WO2012036465A2 - 방열특성이 향상된 고광력 led 광원 구조체 - Google Patents

방열특성이 향상된 고광력 led 광원 구조체 Download PDF

Info

Publication number
WO2012036465A2
WO2012036465A2 PCT/KR2011/006783 KR2011006783W WO2012036465A2 WO 2012036465 A2 WO2012036465 A2 WO 2012036465A2 KR 2011006783 W KR2011006783 W KR 2011006783W WO 2012036465 A2 WO2012036465 A2 WO 2012036465A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode unit
electrode
light source
source structure
led light
Prior art date
Application number
PCT/KR2011/006783
Other languages
English (en)
French (fr)
Other versions
WO2012036465A3 (ko
Inventor
이동수
Original Assignee
Lee Dong-Soo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100089576A external-priority patent/KR101051188B1/ko
Priority claimed from KR1020110013577A external-priority patent/KR101220834B1/ko
Application filed by Lee Dong-Soo filed Critical Lee Dong-Soo
Priority to US13/819,395 priority Critical patent/US20130153943A1/en
Priority to JP2013525849A priority patent/JP5705323B2/ja
Priority to CN2011800406749A priority patent/CN103154607A/zh
Priority to EP11825425.9A priority patent/EP2618050A4/en
Publication of WO2012036465A2 publication Critical patent/WO2012036465A2/ko
Publication of WO2012036465A3 publication Critical patent/WO2012036465A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/767Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having directions perpendicular to the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09054Raised area or protrusion of metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the present invention relates to an LED light source structure, and in particular, to fabricate a positive electrode unit by processing a metal having excellent electrical conductivity and thermal conductivity, and directly discharges heat generated from the LED chip using one of the electrode unit through the electrode unit By improving the heat dissipation characteristics and at the same time to stabilize the light source and prevent the voltage drop to provide a high light power LED light source structure with improved heat dissipation characteristics to enable a high light output.
  • An LED Light Emitting Diode
  • An LED is a semiconductor device that emits light when a voltage is applied in the forward direction. When a voltage is applied to the LED, energy of electrons at the PN junction surface of the LED is converted into light energy to emit light.
  • LEDs can emit light of various colors, depending on the semiconductor material, have fast response time to input voltage, simple structure, mass production at low cost, and small size because they do not use filament like bulbs It is possible.
  • the LED is widely used as a light source in place of a light bulb such as a light bulb or a fluorescent lamp, because the LED is resistant to vibration, has a low probability of failure, and has a long lifetime.
  • the light source using the LED has a characteristic that the light output and the light efficiency are maximized when the diode temperature maintains an appropriate electron activation temperature (about 25-55 ° C).
  • an appropriate electron activation temperature about 25-55 ° C.
  • photons and heat are generated when electrons are moved by electromagnetic induction (electricity), and these two forms an inverse correlation with each other. Therefore, depending on how quickly the heat generated inside the LED is removed, the generation of photons can be increased and the durability of the diode can be maintained.
  • the movement of electrons is generated by the electric energy
  • the activity of the electrons is increased by the heat generated at this time, the electrical resistance is reduced.
  • photon generation due to electrical energy is reduced, and excessive electron activity due to heat (increasing the amount of current) decreases the bond strength of the atomic structure, thereby reducing the electron mobility (voltage) that the diode can handle. In the end, the LEDs can be destroyed and even lead to a fire.
  • an LED light source structure is formed by mounting an LED chip or package on a printed circuit board (PCB) composed of a heat sink of a metal body, an insulator formed on the heat sink, and a copper foil circuit layer formed on the insulator.
  • PCB printed circuit board
  • the current is input to the positive (+) electrode of the LED chip through the copper foil circuit layer and output to the negative (-) electrode through the LED chip to emit light.
  • the conventional LED light source having the above configuration cannot increase the direct large area and the electrical conductivity of the electric circuit due to the limitation of the thin copper foil layer, so that the current resistance generated in the LED chip and the circuit and the heat generated at the same time when photons are generated in the chip Since it takes an indirect heat dissipation method that transmits and radiates to the heat sink through the lower insulator, heat dissipation is not effectively performed as compared with heat generated, and thus there is a limit in implementing a high light power LED light source.
  • the present invention has been proposed to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a high-light power LED light source structure with improved heat dissipation characteristics that can effectively dissipate heat generated when driving the LED light source. .
  • Another object of the present invention is to use a heat sink made of a metal body having excellent electrical conductivity and thermal conductivity as a positive electrode of the LED light source directly to release heat generated from the LED light source through the heat sink to improve the heat dissipation characteristics It is to provide a high light power LED light source structure with improved heat dissipation characteristics.
  • a high-light power LED light source structure having improved heat dissipation characteristics of the present invention is an LED light source structure that mounts an LED chip and emits heat generated by lighting of the LED chip to the outside.
  • the first electrode unit 10 made of a material having a material
  • the second electrode unit 20 made of a material having electrical conductivity and thermal conductivity and electrically insulated from the first electrode unit 10
  • the first electrode LED chip 40 installed to use the unit 10 and the second electrode unit 20 as a positive electrode
  • the first electrode unit 10 and / or the second electrode unit 20 is an LED chip It is characterized in that the heat generated from the LED chip 40 in direct contact with the surface 40 is discharged to the atmosphere.
  • first electrode connection parts 11 are provided at one end or both ends of the first electrode unit 10, at least one through hole 12 is formed, and the first electrode part is adjacent to the through hole 12.
  • 13 is formed on an upper surface, an insulating layer is formed on a region other than the first electrode connection portion 11 on at least a lower surface thereof, and at least one second electrode connection portion is formed at one end or both ends of the second electrode unit 20.
  • 21 is provided and is disposed in close contact with the lower side of the first electrode unit, the electrode connection hole stacked on the first electrode unit 10 and corresponding to the through hole 12 and the first electrode portion 13.
  • An insulator 30 having an electrical non-conductivity (33) is formed, and the LED chip is mounted on the insulator 30 and is formed by the first electrode part 13 through the electrode connecting hole 33. It may be connected to the first electrode unit 10 and may be connected to the second electrode unit 20 through the through hole 12.
  • a plating layer is formed on the first electrode connection part, the first electrode part, and at least a part corresponding to the through hole in the second electrode unit to improve electrical conductivity.
  • the portion where the LED chip is mounted is recessed in a hemispherical shape, and an electrode connection hole is formed in the center portion of the recess, and the second electrode unit increases the mounting height of the LED chip to improve light output.
  • a second electrode part protruding toward the through hole may be formed.
  • the second electrode portion protrudes by applying pressure to the rear surface of the second electrode unit, and the protruding height is preferably 2/3 or less of the thickness of the second electrode unit.
  • a plating layer may be further formed on an upper surface of the second electrode unit to improve electrical conductivity between the LED chip and the second electrode unit.
  • the first electrode is a negative electrode
  • the second electrode is a plus electrode
  • the cross-sectional area of the electrode unit with high heat transfer from the LED chip larger than the cross-sectional area of other electrode units.
  • the first electrode connector is connected to the second electrode connector of the adjacent LED light source structure and the second electrode connector is connected to the first electrode connector of the other adjacent LED light source structure such that one LED light source structure is connected to at least one adjacent LED light source structure.
  • the first electrode connecting portion may be formed only at one end of the first electrode unit, and the second electrode connecting portion may be formed only at the other end of the second electrode unit corresponding to the other end of the first electrode unit to be connected.
  • the second electrode unit 20 may be configured to have a heat sink shape, and the heat generated from the LED chip 40 may be discharged through the second electrode unit 20 having a heat sink shape.
  • the height of the first electrode unit may be formed in the upper portion of the second electrode unit in the upper groove of the second electrode unit with the heat sink is formed, the gutter through which the first electrode unit and the insulator are installed.
  • a plurality of plus terminals and minus terminals may be formed on the first electrode unit and on the second electrode unit to connect the plus and minus electrodes of the plurality of LED chips.
  • the second electrode unit 20 is installed, and the first electrode unit 10 is installed on the second electrode unit 20 so as to be insulated from the second electrode unit 20 and the heat sink 60, and the LED chip ( The heat generated by 40 may be discharged through the heat sink 60 in contact with the second electrode unit 20.
  • the outside of the heat sink on the top may be coated with an insulating material having a heat dissipation function and an insulation function to prevent a short circuit.
  • the heat sink is preferably made of a material having electrical conductivity and thermal conductivity.
  • the high-power LED light source structure having improved heat radiation characteristics there is an effect that can maximize the cross-sectional area of the electrode portion mounting the LED chip to discharge the voltage drop and heat generated from the LED chip in the shortest time.
  • the cross-sectional area of the electrode can be maximized and the length can be minimized to minimize the resistance, thereby maximizing the flow of electrons flowing through the electrode unit, thereby improving the flow of electrons and thus coping with the surface resistance generated on the surface of the LED chip as much as possible.
  • This has the advantage of minimizing the voltage drop.
  • the present invention while ensuring the first large heat transfer path and the electric flow path of the resistance is minimized due to the maximized electrode unit, while the cross-sectional area of the positive electrode in direct contact with a large area of the electrode, in particular LED chip increases Thermal equilibrium between the LED chip and the positive electrode is achieved quickly. Therefore, the problem of rapidly increasing the temperature of the LED active layer can be solved, and the resistance of the LED chip is stabilized so that the current is stabilized, thereby making it possible to easily implement the drive by the constant current when designing the converter.
  • the LED light source structure it is possible to use the LED light source structure individually, or to easily connect a plurality of LED light source structure to vary the amount of light as needed, there is an advantage that can implement various forms and amounts of light.
  • FIG. 1 is a conceptual diagram showing the structure of an LED light source structure according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing the configuration of the LED light source structure according to the first embodiment
  • FIG. 3 is an exploded perspective view showing the configuration of the LED light source structure according to the first embodiment
  • FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3;
  • FIG. 5 is a cross-sectional view taken along line BB ′ of FIG. 3;
  • FIG. 6 is a perspective view illustrating a state in which a plurality of LED light source structures according to the first embodiment are coupled;
  • FIG. 7 is a cross-sectional view showing an LED light source structure according to a second embodiment of the present invention.
  • FIG. 8 is a perspective view of an LED light source structure according to a third embodiment of the present invention.
  • FIG. 9 is a side view of an LED light source structure according to a third embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of the LED light source structure according to the third embodiment of the present invention.
  • FIG. 11 is a side cross-sectional view of an LED light source structure according to a third embodiment of the present invention.
  • FIG. 12 is a plan view of an LED light source structure according to a third embodiment of the present invention.
  • FIG. 13 is a perspective view of an LED light source structure according to a fourth embodiment of the present invention.
  • FIG. 14 is an exploded perspective view of an LED light source structure according to a fourth embodiment of the present invention.
  • FIG. 15 is a side cross-sectional view of an LED light source structure according to a fourth embodiment of the present invention.
  • the present invention is an LED light source structure that can quickly discharge the heat generated by the lighting of the LED chip to the outside, the first electrode unit 10 made of a material having electrical conductivity, and the first electrode unit 10
  • the second electrode unit 20 is made of a material having electrical conductivity and thermal conductivity and is electrically insulated from the first electrode unit 10, the first electrode unit 10 and the second electrode LED chip 40 connected to the unit 20, using the first electrode unit 10 and the second electrode unit 20 as the positive electrode of the LED chip 40, the LED chip ( Heat generated at 40 is transferred directly to the first electrode unit 10 and / or the second electrode unit 20 to the atmosphere through the first electrode unit 10 and / or the second electrode unit 20. To be released.
  • the material of the first electrode unit 10 and the second electrode unit 20 is made of a metal body having electrical conductivity and thermal conductivity. It may also be made of a material having thermal conductivity.
  • the first electrode unit 10 or the second electrode unit 20 and the LED The area of the connection portion of the chip 40 should be maximized to minimize the thermal and electrical resistance.
  • one unit selected from the first electrode unit 10 or the second electrode unit 20 or both the first electrode unit 10 and the second electrode unit 20 are in point contact with the LED chip 40.
  • heat generated from the LED chip 40 is transmitted through the first electrode unit 10 or the second electrode unit 20 or the first electrode. It can be discharged through both the unit 10 and the second electrode unit 20.
  • FIG. 1 is a conceptual diagram showing the structure of a high-light-power LED light source structure with improved heat radiation characteristics according to a first embodiment of the present invention
  • Figure 2 is a perspective view showing the configuration of the LED light source structure according to the first embodiment
  • Figure 3 4 is an exploded perspective view showing the configuration of the LED light source structure according to the first embodiment
  • FIG. 4 is a sectional view taken along the line A-A 'of FIG. 3
  • FIG. 5 is a sectional view taken along the line B-B' of FIG.
  • the LED light source structure according to the present invention is the first electrode unit 10 and the second electrode unit 20, the electrically non-conductive insulator 30 and the LED chip made of a metal body having excellent electrical conductivity and thermal conductivity It consists of 40.
  • the first electrode unit 10 is made of a material having electrical conductivity, and at least one first electrode connection part 11 is provided at one end or both ends thereof so as to conduct current according to the first electrode.
  • One or more through holes 12 are formed, and the first electrode part 13 is formed on the upper surface adjacent to the through hole 12, and at least a lower surface of the insulating layer is formed in the region except for the first electrode connection part 11. 14a is formed.
  • a plating layer 15a may be formed in the first electrode connector 11 to improve electrical conductivity with a connection terminal with a power source or with the first electrode connector 11 of an adjacent LED light source structure.
  • the first electrode 13 may also be provided with a plating layer 15b for improving electrical conductivity with the LED chip 40.
  • the insulating layer 14b may be further formed on the upper surface of the first electrode unit 10 except for the first electrode part 13 on which the plating layer 15b is formed.
  • first electrode connector 11 may be provided at both ends of the first electrode unit 10, but may be provided only at one end. This is because the second electrode connecting portion 21 is disposed on the other end of the second electrode unit 20 corresponding to the other end of the first electrode unit 10 and the plurality of LED light source structures according to the present invention is connected to each other and the electrical connection relationship To allow to have.
  • the second electrode unit 20 is made of a material having an electrical conductivity, one or more second electrode connecting portion 21 is provided at one or both ends thereof so as to conduct current according to the second electrode and the first electrode It is arranged in close contact with the lower side of the unit 10.
  • the insulating layer 14a is formed under the first electrode unit 10, which is in close contact with the second electrode unit 20, the first electrode unit 10 and the second electrode unit 20 are insulated from each other. It is not necessary to form a separate insulator on the upper surface of the second electrode unit 20.
  • the insulating layer 22a is formed on the upper surface of the second electrode unit 20 for the stable operation of the LED light source structure, but the second electrode connecting portion 21 and the first electrode unit 10 penetrate through.
  • the insulating layer 22a was not formed in the part corresponding to the hole 12.
  • plating layers 23a and 23b may be formed at portions where the insulating layer 22a is not formed to improve electrical conductivity.
  • insulating layer 22b may be additionally formed as in the present embodiment.
  • the second electrode connector 21 may be provided at both ends of the second electrode unit 20, but may be provided only at one end.
  • the first electrode connecting portion 11 is disposed at one end of the first electrode unit 10, and the second electrode connecting portion is formed at the other end of the second electrode unit 20 corresponding to the other end of the first electrode unit 10. 21) to arrange the plurality of LED light source structures according to the present invention to be fastened to each other.
  • coupling holes 16 and 24 for coupling the insulator 30 are formed in the first electrode unit 10 and the second electrode unit 20.
  • a negative electrode is connected to the first electrode unit 10, and a positive electrode is applied to the second electrode unit 20.
  • a positive electrode is applied to the second electrode unit 20.
  • the cross-sectional area of the second electrode unit 20 increases the heat transfer path. It is preferable to make larger than the cross-sectional area of (10).
  • the insulator 30 is made of a material having electrical non-conductivity, for example, plastics, and laminated on the first electrode unit 10.
  • coupling holes 16 and 24 formed in the respective electrode units so that the first electrode unit 10 and the second electrode unit 20 sequentially stacked below the insulator 30 may be coupled to the insulator 30.
  • the coupling protrusion (not shown) is inserted.
  • one or more cutouts 37 may be formed in the insulator 30 for cost reduction.
  • the insulator 30 is provided with an electrode connecting hole 33 penetrating corresponding to the through hole 12 and the first electrode portion 13.
  • the electrode connecting hole 33 is to allow the LED chip 40 mounted on the insulator 30 to be electrically connected to the first electrode unit 10 and the second electrode unit 20, and the insulator 30.
  • a mounting portion 35 recessed in a concave hemispherical shape and the electrode connection hole in the central portion of the mounting portion 35 33 is formed.
  • the mounting portion 35 has a concave hemispherical shape, the light emitted from the LED chip 40 may be reflected and directed to the front surface.
  • a reflector may be attached to the mounting portion 35 to increase the reflection efficiency. have.
  • the LED chip 40 is mounted on the insulator 30 is connected to the first electrode unit 10 by the first electrode portion 13 through the electrode connecting hole 33 and the through hole 12 It is connected to the second electrode unit 20 through the. At this time, the LED chip 40 is in close contact with the second electrode unit 20 and electrically connected to the second electrode unit 20 through the entire lower side of the LED chip 40.
  • a light-transmissive encapsulant 50 covering the mounting portion 35 as a whole is formed around the LED chip 40.
  • the encapsulant 50 is formed of an epoxy or silicon material, and serves as a primary lens for controlling the directivity angle of light emitted from the LED chip 40 in addition to encapsulating the LED chip 40. do.
  • the driving circuits of the conventional LED chip fabricate a printed circuit board (PCB) by forming an insulator for preventing short circuits on heat transfer plates made of various materials, pressing a thin copper foil thereon, printing, and oxidizing the copper foil to leave only the circuit. It was.
  • PCB printed circuit board
  • the conventional PCB fabrication method can not handle the maximum amount of electron transfer due to the very small network configuration when several LED chips are connected in series and in parallel, resulting in a voltage drop that reduces the durability of the circuit. Furthermore, due to the increased amount of current due to the characteristics of the activated semiconductor, the voltage is continually dropped, resulting in a decrease in the lifetime of the semiconductor.
  • a constant power control circuit is added to a constant voltage circuit to the driver (converter) of the LED chip to construct a complex power system. Its natural configuration allows the LED to deliver smooth performance with only a constant voltage, simplifying complex drive power systems, resulting in inexpensive system designs and LED light source structures.
  • the electrodes having different polarities are connected to the first electrode unit 10 and the second electrode unit 20 having good electrical conductivity, and the semiconductor is directly bonded at each of the electrode units 10 and 20.
  • Plating layers 15b and 23b are coated to form a circuit, and the remaining portions are insulated coated. Fabricating a circuit board in this manner is inexpensive and simplified because it eliminates the complicated process of fabricating the circuit board.
  • the LED chip 40 is bonded and used, and the negative electrode is preferably disposed on the first electrode unit 10 stacked on the upper end.
  • the through hole 12 is formed, and the second electrode unit 20 is assembled to the through hole 12 so that the second electrode unit 20 can be seen, and the polarity side in which the heat of the LED chip 40 is generated is made thicker.
  • the positive power supplied to the second electrode unit 20 in the LED light source structure according to the present embodiment is supplied to the positive electrode of the LED chip 40 LED chip 40
  • the negative electrode is moved to the negative electrode and transferred to the first electrode unit 10, and thus the LED chip 40 is lighted and turned on.
  • the LED chip 40 As the LED chip 40 is turned on, heat is generated in the LED chip 40, which is generally concentrated at the plug electrode where photons are generated.
  • the positive electrode of the LED chip 40 is directly connected to the second electrode unit 20, which is a metal body and functions as a heat sink, without being relayed from the insulator, the positive electrode of the LED chip 40 is provided. A large amount of heat generated by the heat is directly transferred to the second electrode unit 20 to dissipate heat in an instant.
  • heat generated by the LED chip 40 may be quickly and effectively radiated through the second electrode unit 20 to stabilize the LED light source, and the second electrode unit 20 may use the LED chip ( Since it operates as a positive electrode of 40), a space in which holes generated when emitting light from the positive electrode of the LED chip can be secured enough to enable a high light power LED light source.
  • the first electrode connecting portion 11 of the first electrode unit 10 is disposed at one end of the LED light source structure, and the second electrode connecting portion 21 of the second electrode unit 20 is disposed at the other end thereof.
  • the position of the first electrode connector 11 is relatively higher than that of the second electrode connector 21. Therefore, when the second electrode connector 21 of the LED light source structure adjacent to the first electrode connector 11 is connected, they may be overlapped and connected without interfering with each other.
  • the LED chip 40 Lightweight heat dissipation design can be achieved while maximizing efficiency.
  • the present invention since the volume can be reduced rather than increased by omitting the heat radiating mechanism, the present invention can be applied to an existing optical structure without additional structural change, and the space for installing the light source can be reduced.
  • FIG. 7 is a cross-sectional view illustrating an LED light source structure according to a second embodiment of the present invention, and illustrates a modified form of a cut plane along the line AA ′ of FIG. 3.
  • the second electrode unit protruding toward the through hole 12 to increase the mounting height of the LED chip 40 in the second electrode unit 20 to improve the light output. 26 is formed.
  • the second electrode part 26 may be formed as the protrusion by using the plate having the protrusion as the second electrode unit 20.
  • the pressure is applied to the rear surface of the second electrode unit 20. It is adopted to protrude by adding.
  • the height of the second electrode unit 26 protruding from the upper surface of the second electrode unit 20 is preferably 2/3 or less of the thickness of the second electrode unit 20. This is to prevent the second electrode unit 26 from being separated from the second electrode unit 20 when an unexpected impact is applied to the protruding second electrode unit 26.
  • the second electrode part 26 preferably has a diameter smaller than the diameter of the through hole 12 of the first electrode unit 10. This is to allow the second electrode part 26 to be spaced apart from the first electrode part 13 disposed adjacent to the through hole 12.
  • a plating layer 23c may be further formed on an upper surface of the second electrode part 26 to improve electrical conductivity between the LED chip 40 and the second electrode unit 20.
  • the mounting height of the LED chip 40 is increased, so that the light output surface is increased, and the hemispherical shape of the first electrode unit 10 is increased. Light is absorbed into the mounting part 35 to prevent a phenomenon in which the light output is lowered.
  • FIG. 8 is a perspective view of an LED light source structure according to a third embodiment of the present invention
  • FIG. 9 is a side view of an LED light source structure according to a third embodiment of the present invention
  • FIG. 10 is an LED light source according to a third embodiment of the present invention
  • 11 is a side cross-sectional view of the LED light source structure according to the third embodiment of the present invention
  • FIG. 12 is a plan view of the LED light source structure according to the third embodiment of the present invention.
  • the second electrode unit 20 which is a metal body having excellent electrical conductivity and thermal conductivity, is a heat sink ( 60.
  • the positive electrode 41 of the LED chip 40 is connected to the second electrode unit 20 having the heat sink shape, and the negative electrode 42 is connected to the second electrode unit 20. It is connected to the first electrode unit 10 is installed on the second electrode unit 20 while maintaining an insulating state.
  • the positive current supplied to the second electrode unit 20 is supplied to the positive electrode 41 of the LED chip 40 and flows through the inside of the LED chip 40 to the first electrode unit 10 to the LED chip 40. The light is emitted to light up, and heat generated by the light emission of the LED chip 40 is directly emitted through the second electrode unit 20 having the heat sink.
  • the heat sink After fabricating a second electrode unit 20 in a heat sink shape by processing a metal such as copper or aluminum having excellent electrical conductivity and thermal conductivity, the heat sink The second electrode unit 20 having a shape is directly used as the positive electrode 41 of the LED chip 40.
  • the first electrode unit 10 of the LED chip 40 is coupled to the heat sink is insulated with the second electrode unit 20 of the shape so that the short circuit with the second electrode unit 20 does not occur.
  • the positive electrode 41 of the LED chip 40 generates a large amount of photons and heat, and the second electrode unit 20 having excellent electrical conductivity and thermal conductivity is a positive electrode 41 of the LED chip 40. Because of the formation of the heat generated by the light emission of the LED chip 40 can be quickly released.
  • the second electrode unit 20 has a cylindrical shape, and a plurality of heat dissipation grooves 20a are formed on the outer circumferential surface of the second electrode unit 20 to generate heat generated from the LED chip 40 coupled to the upper portion. Make it more efficient to release.
  • a groove 29 is formed on the second electrode unit 20 to insulate and couple the first electrode unit 10 to the second electrode unit 20.
  • the groove 29 is a second electrode. Starting at one end of the upper part of the unit 20, the inner part is divided into a broken shape.
  • An insulator 30 is formed on the trough 29 to insulate the first electrode unit 10 and the second electrode unit 20, and the first electrode unit 10 is formed on the insulator 30. ) Is formed.
  • the first electrode unit 10 is spaced apart from the second electrode unit 20 so that the first electrode unit 10 can be electrically separated from the second electrode unit 20 of the metal body.
  • the level of the two electrode units 20 and the horizontal to make the LED chip 40 can be installed stably.
  • a plurality of LED chips 40 may be installed on the second electrode unit 20, and the second electrode unit 20 and the first electrode unit 10 may be installed to install the plurality of LED chips 40.
  • the positive electrode position and the negative electrode position of the LED chip 40 may be displayed in pairs, respectively.
  • the positive terminal 28 and the negative terminal 18 formed of gold having excellent electrical conductivity on the second electrode unit 20 and the first electrode unit 10 are displayed to display the LED chip 40.
  • the positive electrode 41 and the negative electrode 42 can be easily combined and mounted.
  • a positive power input terminal 27 receiving positive power from the outside is formed at one end of the second electrode unit 20 in which the positive terminal 28 is displayed, and an external minus is formed at one end of the first electrode unit 10.
  • a negative power input terminal 17 connected to the power source is formed.
  • the insulator 30 and the first electrode unit 10 may be integrally manufactured and fitted into the trough 29 formed in the second electrode unit 20.
  • the insulator 30 and the first electrode unit may be coupled to each other.
  • the fixing member 62 is fitted to the upper portion of the second electrode unit to fix the insulator 30 and the first electrode unit 10.
  • the second electrode is coupled to the second electrode unit 20.
  • the upper part of the unit 20 is coated with an insulating material 66 made of a transparent material such as silicon, through which light can pass, to be stably fixed.
  • the outer circumferential surface of the heat sink-shaped second electrode unit 20 is coated with an insulating material 65 to prevent a short circuit.
  • the outer circumferential surface of the second electrode unit 20 has an insulating function. It is coated with ceramics with excellent heat dissipation and durability.
  • the second electrode unit 20 has been described as being formed in the shape of a heat sink, but the second electrode unit 20 is provided with a separate heat sink without forming the heat sink. It can be configured to be in contact with the unit.
  • FIG. 13 is a perspective view of an LED light source structure according to a fourth embodiment of the present invention
  • FIG. 14 is an exploded perspective view of an LED light source structure according to a fourth embodiment of the present invention
  • FIG. 15 is an LED according to a fourth embodiment of the present invention. A cross-sectional side view of the light source structure is shown.
  • the heat sink 60 is formed independently, and the second electrode unit 20 and the first electrode unit (above the heat sink 60) are formed. 10), the insulator 30 and the LED chip 40 are mounted.
  • the trough 29 for installing the first electrode unit is formed in the second electrode unit 20 installed on the heat sink 60, and the insulator 30 and the upper portion of the trough 29 are formed.
  • the first electrode unit 10 is formed to connect the negative electrode 42 of the LED chip 40.
  • the heat sink 60 may be configured using a low-strength metal body or a material having electrical conductivity and thermal conductivity such as graphite or graphene instead of aluminum.
  • the second electrode unit 20 made of copper is coupled to the upper portion of the heat sink 60, and the upper portion of the second electrode unit 20 having low strength is processed to form a trough 29, and a positive power input is performed.
  • the terminal 27 and the positive terminal 28 are formed to facilitate the manufacturing process.
  • the second electrode unit 20 is coupled to the top of the heat sink 60 to be electrically connected through bonding, soldering, and screwing.
  • the high-power LED light source structure having improved heat dissipation characteristics according to the present invention described above may be used in combination with another heat dissipation device to further improve its heat dissipation characteristics. That is, when the auxiliary heat dissipation device of various methods such as water-cooled or air-cooled is combined to the outside of the heat sink 60 according to the present invention, heat dissipation of the LED light source is doubled to further improve the heat dissipation effect.
  • the shape of the heat sink 60 may be appropriately modified according to the type and shape of the auxiliary heat dissipation device for coupling with the auxiliary heat dissipation device.
  • the heat sink 60 may be manufactured in various forms such as a square pillar or a pentagonal pillar for coupling with the auxiliary heat dissipation device, and the heat dissipation groove 61 formed on the outer circumferential surface of the heat sink 60 is also horizontal,
  • the shape of the heat sink 60 may vary depending on the type or purpose of the LED light source structure.

Abstract

질 발명은 LED 광원 구조체에 관한 것으로, 특히 전기전도성 및 열전도성이 우수한 금속을 가공하여 양 전극유닛을 제작하고 그 중 플러스 전극으로 이용되는 전극유닛을 이용하여 LED칩에서 발생하는 열을 전극유닛을 통하여 직접 배출하여 방열 특성을 향상시키는 동시에 광원의 안정화 및 전압강하의 방지를 이루어 고광력 출력을 가능하도록 하는 방열특성이 향상된 고광력 LED 광원 구조체에 관한 것이다. 본 발명의 방열특성이 향상된 고광력 LED 광원 구조체는 LED칩을 실장하여 LED칩의 점등에 따라 발생하는 열을 외부로 방출할 수 있도록 하는 LED 광원 구조체로서, 전기전도성을 갖는 재질로 이루어진 제1전극유닛(10)과, 전기전도성 및 열전도성을 갖는 재질로 이루어지며 상기 제1전극유닛(10)과 전기적으로 절연되는 제2전극유닛(20)과, 상기 제1전극유닛(10)과 상기 제2전극유닛(20)을 양 전극으로 사용하도록 설치되는 LED칩(40)으로 이루어져, 상기 제1전극유닛(10) 및/또는 제2전극유닛(20)은 LED칩(40)과 면접촉하여 LED칩(40)에서 발생하는 열이 직접 전도되어 대기중으로 방출되는 것을 특징으로 한다.

Description

방열특성이 향상된 고광력 LED 광원 구조체
본 발명은 LED 광원 구조체에 관한 것으로, 특히 전기전도성 및 열전도성이 우수한 금속을 가공하여 양 전극유닛을 제작하고 그 중 하나의 전극유닛을 이용하여 LED칩에서 발생하는 열을 전극유닛을 통하여 직접 배출하여 방열 특성을 향상시키는 동시에 광원의 안정화 및 전압강하의 방지를 이루어 고광력 출력을 가능하도록 하는 방열특성이 향상된 고광력 LED 광원 구조체에 관한 것이다.
LED(Light Emitting Diode, 발광다이오드)는 순방향으로 전압을 가했을 때 발광하는 반도체 소자로서, LED에 전압을 가하게 되면 LED의 PN 접합면에서 전자가 가지는 에너지가 빛 에너지로 변환되어 발광하게 된다.
이러한 LED는 반도체 재료에 따라 다양한 색상의 빛을 발광시킬 수 있고, 입력 전압에 대한 응답 시간이 빠르며, 구조가 간단하여 저렴한 비용으로 대량 생산이 가능하고, 전구처럼 필라멘트를 사용하지 않기 때문에 소형으로 제작 가능하다. 또한, 이 LED는 진동에 강하고 고장 확률이 적어 수명이 길기 때문에 종래 전구나 형광등 등의 조명 기구를 대체하여 광원으로 널리 이용되고 있다.
이러한 LED를 이용한 광원은 다이오드의 온도가 적정한 전자의 활성온도를 유지할 때(대략 25-55℃), 광 출력과 광 효율이 극대화되는 특성을 가지고 있다. LED는 특성상 전자기유도(전기)에 의한 전자의 이동시 광자와 열이 발생하게 되고 이때 이 두 가지는 서로 반비례의 상관관계를 형성하고 있다. 따라서 LED의 내부에서 발생된 열을 얼마나 빠르게 제거하느냐에 따라 광자의 발생을 증가시킬 수 있게 되고 다이오드의 내구성 또한 유지시킬 수가 있다.
즉, 전기에너지에 의해 전자의 이동이 발생되는데, 이때 발생한 열에 의하여 전자의 활성도가 증가되어 전기저항이 감소한다. 그리고 적정한 전자의 활성에 필요한 열 이외에는 전기에너지에 의한 광자발생을 감소시키고 열로 인한 과도한 전자의 활성도(전류량의 증가)는 원자구조의 결합력을 떨어뜨려 다이오드가 감당할 수 있는 전자의 이동도(전압)를 감소시키게 되는 결과를 초래하여 종국에는 LED가 파괴되고 심지어 화재로 이어질 수 있다.
이러한 발열문제는 대부분 조명으로 사용키 위한 LED 광원을 제작할 때 주로 발생되며 LED에서 발생하여 전자 활성에 필요한 열 이외에 적체되는 열을 신속하게 방출할 수 있도록 방열판이 요구된다.
일반적으로 LED 광원 구조체는 금속체의 방열판과, 이 방열판에 형성되는 절연체와, 상기 절연체의 상부에 형성되는 동박회로층으로 구성되는 PCB(Printed Circuit Board) 상에 LED칩이나 패키지가 탑재되어 이루어진다. 이러한 종래 LED 광원 구조체는 동박회로층을 통해 전류가 LED칩의 플러스(+) 전극으로 입력되고 LED칩을 거쳐 마이너스(-) 전극으로 출력되어 발광이 이루어지게 된다.
상기의 구성으로 이루어지는 종래 LED 광원은 얇은 동박회로층의 한계상 직접적인 대면적 및 전기적 회로의 통전성을 증가시킬 수 없어, LED칩과 회로에서 발생하는 전류저항과 칩에서 광자가 발생할 때 동시에 발생하는 열을 하부의 절연체를 통해 방열판에 전달하여 방출하는 간접적인 방열 방법을 취하기 때문에, 발생하는 열에 비해 방열이 효과적으로 이루어지지 못해 고광력의 LED 광원을 구현하는데 그 한계가 있었다.
이러한 문제점에 따라, 근래에는 방열판 상부에 형성된 절연체를 식각하고, 절연체 상부에 LED칩을 탑재하여 LED칩에서 발생하는 열을 절연체를 거치지 않고 바로 방열판으로 전달되도록 하여 방열 효과를 높일 수 있도록 하는 방안이 제안되었다. 하지만, 이러한 방법 또한 LED칩이나 패키지 자체에 형성된 절연체와 LED칩과 방열판을 연결하는 솔더링층을 거쳐 열이 방열판에 전달되기 때문에 방열 효과 떨어지는 한계점이 여전히 존재하였다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 제안된 것으로서, 본 발명의 목적은 LED 광원 구동시 발생되는 열을 효율적으로 방열할 수 있는 방열특성이 향상된 고광력 LED 광원 구조체를 제공하는 데 있다.
본 발명의 또 다른 목적은 전기전도성 및 열전도성이 우수한 금속체로 이루어진 히트싱크를 직접 LED 광원의 플러스 전극으로 이용함으로써 LED 광원에서 발생하는 열을 히트싱크를 통하여 방출하여 방열 특성을 향상시킬 수 있도록 하는 방열특성이 향상된 고광력 LED 광원 구조체를 제공하는 데 있다.
본 발명의 다른 목적은, LED 광원 구동시 전압강하와 발생된 광의 출력이 저하되는 것을 방지할 수 있는 방열성능의 향상 및 전압강하의 방지를 위한 방열특성이 향상된 고광력 LED 광원 구조체를 제공하는 데 있다.
본 발명의 또 다른 목적은, LED 광원 구조체를 개별적으로 사용하거나, 또는 복수개의 LED 광원 구조체를 손쉽게 연결하여 필요에 따라 광량을 가변할 수 있는 방열특성이 향상된 고광력 LED 광원 구조체를 제공하는 데 있다.
상술한 목적을 달성하기 위하여 본 발명의 방열특성이 향상된 고광력 LED 광원 구조체는 LED칩을 실장하여 LED칩의 점등에 따라 발생하는 열을 외부로 방출할 수 있도록 하는 LED 광원 구조체로서, 전기전도성을 갖는 재질로 이루어진 제1전극유닛(10)과, 전기전도성 및 열전도성을 갖는 재질로 이루어지며 상기 제1전극유닛(10)과 전기적으로 절연되는 제2전극유닛(20)과, 상기 제1전극유닛(10)과 상기 제2전극유닛(20)을 양 전극으로 사용하도록 설치되는 LED칩(40)으로 이루어져, 상기 제1전극유닛(10) 및/또는 제2전극유닛(20)은 LED칩(40)과 면접촉하여 LED칩(40)에서 발생하는 열이 직접 전도되어 대기중으로 방출되는 것을 특징으로 한다.
이때 상기 제1전극유닛(10)의 일단 또는 양단에는 하나 이상의 제1전극연결부(11)가 구비되고, 하나 이상의 관통공(12)이 형성되며 상기 관통공(12)에 인접하여 제1전극부(13)가 상면에 구성되고, 적어도 하면에는 상기 제1전극연결부(11)를 제외한 영역에 절연층이 형성되고, 상기 제2전극유닛(20)의 일단 또는 양단에는 하나 이상의 제2전극연결부(21)가 구비되고 상기 제1전극유닛의 하측에 밀착 배치되며, 상기 제1전극유닛(10) 상에 적층되고 상기 관통공(12)과 상기 제1전극부(13)에 대응하는 전극연결공(33)이 형성되는 전기 비전도성을 갖는 절연체(30)가 형성되되, 상기 LED칩은 상기 절연체(30) 상에 실장되어 상기 전극연결공(33)을 통하여 제1전극부(13)에 의해 제1전극유닛(10)에 연결되고 상기 관통공(12)을 통하여 제2전극유닛(20)에 연결될 수 있다.
이때 상기 제1전극연결부, 제1전극부 및 적어도 상기 제2전극유닛에서 상기 관통공에 대응되는 부분에는 전기 전도성을 향상시키기 위한 도금층이 형성되는 것이 바람직하다.
상기 커버에서 상기 LED칩이 장착되는 부분은 오목하게 반구형태로 함몰되고 그 함몰된 중앙부분에 전극연결공이 형성되며, 상기 제2전극유닛에는 상기 LED칩의 장착높이를 증대시켜 광출력을 향상시키기 위하여 상기 관통공을 향해 돌출되는 제2전극부가 형성될 수 있다.
이때 상기 제2전극부는 상기 제2전극유닛의 후면에 압력을 가함에 의해 돌출되고, 그 돌출된 높이는 상기 제2전극유닛 두께의 2/3 이하인 것이 바람직하다.
또한 상기 제2전극부의 상면에는 상기 LED칩과 제2전극유닛 간의 전기 전도성을 향상시키기 위하여 도금층이 추가로 형성될 수 있다.
상기 제1전극은 마이너스 전극이고, 상기 제2전극은 플러스 전극인 것이 바람직하다.
또한 상기 제1전극유닛 또는 제2전극유닛에서, 상기 LED칩으로부터의 열전달이 많은 전극유닛의 단면적을 다른 전극유닛의 단면적보다 크게 형성하는 것이 바람직하다.
상기 제1전극연결부는 인접한 LED 광원 구조체의 제2전극연결부와 연결되고 상기 제2전극연결부는 다른 인접한 LED 광원 구조체의 제1전극연결부와 연결되어 하나의 LED 광원 구조체가 하나 이상의 인접한 LED 광원 구조체와 연결될 수 있도록 상기 제1전극연결부는 상기 제1전극유닛의 일단에만 형성되고, 상기 제2전극연결부는 상기 제1전극유닛의 타단에 대응되는 상기 제2전극유닛의 타단에만 형성될 수도 있다.
상기 제2전극유닛(20)은 히트싱크 형상을 갖도록 구성되어, 상기 LED칩(40)에서 발생하는 열이 히트싱크 형상을 갖는 제2전극유닛(20)을 통하여 방출하도록 구성될 수 있다.
상기 제1전극유닛의 높이는 히트싱크가 형성된 제2전극유닛의 상부 높이와 수평을 이루도록, 제2전극유닛의 상부에는 상기 제1전극유닛과 절연체가 설치되는 홈통이 구성될 수 있다.
이때 상기 제1전극유닛 상부와, 제2전극유닛 상부에는 다수의 플러스단자 및 마이너스단자가 형성되어 다수의 LED칩의 플러스전극 및 마이너스전극이 연결되어 설치될 수 있다.
또는 전기전도성 및 열전도성을 갖는 금속체의 히트싱크(60)가 구성되고, 상기 히트싱크(60)의 상부는 투명 재질의 절연물질(66)로 코팅되며, 상기 히트싱크(60) 상부에 제2전극유닛(20)이 설치되고, 제1전극유닛(10)이 제2전극유닛(20) 및 히트싱크(60)와 절연되도록 제2전극유닛(20) 상부에 설치되어, 상기 LED칩(40)에서 발생하는 열이 제2전극유닛(20)과 접하는 히트싱크(60)를 통하여 방출되도록 구성할 수 있다.
상부에 히트싱크의 외측은 누전을 방지하기 위하여 방열 기능 및 절연 기능을 갖는 절연물질로 코팅될 수 있다.
상기 히트싱크는 전기전도성 및 열전도성을 갖는 재질로 이루어지는 것이 바람직하다.
본 발명에 따른 방열특성이 향상된 고광력 LED 광원 구조체에 의하면, LED칩을 실장하는 전극부분의 단면적을 극대화하여 전압강하 및 LED칩에서 발생하는 열을 최단 시간에 방출할 수 있는 효과가 있다.
보다 상세하게는, 전극의 단면적을 극대화하고 길이는 줄여서 저항을 최소화하여 전극유닛에 흐르는 전자의 흐름을 극대화할 수 있고, 이로써 전자의 흐름이 향상되면서 LED칩 표면에서 발생하는 표면저항에 최대한 대응할 수 있도록 하여 전압강하를 최소화할 수 있는 장점이 있다.
또한 본 발명에 의하면, 극대화된 전극유닛으로 인해 저항이 극소화된 1차적인 거대 열전달 통로 및 전기흐름 통로를 확보하게 됨과 동시에, 전극, 특히 LED칩과 넓은 면적으로 직접 접촉하는 플러스 전극의 단면적이 커지면서 LED칩과 플러스 전극 간의 열평형이 신속하게 이루어진다. 따라서 LED 활성층의 온도가 급격히 상승하는 문제점을 해결할 수 있으며, LED칩의 저항이 안정되어 전류가 안정화되고, 이에 의해 컨버터 설계시 정전류에 의한 구동을 쉽게 구현할 수 있는 효과가 있다.
또한 본 발명에 따르면, LED 광원 구조체를 개별적으로 사용하거나, 또는 복수개의 LED 광원 구조체를 손쉽게 연결하여 필요에 따라 광량을 가변할 수 있으므로, 다양한 형태 및 광량을 구현할 수 있는 잇점이 있다.
또한 전기 전도성이 좋은 각 전극유닛 상에 일정간격으로 다수의 LED칩을 설치하고 나머지 부분을 절연코팅하여 회로기판 형식으로 제작하면, 복잡한 여러 과정이 필요치 않게 되므로 비용적으로 저렴하고 단순화된 다채널 광원을 갖는 기판을 제작 할 수 있고, 회로기판 상에 일정간격으로 작은 구멍을 형성시켜 사용자가 요구하는 치수와 모양으로 상기 구멍을 따라 회로기판을 깔끔하게 잘라내어 잘라낸 회로기판에 전원을 연결하여 손쉽게 사용할 수 있다.
도 1은 본 발명의 제1실시예에 따른 LED 광원 구조체의 구조를 도시한 개념도,
도 2는 제1실시예에 따른 LED 광원 구조체의 구성을 도시한 사시도,
도 3은 제1실시예에 따른 LED 광원 구조체의 구성을 도시한 분해사시도,
도 4는 도 3의 A-A'선에 따른 단면도,
도 5는 도 3의 B-B'선에 따른 단면도,
도 6은 제1실시예에 따른 복수개의 LED 광원 구조체를 결합하는 상태를 도시한 사시도,
도 7은 본 발명의 제2실시예에 따른 LED 광원 구조체를 도시한 단면도,
도 8은 본 발명의 제3실시예에 따른 LED 광원 구조체의 사시도,
도 9는 본 발명의 제3실시예에 따른 LED 광원 구조체의 측면도,
도 10은 본 발명의 제3실시예에 따른 LED 광원 구조체의 분해 사시도,
도 11은 본 발명의 제3실시예에 따른 LED 광원 구조체의 측단면도,
도 12는 본 발명의 제3실시예에 따른 LED 광원 구조체의 평면도,
도 13은 본 발명의 제4실시예에 따른 LED 광원 구조체의 사시도,
도 14는 본 발명의 제4실시예에 따른 LED 광원 구조체의 분해 사시도,
도 15는 본 발명의 제4실시예에 따른 LED 광원 구조체의 측단면도를 나타낸 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
본 발명은 LED칩의 점등에 따라 발생하는 열을 신속하게 외부로 방출할 수 있도록 하는 LED 광원 구조체로서, 전기전도성을 갖는 재질로 이루어진 제1전극유닛(10)과, 상기 제1전극유닛(10) 하측에 위치하여 전기전도성 및 열전도성을 갖는 재질로 이루어지며 제1전극유닛(10)과 전기적으로 절연되는 제2전극유닛(20)과, 상기 제1전극유닛(10)과 상기 제2전극유닛(20)에 연결되는 LED칩(40)으로 이루어지되, 상기 제1전극유닛(10) 및 상기 제2전극유닛(20)을 상기 LED칩(40)의 양 전극으로 사용하여 상기 LED칩(40)에서 발생하는 열이 제1전극유닛(10) 및/또는 제2전극유닛(20)으로 직접전달 되어 상기 제1전극유닛(10) 및/또는 제2전극유닛(20)을 통하여 대기중으로 방출되도록 한다.
본 발명에서 상기 제1전극유닛(10) 및 제2전극유닛(20)의 재질은 전기전도성과 열전도성을 갖는 금속체로 구성하는 것을 실시예로 하였지만 금속체가 아니더라도 흑연, 그래핀과 같이 전기전도성과 열전도성을 갖는 재질로 구성할 수도 있다.
LED칩(40)에서 발생하는 열을 제1전극유닛(10) 또는 제2전극유닛(20)을 통해 원활하게 방출되도록 하기 위해서는 제1전극유닛(10)또는 제2전극유닛(20)과 LED칩(40)의 연결부 면적을 극대화하여 열전도 저항 및 전기전도 저항이 극소화 되도록해야한다.
구체적으로, 제1전극유닛(10) 또는 제2전극유닛(20) 중 선택되는 하나의 유닛 또는 제1전극유닛(10)과 제2전극유닛(20) 모두는 LED칩(40)과 점 접촉이 아닌 면접촉을 하여, 열전도 저항 및 전기전도 저항을 극소화시키게 되며, LED칩(40)에서 발생하는 열은 제1전극유닛(10) 또는 제2전극유닛(20)을 통해서 또는, 제1전극유닛(10)과 제2전극유닛(20)모두를 통해서 배출될 수 있다.
상술한 구성과 원리를 이용하여 본 발명을 다양한 형태로 구현할 수 있으나 대표적인 4가지 실시예를 바탕으로 설명하기로 한다.
<제1실시예>
도 1은 본 발명의 제1실시예에 따른 방열특성이 향상된 고광력 LED 광원 구조체의 구조를 도시한 개념도, 도 2는 제1실시예에 따른 LED 광원 구조체의 구성을 도시한 사시도, 도 3은 제1실시예에 따른 LED 광원 구조체의 구성을 도시한 분해사시도, 도 4는 도 3의 A-A'선에 따른 단면도, 도 5는 도 3의 B-B'선에 따른 단면도, 도 6은 제1실시예에 따른 복수개의 LED 광원 구조체를 결합하는 상태를 도시한 사시도이다.
도시된 바와 같이, 본 발명에 따른 LED 광원 구조체는 전기 전도성 및 열전도성이 우수한 금속체로 이루어진 제1전극유닛(10)과 제2전극유닛(20), 전기 비전도성의 절연체(30)와 LED칩(40)으로 구성된다.
보다 상세히 설명하면, 제1전극유닛(10)은, 전기 전도성을 갖는 재질로 제작되는 것으로, 제1전극에 따른 전류가 도통하도록 일단 또는 양단에는 하나 이상의 제1전극연결부(11)가 구비되고, 하나 이상의 관통공(12)이 형성되며, 상기 관통공(12)에 인접하여 제1전극부(13)가 상면에 구성되고, 적어도 하면에서 상기 제1전극연결부(11)를 제외한 영역에 절연층(14a)이 형성된다.
그리고 상기 제1전극연결부(11)에는 전원과의 연결단자 또는 인접한 LED 광원 구조체의 제1전극연결부(11)와의 전기 전도성을 향상시키기 위한 도금층(15a)이 형성될 수 있다.
또한 상기 제1전극부(13)에도, LED칩(40)과의 전기 전도성을 향상시키기 위한 도금층(15b)이 형성될 수도 있다. 이때 제1전극유닛(10)의 상면에는 상기 도금층(15b)이 형성된 제1전극부(13)를 제외한 영역에 절연층(14b)이 추가로 형성될 수도 있다.
아울러, 상기 제1전극연결부(11)는 상기 제1전극유닛(10)의 양단에 마련될 수도 있지만, 일단에만 마련될 수도 있다. 이는 제1전극유닛(10)의 타단에 대응되는 제2전극유닛(20)의 타단에는 제2전극연결부(21)를 배치하여 본 발명에 따른 복수개의 LED 광원 구조체가 서로 체결되면서 전기적인 연결관계를 가질 수 있도록 하기 위함이다.
한편, 제2전극유닛(20)은, 전기 전도성을 갖는 재질로 제작되는 것으로, 제2전극에 따른 전류가 도통하도록 일단 또는 양단에는 하나 이상의 제2전극연결부(21)가 구비되고 상기 제1전극유닛(10)의 하측에 밀착 배치된다.
이때 상기 제2전극유닛(20)이 밀착하는 제1전극유닛(10)의 하측에는 절연층(14a)이 형성되어 제1전극유닛(10)과 제2전극유닛(20) 사이가 절연되므로, 제2전극유닛(20)의 상면에는 별도의 절연체를 형성할 필요는 없다. 그러나 본 실시예에서는 LED 광원 구조체의 안정적인 작동을 위하여 상기 제2전극유닛(20)의 상면에 절연층(22a)을 형성하되, 제2전극연결부(21)과 제1전극유닛(10)의 관통공(12)에 대응되는 부분에는 절연층(22a)을 형성하지 않았다. 그리고 절연층(22a)이 형성되지 않은 부분에는 전기 전도성의 향상을 위하여 도금층(23a, 23b)이 형성될 수 있다.
또한 제2전극유닛(20)의 하측에도 별도의 절연층은 필요치 않지만, 본 실시예에서와 같이 절연층(22b)을 추가로 형성하여도 무방하다.
그리고 상기 제2전극연결부(21)는 상기 제2전극유닛(20)의 양단에 마련될 수도 있지만, 일단에만 마련될 수도 있다. 이는 제1전극유닛(10)의 일단에 제1전극연결부(11)가 배치되고, 상기 제1전극유닛(10)의 타단에 대응되는 제2전극유닛(20)의 타단에는 제2전극연결부(21)를 배치하여 본 발명에 따른 복수개의 LED 광원 구조체가 서로 체결될 수 있도록 하기 위함이다.
아울러, 제1전극유닛(10)과 제2전극유닛(20)에는 절연체(30)와의 결합을 위한 결합공(16, 24)이 형성된다.
그리고 상기 제1전극유닛(10)에는 마이너스 전극이 연결되고 제2전극유닛(20)에는 플러스 전극이 인가된다. 이때 실장된 LED칩(40)으로 전원이 인가되면 플러스 전극쪽으로 LED칩(40)의 열이 많이 발생하게 되므로, 제2전극유닛(20)의 단면적은 열전달 통로를 보다 증대시키기 위하여 제1전극유닛(10)의 단면적보다 크게 제작되는 것이 바람직하다.
절연체(30)는 전기 비전도성을 갖는 재질, 예를 들면 플라스틱류로 제작되고, 상기 제1전극유닛(10) 상에 적층된다. 그리고 상기 절연체(30)의 하측에는 순차적으로 적층되는 제1전극유닛(10)과 제2전극유닛(20)이 절연체(30)에 결합될 수 있도록 상기 각 전극유닛에 형성된 결합공(16, 24)이 삽입되는 결합돌기(미도시)가 구비된다.
그리고 상기 절연체(30)에는 원가절감을 위한 하나 이상의 절개공(37)이 형성될 수도 있다.
또한 상기 절연체(30)에는 상기 관통공(12)과 상기 제1전극부(13)에 대응하여 관통되는 전극연결공(33)이 형성된다. 상기 전극연결공(33)은 상기 절연체(30)에 장착되는 LED칩(40)이 제1전극유닛(10) 및 제2전극유닛(20)과 전기적으로 연결되도록 하기 위한 것으로, 절연체(30)에는 LED칩(40)에서 방사된 광의 광효율을 증대시키고 전면으로의 광 방출을 유도하기 위하여 오목하게 반구형태로 함몰된 장착부(35)가 형성되고 그 장착부(35)의 중앙부분에 상기 전극연결공(33)이 형성된다.
이때 상기 장착부(35)는 오목한 반구형태를 취하므로 LED칩(40)에서 방사되는 광을 반사하여 전면으로 향하게 할 수 있지만, 이러한 반사효율을 증대시키기 위하여 상기 장착부(35)에는 반사경이 부착될 수도 있다.
한편, LED칩(40)은 상기 절연체(30) 상에 실장되어 상기 전극연결공(33)을 통하여 제1전극부(13)에 의해 제1전극유닛(10)에 연결되고 상기 관통공(12)을 통하여 제2전극유닛(20)에 연결된다. 이때 상기 LED칩(40)은 상기 제2전극유닛(20)에 밀착되어 상기 LED칩(40)의 하측 전체를 통해 상기 제2전극유닛(20)과 전기적으로 연결된다.
또한 상기 LED칩(40)의 주변으로 상기 장착부(35)를 전체적으로 덮는 투광성의 봉지재(50)가 형성된다. 상기 봉지재(50)는 에폭시 또는 실리콘 재질로 형성되고, LED칩(40)을 봉지하는 역할 외에, 상기 LED칩(40)으로부터 나온 광의 지향각을 1차적으로 조절하는 1차 렌즈로서의 역할을 수행한다.
다음으로 본 실시예에 따른 방열특성이 향상된 고광력 LED 광원 구조체의 작용에 대해 설명한다.
종래의 LED칩의 구동회로들은 여러가지 재질의 열전달판 위에 쇼트방지를 위한 절연체를 구성시키고 그 위에 얇은 동박을 압착시킨 뒤 인쇄프린팅하고 동박을 산화시켜 회로만을 남기는 방식으로 인쇄회로기판(PCB)을 제작하였다.
잘 알려져 있는 바와 같이, 전기는 페러데이에 의해 발견된 전자기유도에 의해 고체 내 자유전자의 이동으로 설명되어 지고 있다. 그리고 반도체는 이러한 전자의 이동을 이용하여 인위적으로 전자의 이동을 극대화한 특별한 기구물로 그에 상응하는 큰 전자이동회로를 필요로 한다.
그러나 이러한 반도체 특성의 고려없이 종래 PCB 제작방법으로는 여러개의 LED칩을 직병렬로 연결했을 때 대단히 적은 회로망 구성으로 인해 극대화된 전자 이동량을 감당할 수가 없어 회로의 내구성을 떨어뜨리는 전압강하를 초래하였고, 더 나아가 활성화된 반도체의 특성상 증가되는 전류량으로 인하여 다시금 지속적으로 전압을 강하시켜 반도체의 수명을 감소시키는 결과를 초래하였다.
또한 이런 현상으로 인해 LED칩의 구동 드라이버(컨버터)에는 정전압회로에 정전류 제어회로를 부가시켜서 복잡한 파워시스템을 구축시키고 있는데, 이러한 LED의 특성에 맞게 대용량화된 회로를 구성시켜 주면 LED 크기에 따른 정전용량을 자연스럽게 구성시킬 수 있어 정전압만으로도 LED의 원활한 성능을 이끌어 내어 복잡한 구동 파워시스템을 단순화할 수 있고 이를 통해 저렴한 시스템 설계 및 LED 광원 구조체를 제작할 수 있다.
이를 위해, 본 실시예에서는 전기 전도성이 좋은 제1전극유닛(10)과 제2전극유닛(20)에 서로 다른 극성의 전극이 연결되게 하고, 각 전극유닛(10, 20)에서 직접 반도체가 본딩될 부분에 도금층(15b, 23b)을 코팅하여 회로를 구성시키며, 나머지 부분은 절연코팅한다. 이와 같은 방식으로 회로기판을 제작하면, 회로기판을 제작하는 복잡한 여러 과정이 필요치 않게 되므로 비용적으로 저렴하고 단순화된다.
또한 서로 다른 극성을 갖는 제1전극유닛(10)과 제2전극유닛(20)을 겹친 뒤 LED칩(40)을 본딩해 사용하고, 가급적 상단에 적층되는 제1전극유닛(10)에 마이너스 전극을 인가시키고 관통공(12)을 형성하며, 그 관통공(12)으로 제2전극유닛(20)이 보일 수 있게 조립하며, LED칩(40)의 열이 많이 발생하는 극성쪽을 좀더 두껍게 제작함으로서, 열의 분산 및 열로 인한 여러 장애 요인을 제거할 수 있다.
전원의 인가에 따른 작용에 대해 보다 상세히 설명하면, 본 실시예에 따른 LED 광원 구조체에서 제2전극유닛(20)으로 공급되는 플러스 전원은 LED칩(40)의 플러스 전극으로 공급되어 LED칩(40)을 통하여 마이너스 전극으로 이동되어 제1전극유닛(10)으로 전달되고, 이에 따라 LED칩(40)의 발광되어 점등이 이루어지게 된다.
상기 LED칩(40)의 점등에 따라 LED칩(40)에서는 열이 발생하게 되는데, 이 열은 일반적으로 광자가 발생하는 플러그 전극에서 집중적으로 발생하게 된다. 본 실시예에서는 LED칩(40)의 플러스 전극이 금속체이면서 히트싱크의 역할을 하는 제2전극유닛(20)과 절연체의 중계없이 직접 전기적으로 연결되어 있기 때문에, LED칩(40)의 플러스 전극에서 발생하는 다량의 열이 직접 제2전극유닛(20)으로 이동하여 방열됨으로써 열이 순식간에 소진되게 된다. 따라서, LED칩(40)의 점등에 따라 발생하는 열을 제2전극유닛(20)을 통하여 신속하고 효과적으로 방열시켜 LED 광원의 안정화를 이룰 수 있으며, 이러한 제2전극유닛(20)이 LED칩(40)의 플러스 전극으로 동작하기 때문에 LED칩의 플러스 전극에서 발광시 발생하는 정공이 머무르는 공간이 충분하게 확보될 수 있어 고광력의 LED 광원을 가능하게 한다.
또한 본 실시예에서는 LED 광원 구조체의 일단에 제1전극유닛(10)의 제1전극연결부(11)가 배치되고, 타단에 제2전극유닛(20)의 제2전극연결부(21)가 배치된다. 이때 제1전극유닛(10)과 제2전극유닛(20)은 순차적으로 적층된 상태이므로, 제1전극연결부(11)의 위치는 제2전극연결부(21)보다 상대적으로 높다. 따라서 상기 제1전극연결부(11)에 인접한 LED 광원 구조체의 제2전극연결부(21)가 연결될 때, 서로 간의 위치 간섭없이 겹쳐져서 연결될 수 있다.
이는 LED 광원 구조체를 개별적으로 사용하거나, 또는 복수개의 LED 광원 구조체를 손쉽게 연결하여 필요에 따라 광량을 가변할 수 있으므로, 다양한 형태 및 광량을 구현할 수 있게 한다.
아울러, 본 실시예에서는 제1전극유닛(10)과 제2전극유닛(20)이 비교적 얇은 판재형태로 이루어져 있고 제2전극유닛(20)이 히트싱크의 역할을 수행하게 되므로, LED칩(40)의 효율을 극대화시키면서 무게가 가벼운 방열설계를 할 수 있다. 또한, 본 실시예에서는 방열기구의 생략으로 부피가 증대되지도 않고 오히려 부피를 감소시킬 수 있으므로, 추가적인 구조변경 없이도 기존 광구조물에 적용할 수 있고, 광원 설치를 위한 공간을 감소시킬 수 있게 된다.
<제2실시예>
다음으로 본 발명에 따른 방열특성이 향상된 고광력 LED 광원 구조체의 제2실시예에 대해 설명한다. 본 실시예에서는 제1실시예와 대응되는 구성요소에 대해 동일한 도면번호를 사용하기로 한다.
도 7은 본 발명의 제2실시예에 따른 LED 광원 구조체를 도시한 단면도로서, LED 광원 구조체를 도 3의 A-A'선에 따른 절단면의 변형 형태를 도시하고 있다.
도시된 바와 같이, 본 실시예에서는 제2전극유닛(20)에서 상기 LED칩(40)의 장착높이를 증대시켜 광출력을 향상시키기 위하여 상기 관통공(12)을 향해 돌출되는 제2전극부(26)가 형성된다. 이때 상기 제2전극부(26)는 돌기를 구비한 판재를 제2전극유닛(20)으로 사용하여 상기 돌기로 형성할 수도 있지만, 본 실시예에서는 상기 제2전극유닛(20)의 후면에 압력을 가하여 돌출되게 하는 방식을 채택하고 있다.
이 경우, 제2전극부(26)가 제2전극유닛(20)의 상면으로부터 돌출되는 높이는 상기 제2전극유닛(20) 두께의 2/3 이하인 것이 바람직하다. 이는 돌기된 제2전극부(26)에 예기치 못한 충격이 가해졌을 때 상기 제2전극부(26)가 제2전극유닛(20)으로부터 분리되지 않도록 하기 위함이다.
그리고 상기 제2전극부(26)는 상기 제1전극유닛(10)의 관통공(12)의 직경보다 작은 직경으로 이루어지는 것이 바람직하다. 이는 상기 관통공(12)에 인접하여 배치되는 제1전극부(13)에 대해 제2전극부(26)가 이격 배치되도록 하기 위함이다.
또한 상기 제2전극부(26)의 상면에는, 상기 LED칩(40)과 제2전극유닛(20) 간의 전기 전도성을 향상시키기 위하여 도금층(23c)이 추가로 형성될 수 있다.
이와 같이 구성된 제2전극부(26)의 상면에 LED칩(40)을 실장하면, LED칩(40)의 실장높이가 상승함으로서, 광출력면이 높아져 제1전극유닛(10)의 반구형태의 장착부(35)로 광이 흡수되어 광 출력이 저하되는 현상을 방지할 수 있게 된다.
다시 말하면, 본 실시예에서는, LED칩(40)의 위치를 높이는 구조를 채택하여 LED칩(40)으로부터 발생된 광의 출력이 저하되는 것을 방지할 수 있어 광 손실 방지로 인한 광출력 향상 및 에너지 절감을 실현할 수 있다.
<제3실시예>
도 8은 본 발명의 제3실시예에 따른 LED 광원 구조체의 사시도, 도 9는 본 발명의 제3실시예에 따른 LED 광원 구조체의 측면도, 도 10은 본 발명의 제3실시예에 따른 LED 광원 구조체의 분해 사시도, 도 11은 본 발명의 제3실시예에 따른 LED 광원 구조체의 측단면도, 도 12는 본 발명의 제3실시예에 따른 LED 광원 구조체의 평면도이다.
도 8 내지 도 12에 도시된 바와 같이, 본 발명에 따른 방열특성이 향상된 고광력 LED 광원 구조체의 제4실시예에서는 전기전도성 및 열전도성이 우수한 금속체인 제2전극유닛(20)이 히트싱크(60) 형상을 갖도록 형성되는데, 상기 LED칩(40)의 플러스전극(41)이 히트싱크 형상을 갖는 제2전극유닛(20)에 연결되고, 마이너스전극(42)은 제2전극유닛(20)와 절연 상태를 유지하며 제2전극유닛(20) 상부에 설치되는 제1전극유닛(10)에 연결된다. 상기 제2전극유닛(20)에 공급되는 플러스전류는 LED칩(40)의 플러스전극(41)에 공급되고 LED칩(40) 내부를 거쳐 제1전극유닛(10)으로 흘러 LED칩(40)이 발광하여 점등하게 되는데, 이때 LED칩(40)의 발광에 따라 발생되는 열은 히트싱크가 형성된 제2전극유닛(20)을 통하여 직접 방출하게 된다.
즉, 본 발명의 제3실시예에 따른 LED 광원 구조체는 전기전도성 및 열전도성이 우수한 구리나 알류미늄 등의 금속을 가공하여 히트싱크 형상으로 제2전극유닛(20)을 제작한 후, 이 히트싱크 형상의 제2전극유닛(20)을 직접 LED칩(40)의 플러스전극(41)으로 사용하게 된다. 한편, 상기 LED칩(40)의 제1전극유닛(10)은 히트싱크가 형상의 제2전극유닛(20)과 절연 상태로 결합되어 제2전극유닛(20)과 합선이 일어나지 않도록 한다. 상기 LED칩(40)의 플러스전극(41)에서는 광자발생 및 열이 다량으로 발생하게 되는데, 전기전도성 및 열전도성이 우수한 제2전극유닛(20)이 LED칩(40)의 플러스전극(41)을 형성하기 때문에 LED칩(40)의 발광에 따라 발생하는 열을 신속하게 방출될 수 있게 된다.
상기 제2전극유닛(20)는 원기둥 형상으로 이루어지는데, 이 제2전극유닛(20)의 외주면에는 다수의 방열홈(20a)이 형성되어 상부에 결합되는 LED칩(40)에서 발생하는 열을 보다 효율적으로 방출할 수 있도록 한다.
상기 제2전극유닛(20)의 상부에는 제1전극유닛(10)이 제2전극유닛(20)과 절연되어 결합되기 위한 홈통(29)이 형성되어 있는데, 이 홈통(29)은 제2전극유닛(20) 상부의 일단에서 시작하여 내측으로 갈라져 일부가 단절된 원형으로 형성된다. 상기 홈통(29)의 상부에는 제1전극유닛(10)과 제2전극유닛(20)과의 절연을 위한 절연체(30)가 형성되고, 이 절연체(30)의 상부에는 제1전극유닛(10)이 형성된다. 상기 제1전극유닛(10)은 금속체의 제2전극유닛(20)과 전기적으로 분리될 수 있도록 측면이 제2전극유닛(20)와 이격되는데, 이때 제1전극유닛(10)의 높이는 제2전극유닛(20) 상부 높이와 수평을 이루도록 하여 LED칩(40)이 안정적으로 설치될 수 있도록 한다.
한편, 상기 제2전극유닛(20) 상부에는 다수의 LED칩(40)이 설치될 수 있는데, 다수의 LED칩(40)의 설치를 위하여 제2전극유닛(20) 및 제1전극유닛(10)에는 LED칩(40)의 플러스전극 위치와 마이너스전극 위치가 쌍으로 각각 표시될 수 있다. 본 발명의 실시예에서는 제2전극유닛(20)과 제1전극유닛(10) 상에 전기전도율이 우수한 금으로 형성된 플러스단자(28) 및 마이너스단자(18)를 표시하여 LED칩(40)의 플러스전극(41) 및 마이너스전극(42)이 용이하게 결합되어 실장될 수 있도록 하였다. 또한, 플러스단자(28)가 표시된 제2전극유닛(20)의 일단에는 외부로부터 플러스 전원을 공급받는 플러스전원입력단자(27)가 형성되고, 제1전극유닛(10)의 일단에는 외부의 마이너스 전원과 연결되는 마이너스전원입력단자(17)가 형성된다. 한편, 상기 절연체(30) 및 제1전극유닛(10)은 일체로 제작되어 제2전극유닛(20)에 형성된 홈통(29)에 끼움 결합될 수 있는데, 상기 절연체(30) 및 제1전극유닛(10)이 제2전극유닛(20)의 홈통(29)에 끼워지면 이 제2전극유닛 상부에는 고정부재(62)가 끼움 결합되어 절연체(30) 및 제1전극유닛(10)이 고정될 수 있도록 한다.
상기 제2전극유닛(20)에 LED칩(40)의 플러스전극(41)이 결합되고 제1전극유닛(10)에 LED칩(40)의 마이너스전극(42)이 결합되면, 이 제2전극유닛(20) 상부를 빛이 투과할 수 있는 실리콘 등과 같은 투명 재질의 절연물질(66)로 코팅하여 안정적으로 고정될 수 있도록 한다.
이때 히트싱크 형상의 제2전극유닛(20)의 외주면에는 누전을 방지하기 위해 절연물질(65)로 코팅되는데, 본 발명의 실시예에서 제2전극유닛(20)의 외주면은 절연 기능을 가지면서 방열기능이 우수하고 내구성이 뛰어난 세라믹으로 코팅된다.
한편, 상술한 실시예에서는 제2전극유닛(20)이 히트싱크 형상으로 형성되는 것으로 설명하였는데, 제2전극유닛(20)을 히트싱크 형상으로 구성하지 않고 별도의 히트싱크를 구비하여 제2전극유닛과 접하도록 구성할 수 있다.
<제4실시예>
도 13은 본 발명의 제4실시예에 따른 LED 광원 구조체의 사시도, 도 14는 본 발명의 제4실시예에 따른 LED 광원 구조체의 분해 사시도, 도 15는 본 발명의 제4실시예에 따른 LED 광원 구조체의 측단면도를 나타낸 것이다.
도 13 내지 도 15에 도시된 바와 같이, 본 발명의 제4실시예에서 히트싱크(60)가 독립적으로 형성되고 히트싱크(60)의 상부에는 제2전극유닛(20)과 제1전극유닛(10)과, 절연체(30)와 LED칩(40)이 실장된다.
이에 따라 상기 히트싱크(60)의 상부에 설치되는 제2전극유닛(20)에 제1전극유닛을 설치하기 위한 홈통(29)이 형성되고, 이 홈통(29)의 상부에 절연체(30) 및 제1전극유닛(10)이 형성되어 LED칩(40)의 마이너스전극(42)을 연결하게 된다.
상기 히트싱크(60)와 제2전극유닛(20)을 별도로 형성하는 것은 히트싱크(60)가 강도가 높은 알루미늄 등으로 제작할 경우, 강도가 높은 알루미늄 상부에 홈통을 형성하는 것이 어렵고 이 알루미늄 상부에 플러스전원입력단자 및 플러스 단자를 형성하는 과정이 어렵기 때문이다. 따라서, 이 알루미늄 대신 강도가 낮은 금속체 또는 흑연이나 그래핀과 같은 전기전도성 및 열전도성을 갖는 재질을 사용하여 히트싱크(60)를 구성할 수 있다.
바람직하게는 구리로 이뤄진 제2전극유닛(20)을 히트싱크(60)의 상부에 결합하고, 강도가 낮은 제2전극유닛(20)의 상부를 가공하여 홈통(29)을 형성하고 플러스전원입력단자(27) 및 플러스단자(28)를 형성함으로써 제작 공정이 용이하게 이루어질 수 있도록 한다. 상기 제2전극유닛(20)은 히트싱크(60)의 상부에 본딩, 솔더링, 나사 결합을 통하여 전기적으로 연결되도록 결합된다.
상술한 본 발명에 따른 방열특성이 향상된 고광력 LED 광원 구조체는 다른 방열장치와 결합되어 사용됨으로써 그 방열 특성을 더욱 향상시킬 수 있다. 즉, 본 발명에 따른 히트싱크(60)의 외측에 수냉식이나 공랭식 등 다양한 방식의 보조 방열장치를 결합하여 사용하게 되면 LED 광원의 방열이 이중으로 진행되어 방열 효과가 더욱 향상되게 된다. 이러한 히트싱크(60)의 외측에 보조 방열장치가 결합되는 경우, 히트싱크(60)는 보조 방열장치와의 결합을 위하여 보조 방열장치의 종류 및 형태에 따라 그 형태가 적절히 변형될 수 있다. 즉, 상기 히트싱크(60)는 보조 방열장치와의 결합을 위하여 그 몸체가 사각기둥이나 오각기둥 등 다양한 형태로 제작될 수 있으며, 히트싱크(60) 외주면에 형성된 방열홈(61) 또한 가로, 세로, 대각선, 격자 등 다양한 형태로 변경될 수 있으며, 이러한 히트싱크(60)의 형태는 LED 광원 구조체의 용도나 종류에 따라서도 달라질 수 있음은 당연하다.
이와 같이, 본 발명은 상술한 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구 범위의 균등범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다.

Claims (15)

  1. LED칩을 실장하여 LED칩의 점등에 따라 발생하는 열을 외부로 방출할 수 있도록 하는 LED 광원 구조체로서,
    전기전도성을 갖는 재질로 이루어진 제1전극유닛(10)과,
    전기전도성 및 열전도성을 갖는 재질로 이루어지며 상기 제1전극유닛(10)과 전기적으로 절연되는 제2전극유닛(20)과,
    상기 제1전극유닛(10)과 상기 제2전극유닛(20)을 양 전극으로 사용하도록 설치되는 LED칩(40)으로 이루어져,
    상기 제1전극유닛(10) 및/또는 제2전극유닛(20)은 LED칩(40)과 면접촉하여 LED칩(40)에서 발생하는 열이 직접 전도되어 대기중으로 방출되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  2. 제1항에 있어서,
    상기 제1전극유닛(10)은 일단 또는 양단에 하나 이상의 제1전극연결부(11)가 구비되고, 하나 이상의 관통공(12)이 형성되며 상기 관통공(12)에 인접하여 제1전극부(13)가 상면에 구성되고, 적어도 하면에는 상기 제1전극연결부(11)를 제외한 영역에 절연층이 형성되고,
    상기 제2전극유닛(20)은 일단 또는 양단에 하나 이상의 제2전극연결부(21)가 구비되어 상기 제1전극유닛의 하측에 밀착 배치되며,
    상기 제1전극유닛(10) 상에 적층되고 상기 관통공(12)과 상기 제1전극부(13)에 대응하는 전극연결공(33)이 형성되는 전기 비전도성을 갖는 절연체(30)가 형성되되,
    상기 LED칩은 상기 절연체(30) 상에 실장되어 상기 전극연결공(33)을 통하여 제1전극부(13)에 의해 제1전극유닛(10)에 연결되고 상기 관통공(12)을 통하여 제2전극유닛(20)에 연결되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  3. 제2항에 있어서,
    상기 제1전극연결부(11), 제1전극부(13) 및 적어도 상기 제2전극유닛(20)에서 상기 관통공(12)에 대응되는 부분에는 전기 전도성을 향상시키기 위한 도금층이 형성되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  4. 제2항에 있어서,
    상기 절연체(30)에서 상기 LED칩(40)이 장착되는 부분은 오목하게 반구형태로 함몰되고 그 함몰된 중앙부분에 전극연결공(33)이 형성되며,
    상기 제2전극유닛(20)에는, 상기 LED칩(40)의 장착높이를 증대시켜 광출력을 향상시키기 위하여 상기 관통공(12)을 향해 돌출되는 제2전극부(26)가 형성되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  5. 제4항에 있어서,
    상기 제2전극부(26)는 상기 제2전극유닛(20)의 후면에 압력을 가함에 의해 돌출되고, 그 돌출된 높이는 상기 제2전극유닛(20) 두께의 2/3 이하인 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  6. 제4항에 있어서,
    상기 제2전극부(26)의 상면에는, 상기 LED칩(40)과 제2전극유닛(20) 간의 전기 전도성을 향상시키기 위하여 도금층이 추가로 형성되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  7. 제2항 내지 제5항 중 어느 한 항에 있어서,
    상기 제1전극은 마이너스 전극이고, 상기 제2전극은 플러스 전극인 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  8. 제2항 내지 제5항 중 어느 한 항에 있어서,
    상기 제1전극유닛(10) 또는 제2전극유닛(20)에서, 상기 LED칩(40)으로부터의 열전달이 많은 전극유닛의 단면적을 다른 전극유닛의 단면적보다 크게 형성하는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  9. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 제1전극연결부(11)는 인접한 LED 광원 구조체의 제2전극연결부(21)와 연결되고 상기 제2전극연결부(21)는 다른 인접한 LED 광원 구조체의 제1전극연결부(11)와 연결되어 하나의 LED 광원 구조체가 하나 이상의 인접한 LED 광원 구조체와 연결될 수 있도록 상기 제1전극연결부(11)는 상기 제1전극유닛(10)의 일단에만 형성되고, 상기 제2전극연결부(21)는 상기 제1전극유닛(10)의 타단에 대응되는 상기 제2전극유닛(20)의 타단에만 형성되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  10. 제1항에 있어서,
    상기 제2전극유닛(20)은 히트싱크 형상을 갖도록 구성되어, 상기 LED칩(40)에서 발생하는 열이 히트싱크 형상을 갖는 제2전극유닛(20)을 통하여 방출되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  11. 제10항에 있어서,
    상기 제1전극유닛(10)의 높이는 히트싱크 형상을 갖는 제2전극유닛(20)의 상부 높이와 수평을 이루도록, 제2전극유닛(20)의 상부에는 상기 제1전극유닛(10)과 절연체(30)가 설치되는 홈통(29)이 구성되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  12. 제11항에 있어서,
    상기 제1전극유닛(10) 상부와, 제2전극유닛(20) 상부에는 다수의 플러스단자(28) 및 마이너스단자(18)가 형성되어 다수의 LED칩(40)의 플러스전극(41) 및 마이너스전극(42)이 연결되어 설치될 수 있도록 하는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  13. 제1항에 있어서,
    전기전도성 및 열전도성을 갖는 금속체의 히트싱크(60)가 구성되고, 상기 히트싱크(60)의 상부는 투명 재질의 절연물질(66)로 코팅되며, 상기 히트싱크(60) 상부에 제2전극유닛(20)이 설치되고, 제1전극유닛(10)이 제2전극유닛(20) 및 히트싱크(60)와 절연되도록 제2전극유닛(20) 상부에 설치되어, 상기 LED칩(40)에서 발생하는 열이 제2전극유닛(20)과 접하는 히트싱크(60)를 통하여 방출되는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  14. 제13항에 있어서,
    상부에 히트싱크(60)의 외측은 누전을 방지하기 위하여 방열 기능 및 절연 기능을 갖는 절연물질(65)로 코팅된 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
  15. 제13항에 있어서,
    상기 히트싱크(60)는 전기전도성 및 열전도성을 갖는 재질로 이루어지는 것을 특징으로 하는 방열특성이 향상된 고광력 LED 광원 구조체.
PCT/KR2011/006783 2010-09-13 2011-09-14 방열특성이 향상된 고광력 led 광원 구조체 WO2012036465A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/819,395 US20130153943A1 (en) 2011-02-16 2011-09-14 Led light source structure with high illuminating power and improved heat dissipating characteristics
JP2013525849A JP5705323B2 (ja) 2010-09-13 2011-09-14 放熱特性が向上した高光力led光源構造体
CN2011800406749A CN103154607A (zh) 2010-09-13 2011-09-14 提高了散热特性的高光度led光源构造体
EP11825425.9A EP2618050A4 (en) 2010-09-13 2011-09-14 LED LIGHT SOURCE STRUCTURE WITH HIGH LIGHTNING POWER AND IMPROVED THERMAL REMOVAL PROPERTIES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100089576A KR101051188B1 (ko) 2010-09-13 2010-09-13 방열 특성이 향상된 고광력 led 광원 구조체
KR10-2010-0089576 2010-09-13
KR1020110013577A KR101220834B1 (ko) 2011-02-16 2011-02-16 방열성능의 향상 및 전압강하의 방지를 위한 고광력 엘이디 광원 구조체
KR10-2011-0013577 2011-02-16

Publications (2)

Publication Number Publication Date
WO2012036465A2 true WO2012036465A2 (ko) 2012-03-22
WO2012036465A3 WO2012036465A3 (ko) 2012-05-31

Family

ID=45832100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006783 WO2012036465A2 (ko) 2010-09-13 2011-09-14 방열특성이 향상된 고광력 led 광원 구조체

Country Status (4)

Country Link
EP (1) EP2618050A4 (ko)
JP (1) JP5705323B2 (ko)
CN (1) CN103154607A (ko)
WO (1) WO2012036465A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063975A1 (de) * 2012-10-24 2014-05-01 Osram Gmbh Leuchtvorrichtung mit kühlkörper und mindestens einer halbleiterlichtquelle
EP2730834A1 (en) * 2012-11-13 2014-05-14 OSRAM GmbH LED Illumination Device
CN107131485A (zh) * 2017-06-16 2017-09-05 广州市诺思赛光电科技有限公司 同一基板上的双光源结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160106396A (ko) * 2015-03-02 2016-09-12 주식회사 비케이테크놀로지 리드프레임 및 이를 포함하는 반도체 패키지
JP6802620B2 (ja) * 2015-05-18 2020-12-16 スタンレー電気株式会社 半導体発光装置の製造方法及び半導体発光装置
CN107270215A (zh) * 2017-06-27 2017-10-20 佛山肆强科技有限公司 利用传热部件单极导电的led灯体及其导电方法和led车灯
JP7088985B2 (ja) * 2020-06-05 2022-06-21 スタンレー電気株式会社 半導体発光装置の製造方法、積層基板の製造方法、及び半導体発光装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153287C (zh) * 2001-03-09 2004-06-09 矽品精密工业股份有限公司 具有内嵌式散热块的半导体封装件
WO2002084750A1 (en) * 2001-04-12 2002-10-24 Matsushita Electric Works, Ltd. Light source device using led, and method of producing same
ATE551731T1 (de) * 2001-04-23 2012-04-15 Panasonic Corp Lichtemittierende einrichtung mit einem leuchtdioden-chip
JP4122743B2 (ja) * 2001-09-19 2008-07-23 松下電工株式会社 発光装置
US6999318B2 (en) * 2003-07-28 2006-02-14 Honeywell International Inc. Heatsinking electronic devices
JP2005136224A (ja) * 2003-10-30 2005-05-26 Asahi Kasei Electronics Co Ltd 発光ダイオード照明モジュール
KR100629496B1 (ko) * 2005-08-08 2006-09-28 삼성전자주식회사 Led 패키지 및 그 제조방법
JP4829577B2 (ja) * 2005-09-20 2011-12-07 パナソニック電工株式会社 発光装置
JP4623730B2 (ja) * 2005-10-11 2011-02-02 シチズン電子株式会社 発光ダイオード光源ユニットを用いた発光ダイオード光源
KR100726969B1 (ko) * 2005-11-28 2007-06-14 한국광기술원 서브마운트를 적용하지 않는 고방열기판을 구비한발광다이오드 패키지
JP4978053B2 (ja) * 2006-05-02 2012-07-18 日亜化学工業株式会社 発光装置及び照明装置
TWM317075U (en) * 2006-08-25 2007-08-11 Yun Dai Heat dissipation structure of light emitting diode
KR20080000241U (ko) * 2006-08-25 2008-02-28 윤 타이 Led 모듈
US20080067526A1 (en) * 2006-09-18 2008-03-20 Tong Fatt Chew Flexible circuits having improved reliability and thermal dissipation
JP2008103402A (ja) * 2006-10-17 2008-05-01 C I Kasei Co Ltd 上下電極型発光ダイオード用パッケージ集合体および上下電極型発光ダイオード用パッケージ集合体の製造方法
KR100855065B1 (ko) * 2007-04-24 2008-08-29 삼성전기주식회사 발광 다이오드 패키지
JP5084693B2 (ja) * 2008-10-21 2012-11-28 電気化学工業株式会社 発光装置および発光素子搭載用基板
KR101517930B1 (ko) * 2008-12-11 2015-05-06 주식회사 케이엠더블유 고방열 기판을 구비하는 멀티칩 엘이디 패키지
KR100939304B1 (ko) * 2009-06-18 2010-01-28 유트로닉스주식회사 Led어레이모듈 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2618050A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063975A1 (de) * 2012-10-24 2014-05-01 Osram Gmbh Leuchtvorrichtung mit kühlkörper und mindestens einer halbleiterlichtquelle
EP2730834A1 (en) * 2012-11-13 2014-05-14 OSRAM GmbH LED Illumination Device
CN103807628A (zh) * 2012-11-13 2014-05-21 欧司朗有限公司 Led照明装置
CN107131485A (zh) * 2017-06-16 2017-09-05 广州市诺思赛光电科技有限公司 同一基板上的双光源结构
CN107131485B (zh) * 2017-06-16 2023-04-25 广州市诺思赛光电科技有限公司 同一基板上的双光源结构

Also Published As

Publication number Publication date
JP5705323B2 (ja) 2015-04-22
EP2618050A4 (en) 2014-08-27
WO2012036465A3 (ko) 2012-05-31
JP2013541186A (ja) 2013-11-07
CN103154607A (zh) 2013-06-12
EP2618050A2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2012036465A2 (ko) 방열특성이 향상된 고광력 led 광원 구조체
JP5101578B2 (ja) 発光ダイオード照明装置
KR101557868B1 (ko) 3차원 led 기판 및 led 조명 장치
RU2576379C2 (ru) Низкозатратная установка светодиодов в модифицированные люминесцентные трубки
WO2011002208A2 (ko) 발광 다이오드 패키지
WO2013115439A1 (ko) 히트싱크 및 이를 포함하는 엘이디 조명장치
WO2011159076A2 (ko) 열전대를 이용한 고출력 광소자 가로등
CN103426989B (zh) 半导体发光器件及其制造方法、发光模块和照明设备
KR101220834B1 (ko) 방열성능의 향상 및 전압강하의 방지를 위한 고광력 엘이디 광원 구조체
JP2005158957A (ja) 発光装置
JP2006295085A (ja) 発光ダイオード光源ユニット
CN102822590A (zh) 半导体灯
WO2012128458A2 (en) Led module and lighting assembly
WO2016190706A1 (ko) 발광소자패키지 및 이를 포함하는 차량용 조명
WO2014142396A1 (ko) 방열성능을 향상하고 누설전류를 방지하기 위한 금속회로를 장착한 고광력 led 광원 구조체
WO2011040671A1 (ko) 발광다이오드 조명기구
WO2010074371A1 (ko) 칩온보드형 발광 다이오드 패키지 및 그것의 제조 방법
WO2011118934A2 (en) Light emitting diode device and lighting device using the same
WO2013067945A1 (zh) 发光二极管灯芯和采用发光二极管作为光源的照明装置
WO2014115986A1 (ko) Led 램프용 전극모듈
WO2012169750A2 (ko) 방송용 조명장치
WO2014121878A1 (en) Circuit board
WO2015016525A1 (ko) 조명 장치
WO2016197957A1 (zh) 一种led灯五金支架
KR20110050911A (ko) 조명 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040674.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825425

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013525849

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819395

Country of ref document: US

Ref document number: 2011825425

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE