリアミド樹脂(A)中で、)酸無水物基またはエポキシ基を有する変性原料ゴムを水素結合性化合物(C)とともに溶融ブレンドすることによって行なうことができる。溶融ブレンドの温度は、ポリアミド樹脂(A)の融点以上の温度とすることができ、好ましくはポリアミド樹脂の融点より20℃高い温度、たとえば200~250℃である。溶融ブレンドの時間は、通常、1~10分、好ましくは2~5分である。
 熱可塑性樹脂組成物において、ガスバリア性能と低温耐久性能のバランスに優れるという観点から、ポリアミド樹脂(A)が連続相を形成し変性ゴム(B)が分散相を形成していることが好ましい。
 熱可塑性樹脂組成物は、さらに、エチレン-ビニルアルコール共重合体(E)を含むことが好ましい。エチレン-ビニルアルコール共重合体を配合することにより、熱可塑性樹脂組成物のガスバリア性を向上させることができる。使用するエチレン-ビニルアルコール共重合体は、特に限定されるものでなく、市販のものを使用することができ、たとえば株式会社クラレ製EVAL、日本合成化学工業株式会社製ソアノールを使用することができる。
 熱可塑性樹脂組成物がさらにエチレン-ビニルアルコール共重合体(E)を含む場合、ポリアミド樹脂(A)とエチレン-ビニルアルコール共重合体(E)の質量比[ポリアミド樹脂(A)/エチレン-ビニルアルコール共重合体(E)]は90/10~10/90であることが好ましく、より好ましくは80/20~20/80である。エチレン-ビニルアルコール共重合体(E)が少ないとガスバリア性の向上がほとんど見られず、逆に多いと低温耐久性が極端に悪化するため好ましくない。
 熱可塑性樹脂組成物がさらにエチレン-ビニルアルコール共重合体(E)を含む場合、変性原料ゴムの量は、ポリアミド樹脂(A)とエチレン-ビニルアルコール共重合体(E)の合計量100質量部に対して90~175質量部であることが好ましく、より好ましくは95~155質量部である。変性原料ゴムの量が少なすぎると、低温耐久性に劣り、逆に多すぎると、溶融時の流動性が極端に低下し、フィルム製膜性が大幅に悪化する。
 熱可塑性樹脂組成物はさらに可塑剤を含有することができる。可塑剤は特に制限されない。熱可塑性樹脂組成物を製造する際、可塑剤を添加する時期は、特に限定されないが、好ましくは、あらかじめポリアミド樹脂(A)に添加し混練しておく。
 熱可塑性樹脂組成物はさらにハイドロタルサイトを含有することができる。ハイドロタルサイトは特に制限されない。ハイドロタルサイトは後述のゴム組成物において説明されるものと同義である。
 熱可塑性樹脂組成物には、前記した成分に加えて、カーボンブラックやシリカなどのその他の補強剤(フィラー)、加硫または架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤などの樹脂およびゴム組成物用に一般的に配合されている添加剤を配合することができる。添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
 熱可塑性樹脂組成物がさらにエチレン-ビニルアルコール共重合体(E)を含む場合、その製造は例えば、ポリアミド樹脂(A)、エチレン-ビニルアルコール共重合体(E)、ならびに、変性ゴム(B)[または変性原料ゴムおよび水素結合性化合物(C)]を溶融ブレンドすることによって本発明の熱可塑性樹脂組成物を製造することができる。
 水素結合性化合物(C)の添加の時期は、ポリアミド樹脂(A)と変性原料ゴムとの溶融ブレンドと同時でもよいし、ポリアミド樹脂(A)と変性原料ゴムとの溶融ブレンドの後でもよい。すなわち、ポリアミド樹脂(A)、変性原料ゴムおよび水素結合性化合物(C)を同時に溶融ブレンドしてもよいし、ポリアミド樹脂(A)と変性原料ゴムとを溶融ブレンドし、変性原料ゴムがポリアミド樹脂(A)に十分に分散したところで、水素結合性化合物(C)を加え、さらに溶融ブレンドしてもよい。好ましくは、ポリアミド樹脂(A)と変性原料ゴムを溶融ブレンドし変性原料ゴムがポリアミド樹脂(A)に十分に分散したところで、水素結合性化合物(C)を加え、さらに溶融ブレンドする。
 溶融ブレンドの温度は、ポリアミド樹脂の融点以上の温度であるが、好ましくはポリアミド樹脂の融点より20℃高い温度、たとえば200~250℃である。溶融ブレンドの時間は、通常、1~10分、好ましくは2~5分である。
 ポリアミド樹脂(A)として変性ポリアミド樹脂を用いる場合には、例えば、あらかじめポリアミド樹脂100質量部とポリアミド樹脂のアミノ基と結合し得る化合物(D)0.05~5質量部を溶融ブレンドして変性ポリアミド樹脂(A′)を調製し、その変性ポリアミド樹脂(A′)を、あらかじめ水素結合性化合物(C)で変性した変性ゴム(B)とともに溶融ブレンドするか、あるいは変性ポリアミド樹脂(A′)を、変性原料ゴムおよび水素結合性化合物(C)とともに溶融ブレンドすることによって熱可塑性樹脂組成物を製造することができる。
 熱可塑性樹脂組成物がポリアミド樹脂(A)として変性ポリアミド樹脂を用い、さらにエチレン-ビニルアルコール共重合体(E)を含む場合、エチレン-ビニルアルコール共重合体(E)は、好ましくは、ポリアミド樹脂または変性ポリアミド樹脂と同時に配合する。
 熱可塑性樹脂組成物の典型的な製造方法は、たとえば、次のとおりである。
 まず、ポリアミド樹脂、ポリアミド樹脂のアミノ基(末端アミノ基)と結合し得る化合物(D)および可塑剤を、2軸混練機で設定温度200~250℃で1~10分間混練して変性ポリアミド樹脂を作製し、次に作製した変性ポリアミド樹脂と変性原料ゴムを設定温度200~250℃の2軸混練機に投入し、変性原料ゴムが系内に分散したところで、水素結合性化合物(C)を投入して変性原料ゴムを変性し、最後にその他の配合剤を加える。
 熱可塑性樹脂組成物がさらにエチレン-ビニルアルコール共重合体(E)を含む場合、たとえば、ポリアミド樹脂、ポリアミド樹脂のアミノ基(末端アミノ基)と結合し得る化合物(D)および可塑剤を、2軸混練機で設定温度200~250℃で1~10分間混練して変性ポリアミド樹脂を作製し、次に作製した変性ポリアミド樹脂、エチレン-ビニルアルコール共重合体(E)および変性原料ゴムを設定温度200~250℃の2軸混練機に投入し、変性原料ゴムが系内に分散したところで、水素結合性化合物(C)を投入して変性原料ゴムを変性し、最後にその他の配合剤を加える。
 熱可塑性樹脂組成物は、T型ダイス付きの押出機や、インフレーション成形機などでフィルムのような層とすることができる。
 熱可塑性樹脂組成物を用いて得られる層(フィルム)は、ハロゲンを有するゴムとの接着性に優れ、ガスバリア性、耐熱性、耐屈曲疲労性に優れるため、冷媒輸送用ホースの最内層、空気入りタイヤのインナーライナーとして好適に使用することができる。また、熱可塑性樹脂組成物を用いて得られる層(フィルム)は、ハロゲンまたはジエン成分を含むゴム組成物シートと積層して積層体とすることができる。
 ガスバリア層は熱可塑性樹脂組成物を例えば管状に押出し成形することによって形成することができる。押し出し成形の方法は特に制限されない。例えば従来公知のものが挙げられる。
 ガスバリア層の厚さは特に限定されないものの、0.01~0.50mmが好ましく、0.05~0.30mmがより好ましく、0.05~0.20mmがさらに好ましい。このような範囲であると、成形作業性および耐冷媒透過性ならびに可撓性がより良好となる傾向がある。
 熱可塑性樹脂組成物から形成される硬化物のヤング率は、300MPa以下であるのが好ましく、270MPa以下であるのがより好ましい。
 硬化物のヤング率が300MPa以下である場合、柔軟性、非振動伝達性に優れる。硬化物のヤング率が300MPaを超える場合、ホース自身の曲げ剛性が高くなり、エンジンルーム内での取り回し性が悪く、冷媒圧縮用コンプレッサーの振動が車のボディー側に伝わってしまい、振動と音の面で問題が発生しやすい。
 本発明においては、本発明の配合範囲であることによって、硬化物のヤング率を300MPa以下とすることができる。
 本発明においてヤング率は、熱可塑性樹脂組成物を用いて230℃の条件下でシートを作製し、シートから幅5mm、長さ80mm、厚さ0.15mmの大きさの試験片を切り出して試験体(実施例の試験体)とし、得られた試験体について50mm/分の引張速度でJIS K 7161に準じて測定されたものである。
<ゴム層>
 ゴム層について説明する。
 ゴム層は、原料ゴム:100質量部に対してアルキルフェノールホルムアルデヒド樹脂:1~15質量部を含有するゴム組成物を用いて形成され、
前記原料ゴムがBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含み、前記原料ゴムおよび/または前記アルキルフェノールホルムアルデヒド樹脂がハロゲンを有する。
 ゴム組成物に含有される原料ゴムはBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含む。原料ゴムはフェノール系樹脂によって架橋できるものとすることができる。
 前記原料ゴムが含むことができるBIMSについて説明する。
 BIMSは、p-アルキルスチレンとイソモノオレフィンとの共重合ゴムの臭素化物である。BIMSとしては、例えば、p-アルキルスチレン(PAS)含有量が5~25質量%、臭素(Br)含有量が1.5質量%以上であり、p-アルキルスチレン単位と臭素単位との質量比が0.15≦Br/PAS≦0.40である、炭素原子数4~7のイソモノオレフィンとp-アルキルスチレンとの共重合ゴムの臭素化物であるものが挙げられる。具体的には、臭素化イソブチレンp-メチルスチレン共重合ゴムが挙げられる。BIMSのムーニー粘度(ML1+8、125℃)は30以上である。
 炭素原子数4~7のイソモノオレフィンは、例えばイソブチレンが挙げられる。p-アルキルスチレンは、例えばp-メチルスチレン、p-エチルスチレン等の炭素原子数1~5のアルキル基をパラ位に有するスチレンが挙げられる。BIMSにおけるp-アルキルスチレンの含有量は、p-アルキルスチレンのアルキル基の臭素化物も含め、p-アルキルスチレン骨格を有するもの全てについて、5~25質量%、好ましくは5~10質量%である。5質量%以上であると、耐冷媒透過性等に優れる。25質量%以下であると、ゴム組成物が低温で脆化することもなく、耐寒性に優れる。
 BIMSには、市販品があり、例えば、ExxonMobil Chemical Company製のEXXPROシリーズが挙げられる。具体的には、イソブチレンとp-メチルスチレンとの共重合ゴムの臭素化物である同社製のExxpro 3745が挙げられる。
 前記原料ゴムが含むことができる共重合ゴムとしてのブチルゴム、ハロゲン化ブチルゴムについて説明する。
 前記原料ゴムはブチルゴムおよび/またはハロゲン化ブチルゴムを含有することができ、ハロゲン化ブチルゴムを含有するのが好ましい。得られる本発明のホースの接着性がより優れ、耐久性が高まるからである。
 ブチルゴムとしては、一般的なイソブチレンとイソプレンとの共重合体(ゴム)を使用でき、特に制限されないが、そのイソプレンの含有量は不飽和度として0.6~2.5モル%、分子量はムーニー粘度で35~60(125℃)であることが好ましい。
 ハロゲン化ブチルゴムとしては塩素化ブチルゴム、臭素化ブチルゴム等が挙げられる。これらのハロゲン化ブチルゴムも、一般的なものを使用することができるが、塩素化ブチルゴムの場合、塩素含有量は1~2.5質量%、イソプレンの含有量は不飽和度として0.6~2.5モル%、分子量はムーニー粘度で30~60(125℃)であることが好ましい。また、臭素化ブチルゴムの場合、臭素含有量は1~2.5質量%、イソプレンの含有量は不飽和度として0.6~2.5モル%、分子量はムーニー粘度で25~55(125℃)であることが好ましい。
 原料ゴムはさらにEPDMを含有することができる。
 前記原料ゴムがさらに含むことができるEPDMは、エチレン、プロピレンおよびジエンを含むモノマーを重合させることによって得られる一般的な共重合体ゴムであれば特に限定されない。市販品としては、三井化学社製の三井EPT 4070を例示することができる。プロピレン含有量は、10~70mol%であるのが好ましく、15~50mol%であるのがより好ましい。ジエン成分は、例えば、エチリデンノルボルネン、ジシクロペンタジエン、1,4-ヘキサジエンが挙げられる。中でも、架橋速度の速いエチリデンノルボルネンが好ましい。ジエン成分の量は、ヨウ素価で3~25であるのが好ましく、5~20であるのがより好ましい。
 原料ゴムの組み合わせは、ガスバリア層とゴム層の接着性とゴム層自身のガスバリア性能のバランスに優れるという観点から、BIMSと、ブチルゴムおよび/またはハロゲン化ブチルゴム[である共重合ゴム(1)]と、さらにEPDMとを含む場合が好ましい。
 ガスバリア層とゴム層との接着性により優れるという観点から、原料ゴムにおけるBIMSの含有量は5~40質量部であるのが好ましい。
 ガスバリア層とゴム層との接着性により優れるという観点から、原料ゴムにおけるBIMSとブチルゴムおよび/またはハロゲン化ブチルゴムである共重合ゴム(1)との含有量の合計は20~80質量部であるのが好ましい。
 ガスバリア層とゴム層との接着性により優れるという観点から、原料ゴムにおけるEPDMの含有量は80~20質量部であるのが好ましい。
 ここでBIMSの含有量が5質量部未満では、必要とするゴム付きが得られ難い。すなわち、ガスバリア層の表面に接着ゴム層(後述のゴム付きで評価される。)を必要な厚さで形成することが困難になる。また40質量部を超えると、必要とする接着力が得られにくい。すなわち、ガスバリア層の表面にゴム層を強固に接着することが困難になる。
 また、上記のEPDMの含有量は、70~50質量部であることがより好ましい。EPDMの含有量が20質量部未満では、必要とする接着力およびゴム付きが得られ難い。また80質量部を超えると、加硫速度が遅くなりホースの生産性が低下する。
 次に、アルキルフェノールホルムアルデヒド樹脂について説明する。
 アルキルフェノールホルムアルデヒド樹脂は、前記原料ゴムの架橋剤として作用し、原料ゴムを架橋させることができる。
 アルキルフェノールホルムアルデヒド樹脂には、ハロゲン化されたアルキルフェノールホルムアルデヒド樹脂(ハロゲン化アルキルフェノールホルムアルデヒド樹脂)も含まれる。なかでもガスバリア層とゴム層との接着性により優れるという観点から、ハロゲン化アルキルフェノールホルムアルデヒド樹脂が好ましく、臭素化アルキルフェノールホルムアルデヒド樹脂がより好ましい。
 アルキルフェノールホルムアルデヒド樹脂としては、例えば田岡化学工業社製のタッキロール250-I等の市販品を使用することができる。
 アルキルフェノールホルムアルデヒド樹脂の配合量は、ガスバリア層とゴム層との接着性に優れるという観点から、前記原料ゴムの100質量部に対して1~15質量部であり、2~10質量部であることが好ましく、2~7質量部であることがより好ましい。1質量部未満であると必要とする接着力が得られ難い場合がある。すなわち、ガスバリア層の表面にゴム層を強固に接着することが困難になる可能性がある。また15質量部を超えるとゴム層の物性(硬さ)が損なわれる場合がある。
 ゴム組成物はさらにハイドロタルサイトを含有することができる。ガスバリア層とゴム層との接着性により優れるという観点から、ゴム組成物はさらにハイドロタルサイトを含有するのが好ましい。
 ゴム組成物がさらに含有することができるハイドロタルサイトは特に制限されない。ハイドロタルサイトは天然物、合成物のいずれであってもよい。具体的には例えば、
Mg3ZnAl2(OH)12CO3・wH2O(wは正の実数を表す。)、
MgxAly(OH)2x+3y-2CO3・wH2O(但しxは1~10、yは1~10、wは正の実数を表す。)、
MgxAly(OH)2x+3y-2CO3[但しxは1~10、yは1~10を表す。具体的には例えばMg4.3Al2(OH)12.6CO3(商品名DHT-4A-2、協和化学工業社製)]、
Mg1-xAlx3.83x(0.2≦x<0.5。具体的には例えばMg0.7Al0.31.15(商品名KW-2200、協和化学工業社製)])が挙げられる。
 ハイドロタルサイトはなかでも、ガスバリア層とゴム層との接着性により優れ、ハロゲンキャッチ能力が高いという観点から、ハイドロタルサイトが有するOH量が少ないもの、(例えば、水和物ではないもの、上記式中wH2Oを有さないもの。)、Mg1-xAlx3.83xが好ましく、Mg0.7Al0.31.15がより好ましい。化学構造中のOH量が少ないハイドロタルサイトは、例えば、原料ハイドロタルサイト(例えば、合成によって得られたハイドロタルサイト)を焼成する(高温の条件下)ことによって製造することができる。
 ハイドロタルサイトとして市販品を使用することができる。ハイドロタルサイトの市販品としては例えば、協和化学工業社製のDHTシリーズ(DHT-4A、DHT-4A-2:焼成処理はされているが後述するKWシリーズのKW-2200程は強熱されていない、DHT-4C)、同社製のKWシリーズ(DHTシリーズをより高温で焼成処理を行ったグレード、DHTシリーズよりハロゲンキャッチ能力が高い傾向にある。KW-2000、KW-2100、KW-2200)、堺化学工業社製STABIACE HTシリーズが挙げられる。
 ハイドロタルサイトが合成物である場合その製造方法としては例えば従来公知のものが挙げられる。
 ハイドロタルサイトとして、表面処理がなされているハイドロタルサイト、表面処理がなされていないハイドロタルサイト(ハイドロタルサイトの表面が無処理であるもの)を使用することができる。ハイドロタルサイトを表面処理する際に使用される表面処理剤としては例えば脂肪酸(高級脂肪酸を含む。)、脂肪酸エステルが挙げられる。
 ハイドロタルサイトは、そのハロゲンキャッチ能力が高く、ガスバリア層とゴム層との接着性により優れるという観点からは、表面処理がなされていないハイドロタルサイトであるのが好ましい。表面処理がなされていないハイドロタルサイトの市販品としては、例えば、KW-2200(協和化学工業社製)、DHT-4C(協和化学工業社製)が挙げられる。
 また、ハイドロタルサイトは、引張強さ(TB)[MPa]、切断時伸び(EB)[%]、100%モジュラス(M100)のような、ゴム層の機械的物性に優れるという観点からは、表面処理がなされているハイドロタルサイトが好ましく、高級脂肪酸で表面処理されているハイドロタルサイトがより好ましい。表面処理がなされているハイドロタルサイトの市販品としては例えば、DHT-4A(高級脂肪酸によって表面処理されている。協和化学工業社製)、DHT-4A-2(Mg4.3Al2(OH)12.6CO3が高級脂肪酸によって表面処理されている。協和化学工業社製)が挙げられる。
 ハイドロタルサイトは、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
 本発明において、ゴム組成物に含有されるハイドロタルサイトの量は、ガスバリア層とゴム層との接着性により優れるという観点から、原料ゴム100質量部に対して、1~8質量部であるのが好ましい。またこのような範囲の場合、加硫時間、及びゴム層の物性が適切な範囲となる。
 また、ハイドロタルサイトの量は、ガスバリア層とゴム層との接着性により優れ、加硫時間が適切な長さとなるという観点から、原料ゴム100質量部に対して、2~6質量部であるのが好ましく、2~4質量部であるのがより好ましい。
 ゴム組成物は、ガスバリア層とゴム層との接着性により優れ、ゴム層の補強性に優れるという観点から、さらにカーボンブラックを含有するのが好ましい。
 本発明で用いることができるカーボンブラックのコロイダル特性は、ガスバリア層とゴム層との接着性により優れ、ゴム層の補強性に優れるという観点から、N2SA≧75m2/g、かつDBP吸油量≧90cm3/100gであるのが好ましい。N2SAが75m2/g未満またはDBP吸油量が90cm3/100g未満であると、ガスバリア層の表面にゴム層を強固に接着することが困難になる。
 N2SAは80~150m2/gであることが好ましく、80~120m2/gであることがより好ましい。
 DBP吸油量は95~140cm3/100gであることが好ましく、100~130cm3/100gであることがより好ましい。
 ここでN2SAとはカーボンブラックの表面に吸着する窒素分子量を意味し、具体的にはJIS K 6217-2に規定の方法で測定して求めた値を意味するものとする。
 また、DBP吸油量はカーボンブラックの凝集体に吸収される油分量を意味し、具体的にはJIS K 6217-4に規定の方法で測定して求めた値を意味するものとする。
 N2SA≧75m2/g、かつDBP吸油量≧90cm3/100gであるカーボンブラックとしては、例えば、ISAF、HAF以上のグレードのものが挙げられる。
 前記カーボンブラックの配合量は、ガスバリア層とゴム層との接着性により優れるという観点から、原料ゴムの100質量部に対して30~80質量部であるのが好ましく、40~65質量部であることがより好ましい。30質量部未満であると必要とする接着力が得られにくい。すなわち、ガスバリア層の表面にゴム層を強固に接着することが困難になる。また80質量部を超えると未加硫ゴムの粘度が高くなり、加工性を阻害する。
 ゴム組成物(ゴム層)は原料ゴム、アルキルフェノールホルムアルデヒド樹脂、ハイドロタルサイトおよびカーボンブラックの他に、さらに、アルキルフェノールホルムアルデヒド樹脂以外の架橋剤、亜鉛華(ZnO)、加硫助剤、加硫促進剤、添加剤を含んでもよい。
 加硫助剤としては、例えば、アセチル酸、プロピオン酸、ブタン酸、ステアリン酸、アクリル酸、マレイン酸等の脂肪酸;アセチル酸亜鉛、プロピオン酸亜鉛、ブタン酸亜鉛、ステアリン酸亜鉛、アクリル酸亜鉛、マレイン酸亜鉛等の脂肪酸亜鉛が挙げられる。
 加硫促進剤としては、例えば、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)等のチウラム系;ヘキサメチレンテトラミン等のアルデヒド・アンモニア系;ジフェニルグアニジン等のグアニジン系;ジベンゾチアジルジサルファイド(DM)等のチアゾール系;シクロヘキシルベンゾチアジルスルフェンアマイド等のスルフェンアミド系のものが挙げられる。
 添加剤としては、例えば、クレー等の充填剤、カーボンブラック以外の補強剤、パラフィン系オイル等の軟化剤、可塑剤、加工助剤、老化防止剤、顔料、粘着付与剤、滑剤、分散剤等が挙げられる。
 ゴム組成物を製造する方法は特に限定されない。例えば、BIMS、ブチルゴムおよび/またはハロゲン化ブチルゴム、ならびにEPDMに、必要に応じて、カーボンブラック、上記の添加剤を加え、ロール、バンバリーミキサー等により混合し、引き続いて、アルキルフェノールホルムアルデヒド樹脂、ハイドロタルサイト、必要に応じてその他の亜鉛華、加硫助剤、加硫促進剤を加えて混合することで得ることができる。
 得られたゴム組成物から得られた加硫シートの引張強さ(TB)は隣接部材との強度バランスに優れるという観点から、6MPa以上であるのが好ましく、8~25MPaであるのがより好ましい。引張強さ(TB)の測定方法は実施例に示すものと同様である。隣接部材との強度バランスとは、ゴム層の強度と、ゴム層に隣接するガスバリア層、またはゴム層に隣接することができる、補強層、外管層との強度とのバランスをいう。例えば添付の図2に示すような、ガスバリア層(樹脂)/ゴム層(ハイドロタルサイト配合)/補強層(例えば繊維またはワイヤ)/外管層の構造を有するホースにおいては、ガスバリア層および補強層がゴム層と隣接する。このような場合、ゴム層の強度が低い(6MPa未満)と、ゴム層がそれよりも硬いガスバリア層と補強層とに挟まれた状態となり、ホースが繰り返しの振動のような疲労を受けた場合に、ゴム層が破壊しやすくなる。ゴム組成物から得られた加硫シートの引張強さ(TB)が上記の範囲である場合、ホースが繰り返しの振動のような疲労を受けた場合、隣接部材との強度バランスに優れるのでゴム層が破壊しにくくなる。
 ゴム層はゴム組成物を例えば管状に押出し成形することによって形成することができる。
 ゴム層の厚さは特に限定されないが、0.5~3.0mmが好ましい。
 本発明のホースはさらに補強層を有することができる。
 本発明のホースがさらに有することができる補強層としては、ブレード状で形成されたものでもスパイラル状で形成されたものでもよく、特に限定されない。用いる材料としては、糸、ワイヤ等を挙げることができる。補強糸としては、ビニロン繊維、レーヨン繊維、ポリエステル繊維、ナイロン繊維、芳香族ポリアミド繊維等で製造された糸が例示できる。また、補強用ワイヤとしては、硬鋼線が例示され、さらに具体的には、防錆および接着性付与のためにブラスメッキワイヤまたは亜鉛メッキワイヤが例示される。
 本発明のホースはさらに外管層を有することができる。
 本発明において外管層は前記内管層や前記補強層の外側に形成されるものであり、その材質、構造、厚さ等を特に限定されず、一般に用いられているゴム組成物、樹脂、金属ワイヤ等を使用できる。ゴム組成物として内管層のゴム層に使用されるゴム組成物と同様のものを用いることもできる。ゴム組成物にはアルキルフェノールホルムアルデヒド樹脂以外の架橋剤、充填剤、補強剤、可塑剤、老化防止剤、加硫促進剤、軟化剤、粘着付与剤、滑剤、分散剤、加工助剤等が適宜配合されていてもよい。樹脂としては、例えばポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアセタール樹脂、塩化ビニル樹脂、ポリプロピレン、ポリエチレン等が挙げられる。また、ホースの柔軟性を確保し、非振動伝達性を損なわない範囲において、重量増加による振動吸収性能の向上や強度向上のため、金属や繊維を含有することもできる。外管層は、例えばソリッド状、スポンジ状とすることができる。また、外管層は、例えば、筒状であって本発明のホースを挿入して用いるタイプ、スパイラル状、スプリング状であって本発明のホースに巻き付けて用いるタイプとすることができる。
 外管層の厚さは、1~5mmであるのが好ましく、0.5~3mmがより好ましく、1~2mmがさらに好ましい。
 外管層が複数層で形成されていてもよい。
 本発明のホースの内径および外径ならびに長さは特に限定されない。例えばホースの内径は5~20mmであることが好ましく、7~17mmであることがより好ましい。
 本発明のホースの製造方法について説明する。
 本発明のホースの製造方法は特に限定されず、従来公知の方法を用いることができる。例えばガスバリア層およびゴム層はそれぞれを押出し成形、共押出し成形させることによって得ることができる。ここで、ゴム層は上記のゴム組成物を用いて形成されるものであればよい。ガスバリア層は上記のポリアミド樹脂組成物を用いて形成されるものであればよい。
 本発明のホースは、熱可塑性樹脂組成物とゴム組成物とを積層して得られた積層体を加硫および/または架橋することによって、ガスバリア層とゴム層とを直接接着させることができる。具体的には、熱可塑性樹脂組成物とゴム組成物とを積層し、熱可塑性樹脂組成物とゴム組成物とを加硫および/または架橋して接着させることによって、ガスバリア層とゴム層とを有する冷媒輸送用ホースを製造することができる。加硫および/または架橋は例えば約150~180℃の条件下で加熱することによって行なうことができる。
 また、例えば前述の図2を用いて説明した好適実施態様のホースの場合であれば、ガスバリア層の外表面にゴム層を積層し、さらにゴム層の上に、例えば編組またはスパイラル巻などによって、補強層を積層し、ついで外管層(外側ゴム層)を積層した後、全体を加硫することによって得ることができる。加硫(架橋)は約150~180℃の条件下で行なうことができる。
 また、他の製造方法としては、マンドレル上に、ガスバリア層、ゴム層、補強層および外管層をこの順に積層させた後に、マンドレル上の積層体を140~190℃の条件下において、30~180分間、プレス加硫、蒸気加硫、オーブン加硫(熱気加硫)または温水加硫することにより加硫接着させて、ホースを製造することができる。
 本発明のホースは、ガスバリア層とゴム層との接着性に優れるので、気体や液体がガスバリア層とゴム層との接着界面に滞留してその部分のガスバリア層に膨れが発生することがない。また、本発明のホースはガスバリア層とゴム層とを接着剤等で接着させる必要がないので、接着剤等に含まれる溶剤による環境への悪影響を解消し、ホースの製造工程を減らしてコストを下げることができる。
 本発明のホースに対して使用することができる冷媒含有組成物は特に制限されない。例えばフッ素系化合物のような冷媒と潤滑剤とを含有する組成物が挙げられる。
 冷媒含有組成物に含有される冷媒としては、例えば、2,3,3,3-テトラフルオロプロペン(構造式:CF3-CF=CH2、HFO-1234yf)のような二重結合を有するフッ素系化合物;HFC-134a(構造式:CF3-CFH2)のような飽和ハイドロフルオロカーボンが挙げられる。
 冷媒含有組成物に含有される潤滑油は特に制限されない。例えば、従来公知のものが挙げられる。
 本発明のホースは、冷媒を輸送するために使用することができるホースであり、例えば、エアコン用ホース(例えば、カーエアコン)のような流体輸送用ホースに適用することができる。また、本発明のホースは、エアコン用ホース以外にも例えば温水用ホース(温調機器用)に使用することができる。
 以下に実施例を用いて本発明のホースをより詳細に説明する。ただし本発明は実施例に限定されない。
<ゴム組成物の製造>
 以下に示す成分(臭素化アルキルフェノールホルムアルデヒド樹脂、ステアリン酸亜鉛、ハイドロタルサイト1を除く。)を第1表または第2表に示す量(質量部)で用いてロール、バンバリーミキサーによって混練し、引き続いてこれらに臭素化アルキルフェノールホルムアルデヒド樹脂、ステアリン酸亜鉛、ハイドロタルサイト1を第1表または第2表に示す量(質量部)で加えてこれらを混練してゴム組成物を製造した。
 ・IIR:ブチルゴム、EXXON BUTYL 268、日本ブチル株式会社製
 ・Br-IIR:臭素化ブチルゴム、EXXON BROMOBUTYL 2255、日本ブチル株式会社製
 ・BIMS:Exxpro 3745、EXXONMOBIL CHEMICAL COMPANY製
 ・EPDM1:三井EPT4070、三井化学社製
 ・NBR:Nancar3345、南帝化学工業社製
 ・SBR:Nipol1502、日本ゼオン社製
 ・EPDM2:エスプレン505A、住友化学社製
 ・NR:STR20、PT.SUNAN RUBBE社製
 ・C.B(ISAF):カーボンブラック、ショウブラックN220、昭和キャボット社製。N2SA≧75m2/g、DBP吸油量≧90cm3/100g
 ・C.B(HAF):カーボンブラック、ショウブラックN330、昭和キャボット社製、N2SA≧75m2/g、DBP吸油量≧90cm3/100g
 ・C.B.(GPF):カーボンブラック、シーストV、東海カーボン株式会社製、N2SA<75m2/g、DBP吸油量<90cm3/100g
 ・C.B.(SRF):カーボンブラック、旭#50、旭カーボン株式会社製、N2SA<75m2/g、DBP吸油量<90cm3/100g
 ・クレー:Suprex Clay、Kentucky Tennessee Clay Company製
 ・St Acid:ステアリン酸、ルナックYA、花王株式会社製
 ・ハイドロタルサイト1:KW-2200、協和化学工業社製。Mg0.7Al0.31.15、表面処理なし、焼成処理あり
 ・ハイドロタルサイト2:DHT-4A、協和化学工業社製、Mg4.5Al2(OH)13CO3・3.5H2O、高級脂肪酸によって表面処理されている。焼成処理なし。
 ・パラフィン油:プロセスオイル123、昭和シェル石油社製
 ・アロマ系油:A-OMIX、三共油化工業株式会社製
 ・ステアリン酸亜鉛:ステアリン酸亜鉛、正同化学工業社製
 ・老化防止剤1:ノンフレックスOD-3、精工化学株式会社製
 ・老化防止剤2:オゾノン6C、精工化学株式会社製
 ・酸化亜鉛:酸化亜鉛3種、正同化学工業株式会社製
 ・酸化マグネシウム:キョーワマグ150、協和化学工業株式会社製
 ・臭素化アルキルフェノールホルムアルデヒド樹脂:タッキロール250-I、田岡化学工業株式会社製
 ・m-クレゾールとホルムアルデヒドの縮合物:スミカノール610、田岡化学工業株式会社製
 ・多価メチロールメラミン樹脂:スミカノール507A、BARA CHEMICALCO., LTD.製
 ・硫黄:油処理イオウ、細井化学工業株式会社製
 ・加硫促進剤1:サンセラーTS、三新化学工業株式会社製
 ・加硫促進剤2:サンセラーDM-PO、三新化学工業株式会社製
 ・加硫促進剤3:サンセラーCM、三新化学工業株式会社製
 ・加硫促進剤4:サンセラーNS-G、三新化学工業株式会社製
<熱可塑性樹脂組成物>
・変性ポリアミド樹脂の製造
(変性ポリアミド樹脂1)
 原材ポリアミド樹脂として宇部興産株式会社製ナイロン6「UBEナイロン」1022B:100質量部と、ポリアミド樹脂の末端アミノ基と結合し得る化合物(D)としてグリシドール[日油株式会社製エピオール(登録商標)OH]1質量部と、可塑剤としてn-ブチルベンゼンスルホンアミド(大八化学工業株式会社製BM-4)30質量部とを用いて、これらを2軸混練機(日本製鋼所製TEX44)に投入し混練機温度230℃で溶融ブレンドして、変性ポリアミド樹脂(ナイロンマスターバッチ。末端封止剤配合)を製造した。得られた変性ポリアミド樹脂を変性ポリアミド樹脂1とする。なお変性ポリアミド樹脂1は可塑剤を含む。
(変性ポリアミド樹脂2)
 原材ポリアミド樹脂として宇部興産株式会社製ナイロン666「UBEナイロン」5033B:100質量部と、ポリアミド樹脂の末端アミノ基と結合し得る化合物(D)としてp-sec-ブチルフェニルグリシジルエーテル[日油株式会社製エピオール(登録商標)SB]1質量部と、可塑剤としてn-ブチルベンゼンスルホンアミド(大八化学工業株式会社製BM-4)30質量部とを用いて、これらを2軸混練機(日本製鋼所製TEX44)に投入し混練機温度230℃で溶融ブレンドして、変性ポリアミド樹脂(ナイロンマスターバッチ。末端封止剤配合)を製造した。得られた変性ポリアミド樹脂を変性ポリアミド樹脂2とする。なお変性ポリアミド樹脂2は可塑剤を含む。
・熱可塑性樹脂組成物の製造
(熱可塑性樹脂組成物1)
 上記のようにして得られた変性ポリアミド樹脂1:52質量部と、
 エチレン-ビニルアルコール共重合体(E)としてエチレン-ビニルアルコール共重合体[日本合成化学工業株式会社製ソアノール(登録商標)A4412B]60質量部と、
 変性原料ゴムとして無水マレイン酸変性エチレン-プロピレン共重合体[三井化学株式会社製タフマー(登録商標)MP-0620。以下これを「MA-EPM」ともいう。]120質量部とを、2軸混練機に投入し、混練機温度220℃で溶融ブレンドし、無水マレイン酸変性エチレン-プロピレン共重合体がエチレン-ビニルアルコール共重合体(E)に分散したところで、酸無水物基またはエポキシ基と反応する官能基およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)として3,3′-ジアミノジフェニルスルホン[三井化学ファイン株式会社製3,3′-DAS]1.2質量部を投入し溶融ブレンドした後、押出機から連続してストランド状に排出し、水冷後、カッターで切断することによりペレット状の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物を熱可塑性樹脂組成物1とする。
(熱可塑性樹脂組成物2)
 上記のようにして得られた変性ポリアミド樹脂2:131質量部と、
 変性原料ゴムとして無水マレイン酸変性エチレン-プロピレン共重合体[三井化学株式会社製タフマー(登録商標)MP-0620]140質量部とを、2軸混練機に投入し、混練機温度220℃で溶融ブレンドし、その後、酸無水物基またはエポキシ基と反応する官能基およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)として3,3′-ジアミノジフェニルスルホン[三井化学ファイン株式会社製3,3′-DAS]1.4質量部を投入し溶融ブレンドした後、押出機から連続してストランド状に排出し、水冷後、カッターで切断することによりペレット状の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物を熱可塑性樹脂組成物2とする。
・熱可塑性樹脂組成物のヤング率
 上記のようにして得られた熱可塑性樹脂組成物1、2をそれぞれ230℃の条件下で電熱プレスを用いてシートを作製し、シートから幅5mm、長さ80mm、厚さ0.15mmの大きさの試験片を切り出し、これを試験体とした。
 得られた試験体について50mm/分の引張速度でJIS K 7161に準じてヤング率を測定した。熱可塑性樹脂組成物1から得られた試験体のヤング率は270MPaであった。熱可塑性樹脂組成物2から得られた試験体のヤング率は250MPaであった。
<評価>
 ゴム組成物の物性、ゴム組成物/熱可塑性樹脂組成物接着試験、デラミネーション試験を以下に示す方法で評価した。結果を第1表、第2表に示す。
[ゴム組成物の物性]
 上記のようにして得られた各ゴム組成物を150℃のプレス成型機を用い、面圧3.0MPaの圧力下で45分間加硫して、2mm厚の加硫シートを作製した。このシートからJIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行い、引張強さ(TB)[MPa]、切断時伸び(EB)[%]、100%モジュラス(M100)[MPa]を室温にて測定した。
 本発明において引張強さ(TB)は6MPa以上である場合冷媒輸送用ホースとして適切である。
 また、JIS K6253のタイプAデュロメータに準じて、各ゴム組成物の硬化物の室温における硬さ(HS)を測定した。
[ホースの製造]
 各実施例および各比較例のゴム組成物および熱可塑性樹脂組成物を用いてなるホースを製造した。
 具体的には、初めに、上記のようにして得られた熱可塑性樹脂組成物1、2またはナイロン6(宇部興産株式会社製「UBEナイロン」1030B。比較例1-1,1-2,2~3で使用。)を、押出し機を用いてマンドレル(外径11mm)の上に引き落として成形し、厚さ0.1mmのガスバリア層を形成した。
 次に上記のようにして得られたゴム組成物を用いて、上記で得たガスバリア層の外表面に、厚さ1.4mmのゴム層を形成した。ガスバリア層の外表面にゴム層を積層した後、全体を加硫することによって内管層のみからなるホースを得た。加硫条件は約150~180℃で蒸気圧をかけ加硫を行った。そして、肉厚が1.5mmであって外径が14mmのホースを得た。
 なお、比較例1-1については、ガスバリア層とゴム層とを接着剤(Chemlok 402X、Lord Corporation製)を用いて接着した。
[ゴム組成物/熱可塑性樹脂組成物の接着性試験]
 上記のようして得た各ホースについて、剥離スピード50mm/分でゴム層を剥離したときの接着力およびゴム付きを測定した。
 ここで接着力は幅25mm当たりの接着力(N)を意味する。また、接着力が30N/25mm以上のものを「○」、接着力が30N/25mm未満のものを「×」として評価した。
 ゴム付きはその面積と厚さについて評価された。
 ゴム付き(面積)は、上記の接着力の評価後の剥離されたガスバリア層上において、ゴム層から剥がれたゴムが付着している面積比(%)を意味する。
 ゴム付き(厚さ)は、ゴム層から剥がれてガスバリア層に付いたゴムの厚さを目視にて評価し、「厚い」、「やや厚い」、「薄い」、「界面」(ガスバリア層とゴム層との界面で剥離したものを意味する。)で示した。
 ゴム付きの判定は、ゴム付きが厚いものを「○(良好)」、ゴム付きがやや厚いものを「△」、「薄い」ものおよび「界面」で剥離したものを「×」と評価してこれを記した。
[デラミネーション試験]
 上記と同様の方法で、ホースの内径11mm、外径14mm(ホースの肉厚は1.5mmである)、長さ50cmのホースを製造した。
 次に、ホースに冷媒(HFC-134a)を封入後、ホースの両末端に金具を装着して封をしたものを90℃のオーブン中に24時間放置した。ここで冷媒は0.6g/cm3となるように封入した。
 次に冷媒を解放後、ただちに120℃のオーブンに入れ、24時間放置した。
 そして、その後、ホースを半分に切り(縦割り)、樹脂(ガスバリア層)の剥離を確認した。樹脂の剥離がなかったものを「○」、樹脂の剥離が発生したものを「×」として示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 第1表、第2表に示す結果から明らかなように、本発明のホースで使用される熱可塑性樹脂組成物以外の材料を用いて得られるガスバリア層とゴム層とを接着剤で接着した比較例1-1は、ゴム付きが薄くなり、デラミネーション試験において樹脂の剥離が生じ、ガスバリア層とゴム層との接着が不十分であった。熱可塑性樹脂組成物以外の材料を用いて得られるガスバリア層を有する比較例1-2は、接着力が低く、ゴム付きが悪く、デラミネーション試験において樹脂の剥離が生じ、ガスバリア層とゴム層との接着が不十分であった。熱可塑性樹脂組成物以外の材料を用いて得られるガスバリア層を有する比較例2、3は、接着力が低く、ゴム付きが薄くなり、デラミネーション試験において樹脂の剥離が生じ、ガスバリア層とゴム層との接着が不十分であった。なお比較例2は特許文献2に記載の態様に相当する。本発明のホースで使用されるゴム組成物以外の材料を用いて得られるゴム層を有する比較例4~6は、接着力が低く、ゴム付きが悪く、デラミネーション試験において樹脂の剥離が生じ、ガスバリア層とゴム層との接着が不十分であった。SBRおよび天然ゴムを含有するゴム組成物を用いて得られるゴム層を有する比較例7は、ゴム層の破断伸び(EB)が100MPa以下となりゴムの耐熱性が低かった。
 これに対して、実施例1~11、14、15は、樹脂層および/またはゴム層に接着前処理することなく樹脂層とゴム層とを加硫接着させることができガスバリア層とゴム層との接着性に優れる。
 なかでも、原料ゴムが、BIMSとハロゲン化ブチルゴムとしてBr-IIRとさらにEPDMとを含む実施例4~11、14、15は接着力が高く接着性により優れる。
 また、ゴム組成物がさらにハイドロタルサイトを含有する実施例6~11、15は、接着力が高く接着性により優れる。特にハイドロタルサイトの量が原料ゴム:100質量部に対して、1質量部以上である場合(実施例7~11、15)、接着力が高く接着性により優れる。
 また実施例1~11、14、15はデラミネーション試験でも樹脂の剥離が生じることがない。
[実施例12]<補強層および外管層を有するホースの製造>
 外径11mmの熱可塑性樹脂製マンドレルの表面に樹脂押出し機を用いて、実施例4の熱可塑性樹脂組成物1でガスバリア層を0.15mmの厚さに押出し(押出し温度240℃)、その表面に厚さ1.2mmのゴム層(実施例4のゴム組成物)を押出して内管層とし、その上に総糸量80,000dtexのPET(ポリエチレンテレフタレート)繊維を交互にスパイラル状に巻きつけた2層の補強層を形成し、その上に厚さ1.0mmのカバーゴム層(下記のブチルゴム系組成物Aを使用した。)を押し出して押出し外管層とし、更にその上に周知のポリメチルペンテン樹脂を押出し外皮とし、得られた管状の積層体を160℃の条件下で100分間加硫した後、管状積層体から外皮とマンドレルを取り除いてホースを製造した。得られたホースをホース1とする。ホース1はガスバリア層とゴム層との接着性に優れる。
 ブチルゴム系組成物A(カバーゴム層):ブチルゴム100質量部、カーボンブラック(HAF)80質量部、ステアリン酸3質量部、パラフィン油10質量部、酸化亜鉛2質量部、および臭素化アルキルフェノールホルムアルデヒド樹脂8質量部を含有する組成物。
[実施例13]<補強層および外管層を有するホースの製造>
 内管層を実施例9で形成するほかは実施例12と同様にしてホース2を製造した。ホース2はガスバリア層とゴム層との接着性に優れる。
 1、5  本発明のホース
 2  内管層
 21  ガスバリア層
 22  ゴム層
 3  補強層
 4  外管層

Claims (11)

  1.  ガスバリア層とその外表面に隣接したゴム層とからなる内管層を備える冷媒輸送用ホースであって、
     前記ガスバリア層が、ポリアミド樹脂(A)と酸無水物基またはエポキシ基を有する変性ゴム(B)とを含有する熱可塑性樹脂組成物を用いて形成され、前記変性ゴム(B)は酸無水物基またはエポキシ基を有する変性原料ゴムを、前記酸無水物基またはエポキシ基と反応する官能基、およびアミド結合または水酸基と水素結合し得る官能基を有する水素結合性化合物(C)で変性したものであり、
     前記ゴム層が、原料ゴム:100質量部に対してアルキルフェノールホルムアルデヒド樹脂:1~15質量部を含有するゴム組成物を用いて形成され、前記原料ゴムがBIMS、ならびにブチルゴムおよび/またはハロゲン化ブチルゴムからなる群から選ばれる少なくとも1種の共重合ゴムを含み、前記原料ゴムおよび/または前記アルキルフェノールホルムアルデヒド樹脂がハロゲンを有し、
     前記ガスバリア層と前記ゴム層との間に接着剤層を有さない、冷媒輸送用ホース。
  2.  酸無水物基またはエポキシ基と反応する前記官能基がアミノ基、水酸基、カルボキシル基およびメルカプト基からなる群から選ばれる少なくとも1種であり、かつアミド結合または水酸基と水素結合し得る前記官能基がスルホン基、カルボニル基、エーテル結合、水酸基および含窒素複素環からなる群から選ばれる少なくとも1種である、請求項1に記載の冷媒輸送用ホース。
  3.  前記ゴム組成物がさらにハイドロタルサイトを含有し、前記ハイドロタルサイトの量が前記原料ゴム:100質量部に対して、1~8質量部である請求項1または2に記載の冷媒輸送用ホース。
  4.  前記水素結合性化合物(C)の量は、前記変性原料ゴム100質量部に対して0.1~5質量部である請求項1~3のいずれかに記載の冷媒輸送用ホース。
  5.  前記ゴム組成物が、さらに、前記原料ゴム:100質量部に対して、カーボンブラック:30~80質量部を含有し、前記カーボンブラックは、N2SA≧75m2/gであり、かつDBP吸油量≧90cm3/100gであり、
     前記原料ゴムが、BIMSと、ブチルゴムおよび/またはハロゲン化ブチルゴムである共重合ゴム(1)と、さらにEPDMとを含み、
     前記原料ゴムにおいて、前記BIMSの含有量が5~40質量部であり、前記BIMSと前記共重合ゴム(1)との含有量の合計が20~80質量部であり、前記EPDMの含有量が80~20質量部である、請求項1~4のいずれかに記載の冷媒輸送用ホース。
  6.  前記ポリアミド樹脂(A)が、ポリアミド樹脂100質量部と、前記ポリアミド樹脂の末端アミノ基と結合し得る化合物(D)0.05~5質量部とを、前記ポリアミド樹脂の融点以上で溶融ブレンドさせて得られる変性ポリアミド樹脂(A′)を含む、請求項1~5のいずれかに記載の冷媒輸送用ホース。
  7.  前記熱可塑性樹脂組成物が、さらにエチレン-ビニルアルコール共重合体(E)を含む、請求項1~6のいずれかに記載の冷媒輸送用ホース。
  8.  前記変性原料ゴムの量は、前記ポリアミド樹脂(A)100質量部に対して、または前記ポリアミド樹脂(A)および前記エチレン-ビニルアルコール共重合体(E)の合計100質量部に対して、90~175質量部である請求項1~7のいずれかに記載の冷媒輸送用ホース。
  9.  前記ポリアミド樹脂(A)と前記エチレン-ビニルアルコール共重合体(E)の質量比[ポリアミド樹脂(A)/エチレン-ビニルアルコール共重合体(E)]は90/10~10/90である請求項7または8に記載の冷媒輸送用ホース。
  10.  前記内管層の上に補強層があり、前記補強層の上に外管層がある請求項1~9のいずれかに記載の冷媒輸送用ホース。
  11.  前記熱可塑性樹脂組成物と前記ゴム組成物とを積層し、前記熱可塑性樹脂組成物と前記ゴム組成物とを加硫および/または架橋して接着させることによって、請求項1~10のいずれかに記載の冷媒輸送用ホースを製造する、冷媒輸送用ホースの製造方法。
PCT/JP2011/068058 2010-09-24 2011-08-08 冷媒輸送用ホース WO2012039203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011546355A JP4985878B2 (ja) 2010-09-24 2011-08-08 冷媒輸送用ホース
EP11826649.3A EP2620273B1 (en) 2010-09-24 2011-08-08 Hose for transporting refrigerant
CN201180045724.2A CN103124632B (zh) 2010-09-24 2011-08-08 冷媒输送用软管
US13/825,805 US8715801B2 (en) 2010-09-24 2011-08-08 Hose for transporting refrigerant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010214530 2010-09-24
JP2010-214530 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039203A1 true WO2012039203A1 (ja) 2012-03-29

Family

ID=45873697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068058 WO2012039203A1 (ja) 2010-09-24 2011-08-08 冷媒輸送用ホース

Country Status (5)

Country Link
US (1) US8715801B2 (ja)
EP (1) EP2620273B1 (ja)
JP (1) JP4985878B2 (ja)
CN (1) CN103124632B (ja)
WO (1) WO2012039203A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150191046A1 (en) * 2012-07-03 2015-07-09 The Yokohama Rubber Co., Ltd. Laminate For Tires
CN105020487A (zh) * 2015-06-30 2015-11-04 祝锦聪 一种高压气管
JP2017088665A (ja) * 2015-11-04 2017-05-25 株式会社クラレ エチレン−ビニルアルコール共重合体を含む樹脂組成物、積層体及び成形品
WO2021054058A1 (ja) * 2019-09-18 2021-03-25 横浜ゴム株式会社 冷媒輸送配管用熱可塑性樹脂組成物および冷媒輸送配管
WO2023188569A1 (ja) * 2022-03-30 2023-10-05 横浜ゴム株式会社 冷媒輸送用ホースおよびその製造方法
JP7364958B1 (ja) 2022-03-30 2023-10-19 横浜ゴム株式会社 冷媒輸送用ホースおよびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916112B1 (de) * 2014-03-05 2016-02-17 VEGA Grieshaber KG Radiometrische Messanordnung
JP6604065B2 (ja) * 2015-07-17 2019-11-13 横浜ゴム株式会社 熱可塑性樹脂フィルムとゴムの積層体、インナーライナー材および空気入りタイヤ
WO2017055168A1 (en) * 2015-09-30 2017-04-06 Eaton Industrial IP GmbH & Co. KG Rubber and hydraulic hose comprising a inner tube made of the rubber material
DE102017215964A1 (de) * 2017-09-11 2019-03-14 Contitech Schlauch Gmbh Mehrschichtiger flexibler Schlauch
WO2019059243A1 (ja) * 2017-09-19 2019-03-28 株式会社 潤工社 ガスバリア性を備えたインク供給チューブ
US20210246242A1 (en) * 2018-05-17 2021-08-12 Exxonmobil Chemical Patents Inc. Isobutylene-Containing Compositions and Articles Made Thereof
JP7360034B2 (ja) * 2019-11-28 2023-10-12 横浜ゴム株式会社 冷媒輸送用ホース
JP2022032770A (ja) * 2020-08-14 2022-02-25 日本電気株式会社 空調装置、および配管の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117178A (ja) * 1993-08-31 1995-05-09 Nichirin:Kk 複合フレキシブルホース
JPH10114840A (ja) 1996-07-23 1998-05-06 Yokohama Rubber Co Ltd:The 低気体透過性熱可塑性エラストマー組成物及びその製造方法
JP2938538B2 (ja) * 1990-09-26 1999-08-23 横浜ゴム株式会社 低透過性ホース
JP2000220770A (ja) 1999-02-03 2000-08-08 Nichirin Co Ltd 複合フレキシブルホース
JP2006077090A (ja) * 2004-09-08 2006-03-23 Tokai Rubber Ind Ltd 燃料系ホース用熱可塑性エラストマーおよびそれを用いた燃料系ホース
JP4365454B1 (ja) 2008-12-26 2009-11-18 横浜ゴム株式会社 冷媒輸送用ホース

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813643A (ja) * 1981-07-20 1983-01-26 Showa Denko Kk ポリオレフイン組成物
JPS58136435A (ja) * 1982-02-07 1983-08-13 日東電工株式会社 積層補強材
JPH04365454A (ja) 1990-07-27 1992-12-17 Taiyo Fishery Co Ltd 釣り餌用又は養殖魚用餌料
KR0170407B1 (ko) 1990-09-26 1999-03-20 모토야마 가즈오 기체 및 오일 불투과성 호오스 구조물
WO1997045489A1 (fr) 1996-05-29 1997-12-04 The Yokohama Rubber Co., Ltd. Pneumatique constitue d'une composition elastomere thermoplastique faiblement permeable comprise dans une couche barriere impermeable aux gaz, et composition elastomere thermoplastique utilisee dans un tel pneumatique
JP2001049063A (ja) * 1999-08-06 2001-02-20 Tokai Rubber Ind Ltd ゴム組成物、ゴム−樹脂積層体及び不透過性ホース
JP4307155B2 (ja) * 2002-12-03 2009-08-05 横浜ゴム株式会社 熱可塑性エラストマー組成物
US8080298B2 (en) 2008-12-26 2011-12-20 The Yokohama Rubber Co., Ltd. Refrigerant hose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938538B2 (ja) * 1990-09-26 1999-08-23 横浜ゴム株式会社 低透過性ホース
JPH07117178A (ja) * 1993-08-31 1995-05-09 Nichirin:Kk 複合フレキシブルホース
JPH10114840A (ja) 1996-07-23 1998-05-06 Yokohama Rubber Co Ltd:The 低気体透過性熱可塑性エラストマー組成物及びその製造方法
JP2000220770A (ja) 1999-02-03 2000-08-08 Nichirin Co Ltd 複合フレキシブルホース
JP2006077090A (ja) * 2004-09-08 2006-03-23 Tokai Rubber Ind Ltd 燃料系ホース用熱可塑性エラストマーおよびそれを用いた燃料系ホース
JP4365454B1 (ja) 2008-12-26 2009-11-18 横浜ゴム株式会社 冷媒輸送用ホース

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2620273A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150191046A1 (en) * 2012-07-03 2015-07-09 The Yokohama Rubber Co., Ltd. Laminate For Tires
CN106394123A (zh) * 2012-07-03 2017-02-15 横滨橡胶株式会社 轮胎用叠层体
CN105020487A (zh) * 2015-06-30 2015-11-04 祝锦聪 一种高压气管
JP2017088665A (ja) * 2015-11-04 2017-05-25 株式会社クラレ エチレン−ビニルアルコール共重合体を含む樹脂組成物、積層体及び成形品
WO2021054058A1 (ja) * 2019-09-18 2021-03-25 横浜ゴム株式会社 冷媒輸送配管用熱可塑性樹脂組成物および冷媒輸送配管
JP2021046490A (ja) * 2019-09-18 2021-03-25 横浜ゴム株式会社 冷媒輸送配管用熱可塑性樹脂組成物および冷媒輸送配管
WO2023188569A1 (ja) * 2022-03-30 2023-10-05 横浜ゴム株式会社 冷媒輸送用ホースおよびその製造方法
JP7364958B1 (ja) 2022-03-30 2023-10-19 横浜ゴム株式会社 冷媒輸送用ホースおよびその製造方法
JP2023158229A (ja) * 2022-03-30 2023-10-27 横浜ゴム株式会社 冷媒輸送用ホースおよびその製造方法

Also Published As

Publication number Publication date
CN103124632A (zh) 2013-05-29
EP2620273A1 (en) 2013-07-31
US8715801B2 (en) 2014-05-06
EP2620273B1 (en) 2015-03-04
US20130174933A1 (en) 2013-07-11
EP2620273A4 (en) 2014-07-02
JPWO2012039203A1 (ja) 2014-02-03
JP4985878B2 (ja) 2012-07-25
CN103124632B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP4985878B2 (ja) 冷媒輸送用ホース
JP4365454B1 (ja) 冷媒輸送用ホース
JP5247537B2 (ja) 熱可塑性樹脂組成物、それを用いた積層体およびタイヤ
US9540504B2 (en) Thermoplastic resin composition
US8080298B2 (en) Refrigerant hose
JP4893877B2 (ja) 冷媒輸送用ホース
EP2792479B1 (en) Rubber/resin composite hose
JP4766196B1 (ja) 冷媒輸送用ホース
JP5846817B2 (ja) 冷媒輸送ホース
JP4188530B2 (ja) 複合フレキシブルホース
JP5706070B2 (ja) 冷媒輸送用ホース
JP2010184404A (ja) 冷媒輸送用ホース及びその製造方法
JP2015001240A (ja) ホース

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045724.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011546355

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011826649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13825805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE