JP2007161548A - 多結晶シリコン鋳造装置 - Google Patents

多結晶シリコン鋳造装置 Download PDF

Info

Publication number
JP2007161548A
JP2007161548A JP2005362898A JP2005362898A JP2007161548A JP 2007161548 A JP2007161548 A JP 2007161548A JP 2005362898 A JP2005362898 A JP 2005362898A JP 2005362898 A JP2005362898 A JP 2005362898A JP 2007161548 A JP2007161548 A JP 2007161548A
Authority
JP
Japan
Prior art keywords
crucible
raw material
silicon
casting apparatus
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005362898A
Other languages
English (en)
Other versions
JP5132882B2 (ja
Inventor
Akihito Yanoo
明仁 矢野尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Techno Corp
Original Assignee
Mitsubishi Materials Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Techno Corp filed Critical Mitsubishi Materials Techno Corp
Priority to JP2005362898A priority Critical patent/JP5132882B2/ja
Publication of JP2007161548A publication Critical patent/JP2007161548A/ja
Application granted granted Critical
Publication of JP5132882B2 publication Critical patent/JP5132882B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

【課題】一回の鋳造作業におけるシリコンインゴットの製造量を増加させてコストの低減を図ることが可能な多結晶シリコン鋳造装置を提供する。
【解決手段】シリコン固形原料T1を収容する有底筒状のルツボ3と、ルツボ3を加熱して収容したシリコン固形原料T1を溶融させるヒーター6と、ルツボ3が載置され、ヒーター6によって加熱されて溶融したシリコン固形原料T1を冷却しつつ凝固させる冷却板5と、ルツボ3の外周に設けられた断熱部材9とを備える多結晶シリコン鋳造装置Bにおいて、ルツボ3に、上端3c側の開口部分を上方に向かうに従い拡開する原料積載部材3eを設ける。
【選択図】図1

Description

本発明は、多結晶シリコンのシリコンインゴットを製造するための多結晶シリコン鋳造装置に関する。
従来、例えば太陽電池の発電素子などに用いられる多結晶シリコンのシリコンインゴットを製造する多結晶シリコン鋳造装置には、例えば図3に示すような、中空壁からなるチャンバー1内に、区画した空間を画成するチャンバー内断熱部材2が設けられ、このチャンバー内断熱部材2の空間内に、石英ガラスなどで有底筒状に形成され、その内部にチップ状のシリコン固形原料T1が収容されるルツボ3と、有底筒状に形成されてルツボ3を収容する桶4と、桶4とともにルツボ3が載置され、溶融したシリコン固形原料(シリコン融液)T2を冷却する冷却板5と、ルツボ3の上方に設けられた上部ヒーター(ヒーター6)6aと、冷却板5の下方に設けられた下部ヒーター(ヒーター6)6bとを備えて構成されたものがある。また、この種の多結晶シリコン鋳造装置Aにおいては、チャンバー内断熱部材2で画成した空間が冷却板5を境に、ルツボ3側の上室7と下部ヒーター6b側の下室8とに区分され、さらに、ルツボ3の側壁3bと桶4の側壁部4aの間には、ルツボ3の外周を覆うようにルツボ断熱部材(断熱部材)9が設けられている。
上記の多結晶シリコン鋳造装置Aにおいては、ルツボ3にシリコン固形原料T1を投入してこれを供給した段階で、チャンバー内断熱部材2で画成した空間に例えばアルゴンガスなどの不活性ガスを流入し、このチャンバー内断熱部材2内を不活性雰囲気にする。そして、上部ヒーター6aと下部ヒーター6bにより上方と下方とからルツボ3を加熱しつつシリコン固形原料T1を加熱してこれを溶融させる。このとき、シリコン固形原料T1は、溶融とともにその全体の見掛けの体積が減じてゆき、シリコン融液T2の体積が、例えば前記見掛けの体積に対して2/3〜1/2程度になる。
このため、一回の鋳造作業で極力大きなシリコンインゴットTを製造できるように、一般に、ルツボ3にシリコン固形原料T1を供給する際には、ルツボ3の開口する上端3cよりも上方に、シリコン固形原料T1を積み上げて盛るように供給している。すなわち、ルツボ3内にシリコン固形原料T1を充填した後に、さらにシリコン固形原料T1を供給し、ルツボ3の上端3cよりも上方に盛られたシリコン固形原料T1が、ルツボ3の軸線O1に沿う断面で山形形状を呈するように供給している。このようにシリコン固形原料T1を供給した場合には、シリコン固形原料T1が溶融してその見掛けの体積が減少してゆくとともに、ルツボ3の上方に盛られたシリコン固形原料T1がルツボ3内に収容されてゆくことになる。よって、ルツボ3の上方にシリコン固形原料T1を盛るように供給することで、一回の鋳造作業により、より大きなシリコンインゴットTを製造することが可能とされる。
そして、上記のようにシリコン固形原料T1を完全に溶融させた段階で、冷却板5によりルツボ3の底部3a側からシリコン融液T2を冷却してゆく。このとき、シリコン融液T2は、ルツボ3の底部3aから上方に向けて高温となる温度勾配に沿って一方向に結晶を成長させながら凝固してゆき、これにより、結晶性に優れた高純度のシリコンインゴットTが製造される。ちなみに、上記のような、ルツボ3の底部3aから上方に向けて高温となる温度勾配を付与しながらシリコン融液T2を結晶化するシリコンインゴットTの製造方法は、一般に、一方向凝固法と称されている(例えば、特許文献1、特許文献2、特許文献3参照)。
特開昭62−260710号公報 特開2000−290096号公報 特開2000−319094号公報
しかしながら、上記の多結晶シリコン鋳造装置Aにおいては、ルツボ3の開口する上端3cよりも上方に、山形状に盛られたシリコン固形原料T1が、その積上げ時や加熱時に崩れてルツボ3の外に落下してしまう場合があった。また、このようなシリコン固形原料T1の山崩れを防止するために、シリコン固形原料T1の積上げ量を減じた場合には、一回の鋳造作業で製造されるシリコンインゴットT量が少なくなり、製造効率の低下、ひいては製造したシリコンインゴットTのコスト高を招くという問題があった。
一方で、一般に、シリコン融液T2が凝固した後には、ルツボ3を破砕することによりシリコンインゴットTをルツボ3から取り出している。このため、鋳造作業毎にルツボ3が消費されることになり、この観点からも一回の鋳造作業でより多くのシリコンインゴットTを製造し、シリコンインゴットTの製造に掛かるコスト、ひいてはシリコンインゴットTのコストの低減を図ることが強く望まれていた。
本発明は、上記事情を鑑み、一回の鋳造作業におけるシリコンインゴットの製造量を増加させてコストの低減を図ることが可能な多結晶シリコン鋳造装置を提供することを目的とする。
上記の目的を達するために、この発明は以下の手段を提供している。
本発明の多結晶シリコン鋳造装置は、シリコン固形原料を収容する有底筒状のルツボと、該ルツボを加熱して収容した前記シリコン固形原料を溶融させるヒーターと、前記ルツボが載置され、前記ヒーターによって加熱されて溶融した前記シリコン固形原料を冷却しつつ凝固させる冷却板と、前記ルツボの外周に設けられた断熱部材とを備える多結晶シリコン鋳造装置において、前記ルツボには、上端側の開口部分を上方に向かうに従い拡開する原料積載部材が設けられていることを特徴とする。
また、本発明の多結晶シリコン鋳造装置においては、前記原料積載部材が前記ルツボに対して分離可能に設けられていることが望ましい。
さらに、本発明の多結晶シリコン鋳造装置においては、前記断熱部材の上端面が、前記原料積載部材の外面に沿うように形成されているとともに、前記原料積載部材の外面に近接または当接されていることがより望ましい。
また、本発明の多結晶シリコン鋳造装置において、前記冷却板は、側端側が上方に延出されて底板部と側壁部を備える略有底筒状に形成されていることが望ましい。
さらに、本発明の多結晶シリコン鋳造装置においては、前記冷却板がカーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンで形成されていることがより望ましい。
本発明の多結晶シリコン鋳造装置によれば、ルツボに、上端側の開口部分を上方に向かうに従い拡開する原料積載部材が設けられていることにより、すなわち原料積載部材が設けられることによって略朝顔状に形成されていることにより、ルツボの開口する上端よりも上方に、より多くのシリコン固形原料を供給することができ、一回の鋳造作業で大きなシリコンインゴットを製造することが可能になる。また、原料積載部材がルツボに対して開口部分を拡開するように設けられていることにより、シリコン固形原料を盛るように供給した場合においても、シリコン固形原料の山形形状の頂角を、従来のルツボに供給したシリコン固形原料の頂角よりも鈍角としてシリコン固形原料を盛ることができる。このため、ルツボの上方に盛られたシリコン固形原料を安定した状態で維持することができ、山崩れが生じることを防止できる。これにより、より多くのシリコン固形原料を安定して供給しつつシリコンインゴットの製造効率を向上させて、そのコストの低減を図ることが可能になる。
また、ルツボに原料積載部材が設けられて略朝顔状に形成されることで、供給したシリコン固形原料に対して、原料積載部材と接触する面積の分だけ多くの輻射熱を作用させることができる。これにより、シリコン固形原料を早く溶融させることができ、効率的にシリコンインゴットを製造することが可能になる。
さらに、シリコン固形原料の供給量を増大可能に設けた原料積載部材が、ルツボに対して分離可能とされていることによって、シリコン固形原料を溶融した際にシリコン融液の液面(シリコンインゴット)がルツボ内に位置するようにシリコン固形原料を供給した場合には、シリコン融液を冷却して凝固させた段階で、原料積載部材をルツボから取り外し、ルツボのみを取り壊してシリコンインゴットを取り出すことが可能になる。これにより、大きなシリコンインゴットを製造しつつ、原料積載部材を次回の鋳造作業に再利用することができるため、シリコンインゴットのコストの低減を図ることが可能になる。
また、断熱部材の上端面が、拡開した原料積載部材の外面に沿うように形成され、かつ断熱部材の上端面が原料積載部材の外面に近接または当接されていることによって、供給したシリコン固形原料を溶融させる際に、加熱によって軟化する原料積載部材を断熱部材で支持することが可能になる。これにより、ルツボに対して拡開するように、すなわちルツボよりも外方に延出するように原料積載部材を形成した場合においても、原料積載部材が軟化して垂下するように変形することを防止でき、確実に原料積載部材を再利用できる形状で維持することが可能になる。
さらに、冷却板が、底板部と側壁部を備える有底筒状を呈するように形成されていることによって、冷却板の底板部にルツボを載置した状態で、ルツボを冷却板に収容するように設けることができる。これにより、冷却板をシリコン融液の冷却に使用できるとともに、ルツボを収容する桶としても利用することができるため、従来の多結晶シリコン鋳造装置のように桶を別途設ける必要がなく、この桶の占有スペースを、例えばルツボを大きく形成するなど有効に利用することが可能になる。また、桶が冷却板やヒーターとルツボの間に介在されていないことにより、シリコン固形原料を溶融させる際やシリコン融液を凝固させる際の伝熱性を向上させることが可能になり、エネルギー効率を向上させて効率的にシリコンインゴットを製造することが可能になる。
また、冷却板がカーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンの熱伝導率の高い素材で形成されていることによって、さらに加熱や冷却を効率的に行なうことが可能になる。これにより、シリコンインゴットの製造に掛かるコストのさらなる低減を図ることが可能になる。
以下、図1を参照し、本発明の第1実施形態について説明する。本実施形態は、例えば太陽電池の発電素子などに用いられる多結晶シリコンのシリコンインゴットを製造する多結晶シリコン鋳造装置に関するものである。
本実施形態の多結晶シリコン鋳造装置Bは、中空壁からなるチャンバー1内に収容され、このチャンバー1内に所定の容積の空間を画成するように設けられたチャンバー内断熱部材2の内部に、シリコン固形原料T1を収容する有底円筒状のルツボ3と、ルツボ3の上方及び下方に配置され、ルツボ3を加熱する上部ヒーター6a及び下部ヒーター6b(ヒーター6)と、ルツボ3が載置され、ルツボ3の底部3a側から溶融したシリコン固形原料T1(シリコン融液T2)を冷却して結晶化させつつ凝固させるための冷却板5と、ルツボ3の外周を覆うように設けられたルツボ断熱部材(断熱部材)9とを備えて構成されている。
ここで、チャンバー内断熱部材2で囲まれて画成された空間は、冷却板5を境に上室7と下室8に区分されており、ルツボ3、上部ヒーター6a及びルツボ断熱部材9が上室7に収容され、下部ヒーター6bが下室8に収容されている。また、チャンバー1及びチャンバー内断熱部材2には、上室7や下室8の内部に、例えばアルゴンガスなどの不活性ガスを供給する図示せぬ不活性ガス供給手段や、チャンバー1の中空壁の内部に冷却水を供給してこれを循環させる図示せぬ冷却材供給手段などが別途設けられている。
ルツボ3は、石英ガラスで有底筒状に形成されたものであり、上下方向に延びる軸線O1に直交する断面が矩形状を呈するように形成されている。また、本実施形態のルツボ3は、その側壁3bが底部3aに直交しつつ軸線O1に沿って垂直に延設されている。一方、ルツボ3の開口部分の側壁3b上端3cには、この上端3cに下端が連接されて互いが一体に形成された原料積載部材3eが設けられている。この原料積載部材3eは、ルツボ3と同様に石英ガラスで形成されているとともに、ルツボ3の開口部分を画成する上端3cと繋がる下端から軸線O1方向上方の上端3fに向かうに従い拡開するように形成されている。すなわち、原料積載部材3eは、下端から上端3fに向かうに従い漸次ルツボ3の側壁3bよりも軸線O1直交方向外方に延出するように形成されて、軸線O1に直交する断面における開口面積が軸線O1方向上方に向かうに従い漸次大となる略朝顔状を呈するように形成されている。
冷却板5は、カーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンで形成されたものであり、略平板状の底板部5aと、底板部5aの側端から垂直に上方に向けて延出した側壁部5bとを有する有底筒状に形成されている。また、この冷却板5は、底板部5aの内部に冷却材が流通する内空を備えており、この内空に、例えばアルゴンガスなどの冷却用不活性ガスまたは冷却水を供給する図示せぬ冷却材供給手段が接続されている。そして、この冷却板5は、底板部5a上面の略中央に載置されたルツボ3を、ルツボ3の底部3aから側壁3bの軸線O1方向略中央までの部分が側壁部5bで囲まれるように収容している。ここで、上記のように側壁部5bを有して有底筒状に冷却板5が形成されることにより、図3に示した従来の多結晶シリコン鋳造装置Aのルツボ3を収容する桶4を備える必要がなく、本実施形態の多結晶シリコン鋳造装置Bにおいては、桶4を具備しない分だけルツボ3が大きく形成されている。
ルツボ断熱部材9は、冷却板5の側壁部5bとルツボ3の間に介装されてルツボ3の外周を覆うように設けられている。このとき、ルツボ断熱部材9は、下端が冷却板5の底板部5aの上面と接触するように設けられ、上端(上端面)が原料積載部材3eの外面に沿う傾斜面とされるとともに原料積載部材3eの外面に近接配置されている。
ついで、上記の構成からなる多結晶シリコン鋳造装置BによりシリコンインゴットTを製造する方法について説明し、本実施形態の多結晶シリコン鋳造装置Bの作用及び効果について説明する。
はじめに、シリコン固形原料T1をルツボ3の内部に投入するとともに、原料積載部材3eの上端3fに達するまでシリコン固形原料T1を供給する。ついで、一回の鋳造作業で極力大きなシリコンインゴットTを製造できるように、さらにシリコン固形原料T1を供給して、原料積載部材3eの開口する上端3fよりも上方に、シリコン固形原料T1を積上げて盛ってゆく。このように供給されたシリコン固形原料T1は、原料積載部材3eの上端3fよりも上方に盛られたシリコン固形原料T1がルツボ3の軸線O1に沿う方向の断面で山形形状を呈するように盛られている。
ここで、本実施形態の多結晶シリコン鋳造装置Bにおいては、原料積載部材3eがルツボ3の外方に延出して略朝顔状に形成されていることにより、前述の図3に示した従来の多結晶シリコン鋳造装置(以下、従来の鋳造装置Aという)Aのルツボ3に供給したシリコン固形原料T1の山形形状を呈する頂点S1位置と、本実施形態のルツボ3及び原料積載部材3eに供給したシリコン固形原料T1の山形形状を呈する頂点S2位置を同じ高さ位置にした場合、前記頂点S1における頂角θ1よりも本実施形態の原料積載部材3eに供給したシリコン固形原料T1の前記頂点S2における頂角θ2が大きく鈍角の状態でシリコン固形原料T1が供給されることになる。これにより、原料積載部材3eの上方に盛られたシリコン固形原料T1は、安定した状態で維持され、従来の頂角θ1が鋭角の状態で供給された場合と比較して、シリコン固形原料T1に山崩れが生じることがないものとされる。また、従来の前記頂角θ1と前記頂角θ2とが等しくなるようにシリコン固形原料T1を供給した場合においても、本実施形態の多結晶シリコン鋳造装置Bでは、原料積載部材3eが略朝顔状に形成されていることにより、その供給量が増大することになる。このように供給したシリコン固形原料T1全体の見掛けの体積、すなわちルツボ3の内容積と原料積載部材3eの内容積とを加えた内容積(図3においてはルツボ3の内容積)に、上端3f(図3においては上端3c)よりも上方に盛ったシリコン固形原料T1が占める見掛けの体積を加えた体積が、図3に示した従来の鋳造装置Aのルツボ3を用いた場合には、例えば136000cmであるのに対して、本実施形態のルツボ3においては、例えば193000cmとなり、供給できるシリコン固形原料T1の量が格段に多くなる。
ついで、上記のようにシリコン固形原料T1を供給した段階で、チャンバー内断熱部材2で囲まれた空間(上室7と下室8)に、例えばアルゴンガスなどの不活性ガスを供給して、これらの空間を不活性雰囲気にする。そして、上部ヒーター6aと下部ヒーター6bにより、ルツボ3及び原料積載部材3e、ひいては供給したシリコン固形原料T1の加熱を行なう。例えば1400℃程度でルツボ3及び原料積載部材3eが加熱されるとともに、この加熱されたルツボ3及び原料積載部材3eの輻射熱によって供給したシリコン固形原料T1が溶融してゆく。このとき、本実施形態ではシリコン固形原料T1がその山形形状の頂角θ2を鈍角として安定した状態で盛られているため、加熱により徐々に溶融しシリコン固形原料T1が変形する際にも、その変形に伴ってシリコン固形原料T1が山崩れを起こし原料積載部材3e及びルツボ3の外方に落下するようなことがないものとされる。また、本実施形態では、原料積載部材3eが略朝顔状に形成されていることによって、従来の鋳造装置Aのルツボ3よりも、ルツボ3と原料積載部材3eとの内面積、すなわち供給したシリコン固形原料T1とルツボ3及び原料積載部材3eが接触する面積が大きく、輻射熱がより多くシリコン固形原料T1に作用することとなる。これにより、従来の鋳造装置Aのルツボ3を用いた場合と比較して、シリコン固形原料T1が早く溶融されることになる。
この一方で、ルツボ3及び原料積載部材3eが石英ガラスで形成されているため、これらは、加熱とともに軟化する。特に、本実施形態においては、原料積載部材3eがルツボ3に対して外方に延出するように形成されているため、軟化とともに原料積載部材3eが垂下するように変形してしまうおそれがある。しかしながら、本実施形態では、ルツボ断熱部材9が、その上端面が原料積載部材3eの外面に沿うように形成されて、かつ上端面が原料積載部材3eの外面に近接するように設けられているため、原料積載部材3eは、軟化とともにルツボ断熱部材9の上端に当接されて支持されることになり、軟化に伴って垂下することがないものとされる。
また、シリコン固形原料T1が溶融したシリコン融液T2の液面Hは、図3に示した従来の鋳造装置Aのルツボ3を用いた場合に、シリコン固形原料T1の供給量が少ないため、ルツボ3の上端3cよりも大きく下方に位置されるのに対して、本実施形態においては、シリコン固形原料T1の供給量が多いため、ルツボ3の上端3c付近にその液面Hが位置することになる。
ついで、シリコン固形原料T1が完全に溶融した段階で、上部ヒーター6a及び下部ヒーター6bによる加熱を停止する。そして、チャンバー1の中空壁内に冷却水を循環させてチャンバー1内の冷却を行なうとともに、冷却板5に冷却材を供給してシリコン融液T2の冷却を開始する。本実施形態においては、ルツボ3に収容したシリコン融液T2をルツボ3の底部3a側から冷却してゆき、底部3a側からルツボ3の上端3c側に位置するシリコン融液T2の液面Hに向けて高温となる一方向の温度勾配を生じさせる。そして、底部3a側からシリコンの結晶を成長させつつ凝固してゆき、シリコンインゴットTを製造する。ここで、本実施形態においては、冷却板5が、熱伝導性に優れたカーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンで形成されているため、シリコン融液T2が早く冷却されて凝固することになり、短時間の冷却作業で効率的にシリコンインゴットTが形成される。
また、ルツボ断熱部材9が、シリコン融液T2の液面Hよりも上方に位置する原料積載部材3eの外面まで延設されていることにより、シリコン融液T2の液面H付近が先行して低温化することが抑制される。このように液面H付近の低温化を抑制することにより、ルツボ3の底部3a側から液面Hに向けて高温となる温度勾配が、確実に一方向に向けられて、確実に底部3a側から液面Hに向けて結晶が成長してゆくことになる。
ついで、冷却板5によってルツボ3内のシリコン融液T2を冷却し、シリコンインゴットTを形成した段階で、チャンバー1を解体するとともにチャンバー内断熱部材9を取り除き、ルツボ3及び原料積載部材3eとともにシリコンインゴットTを外部に搬出する。そして、適宜手段をもって石英ガラスのルツボ3及び原料積載部材3eを破砕してシリコンインゴットTを取り出し、鋳造作業を完了する。
ここで、シリコン固形原料T1の供給量が例えば136000cmとなる従来の鋳造装置Aのルツボ3を用いた場合には、シリコン融液T2を冷却して製造されるシリコンインゴットTの重量が160kg程度となる。これに対して、シリコン固形原料T1の供給量が例えば193000cmである本実施形態の場合には、シリコンインゴットTの重量が225kgとなる。よって、本実施形態の多結晶シリコン鋳造装置Bでは、従来の鋳造装置Aに対し、一回の鋳造作業で製造されるシリコンインゴットTの量が約40%増大することになる。
したがって、上記の多結晶シリコン鋳造装置Bによれば、原料積載部材3eとルツボ3とが一体形成されて略朝顔状を呈するものとされていることにより、従来の鋳造装置Aに対して、山形形状を呈するように供給したシリコン固形原料T1の頂角θ2を鈍角にすることができ、これにより、原料積載部材3eの上端3fよりも上方に盛ったシリコン固形原料T1が、その供給時並びに溶融時に山崩れすることを防止でき、また、シリコン固形原料T1の供給量を大幅に増大させることが可能になる。よって、一回の鋳造作業で大きなシリコンインゴットTを製造することができるため、シリコンインゴットTの製造効率の向上を図り、そのコストの低減を図ることが可能になる。
また、ルツボ3に対して原料積載部材3eが略朝顔状を呈するように拡開されて形成されていることによって、ルツボ3及び原料積載部材3eとシリコン固形原料T1との接触面積を大きくすることができ、加熱したルツボ3及び原料積載部材3eからの輻射熱をより多くシリコン固形原料T1に作用させることができる。これにより、従来の鋳造装置Aのルツボ3を用いた場合と比較して、シリコン固形原料T1を早く溶融することができる。よって、エネルギー効率を向上させて効率的にシリコン固形原料T1の溶融を行うことができ、シリコンインゴットTの製造に掛かるコストを低減させることが可能になる。
さらに、ルツボ断熱部材9の上端面が原料積載部材3eの外面に沿うように形成され、かつこの上端面が原料積載部材3eの外面に近接するようにルツボ断熱部材9が設けられていることにより、ルツボ3の上方に拡開する原料積載部材3eを設けた場合においても、加熱によって軟化する原料積載部材3eをこのルツボ断熱部材9で支持することができ、原料積載部材3eが軟化して垂下するように変形してしまうことを阻止することが可能になる。また、上記のようにルツボ断熱部材9が設けられていることによって、シリコン融液T2の冷却時に、温度勾配を確実に一方向に向けることができ、好適な状態で結晶を成長させることが可能になる。これにより、結晶性に優れた高品質のシリコンインゴットTを製造することが可能になる。
また、冷却板5が、有底筒状を呈するように形成されていることによって、従来の鋳造装置Aのように、ルツボ3を収容する桶4を設ける必要がないため、この桶4の占有スペースを、例えばルツボ3を大きく形成してシリコンインゴットTの製造量を増大するなど他の目的に使用したり、桶4の占有スペースの分だけ多結晶シリコン鋳造装置Bを小型にしたりすることができる。また、ルツボ3と冷却板5、及びルツボ3と下部ヒーター6bとの間に桶4が設けられていないため、加熱時や冷却時に伝熱の境界をなくすことができ、下部ヒーター6bが発した熱をルツボ3に早く伝達させることができ、また、冷却板5に供給した冷却材によってシリコン融液T2を早く冷却することが可能になる。これにより、エネルギー効率を向上させて効率的にシリコンインゴットTを製造することが可能になる。
さらに、冷却板5がカーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンの熱伝導性に優れた素材で形成されていることによって、より効率的にシリコンインゴットTを製造することが可能になり、さらなる低コスト化を図ることが可能になる。
以上、本発明に係る多結晶シリコン鋳造装置の第1実施形態について説明したが、本発明は上記の第1実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、ルツボ3の外周を覆うように設けたルツボ断熱部材9の上端面が、原料積載部材3eの外面に近接され、軟化した原料積載部材3eの外面が当接されることにより原料積載部材3eを支持するものとしたが、ルツボ断熱部材9は、その上端面をはじめから原料積載部材3eの外面に当接させて設けられてもよいものである。この場合には、加熱によって原料積載部材3eが軟化してもより確実にその変形を抑制して支持することが可能になる。また、本実施形態では、ルツボ3や原料積載部材3eが石英ガラスであるものとして説明を行なったが、ガラス以外のセラミックスや、カーボン、炭化シリコンなどで形成されていてもよいものである。そして、このように石英ガラス以外の材質でルツボ3や原料積載部材3eが形成された場合においても、前述と同様の効果を得ることが可能である。さらに、ルツボ3は、上下方向に延びる軸線O1に直交する断面が矩形状を呈するように形成されているものとしたが、前記断面が円形状に形成されて有底筒状に形成されていてもよいものである。
また、本実施形態では、冷却板5を有底筒状に形成することによって、桶4を設ける必要がないものとして説明を行なっているが、従来のように、桶4を設け、冷却板5が平板状に形成されていてもよいものである。さらに、冷却板5がカーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンで形成されているものとしたが、他の材質であってもよいものである。
また、本実施形態では、チャンバー内断熱部材2で画成した空間にアルゴンガスなどの不活性ガスを供給し不活性雰囲気にして鋳造作業を行なうように説明を行なっているが、チャンバー1及びチャンバー内断熱部材2の内部を真空状態にして鋳造作業を行なうように構成されてもよいものである。
ついで、図2を参照し、本発明の第2実施形態に係る多結晶シリコン鋳造装置について説明する。本実施形態の説明においては、第1実施形態に共通する構成に対して同一符号を付し、その詳細についての説明を省略する。ここで、本実施形態の多結晶シリコン鋳造装置Cにおいては、原料積載部材3eがルツボ3に対して分離可能とされ、その他の構成は第1実施形態の多結晶シリコン鋳造装置Bと同様とされている。
本実施形態において、原料積載部材3eは、図2に示すように、ルツボ3の上端3cに、該原料積載部材3eの下端側の外面を当接させてルツボ3に支持されている。これにより、原料積載部材3eは、自重によって安定的にルツボ3に載置されつつ保持され、上方に持ち上げるのみでルツボ3に対して分離することが可能とされている。
このように構成された原料積載部材3eを備える本実施形態の多結晶シリコン鋳造装置Cにおいては、第1実施形態と同様にルツボ3及び原料積載部材3eにシリコン固形原料T1を供給してこれを溶融させた際に、原料積載部材3eを支持するルツボ3の上端3cよりも若干下方にシリコン融液T2の液面Hが位置される。そして、第1実施形態と同様に、シリコン融液T2を冷却してシリコンインゴットTを形成した段階で、原料積載部材3eをルツボ3から分離してチャンバー1内から取り除き、ついで、ルツボ3とともにシリコンインゴットTを外部に搬出する。
本実施形態においては、原料積載部材3eが分離されたルツボ3のみを破砕することによりシリコンインゴットTを取り出し、鋳造作業が完了する。
したがって、上記の多結晶シリコン鋳造装置Cによれば、第1実施形態に示した多結晶シリコン鋳造装置Bと同様の効果に加えて、原料積載部材3eとルツボ3とが分離可能とされていることにより、ルツボ3を破砕するのみでシリコンインゴットTを取り出すことができ、原料積載部材3eを破砕する必要がない。このため、原料積載部材3eを次回の鋳造作業に再利用することが可能になる。これにより、シリコン固形原料T1の供給量を増大させるための原料積載部材3eが再利用可能とされるため、シリコンインゴットTの製造に掛かるコストの低減を図ることが可能になる。また、このとき、ルツボ断熱部材9が、加熱により軟化した原料積載部材3eをその上端面で支持して原料積載部材3eの変形を阻止することが可能とされているため、原料積載部材3eの形状を維持して、確実に原料積載部材3eを再利用することが可能とされる。
以上、本発明に係る多結晶シリコン鋳造装置の第2実施形態について説明したが、本発明は上記の第2実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、原料積載部材3eの下端側の外面をルツボ3の上端3cに当接させてルツボ3に原料積載部材3eを載置しつつ支持させ、これにより、原料積載部材3eがルツボ3に対して分離可能とされるものとして説明を行なったが、例えば原料積載部材3eの下端側がルツボ3の軸線O1方向に延設され、この下端部分がルツボ3の上端3c側の内側に係合することによって原料積載部材3eが分離可能に支持される構成としてもよいものである。
本発明の第1実施形態に係る多結晶シリコン鋳造装置を示す図である。 本発明の第2実施形態に係る多結晶シリコン鋳造装置を示す図である。 従来の多結晶シリコン鋳造装置を示す図である。
符号の説明
1 チャンバー
2 チャンバー内断熱部材
3 ルツボ
3a 底部
3b 側壁
3c 上端
3e 原料積載部材
3f 上端
4 桶
5 冷却板
5a 底板部
5b 側壁部
6 ヒーター
6a 上部ヒーター
6b 下部ヒーター
7 上室
8 下室
9 ルツボ断熱部材(断熱部材)
A 多結晶シリコン鋳造装置
B 多結晶シリコン鋳造装置
C 多結晶シリコン鋳造装置
O1 ルツボの軸線
T1 シリコン固形原料
T2 シリコン融液
T シリコンインゴット

Claims (5)

  1. シリコン固形原料を収容する有底筒状のルツボと、該ルツボを加熱して収容した前記シリコン固形原料を溶融させるヒーターと、前記ルツボが載置され、前記ヒーターによって加熱されて溶融した前記シリコン固形原料を冷却しつつ凝固させる冷却板と、前記ルツボの外周に設けられた断熱部材とを備える多結晶シリコン鋳造装置において、
    前記ルツボには、上端側の開口部分を上方に向かうに従い拡開する原料積載部材が設けられていることを特徴とする多結晶シリコン鋳造装置。
  2. 請求項1記載の多結晶シリコン鋳造装置において、
    前記原料積載部材が前記ルツボに対して分離可能に設けられていることを特徴とする多結晶シリコン鋳造装置。
  3. 請求項1または請求項2に記載の多結晶シリコン鋳造装置において、
    前記断熱部材の上端面が、前記原料積載部材の外面に沿うように形成されているとともに、前記原料積載部材の外面に近接または当接されていることを特徴とする多結晶シリコン鋳造装置。
  4. 請求項1から請求項3のいずれかに記載の多結晶シリコン鋳造装置において、
    前記冷却板は、側端側が上方に延出されて底板部と側壁部を備える略有底筒状に形成されていることを特徴とする多結晶シリコン鋳造装置。
  5. 請求項4記載の多結晶シリコン鋳造装置において、
    前記冷却板がカーボンまたはシリコンカーバイドまたは表面がシリコンカーバイド化したカーボンで形成されていることを特徴とする多結晶シリコン鋳造装置。

JP2005362898A 2005-12-16 2005-12-16 多結晶シリコン鋳造装置 Active JP5132882B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362898A JP5132882B2 (ja) 2005-12-16 2005-12-16 多結晶シリコン鋳造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362898A JP5132882B2 (ja) 2005-12-16 2005-12-16 多結晶シリコン鋳造装置

Publications (2)

Publication Number Publication Date
JP2007161548A true JP2007161548A (ja) 2007-06-28
JP5132882B2 JP5132882B2 (ja) 2013-01-30

Family

ID=38244868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362898A Active JP5132882B2 (ja) 2005-12-16 2005-12-16 多結晶シリコン鋳造装置

Country Status (1)

Country Link
JP (1) JP5132882B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036263A1 (ja) * 2010-09-16 2012-03-22 Jx日鉱日石金属株式会社 シリコンインゴット製造用容器及びシリコンインゴットの製造方法
CN103243386A (zh) * 2013-05-23 2013-08-14 天津英利新能源有限公司 一种多晶硅铸锭炉系统
CN103261493A (zh) * 2010-11-17 2013-08-21 思利科材料有限公司 用于硅的定向固化的装置和方法
CN104204311A (zh) * 2012-01-26 2014-12-10 思利科材料有限公司 用于硅的提纯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442388A (en) * 1987-08-07 1989-02-14 Toshiba Ceramics Co Quartz crucible for silicon single crystal pulling apparatus
JP2002170780A (ja) * 2000-12-01 2002-06-14 Sharp Corp ルツボおよびそれを使用した多結晶シリコンの成長方法
JP2002193609A (ja) * 2000-12-26 2002-07-10 Mitsubishi Materials Corp 結晶シリコン製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442388A (en) * 1987-08-07 1989-02-14 Toshiba Ceramics Co Quartz crucible for silicon single crystal pulling apparatus
JP2002170780A (ja) * 2000-12-01 2002-06-14 Sharp Corp ルツボおよびそれを使用した多結晶シリコンの成長方法
JP2002193609A (ja) * 2000-12-26 2002-07-10 Mitsubishi Materials Corp 結晶シリコン製造装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036263A1 (ja) * 2010-09-16 2012-03-22 Jx日鉱日石金属株式会社 シリコンインゴット製造用容器及びシリコンインゴットの製造方法
JP5877589B2 (ja) * 2010-09-16 2016-03-08 Jx金属株式会社 シリコンインゴット製造用容器及びシリコンインゴットの製造方法
CN103261493A (zh) * 2010-11-17 2013-08-21 思利科材料有限公司 用于硅的定向固化的装置和方法
JP2014500216A (ja) * 2010-11-17 2014-01-09 シリコー マテリアルズ インコーポレイテッド シリコンの方向性凝固のための機器および方法
US20140042295A1 (en) * 2010-11-17 2014-02-13 Silicor Materials Inc. Apparatus for directional solidification of silicon including a refractory material
KR101513111B1 (ko) 2010-11-17 2015-04-17 실리코르 머티리얼즈 인코포레이티드 실리콘의 방향성 응고를 위한 장치 및 방법
JP2015131758A (ja) * 2010-11-17 2015-07-23 シリコー マテリアルズ インコーポレイテッド シリコンの方向性凝固のための機器および方法
CN107083565A (zh) * 2010-11-17 2017-08-22 思利科材料有限公司 用于硅的定向固化的装置和方法
CN107083565B (zh) * 2010-11-17 2020-05-15 思利科材料有限公司 用于硅的定向固化的装置和方法
CN104204311A (zh) * 2012-01-26 2014-12-10 思利科材料有限公司 用于硅的提纯的方法
CN103243386A (zh) * 2013-05-23 2013-08-14 天津英利新能源有限公司 一种多晶硅铸锭炉系统

Also Published As

Publication number Publication date
JP5132882B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
CA2620293C (en) System and method for crystal growing
US7682472B2 (en) Method for casting polycrystalline silicon
US6136091A (en) Process and apparatus for producing polycrystalline semiconductor ingot
JP5855295B2 (ja) シリコンの方向性凝固のための機器および方法
CN103361722A (zh) 多晶硅锭及其制备方法、多晶硅片和多晶硅铸锭用坩埚
TWI547603B (zh) 製造具有大粒徑之多晶材料的裝置及方法
JP5132882B2 (ja) 多結晶シリコン鋳造装置
JP2002170780A (ja) ルツボおよびそれを使用した多結晶シリコンの成長方法
KR20130113422A (ko) 다결정성 규소 블록을 생산하기 위한 방법 및 장치
CN103890242A (zh) 液体冷却热交换器
JP2006273664A (ja) シリコン鋳造用鋳型及びシリコン鋳造装置並びに多結晶シリコンインゴットの鋳造方法
JP2009052764A (ja) 高周波誘導炉およびそれを用いた溶融物製造方法
JP5740111B2 (ja) 多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット
JP2002080215A (ja) 多結晶半導体インゴットの製造方法
JP2000327474A (ja) 結晶シリコンの製造方法及び結晶シリコン製造用ルツボ
JP5371701B2 (ja) 多結晶シリコンインゴットの製造装置及び多結晶シリコンインゴットの製造方法
KR20120061837A (ko) 다결정 실리콘 잉곳을 생산하기 위한 장치
JP2006111529A (ja) シリコン鋳造用鋳型
JP2012101972A (ja) 結晶半導体の製造方法及び製造装置
JP2000327487A (ja) 結晶シリコンの製造方法及びそれに用いる結晶シリコン製造装置
JP2006275426A (ja) 坩堝および半導体インゴットの製造方法
JP2018177552A (ja) 単結晶育成用坩堝
JP2017178741A (ja) シリコンインゴット製造用鋳型
JP2006206368A (ja) 粒状シリコンの製造方法及び製造装置
JP2009033013A (ja) 結晶シリコン粒子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250