WO2012036263A1 - シリコンインゴット製造用容器及びシリコンインゴットの製造方法 - Google Patents

シリコンインゴット製造用容器及びシリコンインゴットの製造方法 Download PDF

Info

Publication number
WO2012036263A1
WO2012036263A1 PCT/JP2011/071210 JP2011071210W WO2012036263A1 WO 2012036263 A1 WO2012036263 A1 WO 2012036263A1 JP 2011071210 W JP2011071210 W JP 2011071210W WO 2012036263 A1 WO2012036263 A1 WO 2012036263A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
container
silicon ingot
producing
melt
Prior art date
Application number
PCT/JP2011/071210
Other languages
English (en)
French (fr)
Inventor
彰 吉澤
孝幸 清水
朝日 聰明
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201180044508.6A priority Critical patent/CN103097291B/zh
Priority to JP2012534063A priority patent/JP5877589B2/ja
Publication of WO2012036263A1 publication Critical patent/WO2012036263A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a silicon ingot manufacturing container and a silicon ingot manufacturing method for manufacturing a solar cell grade silicon ingot.
  • a casting method in which a silicon melt is accommodated in a crucible or mold container and the silicon melt is solidified from below to grow silicon polycrystals.
  • Patent Documents 1 to 5 a casting method in which a silicon melt is accommodated in a crucible or mold container and the silicon melt is solidified from below to grow silicon polycrystals.
  • a release material is formed on the inner surface of a container used in the casting method.
  • a silicon ingot is manufactured by a casting method, if silicon reacts with the container when the silicon melt is solidified in the container, the silicon crystals are fixed to the container, making it difficult to take out the ingot. Therefore, a release material is formed on the inner surface of the container so that the silicon crystal does not come into direct contact with the container.
  • the density of the silicon melt is 2.5 g / cm 3
  • the solid density is 2.33 g / cm 3 , so that the volume expands by about 7% when the silicon melt is solidified in the container. It becomes.
  • stress arises in a container with this system expansion it becomes difficult to take out a silicon ingot from a container, and also a mold release material formed in a container may be damaged.
  • the release material is damaged, the silicon crystal comes into contact with the container and is fixed, so that the take-out property of the silicon ingot is further deteriorated. Therefore, there is a need for a technique that relieves stress associated with volume expansion when solidifying a silicon melt.
  • Patent Document 1 discloses a tapered container in which the entire side surface is inclined at 3 ° or more in a direction extending toward the opening of the container.
  • the present invention has been made to solve the above-mentioned problems, and a silicon ingot manufacturing container and a silicon ingot capable of easily taking out the grown silicon ingot from the container and improving the yield of the silicon ingot. It aims at providing the manufacturing method of.
  • the invention according to claim 1 is a bottomed cylindrical silicon ingot manufacturing container having an open upper surface for solidifying a silicon melt to grow a silicon polycrystal.
  • the side wall of the container is vertically formed on the lower side of the side, and the side of the side is formed so as to be inclined toward the upper surface opening at a predetermined taper angle ⁇ with respect to the lower side of the side. It is characterized by comprising a side surface upper part vertically connected to the middle part of the side surface.
  • the invention described in claim 2 is the container for manufacturing a silicon ingot according to claim 1, wherein the taper angle ⁇ is 10 to 80 °.
  • the invention according to claim 3 is characterized in that, in the container for producing a silicon ingot according to claim 2, the taper angle ⁇ is 15 to 60 °.
  • the invention described in claim 4 is characterized in that, in the container for manufacturing a silicon ingot according to claim 2, the taper angle ⁇ is 20 to 70 °.
  • the invention according to claim 5 is characterized in that, in the container for manufacturing a silicon ingot according to claim 2, the taper angle ⁇ is 20 to 45 °.
  • the invention according to claim 6 is the container for producing a silicon ingot according to any one of claims 1 to 5, It is characterized by being composed of a material composed of any one of quartz, Si3N4, SiC, graphite, and alumina, or a material combining two or more.
  • the invention according to claim 7 is the silicon ingot manufacturing container according to any one of claims 1 to 6, wherein the silicon raw material is charged so that the surface of the silicon melt is located at the inclined portion, The silicon melt is solidified to grow a silicon polycrystal.
  • the invention according to claim 8 is the method for producing a silicon ingot according to claim 7, wherein a seed crystal is brought into contact with the surface of the silicon melt, While pulling up the seed crystal, the silicon melt is solidified from the surface to grow a silicon polycrystal.
  • the invention according to claim 9 is characterized in that, in the method for producing a silicon ingot according to claim 8, the seed crystal is pulled up at a speed corresponding to the volume expansion when the silicon melt is solidified.
  • a chiropolos method in which a seed crystal is brought into contact with a melt surface, and the crystal is grown downward from the melt surface.
  • this chiloporous method crystals grow from the melt surface with little foreign matter, so that a higher quality silicon crystal can be expected than the casting method.
  • the present inventor has repeatedly studied to establish a method for producing a silicon ingot using the chiloporous method instead of the casting method in which the crystal is grown from the bottom of the container in which the release material is formed.
  • the container after the silicon ingot was manufactured was observed.
  • the mold release material was planar at the top periphery of the silicon ingot, that is, the portion corresponding to the portion where the surface of the silicon melt was solidified and crystallized. It became clear that it disappeared. Further, it was confirmed that a convex portion having a height of about 0.1 to 0.5 mm was formed in the circumferential direction at the top periphery of the silicon ingot.
  • the release material disappeared at the portion corresponding to the top of the silicon ingot.
  • the stress accompanying the volume expansion when the vicinity of the surface of the silicon melt solidifies is significantly greater than the stress accompanying the volume expansion when the other portion solidifies, regardless of the crystal growth method.
  • the laterally expanded silicon crystal especially the convex portion on the top periphery
  • bites into the release material and in this state, it is half-strengthened. It was thought that the release material was peeled off by being pulled up.
  • the portion where the stress accompanying volume expansion during silicon solidification is increased is the inclined portion, and the portion where the stress is lower (lower side) is formed vertically, so the outer peripheral portion of the silicon ingot Processing loss when cutting is reduced. Therefore, the yield of silicon ingots can be improved.
  • Section (a) of the side wall of the container for producing silicon ingot used in the embodiment of the present invention an example of a container shape when viewed from the top of the container toward the bottom wall (rectangular container (b), cylindrical container (c )), And a schematic explanatory diagram of their preferred thicknesses and lengths.
  • FIG. 1 is a sectional view of a container for producing a silicon ingot to which the present invention is applied.
  • a container (hereinafter referred to as a container) 11 for producing a silicon ingot shown in FIG. 1 is a bottomed cylindrical or rectangular tube container whose upper surface is opened, for example, formed by molding a quartz material.
  • the side wall of the container 11 is inclined so as to expand toward the upper surface opening at a taper angle (inclination angle with respect to the vertical direction) ⁇ at a side lower part (hereinafter referred to as a straight body part) 11c formed vertically.
  • a side surface middle portion (hereinafter referred to as an inclined portion) 11b provided continuously and a side surface upper portion 11a provided vertically connected to the inclined portion 11b are partitioned.
  • the thickness T1 is preferably about 5 to 20 mm. If it is less than 5 mm, the vulnerability of the container material becomes a problem. On the other hand, if it is larger than 20 mm, the influence due to the increase in the heat insulation of the container cannot be ignored, the silicon melting time increases, the lead time and the power cost increase, and the productivity decreases. For the same reason, the thickness T2 of the side surface lower part 11c is desirably about 5 to 30 mm.
  • the length Lc of the side lower portion 11c is not particularly limited, but when the raw material is melted in the container, the ratio of the length La + Lb above the side lower portion 11c to the length Lc of the side lower portion 11c (La + Lb) It is desirable that / Lc is “2” or more. Since the silicon raw material has a solid density smaller than that of the liquid, in order to bring the melt surface position to at least the position of Lc (the uppermost end of the straight body portion 11c), the raw material is placed in the container at least twice as much as Lc. It is necessary to fill up to the height. Although the degree of filling into the container varies depending on the shape of the raw material, the above dimensional ratio is sufficient for practical use.
  • the thickness and length of the container 11 described above are not limited to the case of a rectangular tube-shaped container, and the same applies to the case of a cylindrical container.
  • the difference between them is in the range of 2 to 50 mm, preferably 10 to 20 mm. It is desirable to be. If it is less than 2 mm, it is impossible to prevent the silicon ingot during crystal growth from biting into the release material and the container. If it exceeds 50 mm, the thermal insulation of the container side inclined part and the thick part at the bottom of the side will increase, so the silicon melting time will increase and lead time and power costs will increase as compared to the case of 50 mm or less. The nature will decline. Therefore, for example, when an Si ingot of about 150 to 270 kg is obtained from a rectangular or cylindrical container, m2 is 600 mm, m1 is 602 to 650 mm, preferably 610 mm to 620 mm.
  • the stress accompanying the volume expansion when the silicon melt located in the inclined portion 11b is solidified is the inclined portion 11b. It is dispersed into a component perpendicular to the component and a component parallel to the component. For example, by setting the taper angle ⁇ to 3 ° or more and less than 90 °, the stress accompanying the volume expansion can be dispersed to the extent that the release material does not peel off. According to the experiment, when the taper angle ⁇ is less than 3 °, the grown silicon ingot bites into the release material, and it is confirmed that the release material is damaged. Therefore, the taper angle ⁇ is desirably 3 ° or more.
  • FIG. 2 is a diagram illustrating an example of a crystal growth apparatus using the container 11.
  • the crystal growth apparatus 1 shown in FIG. 2 is for manufacturing a silicon ingot by the chiroporus method, and uses a container 11 in which a release material 12 such as a Si3N4 sintered body is formed on the inner surface.
  • a container 11 is supported by a susceptor 13 made of graphite, and a heater 14 is disposed on the outer periphery of the susceptor 13.
  • a crystal pulling shaft 15 is disposed in the center of the container 11, and a seed crystal 16 made of Si single crystal (or Si polycrystal) is attached to the tip thereof.
  • a silicon raw material for example, silicon melt
  • the seed crystal 16 is brought into contact with the surface of the silicon melt 17, and the silicon melt 17 is solidified from the surface to grow a silicon polycrystal.
  • the pulling speed of the seed crystal 16 is set according to the volume expansion in the vertical direction when the silicon melt 17 is solidified.
  • the surface of the silicon melt 17 is located at the inclined portion 11b of the container 11, the lateral stress generated in the container 11 due to volume expansion when the vicinity of the melt surface solidifies is dispersed. That is, since the stress component perpendicular to the inclined portion 11b decreases according to the taper angle ⁇ , the silicon crystal can be prevented from biting into the release material 12. Therefore, since the release material 12 is not damaged during the growth process of the silicon polycrystal, the grown silicon ingot can be easily taken out without being fixed to the container.
  • the seed crystal 16 can be pulled up. It is also possible to prevent the top periphery of the silicon ingot from contacting the inner surface of the container 11 (inclined portion 11b). For example, when the vicinity of the surface of the silicon melt located in the inclined portion 11b is solidified, when the crystal formed on the liquid surface from the seed crystal 16 to the straight body portion of the container is pulled up by L, before and after the pulling, The diameter of the melt surface is expanded by 2L tan ⁇ .
  • the container 11 only the portion where a large stress is generated due to the volume expansion at the time of silicon solidification is the inclined portion 11b, and the side lower portion 11c where the stress is small is formed vertically, so that the outer peripheral portion of the silicon ingot is cut.
  • the loss when processing into a columnar or prismatic shape is reduced. Therefore, the yield of silicon ingots can be improved. That is, as shown in FIG. 5, when the entire side surface of the container is inclined, the stress associated with the volume expansion during silicon solidification can be dispersed, but the difference between the bottom outer diameter and the upper outer diameter of the silicon ingot increases. Therefore, the loss increases when the silicon ingot is processed into a cylindrical shape or a prismatic shape.
  • the loss volume is 56% of the whole.
  • the taper angles are 20 °, 30 °, 45 °, and 70 °
  • the upper outer diameters of the rectangular tube container and the ingot are remarkably large.
  • the loss rates of the ingots on the bottom of the vessel are calculated to be 70%, 79%, 87%, and 97%, respectively.
  • the loss volume ratio is 36% because only the upper portion of the side surface of the ingot Top is tapered and the other side surface portion is almost a straight body. Even when the taper angle is changed to 10 °, 20 °, 30 °, 45 °, and 70 °, the loss volume ratio remains 36%.
  • a silicon polycrystal is grown while pulling up the seed crystal. Therefore, by adjusting the pulling speed appropriately, the top periphery of the silicon ingot is separated from the release material 12. Growth can be advanced while maintaining a non-contact state. Therefore, it is possible to more effectively prevent the silicon ingot from biting into the release material 12, and the biting operation does not hinder the growth crystal pulling operation. Further, by pulling up the seed crystal 16 in accordance with the volume expansion at the time of silicon solidification, the stress in the vertical direction accompanying the volume expansion is relieved, so that a problem due to the compression of the silicon melt does not occur.
  • the taper angle ⁇ is desirably set in the range of 10 ° to 80 °, preferably 20 ° to 70 °, or 15 ° to 60 °, more preferably 20 ° to 45 °.
  • Example 1 a silicon ingot was manufactured by the chiropoulos method using the crystal growth apparatus 1.
  • the container 11 has a cylindrical shape, and its dimensions are such that the inner diameter (m1) of the opening on the straight body 11a is 146 mm, the inner diameter (m2) of the bottom of the straight body 11c is 125 mm, and the height Lc of the straight body 11c. 30 mm and La + Lb 60 mm.
  • a silicon melt to which boron (concentration: 1.0 ⁇ 10 16 atoms / cm 3 ) is added is poured into the cylindrical container 11, and the surface of the silicon melt is set at the midpoint of the inclined portion 11 b (with respect to the straight body portion 11 c).
  • the silicon melt was held at 5.25 mm from the boundary so that the temperature gradient in the depth direction was 10 ° C./cm.
  • a seed crystal 16 made of a Si single crystal having a crystal orientation of ⁇ 100> and a 3.5 mm square is brought into contact with the surface of the silicon melt, and a silicon polycrystal is grown while pulling up the seed crystal 16 manually at 1 mm / h. I let you.
  • the container 11 and the seed crystal 16 were rotated at 5 rpm, and a silicon polycrystal was grown concentrically around the seed crystal 16.
  • the silicon melt was completely solidified by growth for 3 hours to obtain a silicon ingot according to the example.
  • the silicon polycrystalline 18 did not bite into the release material 12 during the growth process, and the pulling operation was not hindered. That is, the compressive stress generated in the silicon melt 17 was effectively relieved by using the container 11 having the inclined portion 11b and growing the silicon polycrystal while pulling up the seed crystal 16.
  • the manufactured silicon ingot could be easily taken out from the container 11. Further, the fusion between the container 11 and the top periphery of the silicon ingot, which has been a problem until now, did not occur. Moreover, there was no practical problem such as cracking of the ingot when it was processed into a straight cylinder-shaped silicon ingot. Further, in the obtained silicon ingot, the crystal grain boundaries were aligned in the vertical direction, and the crystal quality was improved as compared with the silicon ingot produced by the casting method. Thus, the effectiveness by using the container 11 of the embodiment to grow a crystal by the chiloporous method was confirmed.
  • FIG. 4 is a diagram showing a schematic configuration of the crystal growth apparatus used in Comparative Example 4.
  • the crystal growth apparatus 2 is different from the crystal growth apparatus 1 of the embodiment in that a general straight barrel type container 21 is used.
  • silicon ingots were manufactured by the chiroporous method using the crystal growth apparatus 2.
  • a straight barrel container having an inner diameter of 125 mm was used as the cylindrical container 21, a straight barrel container having an inner diameter of 125 mm was used.
  • the input amount of silicon raw material, the growth condition of silicon polycrystal, and the like were the same as in the example.
  • Comparative Example 1 the container was caught during the pulling of the crystal, and as a result of the growth progressing, the volume expansion stress concentrated on the bottom of the container and the container was destroyed.
  • the container 21 after the silicon ingot was taken out was confirmed, peeling of the release material 22 was not observed in most of the bottom and side surfaces of the container 21, but in the portion corresponding to the top of the silicon ingot, There were many regions where the release material 22 disappeared.
  • the laterally expanded silicon polycrystal 28 bites into the release material 22, and in this state, the release material 22 is peeled off by being forcibly pulled up. It is considered that it was difficult to take out the silicon ingot because the polycrystal was fixed to the container 21.
  • the silicon polycrystal 28 bites into the release material 22 during the growth process, and the pulling operation was hindered.
  • the silicon melt is compressed without relaxation of the stress due to volume expansion during the solidification of the silicon, and the melt is intense from the center of the container.
  • the phenomenon of spraying up and splashing outside the container occurred (silicon melt sprayed up). Since squirting occurred during the growth process, good crystal growth was hindered, and furthermore, expensive device members were damaged.
  • the taper angle ⁇ at which the silicon ingot can be taken out from the container without any problem is in the range of 10 ° to 80 °. Further, it was found that the taper angle ⁇ is more preferably 20 ° to 70 ° in consideration of the ease of peeling of the release material at the curved portion and the volume expansion stress of Si in the lateral direction.
  • the invention made by the present inventor has been specifically described based on the embodiment.
  • the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
  • the container 11 is made of a quartz material.
  • the container 11 may be made of a material composed of any one of quartz, Si3N4, SiC, graphite, and alumina, or a combination of two or more. it can.
  • the container 11 since the stress accompanying the volume expansion at the time of silicon solidification is dispersed in the inclined portion 11b, it is also effective when a silicon ingot is manufactured by a casting method. Even when a silicon ingot is manufactured by a casting method, the surface of the silicon melt may be positioned at the inclined portion 11b. Even when the shape of the container 11 is changed from a cylindrical shape to a rectangular tube shape, the same results as in Examples 1 to 4 and Comparative Examples 1 to 4 are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

 育成されたシリコンインゴットを容器から容易に取り出すことができるとともに、シリコンインゴットの歩留まりの向上を図ることができるシリコンインゴット製造用容器及びシリコンインゴットの製造方法を提供する。 シリコン融液を凝固させてシリコン多結晶を成長させるための上面が開口された有底筒状のシリコンインゴット製造用容器において、該容器の側壁を、鉛直に形成された側面下部と、該側面下部に鉛直方向に対して所定のテーパ角θで上面開口部に向かって拡がるように傾斜して連設された側面中部と、該側面中部に鉛直に連設された側面上部とから構成する。 このシリコンインゴット製造用容器に、シリコン融液の表面が傾斜部に位置するようにシリコン原料を投入し、カイロポーラス法により極低速で種結晶を引き上げながらシリコン多結晶を成長させる。

Description

シリコンインゴット製造用容器及びシリコンインゴットの製造方法
 本発明は、太陽電池グレードのシリコンインゴットを製造するためのシリコンインゴット製造用容器及びシリコンインゴットの製造方法に関する。
 従来、太陽電池等に用いられるシリコンインゴットの製造方法として、ルツボや鋳型等の容器中にシリコン融液を収容し、このシリコン融液を下方から凝固させてシリコン多結晶を成長させるキャスト法(鋳造法)が知られている(例えば特許文献1~5)。このキャスト法によれば、シリコン融液が凝固するときに結晶成長の方向が一定に揃うので、粒界による比抵抗の増大を抑制した良質のウェハを製造することができる。また、キャスト法によれば、シリコンインゴットの大量生産が可能となる。
 一般に、キャスト法に用いられる容器の内面には離型材が形成されている。キャスト法によりシリコンインゴットを製造する場合、シリコン融液を容器内で凝固させるときにシリコンが容器と反応すると、シリコン結晶が容器に固着してしまいインゴットを取り出しにくくなる。そのため、容器の内面に離型材を形成することにより、シリコン結晶が容器と直接接触しないようにしている。
 また、シリコン融液の密度は2.5g/cmであるが、固体密度は2.33g/cmであるため、シリコン融液を容器内で凝固させるときに約7%体積が膨張することとなる。そして、この体制膨張に伴い容器に応力が生じるため、容器からシリコンインゴットを取り出しにくくなり、さらには容器に形成した離型材が損壊することもある。離型材が損壊すると、シリコン結晶が容器に接触して固着するため、シリコンインゴットの取出性がさらに悪化する。
 そこで、シリコン融液を凝固させる際の体積膨張に伴う応力を緩和する技術が必要とされている。例えば、容器の開口部を鉛直方向から外側に傾けることで、容器側面に垂直な応力成分を緩和して、シリコン結晶が容器に食い込みにくくする技術が提案されている(例えば特許文献1)。特許文献1では、容器の開口部に向かって拡がる方向に側面全体を3°以上で傾斜させたテーパ付き容器が開示されている。
実開昭58-22936号公報 実公平3-22907号公報 特開平6-345416号公報 特開平10-182133号公報 特表2010-503596号公報
 しかしながら、特許文献1に記載のテーパ付き容器を用いる場合、容器側面のテーパ角が小さすぎると、シリコン凝固時の体積膨張に伴う応力を分散する効果が得られないため、容器からシリコンインゴットを取り出しにくく、離型材が損壊するという問題は解消されない。また、容器側面のテーパ角が大きすぎると、シリコンインゴットの外周部を切断するときのロスが大きくなり、歩留まり(原料採取率)が低下してしまうため望ましくない(図5参照)。
 また、キャスト法によりシリコンインゴットを製造する場合、離型材が形成されている容器底部からシリコン結晶を成長させることとなるため、結晶粒界を低減することが困難となる。その結果、キャリアの損失による結晶品質の低下や、結晶粒界の成長による歩留まりの低下を招いてしまう。
 本発明は、上記課題を解決すべくなされたもので、育成されたシリコンインゴットを容器から容易に取り出すことができるとともに、シリコンインゴットの歩留まりの向上を図ることができるシリコンインゴット製造用容器及びシリコンインゴットの製造方法を提供することを目的とする。
 請求項1に記載の発明は、シリコン融液を凝固させてシリコン多結晶を成長させるための上面が開口された有底筒状のシリコンインゴット製造用容器であって、
 該容器の側壁が、鉛直に形成された側面下部と、該側面下部に鉛直方向に対して所定のテーパ角θで上面開口部に向かって拡がるように傾斜して連設された側面中部と、該側面中部に鉛直に連設された側面上部とから構成されていることを特徴とする。
 請求項2に記載の発明は、請求項1に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、10~80°であることを特徴とする。
 請求項3に記載の発明は、請求項2に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、15~60°であることを特徴とする。
 請求項4に記載の発明は、請求項2に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、20~70°であることを特徴とする。
 請求項5に記載の発明は、請求項2に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、20~45°であることを特徴とする。
 請求項6に記載の発明は、請求項1から5の何れか一項に記載のシリコンインゴット製造用容器において、
 石英、Si3N4、SiC、グラファイト、アルミナの何れか1種からなる材料又は2種以上を組み合わせた材料で構成されていることを特徴とする。
 請求項7に記載の発明は、請求項1から6の何れか一項に記載のシリコンインゴット製造用容器に、シリコン融液の表面が前記傾斜部に位置するようにシリコン原料を投入し、
 前記シリコン融液を凝固させてシリコン多結晶を成長させることを特徴とする。
 請求項8に記載の発明は、請求項7に記載のシリコンインゴットの製造方法において、 前記シリコン融液の表面に種結晶を接触させて、
 前記種結晶を引き上げながら、前記シリコン融液を表面から凝固させてシリコン多結晶を成長させることを特徴とする。
 請求項9に記載の発明は、請求項8に記載のシリコンインゴットの製造方法において、 前記シリコン融液が凝固する際の体積膨張に応じた速度で前記種結晶を引き上げることを特徴とする。
 以下に、本発明を完成するに至った経緯について説明する。
 従来、結晶成長法の一つとして、融液表面に種結晶を接触させ、融液面から下方に向けて結晶を成長させるカイロポーラス法が知られている。このカイロポーラス法では、異物の少ない融液面から結晶が成長するので、キャスト法よりも高品質のシリコン結晶が期待できる。本発明者は、離型材が形成されている容器底部から結晶成長させるキャスト法に代えて、カイロポーラス法を利用してシリコンインゴットを製造する方法を確立すべく検討を重ねた。
 まず、カイロポーラス法を利用してシリコンインゴットを製造するに際し、成長結晶を極低速で引き上げることにより、シリコン凝固時の体積膨張に伴う縦方向の応力を緩和する方法を案出した。しかしながら、この方法でシリコンインゴットを製造した場合、容器の内面に形成された離型材が面状に消失している箇所が多発し、シリコンインゴットの取り出しも困難であった。
 原因を追究すべくシリコンインゴットを製造した後の容器を観察したところ、シリコンインゴットのトップ周縁、すなわちシリコン融液の表面付近が凝固して結晶化した部分に対応する部位で、離型材が面状に消失していることが明らかとなった。また、シリコンインゴットのトップ周縁に、周方向にわたって高さ0.1~0.5mm程度の凸部が形成されていることが確認された。
 一方、キャスト法によりシリコンインゴットを製造した場合も同様に、シリコンインゴットのトップに対応する部位で離型材が消失していた。これより、結晶成長法によらず、シリコン融液の表面付近が凝固するときの体積膨張に伴う応力が、他の部分が凝固するときの体積膨張に伴う応力より著しく大きくなると考えられた。また、カイロポーラス法を利用した場合においては、シリコン融液の表面付近が凝固するときに、横方向に膨張したシリコン結晶(特にトップ周縁の凸部)が離型材に食い込み、この状態で半ば強引に引き上げられたことにより離型材が剥離したと考えられた。
 そして、シリコン融液の表面が位置することとなる部分に着目して容器の形状を改善することで、シリコン凝固時の体積膨張(特に横方向の体積膨張)に伴う応力を効果的に分散できることを見出し、これによりシリコンインゴットの容器からの取出性と歩留まりを両立させることができるとの知見を得て、本発明を完成した。
 本発明によれば、シリコン凝固時の体積膨張に伴い容器に生じる応力が緩和されるので、容器内面に形成された離型材が損壊するのを効果的に防止できる。したがって、育成されたシリコンインゴットが容器に固着することもなく、容易に取り出すことができる。
 また、シリコンインゴット製造用容器において、シリコン凝固時の体積膨張に伴う応力が大きくなる部分を傾斜部とし、応力が小さい部分(側面下部)については鉛直に形成しているので、シリコンインゴットの外周部を切断するときの加工ロスが小さくなる。したがって、シリコンインゴットの歩留まりの向上を図ることができる。
本発明を適用したシリコンインゴット製造用容器の断面図である。 本発明を適用したシリコンインゴット製造用容器を用いた結晶成長装置の一例を示す図である。 実施形態の結晶成長装置を用いたときのシリコン多結晶の成長過程を示す図である。 一般的な直胴型のシリコンインゴット製造用容器を用いた結晶成長装置を示す図である。 従来のテーパ型容器を用いたときに発生するロスを示す図である。 本発明の実施形態で使用するシリコンインゴット製造用容器側壁の断面(a)、容器上部から底壁面に向かって眺めた場合の容器形状の例(角筒状容器(b)、円筒状容器(c))、およびそれらの好適な厚さや長さの概要説明図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、本発明を適用したシリコンインゴット製造用容器の断面図である。図1に示すシリコンインゴット製造用容器(以下、容器)11は、例えば石英材料を成型してなる、上面が開口された有底の円筒状又は角筒状の容器である。容器11の側壁は、鉛直に形成された側面下部(以下、直胴部)11cと、側面下部11cにテーパ角(鉛直方向に対する傾斜角)θで上面開口部に向かって拡がるように傾斜して連設された側面中部(以下、傾斜部)11bと、傾斜部11bに鉛直に連設された側面上部11aに区画される。
 ここで、図6(a)に示すように、容器11の側壁11aおよび底壁11dの厚さをT1とすると、厚さT1は5~20mm程度が望ましい。5mm未満だと容器材料の脆弱性が問題となる。一方、20mmより大きいと容器の断熱性増加による影響を無視できなくなり、シリコンの溶融時間が増大し、リードタイムや電力コストが増大するため生産性が低下してしまう。同様の理由により、側面下部11cの厚さT2は5~30mm程度が望ましい。側面下部11cの長さLcは、特に制限はないが、容器内で原料を融解する場合には、側面下部11cより上の長さLa+Lbと、側面下部11cの長さLcとの比(La+Lb)/Lcが「2」以上であることが望ましい。シリコン原料は固体の密度が液体よりも小さいので、融液面位置が少なくともLcの位置(直胴部分11cの最上端)まで来るようにするには、容器内に原料を少なくともLcの2倍の高さの位置まで充填する必要がある。原料の形状により、容器への充填の程度は異なるが、上記の寸法比にしておけば、実用上十分である。なお、上述した容器11の厚さや長さは、角筒状の容器の場合に限定されず、円筒状の容器の場合も同様である。
 また、図6(a)に示すように、容器11の上部および下部の内部寸法をそれぞれm1,m2とすると、両者の差(m1-m2)は2~50mm,好ましくは10~20mmの範囲にあることが望ましい。2mmを下回ると結晶成長中のシリコンインゴットが離型材および容器に食い込むのを防ぎきれない。50mmを超えると、容器側面傾斜部およびその側面下部の厚肉部分の断熱性が増加するため、50mm以下の場合と比べてシリコンの溶融時間が増大し、リードタイムや電力コストが増大するため生産性が低下してしまう。従って、例えば150~270kg程度のSiインゴットを角筒状もしくは円筒状の容器から得る場合、m2を600mm、m1を602~650mm、好ましくは610mm~620mmにすると良い。
 容器11にシリコン融液を収容し、このシリコン融液を凝固させてシリコン多結晶を成長させる場合、傾斜部11bに位置するシリコン融液が凝固するときの体積膨張に伴う応力は、傾斜部11bに垂直な成分と平行な成分に分散されることとなる。例えば、テーパ角θを3°以上90°未満とすることで、離型材が剥離しない程度に体積膨張に伴う応力を分散させることができる。実験により、テーパ角θを3°未満とした場合には、育成されたシリコンインゴットが離型材に食い込み、離型材の損壊が確認された。そこで、テーパ角θは3°以上とするのが望ましい。
 図2は、容器11を用いた結晶成長装置の一例を示す図である。
 図2に示す結晶成長装置1は、カイロポーラス法によりシリコンインゴットを製造するためのものであり、内面にSi3N4焼結体等の離型材12が形成された容器11を用いている。結晶成長装置1では、容器11がグラファイト製のサセプタ13に支持されており、サセプタ13の外周にはヒータ14が配置されている。また、容器11の中央には結晶引き上げ軸15が配置されており、その先端にはSi単結晶(又はSi多結晶)からなる種結晶16が取り付けられる。
 結晶成長装置1を用いてカイロポーラス法によりシリコンインゴットを製造する場合、シリコン融液17の表面が傾斜部11bに位置するように、シリコン原料(例えばシリコン融液)を容器11に投入する。そして、シリコン融液17の表面に種結晶16を接触させて、シリコン融液17を表面から凝固させてシリコン多結晶を成長させる。
 このとき、種結晶16を極低速で引き上げながらシリコン多結晶を成長させることにより、シリコン凝固時の体積膨張に伴う縦方向の応力を緩和することができる。つまり、種結晶16の引き上げ速度は、シリコン融液17が凝固する際の縦方向の体積膨張に応じて設定される。
 また、シリコン融液17の表面は、容器11の傾斜部11bに位置しているので、融液表面付近が凝固するときの体積膨張に伴い容器11に生じる横方向の応力は分散される。つまり、テーパ角θの大きさに応じて傾斜部11bに垂直な応力成分が小さくなるので、シリコン結晶が離型材12に食い込むのを防止できる。したがって、シリコン多結晶の成長過程において離型材12が損壊しないので、育成されたシリコンインゴットが容器に固着することもなく、容易に取り出すことができる。
 なお、容器11の寸法(直胴部11cの内径、テーパ角θ等)や投入するシリコン原料の量(シリコン融液17の表面位置)を適切に設定することで、種結晶16の引き上げ操作によりシリコンインゴットのトップ周縁が容器11(傾斜部11b)の内面に接触しないようにすることもできる。
 例えば、傾斜部11bに位置するシリコン融液の表面付近が凝固する際に、種結晶16から容器の直胴部分まで液面上に形成された結晶をLだけ引き上げる場合を考えると、引上げ前後で融液表面の直径は2Ltanθだけ拡径されることになる。したがって、この拡径量(2Ltanθ)が、シリコン凝固時の横方向の体積膨張より大きければ、シリコンインゴットのトップ周縁が容器11(傾斜部11b)の内面に接触しない。
 シリコン融液は、凝固する際に横方向に1mm程度膨張することが知られており、また、本発明者等の実験により、シリコンインゴットのトップ周縁には高さα(0.1~0.5mm程度)の凸部が形成されることが判明しているので、拡径量(2Ltanθ)が(1+α)よりも大きくなるように種結晶16の引上げ量Lとテーパ角θを設定することにより、シリコンインゴットのトップ周縁が容器11(傾斜部11b)の内面に接触しないようにすることができる。例えば、L=10.5(mm)、α=0.1(mm)とした場合、θ≧3°となる。
 また、容器11において、シリコン凝固時の体積膨張に伴い大きな応力が生じる部分だけを傾斜部11bとし、応力が小さい側面下部11cについては鉛直に形成しているので、シリコンインゴットの外周部を切断して円柱状又は角柱状に加工するときのロスが小さくなる。したがって、シリコンインゴットの歩留まりの向上を図ることができる。
 つまり、図5に示すように、容器の側面全体を傾斜させると、シリコン凝固時の体積膨張に伴う応力を分散することはできるが、シリコンインゴットの底部外径と上部外径の差が大きくなるため、シリコンインゴットを円柱状又は角柱状に加工する際にロスが大きくなる。
 例えば、容器の側面全体のテーパ角が10°の角筒状容器を用いて、ボトム径が90mm,高さが110mm,トップ径が128mmのインゴットを得た場合、ロス体積は全体の56%となる。同様に、ボトム径が90mm,高さが110mmのインゴットを作製するために、テーパ角を20°,30°,45°,70°とした場合、角筒状容器とインゴットの上部外径が著しく増大して炉が大型化するうえ、容器底面にあるインゴットのロス率はそれぞれ計算上70%,79%,87%,97%となる。このように、容器の側面全体を傾斜させてテーパ角をつける従前の方法を行う場合、角柱状インゴットの歩留りは著しく低下する。この歩留りを少しでも高めようとすると、切り出し回数が増えてしまうというデメリットも存在する。
 これに対して、本発明の実施形態に係る容器11を使用した場合では、インゴットTop側面上部にのみテーパがあり、他の側面部はほぼ直胴であるため、ロス体積率は36%であり、そのテーパ角度を10°,20°,30°,45°,70°と変更しても、ロス体積率は36%のままである。
 さらに、カイロポーラス法を利用してシリコンインゴットを製造する際に、種結晶を引き上げながらシリコン多結晶を成長させるため、引き上げ速度を適当に調整することにより、シリコンインゴットのトップ周縁が離型材12と接触しない状態を保持しつつ成長を進めることができる。したがって、シリコンインゴットが離型材12に食い込むのをより効果的に防止できるので、食い込みにより成長結晶の引き上げ操作が阻害されることもない。
 また、シリコン凝固時の体積膨張に応じて種結晶16を引き上げることで、体積膨張に伴う縦方向の応力が緩和されるので、シリコン融液が圧縮されることによる不具合も生じない。
 なお、テーパ角θを3°以上90°未満とすることで、シリコン凝固時の体積膨張に伴う応力を、離型材12が損壊しない程度に分散させることができるが、テーパ角θが小さすぎると体積膨張に伴う応力の分散効果が小さく、場合によっては離型材12が損壊する虞もある。また、テーパ角θが大きすぎると、傾斜部11bの高さを確保するために傾斜部11bが横に大きく張り出してしまうため、装置の大型化を招き、ロスが増大する要因となる上、テーパ面と直胴部分との境界である湾曲部分にて、離型材が割れやすくなるため、インゴットの取り出しがうまくできなくなる可能性がある。このような観点から、テーパ角θは、10°~80°、好ましくは20°~70°、或いは15°~60°、より好ましくは20°~45°の範囲で設定するのが望ましい。
[実施例]
 実施例1から4では、結晶成長装置1を用いてカイロポーラス法によりシリコンインゴットを製造した。容器11は円筒状であって、その寸法は、直胴部11a上の開口部の内径(m1)が146mm、直胴部11c底部の内径(m2)が125mm、直胴部11cの高さLcが30mm、La+Lbが60mmとなるようにした。傾斜部11bの高さLbは、テーパ角θ=20°,30°,45°,70°のとき、それぞれ29mm,18mm,10mm,4mmとした。
 まず、ボロン(濃度:1.0×1016atom/cm)を添加したシリコン融液を円筒状容器11に流し込み、シリコン融液の表面を傾斜部11bの中間点(直胴部11cとの境界から5.25mm)に位置させ、深さ方向の温度勾配が10℃/cmとなるようにシリコン融液を保持した。
 そして、結晶方位が<100>で3.5mm角のSi単結晶からなる種結晶16をシリコン融液の表面に接触させ、この種結晶16を1mm/hで手動により引き上げながらシリコン多結晶を成長させた。このとき、容器11および種結晶16を5rpmで回転させ、種結晶16を中心としてシリコン多結晶を同心円状に成長させた。3時間の成長によりシリコン融液を完全に固化させ、実施例に係るシリコンインゴットを得た。なお、容器11の底部の温度が、シリコンの凝固点である1410℃になった時点を結晶成長の終点とみなした。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4によるシリコンインゴットの製造では、図3に示すように、成長過程においてシリコン多結晶18が離型材12に食い込んで引き上げ操作が妨げられることはなかった。つまり、傾斜部11bを形成した容器11を用いるとともに、種結晶16を引き上げながらシリコン多結晶を成長させることにより、シリコン融液17に生じる圧縮応力が効果的に緩和されていた。
 また、製造されたシリコンインゴットを容易に容器11から取り出すことができた。また、これまで問題となっていた容器11とシリコンインゴットのトップ周縁との融着は生じなかった。また、直胴状のシリコンインゴットに加工したときにインゴットが割れるなどの実用上の問題は発生しなかった。
 さらに、得られたシリコンインゴットにおいては結晶粒界が縦方向に揃っており、キャスト法により製造したシリコンインゴットに比較して結晶品質が向上していた。このように、実施形態の容器11を使用してカイロポーラス法で結晶成長させることによる有効性が確認された。
 なお、実施例1~4では、傾斜部11bのテーパ角θを20°、30°、45°、70°とした場合について示したが、テーパ角θを60°とした場合も同様の結果が得られた。また、テーパ角θを10~80°の範囲で少しずつ変化させて実験を行って比較した結果、テーパ角θが15~60°である場合にシリコンインゴットの容器からの取出性がより良好であり、テーパ角θが20~45°である場合の歩留りが最も優れることが確認された。
[比較例]
 図4は、比較例4で使用した結晶成長装置の概略構成を示す図である。図4では、実施形態の結晶成長装置1と同一又は対応する構成要素に対して20番台の符号を付している。結晶成長装置2では、一般的な直胴型の容器21を用いている点が、実施形態の結晶成長装置1と異なる。
 比較例1~4では、結晶成長装置2を用いてカイロポーラス法によりシリコンインゴットを製造した。円筒状容器21には、内径が125mmの直胴型の容器を使用した。シリコン原料の投入量、シリコン多結晶の成長条件等については実施例と同じとした。
 比較例1では、結晶引き上げ中に容器に引っかかり、その状態で成長が進んだ結果、体積膨張応力が容器の底に集中して容器が破壊された。シリコンインゴットを取り出した後の容器21を確認したところ、容器21の底面及び側面の大半の領域では離型材22の剥離は認められなかったが、シリコンインゴットのトップに対応する部分において、面状に離型材22が消失している領域が多発していた。シリコン融液27の表面付近が凝固するときに、横方向に膨張したシリコン多結晶28が離型材22に食い込み、この状態で半ば強引に引き上げられたことにより離型材22が剥離し、さらにはシリコン多結晶が容器21に固着したために、シリコンインゴットの取り出しが困難になったと考えられる。
 比較例2のテーパ角8°の場合、カイロポーラス法での結晶引き上げの際に結晶が容器に引っかかることはなかったが、インゴットTop側面と離型材の摩擦が大きく、取り出しにくい結果となった。
 比較例3の場合、容器のテーパ部分と直胴部分の湾曲部分にて離型材が割れてしまったため、その部分でインゴットと容器とが融着してインゴットを取り出すことができなくなった。湾曲部分にて脆弱化な離型材が、体積膨張応力に耐えられなかったと思われる。
 比較例4によるシリコンインゴットの製造では、図4に示すように、成長過程においてシリコン多結晶28が離型材22に食い込み、引き上げ操作が妨げられた。そして、成長結晶の上方への移動が規制された(引き上げ速度が低下した)結果、シリコン凝固時の体積膨張による応力が緩和されずにシリコン融液が圧縮され、融液が容器の中央から激しく噴き上がって容器外に飛散するという現象が生じた(シリコン融液の噴き上げ)。成長過程において噴き上げが発生したため、良好な結晶成長が阻害され、さらには高価な装置部材が損傷してしまった。
 これらの結果を総合すると、シリコンインゴットの容器からの取出しが問題なく可能なテーパ角θは10°~80°の範囲内である場合であることが判明した。
 また、湾曲部分の離型材の剥がれ易さ、横方向のSiの体積膨張応力を考慮すると、テーパ角θが20°~70°である場合がより望ましいことが分かった。
 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 例えば、実施形態では、容器11を石英材料で構成した場合について示したが、石英、Si3N4、SiC、グラファイト、アルミナの何れか1種からなる材料又は2種以上を組み合わせた材料で構成することができる。
 また例えば、容器11によれば、シリコン凝固時の体積膨張に伴う応力が傾斜部11bで分散されるので、キャスト法によりシリコンインゴットを製造する場合にも有効である。キャスト法によりシリコンインゴットを製造する場合も、シリコン融液の表面が傾斜部11bに位置するようにすればよい。容器11の形状を円筒状から角筒状に変えた場合であっても、実施例1~4、比較例1~4と同様の結果が得られる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 結晶成長装置
11 シリコンインゴット製造用容器
11a 側面上部
11b 側面中部(傾斜部)
11c 側面下部(直胴部)
12 離型材
13 サセプタ
14 ヒータ
15 結晶引き上げ軸
16 種結晶
17 シリコン融液
18 シリコン多結晶
θ テーパ角

Claims (9)

  1.  シリコン融液を凝固させてシリコン多結晶を成長させるための上面が開口された有底筒状のシリコンインゴット製造用容器であって、
     該容器の側壁が、鉛直に形成された側面下部と、該側面下部に鉛直方向に対して所定のテーパ角θで上面開口部に向かって拡がるように傾斜して連設された側面中部と、該側面中部に鉛直に連設された側面上部とから構成されていることを特徴とするシリコンインゴット製造用容器。
  2.  前記テーパ角θが、10~80°であることを特徴とする請求項1に記載のシリコンインゴット製造用容器。
  3.  前記テーパ角θが、15~60°であることを特徴とする請求項2に記載のシリコンインゴット製造用容器。
  4.  前記テーパ角θが、20~70°であることを特徴とする請求項2に記載のシリコンインゴット製造用容器。
  5.  前記テーパ角θが、20~45°であることを特徴とする請求項2に記載のシリコンインゴット製造用容器。
  6.  石英、Si3N4、SiC、グラファイト、アルミナの何れか1種からなる材料又は2種以上を組み合わせた材料で構成されていることを特徴とする請求項1から5の何れか一項に記載のシリコンインゴット製造用容器。
  7.  請求項1から6の何れか一項に記載のシリコンインゴット製造用容器に、シリコン融液の表面が前記傾斜部に位置するようにシリコン原料を投入し、
     前記シリコン融液を凝固させてシリコン多結晶を成長させることを特徴とするシリコンインゴットの製造方法。
  8.  前記シリコン融液の表面に種結晶を接触させて、
     前記種結晶を引き上げながら、前記シリコン融液を表面から凝固させてシリコン多結晶を成長させることを特徴とする請求項7に記載のシリコンインゴットの製造方法。
  9.  前記シリコン融液が凝固する際の体積膨張に応じた速度で前記種結晶を引き上げることを特徴とする請求項8に記載のシリコンインゴットの製造方法。
PCT/JP2011/071210 2010-09-16 2011-09-16 シリコンインゴット製造用容器及びシリコンインゴットの製造方法 WO2012036263A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180044508.6A CN103097291B (zh) 2010-09-16 2011-09-16 硅锭制造用容器及硅锭的制造方法
JP2012534063A JP5877589B2 (ja) 2010-09-16 2011-09-16 シリコンインゴット製造用容器及びシリコンインゴットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207533 2010-09-16
JP2010207533 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036263A1 true WO2012036263A1 (ja) 2012-03-22

Family

ID=45831716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071210 WO2012036263A1 (ja) 2010-09-16 2011-09-16 シリコンインゴット製造用容器及びシリコンインゴットの製造方法

Country Status (4)

Country Link
JP (1) JP5877589B2 (ja)
CN (1) CN103097291B (ja)
TW (1) TWI539042B (ja)
WO (1) WO2012036263A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224505A (ja) * 2011-04-19 2012-11-15 Kyoto Univ Siインゴット結晶の製造方法
FR3111360A1 (fr) * 2020-06-15 2021-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’une pièce par solidification d’un matériau semi-conducteur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279663A (ja) * 2004-03-29 2005-10-13 Kyocera Corp シリコン鋳造装置
JP2007161548A (ja) * 2005-12-16 2007-06-28 Mitsubishi Materials Techno Corp 多結晶シリコン鋳造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327490A (ja) * 1999-05-18 2000-11-28 Mitsubishi Heavy Ind Ltd シリコン結晶の製造方法およびその製造装置
EP2248932A4 (en) * 2008-02-18 2011-05-11 Sumco Corp METHOD FOR GROWING SILICON MONOCRYSTALS
WO2010079826A1 (ja) * 2009-01-09 2010-07-15 住友電気工業株式会社 単結晶製造装置、単結晶の製造方法および単結晶

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279663A (ja) * 2004-03-29 2005-10-13 Kyocera Corp シリコン鋳造装置
JP2007161548A (ja) * 2005-12-16 2007-06-28 Mitsubishi Materials Techno Corp 多結晶シリコン鋳造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224505A (ja) * 2011-04-19 2012-11-15 Kyoto Univ Siインゴット結晶の製造方法
FR3111360A1 (fr) * 2020-06-15 2021-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’une pièce par solidification d’un matériau semi-conducteur
EP3926078A1 (fr) * 2020-06-15 2021-12-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de fabrication d'un cristal semi-conducteur

Also Published As

Publication number Publication date
JP5877589B2 (ja) 2016-03-08
CN103097291B (zh) 2016-04-20
TWI539042B (zh) 2016-06-21
JPWO2012036263A1 (ja) 2014-02-03
CN103097291A (zh) 2013-05-08
TW201229332A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
US8404043B2 (en) Process for producing polycrystalline bulk semiconductor
JP5596788B2 (ja) サファイア単結晶成長方法とその装置
CN101565185B (zh) 多晶硅棒的制造方法
JP2011042560A (ja) サファイア単結晶の製造方法およびサファイア単結晶の製造装置
JP5425421B2 (ja) モールディングおよび方向性結晶化によって半導体物質のウェハを製造する方法
US20100140558A1 (en) Apparatus and Method of Use for a Top-Down Directional Solidification System
EP1498516B1 (en) Single crystal silicon producing method, single crystal silicon wafer and ingot produced thereby
JP5877589B2 (ja) シリコンインゴット製造用容器及びシリコンインゴットの製造方法
JP4060106B2 (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
TWI737997B (zh) 矽晶錠的製造方法及矽晶錠的製造裝置
JP6390568B2 (ja) 酸化ガリウム単結晶育成用ルツボおよび酸化ガリウム単結晶の製造方法
JP4344021B2 (ja) InP単結晶の製造方法
EP2791398B1 (en) Crucible for the production of crystalline semiconductor ingots and process for manufacturing the same
CN111101194A (zh) 一种单晶硅晶棒的长晶方法
JP2017178741A (ja) シリコンインゴット製造用鋳型
JP2011251892A (ja) InP単結晶およびその製造方法
CN105088331B (zh) 一种c‑向生长蓝宝石单晶用小角坩埚
JP7318884B2 (ja) 鉄ガリウム合金の単結晶育成方法
JP4693932B1 (ja) 筒状シリコン結晶体製造方法及びその製造方法で製造される筒状シリコン結晶体
KR20190075411A (ko) 리니지 결함을 제거할 수 있는 도가니부재, 이를 이용한 고품질 사파이어 단결정 성장장치 및 그 방법
JP4747267B2 (ja) 衝撃緩和型多結晶シリコン
JPH10298000A (ja) 板状単結晶およびその製造方法
JPH11199362A (ja) 化合物半導体単結晶の製造方法
JP2003055083A (ja) 化合物半導体結晶成長用坩堝
JP2019172525A (ja) 単結晶育成用種結晶

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044508.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534063

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825261

Country of ref document: EP

Kind code of ref document: A1