JP2009033013A - 結晶シリコン粒子の製造方法 - Google Patents

結晶シリコン粒子の製造方法 Download PDF

Info

Publication number
JP2009033013A
JP2009033013A JP2007197230A JP2007197230A JP2009033013A JP 2009033013 A JP2009033013 A JP 2009033013A JP 2007197230 A JP2007197230 A JP 2007197230A JP 2007197230 A JP2007197230 A JP 2007197230A JP 2009033013 A JP2009033013 A JP 2009033013A
Authority
JP
Japan
Prior art keywords
crucible
silicon
crystalline silicon
coating layer
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007197230A
Other languages
English (en)
Inventor
Makoto Sugawara
信 菅原
Nobuyuki Kitahara
暢之 北原
Kazuhiro Kusabe
和宏 草部
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007197230A priority Critical patent/JP2009033013A/ja
Publication of JP2009033013A publication Critical patent/JP2009033013A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】 溶融落下法によって結晶シリコン粒子を製造する際に、高い生産性及び安全性でもって、高品質の結晶シリコン粒子を製造できる結晶シリコン粒子の製造方法を提供すること。
【解決手段】 結晶シリコン粒子の製造方法は、グラファイトから成る本体部1aと本体部1aの表面に形成された炭化珪素から成る被覆層1bとを有しているとともに外表面に被覆層1bの非形成部1dが設けられた坩堝1の内部でシリコンを溶融し、坩堝1から排出された粒状のシリコン融液を落下中に冷却して固化させることによって結晶シリコン粒子4を製造する。
【選択図】 図1

Description

本発明は、結晶シリコン粒子の製造方法に関し、特に太陽電池等の光電変換装置に用いられる粒状シリコン結晶を得るのに好適な結晶シリコン粒子の製造方法に関する。
従来、光電変換装置として、結晶シリコンウエハを用いた光電変換効率(以下、変換効率ともいう)の高い太陽電池が実用化されている。この結晶シリコンウエハは、結晶性が良く、かつ不純物が少なくてその分布に偏りのない大型の単結晶シリコンインゴットから切り出されて作製されている。しかし、大型の単結晶シリコンインゴットは作製するのに長時間を要するために生産性が悪く、また高価となるので、大型の単結晶シリコンインゴットを必要とせず、高変換効率の次世代太陽電池の出現が強く望まれている。
そこで、今後の市場において有望な光電変換装置の一種として、結晶シリコン粒子を用いた太陽電池が注目されている。
現在、結晶シリコン粒子を作製するための原料は、単結晶シリコン材料を粉砕した結果として発生するシリコンの微小粒子、または流動床法によって気相合成された高純度シリコンを用いている。そして、原料のサイズあるいは重量による分別を行った後に、赤外線または高周波誘導コイルを用いて原料を容器内で再度溶融し、その後に自由落下させることによって球状化させる溶融落下方法(ジェット法)(例えば、特許文献1,2を参照。)、または高周波プラズマ加熱溶融法により球状化させる方法(例えば、特許文献2を参照。)が用いられている。また、石英等から成る坩堝の表面に炭化珪素の皮膜を形成して粒状シリコンを製造する方法が開示されている(例えば、特許文献3を参照。)。
国際公開第99/22048号公報 米国特許第4188177号明細書 特開2003−192325号公報
しかしながら、これらの方法では、原料の重量の均一化が困難で生産性が低いという問題点がある。即ち、原料の重量のバラツキは作られる結晶シリコン粒子の球の大きさに反映されるため、均一な重量の原料が必要とされるが、所望の大きさや重量の原料を粉砕や分級等の手法で効率よく得ることは、シリコン材料においては困難である。さらに、粉砕工程において、粉砕メディアからのコンタミネーション(汚染)が生じることから、不純物の混入が避けられないという問題点がある。
また、高周波プラズマ加熱装置は非常に大きな電源等が必要であり、装置コストが高く、使用電力が大きいことから生産コストも高いという問題点がある。
また、シリコンを溶融する坩堝等の溶融容器は、一般には石英から成るが、生産性を上げるために溶融温度を上げると石英が変形して使用できないことから、生産性が低いという問題点がある。
従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、溶融落下法によって結晶シリコン粒子を製造する際に、高い生産性及び安全性でもって、高品質の結晶シリコン粒子を製造できる結晶シリコン粒子の製造方法を提供することにある。
本発明の結晶シリコン粒子の製造方法は、グラファイトから成る本体部と前記本体部の表面に形成された炭化珪素から成る被覆層とを有しているとともに外表面に前記被覆層の非形成部が設けられた坩堝の内部でシリコンを溶融し、前記坩堝から排出された粒状のシリコン融液を落下中に冷却して固化させることによって結晶シリコン粒子を製造することを特徴とするものである。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、前記坩堝は、外表面の前記シリコン融液の液面よりも高い部位に前記被覆層の非形成部が設けられていることを特徴とするものである。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、前記坩堝は、前記本体部の底部に炭化珪素から成るノズル部材が設けられていることを特徴とするものである。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、前記ノズル部材は、単結晶炭化珪素または多結晶炭化珪素から成ることを特徴とするものである。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、前記ノズル部材は、前記坩堝の内部側の表面に前記被覆層が形成されていることを特徴とするものである。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、前記ノズル部材は、板状体に貫通孔を形成した形状であることを特徴とするものである。
本発明の結晶シリコン粒子の製造方法は、グラファイトから成る本体部と本体部の表面に形成された炭化珪素から成る被覆層とを有しているとともに外表面に被覆層の非形成部が設けられた坩堝の内部でシリコンを溶融し、坩堝から排出された粒状のシリコン融液を落下中に冷却して固化させることによって結晶シリコン粒子を製造することから、坩堝の本体部の表面に形成された炭化珪素から成る被覆層によって、坩堝を高周波誘導加熱法等により加熱する際に坩堝の熱吸収効率が大幅に向上する。その結果、坩堝内のシリコンを効率よく融解することができ、高い生産性を実現することができる。
また、被覆層は坩堝の本体部の外表面に非形成部が設けられているため、炭化珪素から成る被覆層を形成する際に使用したn−クロロシラン系等のシラン系ガスから成る残留ガスを、多孔質のグラファイト及び非形成部を通して効果的に抜くことができる。シラン系ガスから成る残留ガスは、人体に対し危険なガスであり、残留ガスを効果的に抜くことができるので、結晶シリコン粒子の製造時における製造作業環境の安全性を確保できる。
また、残留ガスは、シリコン融液に入り込んで結晶シリコン粒子の不純物汚染を引き起こすが、残留ガスを効果的に抜くことができるので、結晶シリコン粒子における不純物汚染を大幅に抑制することができる。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、坩堝は、外表面のシリコン融液の液面よりも高い部位に被覆層の非形成部が設けられていることから、坩堝の本体部のシリコン融液に相当する部位に被覆層が存在することとなり、より有効にシリコン融液を加熱することができる。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、坩堝は、本体部の底部に炭化珪素から成るノズル部材が設けられていることから、ノズル部材のシリコン融液に対する耐食性が向上し、製造される結晶シリコン粒子の粒径が安定し、生産性が向上する。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、ノズル部材は、単結晶炭化珪素または多結晶炭化珪素から成ることから、ノズル部材のシリコン融液に対する耐食性がさらに向上する。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、ノズル部材は、坩堝の内部側の表面に被覆層が形成されていることから、ノズル部材とシリコン融液とが反応して、炭素粒子、炭化珪素粒子等が発生するのを抑制し、炭素粒子、炭化珪素粒子がノズル孔に詰まるのを抑えて、安定したシリコン融液の吐出が可能となる。その結果、製造される結晶シリコン粒子の粒径の制御性が向上する。
また、本発明の結晶シリコン粒子の製造方法は好ましくは、ノズル部材は、板状体に貫通孔を形成した形状であることから、ノズル部材の作製が容易となり、またノズル部材を坩堝の本体部から容易に取り外すことができる。ノズル部材の形状変更の自由度が増し、また、ノズル部材の交換、変更等によるシリコン融液の噴射特性の維持、管理が容易となる。その結果、シリコン融液との反応によりノズル孔(貫通孔)が変形したノズル部材を交換したり、ノズル部材の形状を変更する等して、安定したシリコン融液の噴射特性を維持、管理することにより、製造される結晶シリコン粒子の粒径の制御性が向上する。
また、坩堝の本体部の両端を開口とすることができるため、坩堝の内面の全面に被覆層を容易に形成できる。その結果、より高い生産性を実現できる。
本発明の結晶シリコン粒子の製造方法について実施の形態の例を、以下に添付図面に基づいて詳細に説明する。
図1は、本発明の結晶シリコン粒子の製造方法に用いられる製造装置を示す断面図である。図1において、1は坩堝、1aはグラファイトから成る坩堝1の本体部、1bは炭化珪素から成る被覆層、1cは坩堝1の底部に設けられたノズル部材、2は坩堝1の下方に長手方向が上下方向となるように配置された落下管、3は坩堝1内のシリコン原料を加熱し溶融させる加熱装置、4は結晶シリコン粒子、5は粉体状のシリコン原料の供給管である。
なお、結晶シリコン粒子4は、シリコン融液が入った坩堝1のノズル部1cから粒状のシリコン融液として排出されて、落下中に冷却され固化する。
本発明の結晶シリコン粒子の製造方法は、グラファイトから成る本体部1aと本体部1aの表面に形成された炭化珪素から成る被覆層1bとを有しているとともに外表面に被覆層1bの非形成部1dが設けられた坩堝1の内部でシリコンを溶融し、坩堝1から排出された粒状のシリコン融液を落下中に冷却して固化させることによって結晶シリコン粒子4を製造する構成である。
坩堝1は、シリコン原料を加熱溶融してシリコン融液とするとともに、底部のノズル部材1cから粒状のシリコン4として排出するための容器である。坩堝1内で加熱溶融されたシリコン融液は、ノズル部材1cより落下管2中へ排出され、粒状のシリコン融液となって落下管2の内部を落下する。
坩堝1は、グラファイトから成る本体部1aと、本体部1aの表面に形成された炭化珪素から成る被覆層1bとを有しており、外表面に被覆層1bの非形成部1dが設けられている。
本体部1aの表面に炭化珪素から成る被覆層1bが形成されていることにより、坩堝1を高周波誘導加熱法等により加熱する際に坩堝1の熱吸収効率が大幅に向上する。その結果、坩堝1内のシリコンを効率よく融解することができ、高い生産性を実現することができる。
また、被覆層1bは本体部1aの外表面に非形成部1dが設けられているため、炭化珪素から成る被覆層1bを形成する際に使用したn−クロロシラン系等のシラン系ガスから成る残留ガスを、多孔質のグラファイト及び非形成部1dを通して効果的に抜くことができる。シラン系ガスから成る残留ガスは、人体に対し危険なガスであり、残留ガスを効果的に抜くことができるので、結晶シリコン粒子4の製造時における製造作業環境の安全性を確保できる。
残留ガスを多孔質のグラファイト及び非形成部1dを通して抜くことは、製造装置の組立前に行ってよく、または製造装置の組立後で結晶シリコン粒子4を製造する前に行ってもよい。残留ガスを抜く方法としては、製造装置内を減圧したり真空に引いて抜く方法、温度を上げて脱ガスさせる方法等がある。
また、残留ガスは、シリコン融液に入り込んで結晶シリコン粒子4の不純物汚染を引き起こすが、残留ガスを効果的に抜くことができるので、結晶シリコン粒子4における不純物汚染を大幅に抑制することができる。
また、炭化珪素から成る被覆層1bの熱膨張係数(4〜5×10-6/℃)は、グラファイトから成る本体部1aの熱膨張係数(4〜5×10-6/℃)に近似しているため、熱膨張係数差によるクラック、割れ等が発生するのを防止できる。
被覆層1bの厚みは1〜1000μmがよく、1μm未満では、被覆層1bに欠陥が多く存在しやすくなり、1000μmを超えると、被覆層1bの形成に時間を要するために生産性が低下し、コスト高となる傾向がある。
被覆層1bの非形成部1dの面積は、被覆層1bの形成部の面積の1/100〜1倍(被覆層1bの形成部と同じ面積)であることがよく、1/100未満では、残留ガスを効率的に抜くことがむつかしくなり、1倍を超えると、坩堝1を効果的に加熱することがむつかしくなる。
また、被覆層1bの非形成部1dは、円筒状等の坩堝1の外表面に帯状に、坩堝1の外表面を一周するように形成できる。また、被覆層1bの非形成部1dは、円筒状等の坩堝1の外表面に複数の部分帯状として、坩堝1の外表面を等間隔で一周するように形成できる。
坩堝1は、外表面のシリコン融液の液面よりも高い部位に被覆層1bの非形成部1dが設けられていることが好ましい。この場合、シリコン融液を効率よく加熱することと残留ガスを抜くことを容易に両立させることができる。即ち、坩堝1の本体部1aのシリコン融液に相当する部位に被覆層1bが存在することとなり、より有効にシリコン融液を加熱することができる。
この場合、被覆層1bの非形成部1dは、シリコン融液の液面よりも20mm以上高い部位に形成されていることがよく、20mm未満では、シリコン融液の加熱効率が低下するため好ましくない。
なお、シリコン融液の液面は、シリコン原料の供給管5から断続的にシリコン原料を供給することにより、常にほぼ一定の高さとなるように制御される。
坩堝1は、本体部1aの底部に炭化珪素から成るノズル部材1cが設けられていることがよい。この場合、ノズル部材1cのシリコン融液に対する耐食性が向上し、製造される結晶シリコン粒子4の粒径が安定し、生産性が向上する。
また、ノズル部材1cは、単結晶炭化珪素または多結晶炭化珪素から成ることがよい。この場合、ノズル部材1cのシリコン融液に対する耐食性がさらに向上する。
また、ノズル部材1cは、坩堝1の内部側の表面に被覆層1bが形成されていることがよい。この場合、ノズル部材1cとシリコン融液とが反応して、炭素粒子、炭化珪素粒子等が発生するのを抑制し、炭素粒子、炭化珪素粒子がノズル孔に詰まるのを抑えて、安定したシリコン融液の吐出が可能となる。その結果、製造される結晶シリコン粒子の粒径の制御性が向上する。
さらには、坩堝1の内面に形成された被覆層1bと、ノズル部材1cの坩堝1の内部側の表面に形成された被覆層1bとが連続していることが好ましい。この場合、坩堝1の内面及びノズル部材1cの坩堝1の内部側の表面がシリコン融液と反応して、炭素粒子、炭化珪素粒子等が発生することによる不都合を、より有効に解消できる。
また、ノズル部材1cは、板状体に貫通孔を形成した形状であることがよい。この場合、ノズル部材1cの作製が容易となり、またノズル部材1cを坩堝1の本体部1aから容易に取り外すことができる。ノズル部材1cの形状変更の自由度が増し、また、ノズル部材1cの交換、変更等によるシリコン融液の噴射特性の維持、管理が容易となる。その結果、シリコン融液との反応によりノズル孔(貫通孔)が変形したノズル部材1cを交換したり、ノズル部材1cの形状を変更する等して、安定したシリコン融液の噴射特性を維持、管理することにより、製造される結晶シリコン粒子4の粒径の制御性が向上する。
また、坩堝1の本体部1aの両端を開口とすることができるため、坩堝1の内面の全面に被覆層1bを容易に形成できる。その結果、より高い生産性を実現できる。
また、坩堝1の内面に被覆層1bが形成されていることが好ましい。この場合、被覆層1bによって、本体部1aからシリコン融液中に溶け出した炭素粒子、及び本体部1aとシリコン融液との反応によって生成した炭化珪素粒子等の発生を抑制できる。その結果、それらの粒子がノズル孔に詰まるのを抑制して、安定したシリコン融液の吐出が可能となることにより、製造される結晶シリコン粒子4の粒径の制御性が向上する。
更に、本体部1aの内面に直接シリコン融液が触れると、本体部1aにシリコン融液が含浸して強度が大幅に低下し、本体部1aにクラックが生じる危険性が生じる。また、本体部1aの内面に直接シリコン融液が触れると、本体部1aの内面に薄い炭化珪素膜が形成され、その炭化珪素膜が剥離しノズル孔に詰まることによって、安定したシリコン融液の吐出ができなくなる。シリコン融液が直接触れる本体部1aの内面に被覆層1bが形成されていることによって、上記の不都合を解消できる。
更に、グラファイトから成る本体部1aは、酸素ガス、酸化シリコンガスと反応して一酸化炭素ガス、二酸化炭素ガスを発生する。その結果、本体部1aが消耗して破壊に至る場合、また、発生した一酸化炭素ガス、二酸化炭素ガスがシリコン融液に触れてシリコン融液中に炭化珪素粒子が析出し、析出した炭化珪素粒子がノズル孔に詰まって安定したシリコン融液の吐出ができなくなる場合がある。シリコン融液が直接触れない本体部1aの内面に被覆層1bが形成されていることによって、上記の不都合を解消できる。
また、ノズル部材1cを坩堝1に固定するための保持部材(不図示)を設け、この保持部材はグラファイトから成る坩堝1と同じ材料から成ることが好ましい。本体部1aを成すグラファイトの種類は、気孔率、気孔径、不純物濃度によって同じ製造者において数10種以上のグレードに分かれることが一般的である。従って、同じ材料とは、気孔率、気孔径、不純物濃度の点において同じグレードであることを示す。この場合、保持部材と坩堝1との熱膨張係数差を小さくすることができ、熱膨張差に起因する割れ、クラックの発生を防止できる。
坩堝1のノズル部材1cから下方に向けて、長手方向が上下方向となるように配置された落下管2は、ノズル部材1cから排出された粒状のシリコン融液を落下中に冷却して凝固させる容器である。落下管2の内部は、所望の雰囲気ガスで所望の圧力とされている。この所望の雰囲気ガスとしては、不活性ガスがよく、特にヘリウムガスまたはアルゴンガスが好ましい。ヘリウムガスまたはアルゴンガスは不活性ガスであり、粒状のシリコン融液への雰囲気ガスからの不純物の混入を防ぐことができる。
さらに、ヘリウムガスまたはアルゴンガスは、粒状のシリコン融液との反応が小さく、粒状のシリコン融液が凝固して結晶化する際の妨げとなる、粒状のシリコン融液表面の反応層の形成が抑制できるため好ましい。
また、落下管2はシリコンの融点(1414℃程度)よりも高い融点を有する材料から成ることが好ましい。その場合、粒状のシリコン融液が斜め方向に排出されて落下管2の内壁に衝突したとしても、落下管2がその材料の融点以上に加熱されることはなく、落下管2の材料が衝突した粒状のシリコン融液中へ不純物として混入することがない。また、落下管2の融点がシリコンの融点よりも低いときには、粒状のシリコン融液が斜め方向に排出されて落下管2の内壁に衝突した際に、落下管2がその材料の融点以上に加熱されることとなり、衝突した粒状のシリコン融液中へ落下管2の材料が不純物として混入することがある。
従って、落下管2の材料は、シリコンより高融点である炭素,炭化珪素,酸化珪素,窒化珪素,酸化アルミニウム等であることが好ましい。または、例えば二重管構造や水冷ジャケット等の冷却構造で冷却された落下管2の場合、落下管2の材料はステンレス,アルミニウム等であることが好ましい。
加熱装置3は、坩堝1内にあるシリコンを加熱し溶融させるための装置である。加熱装置3は、高周波誘導コイル等の高周波誘導加熱装置、抵抗加熱装置等から成る。加熱温度は、シリコンを溶融するため、シリコンの融点である1414℃以上である。抵抗加熱装置を使用する場合、例えば坩堝1と同じ不活性ガスから成る雰囲気ガス中で坩堝1に接触させて加熱するものであり、炭素系ヒーター、例えば、グラファイト,炭素繊維強化カーボン,SiCコート材料,ガラス状炭素コート材料等から成るものが使用可能である。また、炉心管(不図示)の外側の酸化性雰囲気から間接的に坩堝1を加熱する場合、炭化珪素や珪化モリブデンを含む抵抗線、抵抗板等を有する抵抗加熱装置を使用することができる。
加熱装置3として、高周波誘導加熱装置を使用する場合、例えば坩堝1に炭素からなるサセプターを接触させ、炉心管(不図示)の外側に高周波誘導コイルを設け、誘導電流によりサセプターを加熱することにより、坩堝1を加熱する方法等がある。
以上、本発明の結晶シリコン粒子の製造方法及び製造装置について実施の形態を説明したが、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない限り種々の変更を加えても何ら差し支えない。
本発明の結晶シリコン粒子の製造方法及び製造装置の実施例について以下に説明する。
図1の製造装置を用いて結晶シリコン粒子4を以下のようにして製造した。
まず、シリコン原料として、p型ドーパントとしての硼素(B)を1×1016原子/cm添加したシリコンの粉体を、800g、坩堝1内に供給管5から供給した。
このとき、円筒状の坩堝1は、グラファイト製の本体部1aの表面(内表面及び外表面)に炭化珪素から成る厚み70μmの被覆層1bが形成されたものとした。被覆層1bは坩堝1の内表面の全面に形成した。坩堝1の外表面には、被覆層1bの非形成部1dを形成した。非形成部1dは、面積が300cm2であり、坩堝1の外表面の面積の10%の面積である帯状として本体部1aの外表面を1周するように形成した。また、非形成部1dは、シリコン融液の液面よりも高い部位に形成した。
また、坩堝1の本体部1aの底部には、単結晶炭化珪素から成るノズル部材1cを設けた。またノズル部材1cは、坩堝1の内部側の表面に厚み150μmの被覆層1bが形成されているものとした。さらに、ノズル部材1cは、厚み5mmの板状体に直径約200μmの貫通孔を1つ形成した形状であるものとした。
次に、抵抗加熱式のグラファイトヒーターからなる加熱装置3により坩堝1を加熱し、坩堝1内のシリコンを溶融させた。
次に、坩堝1内のアルゴンガスの圧力を大気圧よりも大きくすることにより、シリコン融液の液面に圧力を加え、ノズル部材1cから落下管2の内部へシリコン融液を初速7m/secで排出し、粒状のシリコン融液を落下管2の内部において落下させ、多数の粒径200μm程度の結晶シリコン粒子4を製造した。
(比較例)
比較例として、外表面の全面のみに炭化珪素から成る被覆層1bを形成した坩堝1を用いて、それ以外は実施例と同様にして結晶シリコン粒子4の製造を行った。
上記実施例では、坩堝1内のシリコンが完全に融解するまでの加熱時間が約57分であったが、比較例では坩堝1内のシリコンが完全に融解するまでの加熱時間が約72分であった。
また、実施例で得られた100個の結晶シリコン粒子4は、平均粒径が200μm、ライフタイム(光照射によって発生したキャリアのライフタイム)が平均3.0μsec、最短ライフタイムが2.5μsecであった。なお、結晶シリコン粒子を用いた太陽電池を作製する場合、一般的に平均ライフタイムも重要であるが、最短ライフタイムによって特性が大きく影響することから、平均値と最短値の2つを評価指標とした。
比較例で得られた100個の結晶シリコン粒子4は、平均粒径が200μm、ライフタイムが平均2.6μsec、最短ライフタイムが0.7μsecであった。
比較例の結晶シリコン粒子4のライフタイムの平均値及び最短値が実施例の結晶シリコン粒子4よりも大幅に低下したのは、炭化珪素から成る被覆層1bを形成する際に使用したn−クロロシラン系ガスから成る残留ガスがシリコン融液に触れて、結晶シリコン粒子4に不純物汚染をもたらしたことが原因と考えられる。
また、実施例において、結晶シリコン粒子4を製造する際の作業環境における残留ガスに起因する塩酸ガス濃度は、1ppm未満であり、人体に対して問題ない濃度であった。
また、比較例において、結晶シリコン粒子4を製造する際の作業環境における残留ガスに起因する塩酸ガス濃度は、10ppmであり、人体に対して悪影響を及ぼす濃度であった。
本発明の結晶シリコン粒子の製造方法に用いる製造装置について実施の形態の一例を示す断面図である。
符号の説明
1:坩堝
1a:本体部
1b:被覆層
1c:ノズル部材
1d:被覆層の非形成部
2:落下管
3:加熱装置
4:結晶シリコン粒子

Claims (6)

  1. グラファイトから成る本体部と前記本体部の表面に形成された炭化珪素から成る被覆層とを有しているとともに外表面に前記被覆層の非形成部が設けられた坩堝の内部でシリコンを溶融し、前記坩堝から排出された粒状のシリコン融液を落下中に冷却して固化させることによって結晶シリコン粒子を製造することを特徴とする結晶シリコン粒子の製造方法。
  2. 前記坩堝は、外表面の前記シリコン融液の液面よりも高い部位に前記被覆層の非形成部が設けられていることを特徴とする請求項1記載の結晶シリコン粒子の製造方法。
  3. 前記坩堝は、前記本体部の底部に炭化珪素から成るノズル部材が設けられていることを特徴とする請求項1または2記載の結晶シリコン粒子の製造方法。
  4. 前記ノズル部材は、単結晶炭化珪素または多結晶炭化珪素から成ることを特徴とする請求項3記載の結晶シリコン粒子の製造方法。
  5. 前記ノズル部材は、前記坩堝の内部側の表面に前記被覆層が形成されていることを特徴とする請求項3または4記載の結晶シリコン粒子の製造方法。
  6. 前記ノズル部材は、板状体に貫通孔を形成した形状であることを特徴とする請求項3乃至5のいずれか記載の結晶シリコン粒子の製造方法。
JP2007197230A 2007-07-30 2007-07-30 結晶シリコン粒子の製造方法 Pending JP2009033013A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007197230A JP2009033013A (ja) 2007-07-30 2007-07-30 結晶シリコン粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007197230A JP2009033013A (ja) 2007-07-30 2007-07-30 結晶シリコン粒子の製造方法

Publications (1)

Publication Number Publication Date
JP2009033013A true JP2009033013A (ja) 2009-02-12

Family

ID=40403180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007197230A Pending JP2009033013A (ja) 2007-07-30 2007-07-30 結晶シリコン粒子の製造方法

Country Status (1)

Country Link
JP (1) JP2009033013A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529605A (ja) * 2015-12-02 2018-10-11 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 流動床反応器及び多結晶シリコン顆粒の製造方法
CN114289718A (zh) * 2021-12-08 2022-04-08 北京科技大学 一种高效制备复杂形状纳米孔隙多孔钨制品的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529605A (ja) * 2015-12-02 2018-10-11 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 流動床反応器及び多結晶シリコン顆粒の製造方法
CN114289718A (zh) * 2021-12-08 2022-04-08 北京科技大学 一种高效制备复杂形状纳米孔隙多孔钨制品的方法

Similar Documents

Publication Publication Date Title
CN100406378C (zh) 多晶硅的生产装置
JP2011521874A (ja) 直接シリコン鋳造又は直接反応金属鋳造
TW200914371A (en) Processing of fine silicon powder to produce bulk silicon
JP4781020B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボおよびシリコン単結晶引き上げ用石英ガラスルツボの製造方法
JP2011520760A (ja) スカル反応炉
JP2009033013A (ja) 結晶シリコン粒子の製造方法
JP2009203499A (ja) ターゲット材およびその製造方法
JP4966151B2 (ja) 一酸化珪素蒸着材料の製造方法およびその製造装置
JP4817307B2 (ja) 粒状半導体の製造方法及び製造装置
WO2001048277A1 (fr) Procede et appareil utiles pour produire un monocristal de carbure de silicium
JP4800095B2 (ja) 粒状シリコンの製造方法及び製造装置
JP4855799B2 (ja) 粒状シリコン結晶の製造方法
JP2008239438A (ja) 球状結晶の製造方法及び製造装置
JP2010030851A (ja) 結晶シリコン粒子の製造方法、坩堝及びその製造方法、並びに結晶シリコン粒子の製造装置
JP2009227521A (ja) 結晶シリコン粒子の製造方法、耐シリコン融液部材、ノズル部及び坩堝
JP2012101972A (ja) 結晶半導体の製造方法及び製造装置
JP2008207984A (ja) 結晶シリコン粒子の製造方法及び結晶シリコン粒子の製造装置
JP2006206368A (ja) 粒状シリコンの製造方法及び製造装置
JP2005162609A (ja) シリコン球状体の製造方法及びその製造装置
JP2006151723A (ja) 粒状結晶の製造方法
US20160141442A1 (en) Use of silicon nitride as a substrate and a coating material for the rapid solidification of silicon
JP2009234850A (ja) 結晶シリコン粒子の製造方法及び結晶シリコン粒子の製造装置
JP2006151717A (ja) 粒状結晶の製造方法
JP2006036583A (ja) 粒状結晶の製造装置および製造方法
JP2004244670A (ja) 半導体粒子または金属粒子の製造方法および製造装置