WO2012035873A1 - 燃料電池及び燃料電池装置 - Google Patents

燃料電池及び燃料電池装置 Download PDF

Info

Publication number
WO2012035873A1
WO2012035873A1 PCT/JP2011/066135 JP2011066135W WO2012035873A1 WO 2012035873 A1 WO2012035873 A1 WO 2012035873A1 JP 2011066135 W JP2011066135 W JP 2011066135W WO 2012035873 A1 WO2012035873 A1 WO 2012035873A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
fuel
fuel cell
flow path
power generation
Prior art date
Application number
PCT/JP2011/066135
Other languages
English (en)
French (fr)
Inventor
昇 石曽根
須田 正之
一貴 譲原
尾崎 徹
考応 柳▲瀬▼
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2012035873A1 publication Critical patent/WO2012035873A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell device including a fuel cell and a fuel storage source.
  • a polymer electrolyte fuel cell is composed of a unit cell composed of an anode electrode, a cathode electrode, and a solid polymer electrolyte membrane sandwiched between both electrodes, and supplies fuel such as methanol and hydrogen to the anode electrode side, An oxidant gas, for example, oxygen or air, is supplied to the battery, and electric power is generated by these electrochemical reactions.
  • the power generation cell according to Patent Literature 1 includes a plate portion that sandwiches a power generation cell member including a membrane electrode assembly and a conductive layer, and a back cover, and the back cover includes a fuel supply plate.
  • the fuel supplied from the fuel supply source through the fuel injection port passes through the pipe portion arranged so as to reach the entire fuel supply plate, and moves to the fuel discharge port connected to the pipe portion.
  • the fuel discharge ports are equally spaced apart from each other in the entire power generation region, and the fuel supplied from the discharge port spreads throughout the entire power generation region of the anode electrode.
  • the fuel supply method for the anode electrode is roughly classified into a flow method and a dead end method.
  • the dead end system is a system in which fuel gas is not discharged outside the fuel cell during power generation, but fuel is supplied to the anode electrode by the amount of fuel gas consumed by power generation.
  • a gas (impure gas) other than fuel gas such as air enters the flow path in the anode electrode from the cathode electrode side through the electrolyte membrane. Further, in the power generation reaction of the fuel cell, water is generated on the cathode electrode side, and the generated water penetrates into the anode electrode through the electrolyte membrane.
  • these impurities are not discharged to the outside of the fuel cell but are accumulated in the anode electrode.
  • the present invention has been made in view of the above situation, and a fuel having a thin power generation cell that can maintain high power generation performance with little variation in the power generation region even when impurities enter the anode space.
  • the purpose is to provide batteries.
  • the first feature of the fuel cell of the present invention for solving the above problems is that a solid polymer electrolyte membrane, an anode side catalyst body provided on one surface of the solid polymer electrolyte membrane, and the anode side catalyst body
  • a fuel cell comprising: a supply member that supplies fuel; and a diffusion portion that is provided between the supply member and the anode side catalyst body and diffuses the fuel, wherein the supply member is the anode side catalyst body An anode channel provided so as to spread in the surface direction, and a storage unit for storing gas pushed away from the diffusion unit by the supply of the fuel, the anode channel is formed in the anode side catalyst body
  • the fuel cell has an anode communication hole for supplying fuel, and the anode flow path and the accommodating portion are provided along the surface direction of the diffusion portion.
  • the impurities present in the diffusion part can move to the accommodating part, and the fuel can contact the anode side.
  • the anode flow path provided so as to spread in the surface direction of the medium, it spreads over the entire power generation region, so that variation in fuel concentration in the power generation region can be reduced.
  • the accommodating portion and the anode flow path are provided along the surface direction of the diffusion portion, the power generation cell can be made thinner. As a result, in the thin power generation cell, even if the anode channel enters the anode space of the pure material, there is little variation in the power generation region, and high power generation performance can be maintained.
  • a second feature of the fuel cell according to the present invention is that, in the fuel cell according to the first feature, the anode communication hole is provided facing the diffusion portion. According to such a feature, since the anode communication hole is disposed facing the diffusion portion, the fuel is easily supplied to the diffusion portion, and the ability to remove impurities present near the anode catalyst layer is enhanced. Can do.
  • the anode channel and the accommodating portion are on a substrate, and the substrate protrudes with respect to the diffusion portion. It has a plurality of convex portions and a concave portion constituted by the adjacent convex portions, the convex portion being the anode flow path, and the concave portion being the accommodating portion. According to this feature, even if a plurality of anode flow paths are arranged, a large volume of the storage section can be secured, so that the fuel having the storage section and the anode flow path in the same layer regardless of the size of the power generation region of the fuel cell. A battery structure can be realized.
  • the fourth feature of the fuel cell of the present invention is that, in the fuel cell of the first feature, the anode flow path and the accommodating portion are formed from the same substrate. According to such a feature, since the anode channel and the accommodating portion are formed from the same substrate, the fuel cell structure of the present invention can be realized with a smaller number of members.
  • the supply member is a cylinder provided in parallel to the surface of the diffusion portion. According to this feature, since the anode flow path and the accommodating portion can be easily formed in the same layer by providing the cylindrical supply member, the assembly of the fuel cell of the present invention can be simplified. Is possible.
  • the diffusing portion has a plurality of fuel flow holes through which fuel flows.
  • the diffusion part is provided with a fuel circulation hole through which the fuel can move in the thickness direction of the power generation cell, so that the fuel supply capability to the vicinity of the catalyst layer and the mobility to the impurity containing part can be obtained. Can be improved.
  • the anode communication hole is disposed so as to overlap at least a part of the plurality of fuel flow holes. According to this feature, the fuel circulation hole partially overlaps with the anode communication hole, so that it is possible to more reliably improve the fuel supply capability to the vicinity of the catalyst layer.
  • an area of the anode communication hole is smaller than a cross-sectional area perpendicular to the flow direction of the anode flow path.
  • the fuel cell has a branch channel that communicates each of the plurality of anode channels, and the cross-sectional area perpendicular to the flow direction of the branch channel is The gist is that the cross-sectional area is perpendicular to the flow direction of the anode channel.
  • the cross-sectional area of the plurality of anode flow paths is smaller than the cross-sectional area of the branch flow paths, the fuel is more likely to move in the branch flow paths than to reach the respective anode flow paths. Therefore, since the fuel concentration in the branch flow path becomes uniform, it is possible to further reduce variations in fuel supply to the entire power generation region.
  • a fuel cell including a thin power generation cell that can maintain high power generation performance with little variation in the power generation region even when impurities enter the anode space.
  • FIG. 1 is an overall schematic configuration diagram of a fuel cell device according to the present invention.
  • 1 is an exploded perspective view of a fuel cell in Embodiment 1 of the present invention.
  • 1 is a cross-sectional view of a fuel cell in Embodiment 1.
  • FIG. 5 is a cross-sectional view of a fuel cell in a second embodiment.
  • FIG. It is a perspective view of the specific example of a supply member. It is a perspective view of the specific example of other supply members. It is a disassembled perspective view of the fuel cell carrying another supply member.
  • FIG. 10 is a perspective view of a supply member having a branch channel in the third embodiment. It is a perspective view of the supply member which has several branch flow paths.
  • FIG. 7 is a cross-sectional view of a fuel cell in a fourth embodiment. It is sectional drawing of the normal closed type fuel cell which does not use this invention.
  • Embodiment 1 A fuel cell device according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 shows a schematic configuration diagram of an entire fuel cell device according to an embodiment of the present invention.
  • the fuel cell device 1 is built in a fuel cell 2 composed of power generation cells, a fuel unit 3 that stores fuel required for power generation reaction of the fuel cell 2, and the fuel unit 3. It comprises a fuel supply means 4 for supplying fuel to the fuel cell, and a control circuit 5 for controlling the generated power.
  • the fuel used in the fuel cell 2 is hydrogen, methanol, ethanol, borohydride aqueous solution, or the like, that is, the fuel unit 3 stores these fuels. Moreover, the substance which becomes the precursor of a fuel may be stored even if the fuel itself is not stored. In this case, the fuel unit 3 generates fuel by chemically reacting the precursor inside the fuel unit 3 during a power generation reaction.
  • the fuel supply means 4 is a flow path for moving fuel to the fuel cell 2 as described above.
  • the fuel supply means 4 may be equipped with auxiliary equipment such as a pump and a valve.
  • the fuel unit 3 is of a cartridge type so that continuous power generation is possible by replacing the fuel unit 3 with a new fuel unit 3 after exhausting all of the built-in fuel.
  • Some control circuits 5 have a power storage function by providing a secondary battery in addition to increasing the electric power obtained by power generation of the fuel cell 2 and controlling the amount of current.
  • the electric power controlled by the control circuit is used for the use device 6 connected to the fuel cell device 1.
  • FIG. 2 shows an exploded view of the fuel cell of the present invention.
  • the fuel cell 2 includes a solid polymer electrolyte membrane 11, a diffusion portion 13 provided on both sides of the solid polymer membrane 11, and an anode body having a diffusion portion 13 and having an anode electrode as a chamber structure. 14, a cathode body 15 having a space in which the cathode side diffusion portion 13 is fixed, a supply member 20 that is accommodated in the anode body and is provided in the anode body 14 and arranged along the anode side diffusion portion, and all of these members Is comprised of a support 16 that sandwiches the two from both sides.
  • the support body 16 is provided with fastening means 17, and the fastening means applies a load in a direction in which the two support bodies are compressed, and the sandwiched member is given a compressive force by the support body 16.
  • the fastening means 17 include a bolt, a metal band, a rivet, and the like.
  • the anode body 14 is provided with a fuel supply port 141 for taking the fuel supplied from the fuel supply means 4 into the anode electrode.
  • the fuel that has flowed into the anode electrode from the fuel supply port 141 is supplied to an anode channel 22 described later through an anode channel inlet 21 provided in the supply member 20.
  • the cathode body 15 is connected to the external space so as to give oxygen in the air to the cathode-side catalyst layer 12 described later.
  • oxygen is circulated by providing openings on two of the side surfaces, but the openings may be provided on any surface.
  • a blower fan or a pump may be used as the oxygen supply means.
  • FIG. 3 is a cross-sectional view in which the fuel cell 2 of FIG. 2 is assembled and taken along a plane indicated by a dotted line and a broken line.
  • a catalyst layer 12 is provided on both surfaces of the solid polymer electrolyte membrane 11.
  • the catalyst layer 12 is a layer in which carbon particles carrying a catalyst typified by platinum, ruthenium, and cobalt are coated on the entire surface. The fuel that has reached the catalyst layer 12 on the anode electrode side is converted into protons and electrons on the catalyst.
  • a diffusion portion 13 is provided on the side of the catalyst layer 12 facing the solid polymer electrolyte membrane 11.
  • the diffusing section 13 has two functions of being conductive and functioning as an electrode, and being capable of transmitting fuel to the catalyst layer 12 through the fluid. For this reason, a carbon sintered body and a fibrous GDL are mainly used, and the GDL contacts the catalyst layer 12 over the entire surface and acts as an electrode.
  • GDL has a higher resistance in the surface direction than conductive materials such as metal materials. Therefore, in order to effectively extract electrons generated in the catalyst layer 12, a current collector plate formed of a porous conductive material having rigidity such as metal or carbon is provided on the side facing the catalyst layer 12 of the GDL. The compressive force of the support 16 may be transmitted to the GDL.
  • a conducting wire is drawn from the diffusion unit 13 as described above to the outside of the power generation unit 2, and power is transmitted to the control circuit 5.
  • the anode body 14 is isolated from the external space of the fuel cell 2 so that the fuel does not leak to the outside of the fuel cell 2.
  • the anode body is formed of a resin material typified by the above-described solid material acrylic that does not transmit fuel, a metal typified by SUS or aluminum, or a carbon resin such as graphite. Since the anode body 14 can be made an anode electrode by bringing the diffusion portion 13 and the anode body 14 made of a conductive material into contact with each other, the arrangement of the conductor can be simplified. It is desirable to be formed.
  • a sealing means 18 is provided at the interface between the anode body 14 and the solid polymer electrolyte membrane 11 in order to prevent fuel leakage from the anode body.
  • the sealing means 18 of this embodiment achieves sealing by providing a groove formed in the anode body with a packing typified by silicone rubber, butyl rubber, nitrile rubber or the like.
  • sealing means 18 sealing by an adhesive or heat fusion is conceivable, but any means can be used as long as the space between the inside and outside of the anode electrode can be realized.
  • a supply member 20 is provided in the anode body 14 so as to be in contact with the diffusion portion 13.
  • the supply member 20 divides the anode electrode into two spaces, an anode flow path 22 to which fuel is supplied from the fuel part 3 and a housing part 23.
  • the two spaces are connected by an anode communication hole 24 provided in the supply member 20 that forms the anode flow path 22, and the fuel supplied to the anode flow path 22 passes through the anode communication hole 24, so that the presence of the catalyst layer 12 exists.
  • Examples of a method for forming the supply member 20 include a method in which layered members are stacked and the overlapping portions are adhered by diffusion bonding or an adhesive, or the wall surface of the supply member 20 is formed by cutting, and then the lid is stacked. It is conceivable to form a flow path, but any method may be used as long as the anode flow path 22 and the accommodating portion 23 can be isolated.
  • the impurities such as water, air, and nitrogen that are not directly used in the power generation reaction of the fuel cell accumulate in the anode body 14
  • the fuel partial pressure in the anode body 14 decreases.
  • the impurities can be prevented from suffocation due to the impurities in the catalyst layer 12 on the anode side by moving to the accommodating portion 23.
  • FIG. 11 is a configuration diagram of a fuel cell not implementing the present invention.
  • high-purity fuel is supplied in the vicinity of the fuel supply port 141.
  • impurities are likely to accumulate in a region far from the fuel supply port 141 on the right side in the figure, and eventually the suffocation of the catalyst layer 12 due to the impurity will occur. It will occur.
  • the fuel cell structure according to the present invention since hydrogen is always consumed on the housing part 23 side during power generation, the fuel is supplied from the anode flow path 22 to the housing part 23 through the anode communication hole 24. Impurities do not move to the anode channel 22. Therefore, high-purity fuel is always supplied from the anode communication hole 24 to the accommodating portion 23 side.
  • the anode channel is provided so as to extend in the surface direction of the power generation region, and the anode communication holes 24 are also provided separately in the surface direction. For this reason, since high-purity fuel is supplied from the plurality of anode communication holes 24, the phenomenon that impurities are accumulated in a part hardly occurs, and the power generation performance of the entire power generation region can be maintained high.
  • the accommodating part 23 and the anode flow path 22 can be formed in the same layer by the supply member 20, the fuel cell can also be made thin.
  • FIG. 5 is a sectional view of the fuel cell 2 according to Embodiment 2 of the present invention
  • FIG. 6 is a component diagram of the supply member 20
  • FIG. 7 is another example 1 of the supply member 20
  • FIG. FIG. 8 shows an exploded view of the fuel cell 2 on which is mounted. Note that the same parts as those in the first embodiment are denoted by the same reference numerals, and description of similar configurations and operations is omitted.
  • the second embodiment will be described with reference to FIGS.
  • FIG. 5 is a cross-sectional view of the fuel cell 2 according to Embodiment 2 of the present invention.
  • the supply member 20 has a structure different from that of the first embodiment, and a plurality of lid-like supply members 20 protruding toward the catalyst layer 12 are arranged inside the anode body 14.
  • the supply member 20 may have a rectangular structure as shown in FIG. 6 (a) or a semicircular structure as shown in FIG. 6 (b).
  • the material of the supply member 20 may be any material having rigidity that can isolate the anode flow path 22 and the accommodating portion 23, such as a resin such as acrylic, a metal typified by SUS or aluminum, or a carbon material such as graphite. .
  • the supply member 20 is in contact with both the anode body 14 and the diffusion portion 13, when the anode body 14 is formed of a conductive material, the conduction between the diffusion portion 13 and the anode body 14 is more reliable. In order to make it a thing, it is desirable to make the supply member 20 into a conductive material. As described above, the anode flow path 22 and the accommodating portion 23 are formed by the substrate-like supply member 20, thereby greatly improving the assemblability of the fuel cell 2.
  • the cross-sectional area of the anode flow path 22 is preferably larger than the cross-sectional area of the anode communication hole 24.
  • the fuel that has entered the anode channel inlet 21 from the fuel supply port 141 passes through the anode channel 22 and reaches the anode communication hole 24 a located near the anode channel inlet 21.
  • the cross-sectional area of the anode communication hole 24a is small, and the fuel does not easily move to the accommodating portion 23 side where the catalyst layer 12 exists. Therefore, the fuel is likely to move through the anode flow path 22 toward the next anode communication hole 24b. The same phenomenon occurs in the anode communication hole 24b, and the fuel can easily move to the next anode communication hole 24c.
  • the anode communication hole 24c is disposed on the end side of the anode flow path 22, and when the fuel reaches the end, there is no place to go, and the fuel moves to the accommodating portion 23 through the anode communication holes 24a, 24b, and 24c.
  • the cross-sectional area of the anode communication hole 24 is large, the fuel that has reached the anode communication hole 24a immediately moves to the accommodating portion side. Therefore, the fuel concentration is high only in the vicinity of the anode communication hole 24a, and the fuel concentration is low on the end side far from the anode communication hole 24a, resulting in variations in power generation performance in the power generation region.
  • FIG. 5 shows an example in which three anode communication holes 24 are arranged, the above-described operation occurs even if two to four or more are provided.
  • the accommodating portion 23 exists only in the outer peripheral portion of the power generation region, there is a possibility that the impurity that has entered the central portion of the power generation region of the anode electrode cannot reliably move to the accommodating portion 23. was there.
  • the accommodating portion 23 is provided between the plurality of supply members 20 and is disposed in a well-balanced manner over the entire surface of the power generation region, so that the impurity can be more reliably moved to the accommodating portion 23. Can be done.
  • the anode communication hole 24 is desirably arranged so that its cross section is parallel to the diffusion portion 13. By doing so, since the moving distance in the thickness direction from the anode communication hole 24 to the diffusion portion 13 is the shortest and the fuel is easily supplied to the catalyst layer 12, the fuel concentration in the vicinity of the catalyst layer 12 can be maintained higher. . Further, it is desirable that the anode communication hole 24 is disposed at the highest portion of the supply member 20. Since the supply member 20 is disposed along the diffusion portion 13, the vertex of the supply member 20 is in contact with the diffusion portion 13. Since the anode communication hole 24 is disposed at the contact location, the fuel supplied from the anode flow path 22 reliably reaches the diffusion section 13 and the fuel can be more reliably diffused to the catalyst layer 12. .
  • a plurality of supply members 20 are arranged on the anode body 14, and a space between the adjacent supply members 20 serves as the accommodating portion 23. Further, the supply member 20 may be provided away from the side wall of the anode body 14 to form the accommodating portion 23a.
  • FIG. 6 shows another example of the supply member 20.
  • the supply member 20 has three anode flow paths 22, and the three anode flow paths 22 are formed from a single substrate.
  • the supply member 20 is composed of a metal material formed by sheet metal processing, a resin material formed by bending, injection molding, or the like. In this way, even when there are a plurality of anode flow paths 22, the supply member 20 is configured by a single member, so that the fuel cell 2 can be easily assembled.
  • the supply member 20 has three anode channels 22 in FIG. 6, the present embodiment can be applied even if other number of anode channels are provided.
  • FIG. 7 is an exploded view of the fuel cell 2 on which another example of the supply member 20 is mounted.
  • the supply member 20 has a cylindrical shape, and the plurality of supply members 20 are separately provided in the anode body 14.
  • the supply member 20 is a square cylinder, but the shape is not limited to this and may be a cylinder.
  • the same effect as that of the structure of the fuel cell 2 shown in FIG. 4 can be obtained, and the supply member 20 is formed of a cylinder having better workability, so that the fuel cell having the structure of the present invention at low cost. 2 can be realized.
  • FIG. 8 shows a perspective view of the supply member 20 according to the fuel cell 2 in Embodiment 3 of the present invention
  • FIG. 9 shows a perspective view of other supply members 20.
  • the same parts as those in Embodiments 1 and 2 are denoted by the same reference numerals, and description of similar configurations and operations is omitted.
  • the second embodiment will be described with reference to FIG.
  • FIG. 8 shows a supply member 20 in which a plurality of anode flow paths 22 are made of the same substrate.
  • the fuel supply port 141 is supplied from the anode channel inlet 21 disposed in each anode channel 22.
  • the fuel supplied from one fuel supply port 141 passes from the anode channel inlet 21 to each anode channel 22 through the branch channel 25 connected to the plurality of anode channels 22.
  • the cross-sectional area of the arbitrary cross section B of the branch flow path 25 is larger than the cross-sectional area of the arbitrary cross section A of each of the anode flow paths 22a, 22b, 22c, and 22d.
  • the fuel supplied to the branch flow path 25 reaches the anode flow path 22b and the anode flow path 22c that are close to the anode flow path inlet 21.
  • the cross-sectional areas of the anode flow path 22b and the anode flow path 22c are smaller than that of the branch flow path 25, and the fuel passes through the branch flow path 25 rather than filling the anode flow paths 22b and 22c with the next anode flow path 22a. And 22d.
  • FIG. 8 shows an example in which four anode channels 22 are arranged, the above-described operation occurs even when other numbers of anode channels 22 are provided.
  • a plurality of branch channels 25 may be provided.
  • a branch channel 25 ′ is provided at a location separated from the branch channel 25.
  • the fuel cell is supplied to the anode channel 22.
  • the fuel flows through the branch channel 25 ′ to the blocking portion of the anode channel 22.
  • FIG. 4 A cross-sectional view of the fuel cell 2 in Embodiment 4 of the present invention is shown in FIG.
  • the same parts as those in the first to third embodiments are denoted by the same reference numerals, and the description of the same configuration and operation is omitted.
  • the second embodiment will be described with reference to FIG.
  • the 10 includes a gas diffusion layer 131 and a current collector plate 132 having a plurality of fuel flow holes 133 through which fuel can flow in the thickness direction in the fuel cell 2 shown in FIG.
  • the fuel flow hole 133 is a through hole, and overlaps with the anode communication hole 24 when the fuel cell 2 is assembled. Further, an error occurs during assembly, and the fuel flow hole 133 and the anode communication hole 24 do not have the same axis, but they may overlap even partly.
  • the diameter of the fuel circulation hole 133 may be made larger than the diameter of the anode communication hole 24 so as to be surely overlapped. Conversely, the same effect can be expected even if the diameter of the annual anode communication hole 24 is made larger than the diameter of the fuel circulation hole 133.
  • each of the plurality of anode communication holes 24 partially overlaps with the fuel flow hole 133, so that the fuel supplied from the anode communication hole 24 is reliably supplied to the catalyst layer 12. .
  • the fuel circulation hole 133 may be further provided in a portion that does not overlap with the anode communication hole 24, particularly in the region of the accommodating portion 23. Since impurities are generated in the entire power generation region, it is preferable that a plurality of fuel circulation holes 133 overlapping the accommodating portion 23 are provided so as to be scattered in the power generation region.
  • the present invention is not particularly limited, and the specific configuration and the like of each part can be changed as appropriate.
  • the operation and effect of each embodiment and the modification only enumerate the most preferable operation and effect resulting from the present invention, and the operation and the effect of the present invention are described in each embodiment and modification. It is not limited to things.
  • the fuel cell is constituted by a single cell, but the present invention can also be applied to a fuel cell having a structure having a plurality of power generation cells sandwiched between supports.
  • the present invention can be used in the industrial field of fuel cells and fuel cell devices.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 不純物質がアノード空間内へ進入しても発電領域のばらつきが少なく、高い発電性能を維持することの出来る薄型の発電セルを備えた燃料電池を提供する。 固体高分子電解質膜と、前記固体高分子電解質膜の一面に備えられたアノード側触媒体と、前記アノード側触媒体に対して燃料を供給する供給部材と、前記供給部材と前記アノード側触媒体との間に設けられ、前記燃料を拡散する拡散部とを備える燃料電池において、前記供給部材は、前記アノード側触媒体の面方向に広がるように備えられたアノード流路と、前記燃料の供給により前記拡散部から押し退けられた気体を収容する収容部とを有し、前記アノード流路は、前記アノード側触媒体に対して燃料を供給するためのアノード連通孔を有し、前記アノード流路と前記収容部とは、前記拡散部の面方向に沿って備えられる。

Description

燃料電池及び燃料電池装置
 本発明は燃料電池及び燃料貯蔵源を備えた燃料電池装置に関する。
 現在燃料電池には多数の方式が存在するが、電子機器に用いられる燃料電池は、そのシステムの小型化・簡素化が容易である事から固体高分子形燃料電池の適用が有望である。固体高分子形燃料電池は、アノード極とカソード極と両極に挟持された固体高分子電解質膜とから成る単電池によって構成され、アノード極側にメタノールや水素等の燃料を供給し、カソード極側に酸化剤気体、例えば酸素や空気を供給し、これらの電気化学反応により電力を発生する。
 ここで発電領域に対して面方向のどの場所に対してもばらつき無く均等に燃料を供給する必要がある。燃料が十分に供給されていない箇所では拡散過電圧により抵抗が高くなり、十分な発電力を取り出せない可能性がある。また燃料が十分供給されていない箇所は拡散過電圧により、その箇所のみ発熱が多くなってしまい、燃料電池全体の発電性能を劣化させるといった可能性もある。
 この課題に対し、発電領域全体に燃料を供給できるように燃料流路が枝状に分割している流路を持つ層を新たに設ける事で、発電領域全体に供給される燃料の濃度ばらつきを低減する技術がある(例えば特許文献1参照)。特許文献1に係る発電セルは、膜電極接合体や導電層を含む発電セル部材を挟み込む板部とバックカバーから構成され、バックカバーには燃料供給板を有している。燃料供給板は燃料供給源から燃料注入口を通して供給された燃料が、燃料供給板の全体に行き渡るように配置された管部を通り、管部と繋がる燃料排出口へと移動する。燃料排出口は発電領域の全体にそれぞれが均等に離間して配置されており、排出口から供給された燃料がアノード極の発電領域全体にばらつき無く広がる。
 しかしながら、上述の特許文献1に係る発電セルは発電領域内の燃料濃度のばらつきは低減されているが、燃料供給板が新たな構成要素として別に備えられている為に、発電セルの厚みが増大してしまう。
 またアノード極に対する燃料の供給方式は、大別してフロー方式とデッドエンド方式に分類される。デッドエンド方式は発電中に燃料気体を燃料電池外部へと排出せず、発電で消費した燃料気体の量だけアノード極に燃料を供給する方式である。
 このような固体高分子形燃料電池システムの発電において、アノード極内の流路にカソード極側から電解質膜を介し、空気などの燃料気体以外の気体(不純気体)が侵入してくる。また燃料電池の発電反応ではカソード極側で水が生成されるが、生成水は電解質膜を通してアノード極内部へと浸透する。ここでデッドエンド方式においてはこれらの不純物質は燃料電池外部へと排出されず、アノード極内に蓄積する。
 このようにデッドエンド方式の発電セルにおいて長時間の発電を持続する為には、触媒層付近からの不純物質の除去をする必要がある。ここでアノード極にスペースを設け、不純物質をスペースに移動させることが容易に考えられるが、この方法だとスペースの容積だけアノード極の厚みが増大してしまう。
特開2008-218048号公報
 そこで、本発明は上記状況に鑑みてなされたもので、不純物質がアノード空間内へ進入しても発電領域のばらつきが少なく、高い発電性能を維持することの出来る薄型の発電セルを備えた燃料電池を提供する事を目的とする。
 上記課題を解決するための本発明の燃料電池の第1の特徴は、固体高分子電解質膜と、前記固体高分子電解質膜の一面に備えられたアノード側触媒体と、前記アノード側触媒体に対して燃料を供給する供給部材と、前記供給部材と前記アノード側触媒体との間に設けられ、前記燃料を拡散する拡散部とを備える燃料電池において、前記供給部材は、前記アノード側触媒体の面方向に広がるように備えられたアノード流路と、前記燃料の供給により前記拡散部から押し退けられた気体を収容する収容部とを有し、前記アノード流路は、前記アノード側触媒体に対して燃料を供給するためのアノード連通孔を有し、前記アノード流路と前記収容部とは、前記拡散部の面方向に沿って備えられることを要旨とする。
 かかる特徴によれば、カソード側から不純物質が固体高分子電解質膜を通してアノード側へと侵入した場合、拡散部に存在する不純物質は収容部へと移動する事が出来、また燃料はアノード側触媒体の面方向に広がるように備えられたアノード流路中を移動する事によって発電領域全体に広がるので、発電領域内の燃料濃度のばらつきを低減出来る。
 さらに収容部とアノード流路は拡散部の面方向に沿って備えられるので、発電セルの薄型化が可能となる。この結果、薄型の発電セルでアノード流路は純物質のアノード空間内へ進入が生じても発電領域内のばらつきが少なく、高い発電性能を維持することが可能となる。
 また本発明の燃料電池の第2の特徴は、第1の特徴の燃料電池において、前記アノード連通孔は、前記拡散部に面して設けられていることを要旨とする。
 かかる特徴によれば、アノード連通孔が拡散部に面して配置されている為に、燃料が拡散部へと供給され易くなり、アノード触媒層付近に存在する不純物質を除去する能力を高める事ができる。
 また本発明の燃料電池の第3の特徴は、第1の特徴の燃料電池において、前記アノード流路と前記収容部とは、基板上にあり、前記基板は、前記拡散部に対して突出した複数の凸部分と、隣り合う前記凸部分により構成される凹部分とを有し、前記凸部分は、前記アノード流路であり、前記凹部分は、前記収容部であることを要旨とする。
 かかる特徴によれば、複数のアノード流路を配置しても収容部の容積を大きく確保できるので、燃料電池の発電領域の大きさに係らず、収容部とアノード流路を同一層に有する燃料電池構造が実現可能となる。
 また本発明の燃料電池の第4の特徴は、第1の特徴の燃料電池において、前記アノード流路と前記収容部とは、同一基板から形成されることを要旨とする。
 かかる特徴によれば、アノード流路と収容部は同一基板から形成される為、より少ない部材数で本発明の燃料電池構造を実現する事が可能となる。
 また本発明の燃料電池の第5の要旨は、第1の特徴の燃料電池において、前記供給部材は、前記拡散部の面に対して平行に設けられている筒であることを要旨とする。
 かかる特徴によれば、筒状の供給部材を備える事により簡便にアノード流路と収容部を同一の層に形成する事が可能である為、本発明の燃料電池の組立を簡易化することが可能である。
 また本発明の燃料電池の第6の要旨は、第1の特徴の燃料電池において、前記拡散部は、燃料を流通する燃料流通孔を複数有することを要旨とする。
 かかる特徴によれば、燃料が発電セルの厚み方向に移動する事が出来る燃料流通孔を拡散部が設ける事により、触媒層近傍への燃料の供給能力と、不純物質の収容部への移動性を向上することが出来る。
 また本発明の燃料電池の第7の要旨は、第6の燃料電池において、前記アノード連通孔は、複数の前記燃料流通孔の少なくとも一部と重なるように配置されていることを要旨とする。
 かかる特徴によれば、燃料流通孔がアノード連通孔と一部重なりあう為、触媒層近傍への燃料の供給能力をより確実に向上させる事が可能となる。
 また本発明の燃料電池の第8の要旨は、第1の特徴の燃料電池において、前記アノード連通孔の面積は、前記アノード流路の流通方向に垂直な断面積よりも小さいことを要旨とする。
 かかる特徴によれば、アノード流路の断面積がアノード連通孔の断面積よりも小さい為に、燃料はアノード連通孔から触媒層近傍へ供給されるよりもアノード流路中を移動しやすい。そのため、発電領域全体への燃料供給のばらつきをより軽減する事が可能である。
 また本発明の燃料電池の第9の要旨は、第1の特徴の燃料電池において、複数の前記アノード流路のそれぞれを連通する支流路を備え、前記支流路の流通方向に垂直な断面積は、前記アノード流路の流通方向に垂直な断面積以上であることを要旨とする。
 かかる特徴によれば、複数のアノード流路の断面積が支流路の断面積よりも小さい為に、燃料はそれぞれのアノード流路に行き渡るよりも、支流路中を移動しやすい。そのため支流路の燃料濃度が均一になるため、発電領域全体への燃料供給のばらつきをより軽減する事が可能である。
 本発明によれば、不純物質がアノード空間内へ進入しても発電領域のばらつきが少なく、高い発電性能を維持することの出来る薄型の発電セルを備えた燃料電池を提供する事が可能になる。
本発明に係る燃料電池装置の全体の概略構成図である。 本発明の実施の形態1における燃料電池の分解斜視図である。 実施の形態1における燃料電池の断面図である。 実施の形態2における燃料電池の断面図である。 供給部材の具体例の斜視図である。 その他の供給部材の具体例の斜視図である。 その他の供給部材を搭載した燃料電池の分解斜視図である。 実施の形態3における、支流路を有する供給部材の斜視図である。 複数の支流路を有する供給部材の斜視図である。 実施の形態4における燃料電池の断面図である。 本発明を用いない通常の閉鎖系の燃料電池の断面図である。
 以下に、本発明の実施の形態を説明する。
(実施の形態1)
 図1から図3に基づいて本発明の実施の形態1における燃料電池装置を説明する。
 図1には本発明の一実施例に係る燃料電池装置全体の概略構成図を示してある。図1に示すように、燃料電池装置1は発電セルから構成される燃料電池2と、燃料電池2の発電反応に必要とされる燃料を貯蔵する燃料部3と、燃料部3に内蔵された燃料を燃料電池へと供給する為の燃料供給手段4と、発電した電力を制御する制御回路5から構成される。
 燃料電池2に使用される燃料は水素・メタノール・エタノール・ボロハイドライド水溶液等であり、即ち燃料部3はこれらの燃料を貯蔵している。また燃料そのものを貯蔵していなくても、燃料の前駆体となる物質を貯蔵していても良い。この場合、燃料部3では発電反応時に燃料部3の内部で前駆体を化学的に反応させる事により燃料を生成する。燃料供給手段4は前述のように燃料を燃料電池2へ移動させる流路である。またこの他に燃料の供給をより円滑かつ確実に行う為に、燃料供給手段4にはポンプやバルブ等の補機が備えられていても良い。ここで燃料部3は内蔵する燃料を全て消耗した後に新しい燃料部3と交換する事で連続した発電が可能になるよう、カートリッジ方式になっている事が好ましい。
 制御回路5は燃料電池2の発電で得られた電力を昇高圧や電流量の制御等の他、二次電池を備える事による蓄電機能を備えるものがある。制御回路にて制御された電力は、燃料電池装置1と接続された使用機器6に使用される。
 図2には本発明の燃料電池の分解図を示す。図2に示すように、燃料電池2は固体高分子電解質膜11と、固体高分子膜11の両側に備えられた拡散部13と、拡散部13を有しアノード極をチャンバー構造にするアノード体14と、カソード側拡散部13を固定し空間を有するカソード体15と、アノード体に収容されアノード体14内に備えられアノード側拡散部に沿って配置される供給部材20と、それら全ての部材を両側から挟みこむ支持体16から構成される。
 支持体16は締結手段17を備えており、締結手段は2つの支持体を圧縮する方向へと荷重をかけており、挟み込まれる部材は支持体16によって圧縮力を与えられる。締結手段17の具体例はボルト、金属バンド、リベット等が挙げられるが、支持体16に対して圧縮応力を保持できる手段であれば上記例には限らない。
 アノード体14には燃料供給手段4から供給された燃料をアノード極内へと取り入れる燃料供給口141が備えられている。燃料供給口141からアノード極内部へ流入した燃料は供給部材20に備えられたアノード流路入口21を通して後述するアノード流路22に供給される。
 またカソード体15は後述するカソード側の触媒層12に空気中の酸素を与えるべく外部空間とつながっている。図2では側面のうち2面に開口を設ける事で酸素の流通を行っているが、開口はどの面に備えられていても良い。また酸素の供給をより確実に行う為に、酸素供給手段として送風ファンやポンプなどを用いても良い。
 図3は図2の燃料電池2を組みたて、点線と破線で示す平面で断面をとった断面図である。以降図3を用いて本発明の発電セルの構造について詳細に説明する。固体高分子電解質膜11の両側表面には触媒層12が備えられている。触媒層12は白金、ルテニウム、コバルトに代表される触媒が担持されたカーボン粒子が全面に塗布された層である。アノード極側の触媒層12へと到達した燃料は触媒上でプロトンと電子へと変わる。プロトンは固体高分子電解質膜11中を通してカソード極側の触媒層12へと運搬され、カソード極側の触媒層12に供給された酸素と外部回路を移動してきた電子と結合し水を生成する。なお触媒の例を上に挙げたが、燃料電池2の発電反応においてプロトンを生成できるものであれば触媒の種類はこれには限らない。
 触媒層12の固体高分子電解質膜11と対面する側には拡散部13が設けられている。拡散部13は導電性を有し電極として機能する事、流体を透過し触媒層12への燃料の供給が可能である事、の2つの機能を有する。そのため主として用いられるのはカーボンの焼結体や繊維状のGDLであり、GDLが触媒層12と全面で接触する事により電極として作用する。またGDLは金属材料等の導電性材料と比較すると面方向の抵抗が高い。その為、触媒層12で発生した電子を有効に取り出す為に、GDLの触媒層12と対面する側に金属やカーボン等の剛性を有する多孔体の導電材料で形成された集電板を備えて、支持体16の圧縮力をGDLに伝えても良い。上述のような拡散部13から発電部2の外部へと導線をひき、制御回路5へと電力を伝える。
 アノード側の触媒層12に高濃度の燃料を供給をする為、燃料を燃料電池2の外部へ漏洩させない為に、アノード体14は内部の空間と燃料電池2の外部空間とは隔絶されている必要がある。その為にアノード体は上述した燃料を透過しない固体材料のアクリル等に代表される樹脂材、SUSやアルミ等に代表される金属、グラファイト等のカーボン樹脂によって形成される。拡散部13と導電性材料で形成されたアノード体14を接触させてアノード体14をアノード極とする事により、導線の配置を簡便にする事が出来る事から、アノード体14は導電性材料により形成される事が望ましい。
 またアノード体14と固体高分子電解質膜11の界面には、アノード体内からの燃料の漏洩を防止する為に密閉手段18が備えられている。本実施例密閉手段18は図3のようにアノード体に形成された溝にシリコーンゴム・ブチルゴム・ニトリルゴム等に代表されるパッキンを備える事により密閉を実現している。ここで密閉手段18のその他の例として接着剤や熱融着による密閉等が考えられるが、アノード極内部と外部の空間的遮断が実現できるのであればその手段は問わない。
 アノード体14の内部には供給部材20が拡散部13と接するように備えられている。供給部材20はアノード極内を燃料部3から燃料が供給されるアノード流路22と収容部23の2つの空間に隔てている。2つの空間はアノード流路22を形成する供給部材20に備えられたアノード連通孔24によって繋がっており、アノード流路22に供給された燃料はアノード連通孔24を通る事により触媒層12の存在する収容部へと移動する。供給部材20の形成方法の例は、層状の部材を積層させて拡散接合や接着剤により重複している箇所を密着させる方法や、切削加工により供給部材20の壁面を形成した後に蓋を重ねて流路を形成する事が考えられるが、アノード流路22と収容部23の隔絶が形成できるのであれば工法は問わない。
 ここで本発明の燃料電池の発電時の作用について説明する。
 燃料電池2の発電反応に伴いカソード側の触媒層12で生成された水の多くは空気中へと蒸発するが、一部は固体高分子電解質膜11を通してアノード体14の内部へと浸透する。またアノード体14内部が燃料で満たされている状態では固体高分子電解質膜11を隔てた外部気体との間で気体の分圧差が生じている事から、空気や窒素等の気体が固体高分子電解質膜11を通してアノード体14の内部に侵入してくる。これら水や空気や窒素等の燃料電池の発電反応に直接利用されない不純物質がアノード体14の内部に蓄積する事により、アノード体14の内部の燃料分圧は低下してくる。しかし不純物質は収容部23に移動する事によりアノード側の触媒層12の不純物質による窒息を防止する事ができる。
 図11は本発明を実施していない燃料電池の構成図である。本構造では燃料供給口141の近傍では純度の高い燃料が供給されるが、図中右側の燃料供給口141から遠い領域では不純物質が蓄積しやすくなり、いずれ不純物質による触媒層12の窒息が生じてしまう。
 一方本発明における燃料電池構造では、発電中には収容部23側で水素が常に消費されている事から収容部23側へはアノード連通孔24を通してアノード流路22から燃料が供給されており、不純物質はアノード流路22へは移動しない。その為、アノード連通孔24から収容部23側へは常に高純度の燃料が供給される。またアノード流路は発電領域の面方向に広がるように備えられており、アノード連通孔24も面方向に離間して備えられている。その為、複数のアノード連通孔24から高純度の燃料が供給されるので、一部に不純物質が蓄積するという現象が生じにくく、発電領域全体の発電性能を高く維持する事が出来る。また供給部材20によって収容部23とアノード流路22は同一の層に形成する事が出来る為、燃料電池の薄型化も達成する事が出来る。
(実施の形態2)
 本発明の実施の形態2における燃料電池2の断面図を図5に、供給部材20の部品図を図6に、供給部材20のその他の例1を図7、供給部材20のその他の例2を搭載した燃料電池2の分解図を図8に示す。なお、本実施の形態1と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図5、図6を用いて本実施の形態2について説明する。
 図5は本発明の実施の形態2における燃料電池2の断面図である。実施の形態2では供給部材20が実施の形態1と異なる構造をしており、触媒層12側に突起した蓋状の供給部材20がアノード体14の内部に複数配置されている。また供給部材20は図6(a)に示すように矩形状の構造でも、図(b)に示すように半円形の構造でも良く、同一基板から作製されるのであればその形状は問わない。また供給部材20の材質はアクリル等の樹脂や、SUSやアルミ等に代表される金属や、グラファイト等のカーボン材料等、アノード流路22と収容部23を隔絶でき剛性を有する物であれば良い。ただし供給部材20はアノード体14と拡散部13の両方と接触している事から、アノード体14を導電性材料で形成している場合には拡散部13とアノード体14の導通をより確実なものにする為に供給部材20を導電性材料にする事が望ましい。このように基板状の供給部材20によってアノード流路22と収容部23を形成する事で、燃料電池2の組立性が大きく向上する。
 また供給部材20においてアノード流路22の断面積はアノード連通孔24の断面積よりも大きい事が望ましい。燃料供給口141からアノード流路入口21に入ってきた燃料はアノード流路22中を通り、アノード流路入口21に近い箇所にあるアノード連通孔24aへと到達する。ここでアノード連通孔24aの断面積は小さく、燃料は触媒層12の存在する収容部23側へと移動しにくい。その為燃料はアノード流路22を通り、次のアノード連通孔24b方向へと移動しやすい状況になっている。アノード連通孔24bにおいても同様の現象が生じ、燃料は次のアノード連通孔24cへと容易に移動する事が出来る。アノード連通孔24cはアノード流路22の末端側に配置されており、燃料は末端まで到達すると行き場がなくなり、アノード連通孔24a、24b、24cを通して収容部23へと移動する。一方、アノード連通孔24の断面積がアノード流路24の断面積が大きい場合、アノード連通孔24aに到達した燃料はすぐに収容部側へと移動してしまう。その為アノード連通孔24aの近傍しか燃料は高濃度にならず、アノード連通孔24aから遠い位置にある末端側は燃料の濃度が低くなり、発電領域の中で発電性能のばらつきが生じてしまう。このようにアノード流路22の断面積がアノード連通孔24の断面積よりも大きい事で、発電領域内の発電性能のばらつきを抑制する事が出来る。なお、図5にはアノード連通孔24が3つ配置された例を示しているが、もちろん2つ乃至4つ以上備えられていても上述した作用は生じる。
 供給部材20とアノード体14の底面とに囲まれた空間がアノード流路22となり図中手前側のアノード流路入口21が燃料供給口141と接続される事によりアノード流路22に燃料が供給される。実施の形態1では収容部23は発電領域の外周部分にしか存在していなかった為に、アノード極の発電領域の中央部に侵入してきた不純物質が収容部23へと確実に移動できない可能性があった。しかし実施の形態2では収容部23は複数の供給部材20の間に備えられており、発電領域の全面に渡ってバランスよく配置されているので、不純物質の収容部23への移動をより確実に行う事が可能である。
 またアノード連通孔24は望ましくはその断面が拡散部13に対して平行になるように配置されている。こうすることでアノード連通孔24から拡散部13へと厚み方向への移動距離が最短であり燃料が触媒層12へ供給されやすい為、触媒層12近傍の燃料濃度をより高く維持する事が出来る。更にアノード連通孔24は供給部材20の最高部に配置されている事が望ましい。供給部材20は拡散部13に沿って配置されているので、供給部材20の頂点は拡散部13に接している。その接触箇所にアノード連通孔24が配置されているので、アノード流路22から供給された燃料は確実に拡散部13へと到達し、触媒層12への燃料の拡散もより確実なものに出来る。
 アノード体14に供給部材20が複数配置されており、隣り合うそれぞれの供給部材20の間の空間が収容部23となる。また供給部材20はアノード体14の側壁から離間して供えられる事により収容部23aを形成していてもよい。
 また図6に供給部材20のその他の例を示す。供給部材20は3つのアノード流路22を有し、3つのアノード流路22は1枚の基板から形成されている。供給部材20は板金加工によって形成された金属材料、曲げ加工や射出成形等によって形成される樹脂材等によって構成される。このようにはアノード流路22が複数存在する場合においても供給部材20は1つの部材によって構成されるので、燃料電池2の簡便な組立が可能である。 
 なお図6において供給部材20は3つのアノード流路22を有しているが、もちろんそれ以外の数のアノード流路が備えられていても本実施例は適用可能である。
 図7は供給部材20のその他の例を搭載した燃料電池2の分解図である。本例では供給部材20は筒状となっており、複数の供給部材20はアノード体14の内部にそれぞれが離間して備えられる。また図7では供給部材20は四角筒であるが、形状はこれには限らず円筒状であっても良い。本例においても図4に示した燃料電池2の構造と同等の効果が得られ、更に加工性の良い筒により供給部材20を形成しているので低コストでの本発明の構造を有する燃料電池2の実現が可能となる。
(実施の形態3)
 本発明の実施の形態3における燃料電池2に係る供給部材20の斜視図を図8に、その他の供給部材20の斜視図を図9に示す。なお、本実施の形態1及び2と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図8を用いて本実施の形態2について説明する。
 図8は複数のアノード流路22を同一の基板で作製した供給部材20である。実施の形態2で説明した燃料電池では、燃料供給口141はそれぞれのアノード流路22に配されたアノード流路入口21から供給される。一方実施の形態3の供給部材20においては、1つの燃料供給口141から供給された燃料はアノード流路入口21から複数のアノード流路22と接続される支流路25を通して各アノード流路22へと供給される。ここで支流路25の任意の断面Bの断面積はアノード流路22a、22b、22c、22dのそれぞれの任意の断面Aにおける断面積よりも大きい。支流路25へと供給された燃料はアノード流路入口21から近い箇所にあるアノード流路22b及びアノード流路22cへと到達する。ここで支流路25と比較してアノード流路22b及びアノード流路22cの断面積は小さく、燃料はアノード流路22b及び22cに充満するよりも、支流路25中を通り次のアノード流路22a及び22dへと移動しやすい。一方、アノード流路22a、22b、22c、22dの任意の断面Aにおける断面積が支流路25の任意の断面Bの断面積よりも大きい場合、アノード流路22a及び22bに到達した燃料はアノード流路22a及び22b中に充満し収容部23へと移動してしまい、それぞれのアノード連通孔24から収容部23へと移動する。その為アノード流路22a及び22bの近傍しか燃料は高濃度にならず、アノード流路入口21から遠い位置にある末端側は燃料の濃度低くなり、発電領域の中で発電性能のばらつきが生じてしまう。このように支流路25の断面積がアノード流路22の断面積が大きい事で、発電領域内の発電性能のばらつきを抑制する事が出来る。なお、図8にはアノード流路22が4つ配置された例を示しているが、もちろんそれ以外の個数のアノード流路22が備えられていても上述した作用は生じる。
 また図9に示すように支流路25は複数備えられていても良い。本例では図8に示すようにアノード流路入口21付近に備えられた支流路25に加え、支流路25と離間した箇所に支流路25’が備えられている。支流路が複数備えられた燃料電池では、仮に支流路25若しくはアノード流路22の一部が水等の物質により遮断されて燃料の供給が阻害された場合に、アノード流路22へと供給された燃料は支流路25’を通してアノード流路22の遮断箇所まで回りこむ。これによりアノード流路22及び支流路25の一部が遮断された場合にも、より確実に発電領域全体へと燃料を供給する事ができる。
(実施の形態4)
 本発明の実施の形態4における燃料電池2の断面図を図10に示す。なお、本実施の形態1から3と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図10を用いて本実施の形態2について説明する。
 図10は図4に記載の燃料電池2において拡散部がガス拡散層131と、厚み方向に燃料を流通させる事のできる複数の燃料流通孔133を有する集電板132から構成されている。燃料流通孔133は貫通孔であり、燃料電池2を組み立てた時にアノード連通孔24と重なっている。また組立時に誤差が生じて燃料流通孔133とアノード連通孔24は同一軸にはならないが、一部でも重なっていれば良い。その為に燃料流通孔133の径をアノード連通孔24の径よりも大きくして確実に重なるようにしても良い。また逆に年アノード連通孔24の径を燃料流通孔133の径よりも大きくしても同様の効果が見込まれる。このような構造の燃料電池2においては複数のアノード連通孔24はそれぞれ燃料流通孔133と一部重なっている為、アノード連通孔24から供給された燃料は確実に触媒層12へと供給される。
 また不純物の収容部23への移動性を高める為に、燃料流通孔133はアノード連通孔24と重ならない箇所、特に収容部23の領域にさらに備えられていても良い。不純物は発電領域全体で生じる事から、収容部23と重なる燃料流通孔133は発電領域に複数散らばるように備えられていると良い。燃料流通孔133を収容部23と重なるように備える事で不純物の収容部23への移動性を向上する事ができ、燃料電池2はより安定した発電を行う事が出来る。
 以上、本発明の一例を説明したが、具体例を説明したに過ぎない。特に本発明を限定するものではなく、各部の具体的構成等は適宜変更可能である。また、各実施の形態及び変更例の作用効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、各実施の形態及び変更例に記載されたものに限定されるものではない。また明細書においては説明の便宜上、燃料電池は単一のセルによって構成されているが、本発明は支持体に挟持された発電セルを複数有する構造の燃料電池においても適用可能である。
 本発明は、燃料電池及び燃料電池装置の産業分野で利用することができる。
  1 燃料電池装置
  2 燃料電池
  3 燃料部
  4 燃料供給系
  5 制御回路
  6 使用機器
 11 固体高分子電解質膜
 12 触媒層
 13 拡散部
 14 アノード体
 15 カソード体
 16 支持体
 17 締結手段
 20 供給部材
 21 アノード流路入口
 22 アノード流路
 23 収容部
 24 アノード連通孔
 25 支流路
131 ガス拡散層
132 集電板
133 燃料流通孔
141 燃料供給口

Claims (9)

  1.  固体高分子電解質膜と、
     前記固体高分子電解質膜の一面に備えられたアノード側触媒体と、
     前記アノード側触媒体に対して燃料を供給する供給部材と、
     前記供給部材と前記アノード側触媒体との間に設けられ、前記燃料を拡散する拡散部とを備える燃料電池において、
     前記供給部材は、
     前記アノード側触媒体の面方向に広がるように備えられたアノード流路と、
     前記燃料の供給により前記拡散部から押し退けられた気体を収容する収容部とを有し、
     前記アノード流路は、前記アノード側触媒体に対して燃料を供給するためのアノード連通孔を有し、
     前記アノード流路と前記収容部とは、前記拡散部の面方向に沿って備えられることを特徴とする燃料電池。
  2.  前記アノード連通孔は、前記拡散部に面して設けられていることを特徴とする請求項1に記載の燃料電池。
  3.  前記アノード流路と前記収容部とは、基板上にあり、
     前記基板は、前記拡散部に対して突出した複数の凸部分と、隣り合う前記凸部分により構成される凹部分とを有し、
     前記凸部分は、前記アノード流路であり、
     前記凹部分は、前記収容部であることを特徴とする請求項1に記載の燃料電池。
  4.  前記アノード流路と前記収容部とは、同一基板から形成されることを特徴とする請求項1に記載の燃料電池。
  5.  前記供給部材は、前記拡散部の面に対して平行に設けられている筒であることを特徴とする請求項1に記載の燃料電池。
  6.  前記拡散部は、燃料を流通する燃料流通孔を複数有することを特徴とする請求項1に記載の燃料電池。
  7.  前記アノード連通孔は、複数の前記燃料流通孔の少なくとも一部と重なるように配置されていることを特徴とする請求項6に記載の燃料電池。
  8.  前記アノード連通孔の面積は、前記アノード流路の流通方向に垂直な断面積よりも小さいことを特徴とする請求項1に記載の燃料電池。
  9.  複数の前記アノード流路のそれぞれを連通する支流路を備え、前記支流路の流通方向に垂直な断面積は、前記アノード流路の流通方向に垂直な断面積以上であることを特徴とする請求項1に記載の燃料電池。
PCT/JP2011/066135 2010-09-15 2011-07-14 燃料電池及び燃料電池装置 WO2012035873A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010207088A JP5723124B2 (ja) 2010-09-15 2010-09-15 燃料電池及び燃料電池装置
JP2010-207088 2010-09-15

Publications (1)

Publication Number Publication Date
WO2012035873A1 true WO2012035873A1 (ja) 2012-03-22

Family

ID=45831348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066135 WO2012035873A1 (ja) 2010-09-15 2011-07-14 燃料電池及び燃料電池装置

Country Status (2)

Country Link
JP (1) JP5723124B2 (ja)
WO (1) WO2012035873A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614070B2 (ja) * 2016-09-02 2019-12-04 トヨタ自動車株式会社 燃料電池及び燃料電池用セパレータ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290797A (ja) * 1993-03-31 1994-10-18 Toshiba Corp 積層型燃料電池
JPH07254424A (ja) * 1994-03-16 1995-10-03 Toshiba Corp 溶融炭酸塩型燃料電池の集電板
JP2006324084A (ja) * 2005-05-18 2006-11-30 Hitachi Ltd 燃料電池
JP2007035527A (ja) * 2005-07-29 2007-02-08 Equos Research Co Ltd 集電体及びその製造方法
JP2008218048A (ja) * 2007-02-28 2008-09-18 Toshiba Corp 燃料電池セル及び燃料電池
JP2008293835A (ja) * 2007-05-25 2008-12-04 Nissan Motor Co Ltd 燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290797A (ja) * 1993-03-31 1994-10-18 Toshiba Corp 積層型燃料電池
JPH07254424A (ja) * 1994-03-16 1995-10-03 Toshiba Corp 溶融炭酸塩型燃料電池の集電板
JP2006324084A (ja) * 2005-05-18 2006-11-30 Hitachi Ltd 燃料電池
JP2007035527A (ja) * 2005-07-29 2007-02-08 Equos Research Co Ltd 集電体及びその製造方法
JP2008218048A (ja) * 2007-02-28 2008-09-18 Toshiba Corp 燃料電池セル及び燃料電池
JP2008293835A (ja) * 2007-05-25 2008-12-04 Nissan Motor Co Ltd 燃料電池

Also Published As

Publication number Publication date
JP2012064412A (ja) 2012-03-29
JP5723124B2 (ja) 2015-05-27

Similar Documents

Publication Publication Date Title
US7759014B2 (en) Fuel cell having a seal member
JP5060143B2 (ja) 燃料電池スタック
JP4950505B2 (ja) 燃料電池スタック
JP5062392B2 (ja) 固体高分子型燃料電池
JP4165876B2 (ja) 燃料電池スタック
JP2006332025A (ja) 燃料電池ユニットおよび電子機器
JP2005123114A (ja) 燃料電池スタック
JP5723124B2 (ja) 燃料電池及び燃料電池装置
US20100248082A1 (en) Fuel cell system
JP5109570B2 (ja) 燃料電池スタック
JP2008066178A (ja) 燃料電池スタック
JP6204328B2 (ja) 燃料電池スタック
JP5378049B2 (ja) 燃料電池スタック
JP2010086893A (ja) 燃料電池のスタック構造
JP2006216247A (ja) 燃料電池スタック
JP2007234315A (ja) 燃料電池
JP2015061398A (ja) 燃料電池車両
JP2005203301A (ja) 燃料電池及び燃料電池スタック
JP5806951B2 (ja) 燃料電池システム
JP5364278B2 (ja) 燃料電池のシール構造
JP2010272231A (ja) 燃料電池スタック
KR20220146147A (ko) 연료전지스택 시스템
JP2013097872A (ja) 燃料電池セパレータ
JP2011238409A (ja) 燃料電池
JP2005243278A (ja) 燃料電池スタック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824882

Country of ref document: EP

Kind code of ref document: A1