WO2012033169A1 - タッチパネルデバイス、及びタッチパネルデバイス付表示装置 - Google Patents

タッチパネルデバイス、及びタッチパネルデバイス付表示装置 Download PDF

Info

Publication number
WO2012033169A1
WO2012033169A1 PCT/JP2011/070510 JP2011070510W WO2012033169A1 WO 2012033169 A1 WO2012033169 A1 WO 2012033169A1 JP 2011070510 W JP2011070510 W JP 2011070510W WO 2012033169 A1 WO2012033169 A1 WO 2012033169A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
display device
panel device
display
disposed
Prior art date
Application number
PCT/JP2011/070510
Other languages
English (en)
French (fr)
Inventor
今村 公一
伊藤 晴彦
池田 幸紀
Original Assignee
帝人化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人化成株式会社 filed Critical 帝人化成株式会社
Priority to KR1020137005913A priority Critical patent/KR101564150B1/ko
Priority to EP11823643.9A priority patent/EP2615527A4/en
Priority to US13/821,471 priority patent/US9189112B2/en
Priority to CN201180043131.2A priority patent/CN103097995B/zh
Publication of WO2012033169A1 publication Critical patent/WO2012033169A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a touch panel device, and more particularly to a capacitive touch panel device.
  • the present invention also relates to a display device with a touch panel device.
  • a display device with a touch panel device for example, a liquid crystal display with a touch panel device is used in mobile electronic devices such as mobile phones, home appliances, stationary customer guidance terminals such as unmanned reception machines.
  • a touch panel device As a touch panel device, a resistive film method, an electrostatic capacitance method, an optical sensor method, and the like are known. Among these, the capacitive touch panel device is excellent with respect to the transmittance of light from the display device, the durability, and the like. In addition, in the capacitive touch panel device, multi-point detection is realized by arranging two position detection electrodes of a position detection electrode in the vertical direction and a position detection electrode in the horizontal direction in a vertical and horizontal two-dimensional matrix It is excellent also in the point which can enable multi touch) (patent document 1).
  • an approximately 0.5 to 1.0 mm air layer is provided between the touch panel device and the display device without completely bonding the touch panel device to the display surface of the display device. Is common (patent documents 2 and 3).
  • the reason for providing an air layer of about 0.5 to 1.0 mm between the touch panel device and the display device is, for example, the following reasons (1) and (2):
  • the manufacturing conditions are different between the touch panel device and the display device, it is difficult or impossible to integrally form the touch panel device and the display device so that there is no gap completely.
  • the touch panel device and the display device are not integrally formed, when it is found that the touch panel device does not function properly at the final stage of manufacture, the touch panel device that does not function properly is removed from the display surface of the display device , And can be replaced with a new touch panel device. Therefore, it is preferable not to integrally form the touch panel device and the display device.
  • the reflected light generated at the interface between the touch panel device and the air layer that is, the upper interface of the air layer
  • the display device and the air The interference with the reflected light that occurs at the interface with the layer (i.e., the upper interface of the air layer) causes a Newton ring (moire fringe).
  • the thickness of the air layer between the touch panel device and the display device is sufficiently large, for example, when the thickness of the air layer is about 1.0 mm, it occurs at the upper and lower interfaces of the air layer.
  • the optical path difference of the reflected light is large, so that substantially no interference occurs.
  • the air layer between a touch panel device and a display is filled with a resin material, and it is considered as a resin layer with respect to the problem of generation of the Newton ring of the above (2), thereby making the upper and lower sides of the air layer. It is proposed to eliminate reflections that occur at the side interface.
  • the touch panel device that does not function properly is removed from the display surface of the display device even when it is found that the touch panel device does not function properly at the final stage of production, and a new touch panel device It can be difficult to replace.
  • the weight naturally increases.
  • Patent document 1 JP-A-2002-189565
  • the present invention provides a touch panel device and a display device with a touch panel device that suppress problems such as the occurrence of a Newton ring even when the thickness of the air layer between the touch panel device and the display device is reduced.
  • the electrostatic capacitance type touch panel device is a protective transparent substrate having an observation side surface and a display device side surface, and two position detection electrodes disposed on the display device side surface of the protective transparent substrate
  • the difference between the minimum value and the maximum value of the linear expansion coefficients in the surface direction of all the polymer films having a layered polymer film and disposed on the display device side surface of the protective transparent substrate is 10.0 ⁇ 10 -6 cm / cm ⁇ ° C or less.
  • a capacitive touch panel device comprising: a protective transparent base having an observation side surface and a display side surface; and two position detection electrode layers disposed on the display side of the protective transparent base A polymer film with a polarizer, and a polarizing plate disposed on the display device side surface of the protective transparent substrate, and the total retardation of all layers on the display device side with respect to the polarizing plate is for light having a wavelength of 550 nm It is approximately ⁇ / 4.
  • the touch panel device of the present invention and the display device with the touch panel device of the present invention, even when the thickness of the air layer between the touch panel device and the display device is small, problems such as generation of Newton ring are suppressed. .
  • FIG. 1 is a conceptual diagram showing the configuration of a display device with a touch panel device according to a first embodiment.
  • FIG. 7 is a conceptual diagram showing the configuration of a display device with a touch panel device of Example 2.
  • the electrostatic capacitance type touch panel device is a protective transparent substrate having an observation side surface and a display device side surface, and two position detection electrodes disposed on the display device side surface of the protective transparent substrate
  • the difference between the minimum value and the maximum value of the linear expansion coefficients in the surface direction of all the polymer films having a layered polymer film and disposed on the display device side surface of the protective transparent substrate is 10.0 ⁇ 10 -6 cm / cm ⁇ ° C or less, 8.0 ⁇ 10 -6 cm / cm ⁇ ° C or less, 6.0 ⁇ 10 -6 cm / cm ⁇ ° C or less, or 5.0 ⁇ 10 -6 cm / cm ⁇ ° C It is below.
  • the measurement of the thermal expansion coefficient of the polymer film can be performed in a temperature range in which the use of the touch panel device is considered, for example, a temperature range of 20 ° C. to 60 ° C.
  • the first capacitive touch panel device of the present invention even when a temperature change occurs, the difference in the linear expansion coefficient in the surface direction of the polymer film disposed on the display device side surface of the protective transparent substrate It is possible to suppress the occurrence of distortion due to and micro unevenness due to it. Therefore, according to the first capacitive touch panel device of the present invention, even in the case where the thickness of the air layer between the touch panel device and the display device is small, the upper interface and the lower interface of the air layer are It is possible to suppress the generation of a Newton ring due to interference due to the reflection that is generated.
  • the linear expansion coefficient of the adhesive in the polymer film layer be the same as the linear expansion coefficient of the polymer film.
  • the linear expansion coefficient of the adhesive in the plane direction may be similar to or substantially different from the linear expansion coefficient of the polymer film in the plane direction.
  • the protective transparent substrate may be any transparent substrate that can protect the touch panel device from pressure or the like when the user uses the touch panel device.
  • the protected transparent substrate may be, for example, a glass substrate, a polymethyl methacrylate substrate, a polycarbonate substrate, or a combination thereof. If this protective transparent substrate is flexed during use of the touch panel device, the thickness of the air layer between the touch panel device and the display may locally change, thereby generating a Newton ring. Therefore, as the protective transparent substrate, it is preferable to use a rigid substrate, in particular a glass substrate.
  • the thickness of the protective transparent substrate may be, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, and 2.0 mm or less, 1.0 mm or less, or 0.8 mm or less .
  • the polymer film used in the touch panel device of the present invention may be any polymer film having high transparency and a smooth surface.
  • the resin constituting the polymer film include polycarbonate, polyethylene terephthalate, polyethylene naphthalate, amorphous polyolefin, cellulose-based resin such as cellulose triacetate, polystyrene, polyether sulfone, polysulfone and the like.
  • polycarbonate resins are preferable in terms of balance of heat resistance, transparency, mechanical properties and the like.
  • the thickness of the polymer film may be, for example, 0.01 mm or more, 0.02 mm or more, 0.03 mm or more, and 1.0 mm or less, 0.5 mm or less, or 0.3 mm or less.
  • the position detection electrode layer used in the touch panel device of the present invention may be a transparent electrode layer that is optionally patterned.
  • a transparent electrode layer can be made of a transparent conductive material, such as indium tin oxide.
  • the touch panel device further comprises a polymer film with an electromagnetic wave shielding electrode layer disposed on the display device side surface of the protective transparent substrate, and the polymer film with an electromagnetic wave shielding electrode layer is 2 It may be disposed closer to the display device than the polymer film with one position detection electrode layer.
  • the electromagnetic wave emitted from the display device can be blocked by the polymer film with the electrode layer for electromagnetic wave shielding, thereby preventing the electromagnetic wave from adversely affecting the position detection by the position detection electrode layer.
  • the electromagnetic wave shielding electrode layer used in this aspect may be any electrode layer capable of shielding electromagnetic waves, and in particular, a layer of a transparent conductive material having a uniform thickness, such as indium tin oxide. It may be a layer.
  • the touch panel device further comprises a display device side protection transparent substrate disposed on the display device side surface of the protection transparent substrate, and the display device side protection transparent substrate is the most to the display device side It may be arranged in
  • a rigid protective transparent base material is disposed on both the viewer side and the display device side of the touch panel device, and rigidity can be further enhanced, and an operation of strongly pressing the touch panel device with a finger is performed. Even in this case, the touch panel device can be bent to prevent contact with the display device or damage to the display device.
  • the above description of the protective transparent substrate can be referred to.
  • the touch panel device according to the first aspect of the present invention has the features described with respect to the touch panel device according to the second aspect of the invention described below.
  • the touch panel device has a polarizing plate disposed on the display device side surface of the protective transparent substrate, and the total retardation of all layers on the display device side of the polarizing plate is approximately ⁇ for light of wavelength 550 nm. It can also have the feature of being / 4.
  • the capacitive touch panel device of the first present invention is disposed on the display surface of the display device via an air layer, and the thickness of the air layer Is 0.500 mm or less, 0.400 mm or less, 0.300 mm or less, 0.200 mm or less, or 0.100 mm or less.
  • the thickness of the air layer is thin and thus the entire thickness of the display device with the touch panel device is thin, generation of Newton rings can be suppressed .
  • the display device used in the display device with a touch panel device according to the first invention may be any display device, such as a liquid crystal display, an organic EL (electroluminescence) display, an inorganic EL display, a cathode ray tube display, a field emission display (FED), electronic paper, or plasma display.
  • a liquid crystal display such as a liquid crystal display, an organic EL (electroluminescence) display, an inorganic EL display, a cathode ray tube display, a field emission display (FED), electronic paper, or plasma display.
  • a capacitive touch panel device comprising: a protective transparent base having an observation side surface and a display side surface; and two position detection electrode layers disposed on the display side of the protective transparent base A polymer film with a polarizer, and a polarizing plate disposed on the display device side surface of the protective transparent substrate, and the total retardation of all layers on the display device side with respect to the polarizing plate is for light having a wavelength of 550 nm It is approximately ⁇ / 4.
  • the reflected light generated at the upper interface and the lower interface of the air layer is protected by the polarizing plate and the ⁇ / 4 phase difference. Since it does not go out from the transparent base material side, it is possible to suppress the generation of the Newton ring.
  • external light incident from the observation side surface of the protective transparent base material is converted into linearly polarized light in one direction by passing through the transmission axis of the polarizing plate, and this linearly polarized light is ⁇ /. It receives a phase difference of 4 to become circularly polarized light, and is reflected at the interface with the air layer, and again receives a phase difference of ⁇ / 4 and returns to linearly polarized light.
  • the reflected light is absorbed by the absorption axis of the polarizing plate because the phase difference with the linearly polarized light when it is incident becomes ⁇ / 2, thereby becoming linearly polarized light with an angle different by 90 °. it can.
  • the angle between the absorption axis of the polarizing plate and the slow axis of the polymer film having a retardation of ⁇ / 4 is within 45 ° ⁇ 5 °, in particular within 45 ° ⁇ 1 °.
  • a polymer film with two position detection electrode layers, and other optional ones may be approximately ⁇ / 4 for light at a wavelength of 550 nm.
  • the retardation of one polymer film with a position detection electrode may be ⁇ / 4 for light of wavelength 550 nm, and the other polymer film may have no retardation.
  • the total retardation of the two position detection electrode layer-attached polymer films is approximately 0 for light of wavelength 550 nm, and the other optional polymer films are approximately ⁇ / for light of wavelength 550 nm. It is also possible to have a phase difference of four. Alternatively, it is possible that none of the two position detection electrode layer-attached polymer films have a retardation, and the other polymer film have a retardation of approximately ⁇ / 4 with respect to light having a wavelength of 550 nm. .
  • the light of wavelength 550 nm is the light felt most strongly when observed by the human eye, so that the total retardation of all layers should be approximately ⁇ / 4 for the light of wavelength 550 nm Can most effectively suppress the occurrence of Newton rings.
  • the total retardation of all layers be approximately ⁇ / 4 also for other wavelengths in the visible light region. Since a general polymer film has a large retardation (i.e., has positive wavelength dispersion) to light of a shorter wavelength, the total retardation of all the layers is approximately equal over the entire visible light region. Making it ⁇ / 4 is generally difficult.
  • visible light can be obtained by using a polymer film having wavelength dispersion (that is, reverse wavelength dispersion) in which the retardation decreases with respect to light having a shorter wavelength as disclosed in JP-A-2000-137116. Over the entire region, it is possible to make the total retardation of all layers approximately ⁇ / 4.
  • wavelength dispersion that is, reverse wavelength dispersion
  • the polarizing plate not only an absorption-type polarizing plate obtained by stretching a polymer film dyed with a dye but also a plurality of retardation films are alternately laminated so that their slow axis directions are orthogonal to each other. It is also possible to use a reflective polarizing plate obtained by Here, in such a reflective polarizing plate, for one polarization, the refractive index of each layer is substantially the same, thereby preventing reflection of incident light at the interface between each layer, and For the other polarization, the refractive index of each layer is different, thereby causing incident light to be reflected back at the interface of the retardation film.
  • a wire grid polarizer in which metal thin wires having a width smaller than the wavelength size are continuously arranged on the film.
  • the polarizing plate not only the linear polarizing plate as described above but also a circularly polarizing plate that separates right circularly polarized light and left circularly polarized light can be used.
  • the touch panel device according to the second aspect of the present invention has the features described with regard to the touch panel device according to the first aspect of the present invention,
  • the difference between the minimum value and the maximum value of the linear expansion coefficients in the surface direction of all polymer films disposed on the display device side surface of the device is 10.0 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C. or less It can also have.
  • the description regarding the touch panel device of the present invention can be referred to.
  • the capacitive touch panel device of the second invention is disposed on the display surface of the display device via an air layer, and the air
  • the thickness of the layer is 0.500 mm or less, 0.400 mm or less, 0.300 mm or less, 0.200 mm or less, or 0.100 mm or less
  • the display device performs display with polarized light, particularly linear polarized light or circular polarized light
  • a retardation film having a retardation of about ⁇ / 4 with respect to the light of wavelength 550 nm is disposed.
  • the thickness of the air layer is thin, thus suppressing the generation of the Newton ring despite the small thickness of the display device with the touch panel device can do.
  • the display device performs display by polarization, and a retardation film having a retardation of approximately ⁇ / 4 with respect to light having a wavelength of 550 nm is disposed on the observation side surface of the display device.
  • Display light which is polarized light emitted from the display device, passes through the retardation film on the observation side surface of the display device, receives a phase difference of ⁇ / 4, passes through the air layer, and In the touch panel device of the present invention, the phase difference of ⁇ / 4 is received again. According to this, the phase difference between the polarized light emitted from the display device and the polarized light that has received the phase difference of ⁇ / 4 by the touch panel device is 0 or ⁇ / 2.
  • the display light of the display device is linearly polarized light
  • the display light which has received the phase difference of ⁇ / 4 in the retardation film on the display device and the phase difference of ⁇ / 4 in the touch panel device is The light may be linearly polarized at the same angle as that of the linearly polarized light emitted from the display or at an angle different from that of the linearly polarized light, and this may be observed by the observer through the transmission axis of the linearly polarizing plate of the touch panel device.
  • the display light of a display apparatus is circularly polarized light
  • the display light which received the phase difference of (lambda) / 4 in the retardation film on a display apparatus, and received the phase difference of (lambda) / 4 in a touch panel device is a display apparatus It becomes circularly polarized light of the same or the opposite turning direction as the circularly polarized light which came out, and this can be observed by the observer through the transmission axis of the circularly polarizing plate of the touch panel device.
  • the slow axis of the retardation film having a retardation of ⁇ / 4 of the absorption axis of the polarizing plate on the observation side (that is, the touch panel side) of the display device and the observation side surface of the display device may be within 45 ° ⁇ 5 °, in particular within 45 ° ⁇ 1 °.
  • the angle between the absorption axis of the polarizing plate on the viewing side of the liquid crystal display and the absorption axis of the polarizing plate of the touch panel device is within 0 ° ⁇ 5 °, particularly within 0 ° ⁇ 1 °, or within 90 ° ⁇ 5 °. In particular, it can be within 90 ° ⁇ 1 °.
  • the display device may be a display device in which display light is essentially polarized, such as a liquid crystal display.
  • the capacitive touch panel device of the second invention is disposed on the display surface of the display device via an air layer, and the air
  • the thickness of the layer is 0.500 mm or less, 0.400 mm or less, 0.300 mm or less, 0.200 mm or less, or 0.100 mm or less, and the display device performs display by non-polarization.
  • the thickness of the air layer is thin, thus suppressing the generation of the Newton ring despite the small thickness of the display device with the touch panel device can do.
  • non-polarized display light emitted from the display device passes through the air layer, and the position of ⁇ / 4 in the second touch panel device of the present invention
  • Some of the display light that is subject to phase difference but is non-polarized can be viewed by the observer through the transmission axis of the polarizer of the touch panel device.
  • a display device in which the display light is essentially non-polarized such as an organic EL display, an inorganic EL display, a cathode ray tube display, a field emission display, It may be electronic paper or a plasma display.
  • ⁇ Linear expansion coefficient> The linear expansion coefficient of the film was raised using a thermal stress-strain measurement device (SS6100 manufactured by SII Nano Technology Co., Ltd.) after placing a 4 mm wide ⁇ 30 mm sample at 25 ° C. and 50% relative humidity for 24 hours. The temperature was measured three times at a temperature rate of 5 ° C./min, the linear expansion coefficient in a temperature range of 20 ° C. to 60 ° C. was calculated, and the average value was determined.
  • SS6100 thermal stress-strain measurement device manufactured by SII Nano Technology Co., Ltd.
  • a display device with a capacitive touch panel device of a reference example was created. Specifically, as shown below, a display device with a capacitive touch panel device of a reference example was created.
  • An adhesive is disposed in the frame portion of the liquid crystal display panel (300) having a thickness of 0.8 mm, and the liquid crystal display panel (300) and the capacitive touch panel device (100) are divided into 1.0 mm air layers (200 Glued through).
  • the polymer film (20a, 30a) for the first and second polymer films with position detection electrode layers (20a, 22; 30a, 32) is a 125 ⁇ m thick biaxially oriented polyethylene terephthalate (PET) It was a film.
  • PET biaxially oriented polyethylene terephthalate
  • a hard coat layer having a thickness of about 2 ⁇ m mainly composed of an acrylic resin was disposed on both sides of this polymer film (total 129 ⁇ m).
  • an optical adjustment layer having a thickness of about 0.1 ⁇ m mainly composed of an organic siloxane resin in which titanium oxide nanoparticles are dispersed is disposed, and An indium-tin oxide (ITO) film was formed by sputtering to a thickness of about 20 nm.
  • the optical adjustment layer is for making the electrode pattern formed of indium-tin oxide inconspicuous.
  • the polymer film having this indium-tin oxide layer is cut into a size for bonding to a liquid crystal display panel with a 3.0-inch angle of view, electrode patterning is performed, and heat treatment is performed at 130 ° C. for 90 minutes Thus, the indium-tin oxide layer is crystallized to form a position detection electrode layer (22, 32), whereby the first and second position detection electrode layer attached polymer films (20a, 22; 30a, 32) )created.
  • the surface resistance of the crystallized indium-tin oxide layer was 200 ⁇ / ⁇ .
  • the polyethylene terephthalate film used as the substrate has a linear expansion coefficient of 37 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C. in the flow direction, and a linear expansion coefficient of 34 ⁇ 10 ⁇ 6 cm / cm perpendicular to the flow direction. -It was ° C.
  • the polymer film (40) for the above-mentioned polymer film (40, 42) with an electrode layer for electromagnetic shielding was a 100 ⁇ m-thick non-oriented polycarbonate (PC) film prepared by a casting method. Here, the retardation of this polymer film was approximately 0 nm.
  • a hard coat layer having a thickness of about 2 ⁇ m mainly composed of an acrylic resin was disposed on both sides of this polymer film (total 104 ⁇ m).
  • An indium-tin oxide (ITO) film was formed by sputtering to a thickness of about 20 nm on one side of the hard coat layer.
  • the indium-tin oxide is cut by cutting the polymer film having indium-tin oxide into a size for bonding to a 3.0-inch liquid crystal display panel, and performing heat treatment at 130 ° C. for 90 minutes.
  • the product layer was crystallized to form an electromagnetic wave shielding electrode layer (42), whereby a polymer film (40, 42) with an electromagnetic wave shielding electrode layer was produced.
  • the surface resistance of the crystallized indium-tin oxide layer was 200 ⁇ / ⁇ .
  • the polycarbonate film used as the substrate had a flow direction and a linear expansion coefficient perpendicular to the flow direction of 75 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C.
  • Liquid crystal display panel 300
  • the liquid crystal display panel is a VA (Vertical Alignment) liquid crystal display panel with a field angle of 3.0 inches and a thickness of 0.8 mm, and optical compensation films and polarizing plates are attached to both sides of a liquid crystal cell with a thickness of 0.6 mm. It was a match.
  • VA Vertical Alignment
  • Comparative Example As a configuration shown in FIG. 2, a display device with a capacitive touch panel device of a comparative example was created. Specifically, as shown below, a display device with a capacitive touch panel device of a comparative example was created.
  • the capacitance type touch panel device-attached display device of the comparative example obtained in this manner is summarized in Table 2 below.
  • the overall thickness of the display device of the comparative example was 1.962 mm, which was thinner by 0.900 mm than that of the reference example.
  • no Newton ring was generated at normal temperature, but a Newton ring was generated at 50 ° C.
  • the display device with the touch panel device does not have the reflection preventing function, the display device becomes whitish when it is exposed to strong external light, and the display is difficult to see.
  • Table 5 The results are summarized in Table 5 below.
  • Example 1 With the configuration shown in FIG. 3, a display device with a capacitive touch panel device of Example 1 was produced. Specifically, as shown below, a display device with a capacitive touch panel device of Example 1 was created.
  • the surface resistance of the crystallized indium-tin oxide layer was 200 ⁇ / ⁇ .
  • the polycarbonate film used as the substrate had a flow direction and a linear expansion coefficient perpendicular to the flow direction of 75 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C.
  • Example 2 With the configuration shown in FIG. 4, a display device with a capacitive touch panel device of Example 2 was produced. Specifically, as shown below, a display device with a capacitive touch panel device of Example 2 was created.
  • the display device with a capacitive touch panel device of Example 2 obtained in this manner is summarized in Table 2 below.
  • Example 2 The total thickness of the display device of Example 2 was 2.012 mm, which was thinner by about 0.850 mm than the reference example. In the display device with a touch panel device of Example 2, no generation of a Newton ring was observed at normal temperature, and no generation of a Newton ring was observed even at 50 ° C. Further, since the display device with the touch panel device has an anti-reflection function, the display device does not become whitish even when it is exposed to strong external light. The results are summarized in Table 5 below.
  • Polarizing film (50) As said polarizing film (50), the film which bonded the polyvinyl alcohol layer which made iodine adsorb
  • the absorption axis of this polarizing film is aligned with the absorption axis of the polarizing plate on the upper surface of the liquid crystal display panel (the side to be bonded to the touch panel device) (that is, the angle between the absorption axes is 0 degrees) I cut it.
  • the linear expansion coefficient in the absorption axis direction of this polarizing film was 74 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C., and the linear expansion coefficient in the direction perpendicular to the flow direction was 78 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C. .
  • This uniaxially stretched polycarbonate (PC) film (20c) instead of the first polymer film with position detecting electrode layer (20a, 22; 30a, 32) having a biaxially stretched polyethylene terephthalate (PET) film (20a, 30a) And the absorption axis of the polarizing plate of the upper surface of the liquid crystal display panel (the side to be bonded to the touch panel device) of the uniaxially stretched polycarbonate (PC) film (20c), and the first position detection electrode
  • the first and second electrode films with position detection electrode film of the reference example except that the angle formed by the slow axis of the layered polymer film (20c, 22) is 45 degrees so as to be a size) Similar to 20a, 22; 30a, 32), the first polymer film with electrode layer for position detection (20c, 2) described above ) was obtained.
  • the surface resistance of the crystallized indium-tin oxide layer was 200 ⁇ / ⁇ .
  • the uniaxially stretched polycarbonate film used as the substrate has a linear expansion coefficient of 74 ⁇ 10 ⁇ 6 cm / cm ⁇ ° C. in the flow direction and a linear expansion coefficient of 77 ⁇ 10 ⁇ 6 cm in the direction perpendicular to the flow direction. It was / cm ⁇ ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)
  • Push-Button Switches (AREA)

Abstract

 タッチパネルデバイスと表示装置との間の空気層の厚さが小さい場合にも、ニュートンリングの発生等の問題が抑制されるタッチパネルデバイスを提供する。本発明の静電容量式タッチパネルデバイス(100)は、観察側表面及び表示装置側表面を有する保護透明基材(10)、並びに保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルム(20b、22;30b、32)を有し、保護透明基材の表示装置側表面に配置されている全てのポリマーフィルム(20b;30b)の面方向の線膨張係数の最小値と最大値との差が、10.0×10-6cm/cm・℃以下である。また、本発明のタッチパネルデバイス付表示装置(100、200、300)は、このようなタッチパネルデバイスを有する。

Description

タッチパネルデバイス、及びタッチパネルデバイス付表示装置
 本発明は、タッチパネルデバイス、特に静電容量式のタッチパネルデバイスに関する。また、本発明は、タッチパネルデバイス付表示装置に関する。
 タッチパネルデバイス付表示装置、例えばタッチパネルデバイス付液晶ディスプレイは、携帯電話等のモバイル用電子機器、家電製品、無人受付機等の据置型顧客案内端末において用いられている。
 タッチパネルデバイスとしては、抵抗膜方式、静電容量方式、光センサ方式等が知られている。これらのうちの静電容量方式タッチパネルデバイスは、表示装置からの光の透過率、耐久性等に関して優れている。また、静電容量方式のタッチパネルデバイスは、縦方向の位置検出用電極と横方向の位置検出用電極との2つの位置検出用電極を縦横二次元マトリクス状に配置することによって、多点検出(マルチタッチ)を可能にできる点でも優れている(特許文献1)。
 なお、タッチパネルデバイス付表示装置においては、タッチパネルデバイスを表示装置の表示面に完全に貼り合わせることは行わず、タッチパネルデバイスと表示装置との間に約0.5~1.0mmの空気層を設けることが一般的である(特許文献2及び3)。
 タッチパネルデバイスと表示装置との間に約0.5~1.0mmの空気層を設ける理由としては例えば、下記(1)及び(2)のような理由がある:
 (1)タッチパネルデバイスと表示装置とでは製造条件が異なることから、タッチパネルデバイスと表示装置とを一体に形成して隙間が完全にないようにすることは、困難又は不可能。また、タッチパネルデバイスと表示装置とを一体に形成しない場合には、製造の最終段階においてタッチパネルデバイスが適切に機能しないことが判明したときに、適切に機能しないタッチパネルデバイスを表示装置の表示面から取り外し、そして新しいタッチパネルデバイスと交換できる。したがって、タッチパネルデバイスと表示装置とを一体に形成しないことが好ましい。
 (2)タッチパネルデバイスと表示装置との間の空気層の厚さが小さすぎる場合には、タッチパネルデバイスと空気層との界面(すなわち空気層の上側界面)で生じる反射光と、表示装置と空気層との界面(すなわち空気層の上側界面)で生じる反射光との干渉によって、ニュートンリング(モアレ縞)が生じる。なお、タッチパネルデバイスと表示装置との間の空気層の厚さが充分に大きい場合、例えばこの空気層の厚さが約1.0mmである場合には、空気層の上側及び下側界面で生じる反射光の光路差が大きく、したがって干渉は実質的に生じない。
 上記(2)のニュートンリングの発生という問題に関して、特許文献2及び3では、タッチパネルデバイスと表示装置との間の空気層に樹脂材料を充填して樹脂層とし、それによって空気層の上側及び下側界面で生じる反射をなくすことを提案している。
 しかしながら、樹脂材料を充填する場合には、製造の最終段階においてタッチパネルデバイスが適切に機能しないことが判明したときにも、適切に機能しないタッチパネルデバイスを表示装置の表示面から取り外し、そして新しいタッチパネルデバイスと交換することが困難な場合がある。また、樹脂材料を充填する場合には、樹脂材料中に気泡が入らないようにして充填することが困難な場合がある。また更に、樹脂材料を充填する場合には、当然に重量が増加する。
 また、上記(2)のニュートンリングの発生という問題に関して、特許文献3では、タッチパネルデバイス及び表示装置の空気層に面する表面に凹凸を設け、それによって空気層の上側及び下側界面で生じる反射をなくすことを提案している。
 しかしながら、空気層に面する表面に凹凸を設ける場合には、この凹凸によるヘーズの増加等の問題があった。
特表2003-511799 特開2004-77887 特開2002-189565
 近年では、タッチパネルデバイスを用いた表示装置の軽量化と並んで、薄型化も要求されている。したがって、タッチパネルデバイスと表示装置との間の空気層の厚さを狭くすることが好ましい。しかしながら上記(2)記載のように、タッチパネルデバイスと表示装置との間の空気層の厚さが小さすぎる場合には、ニュートンリングの発生等の問題が生じることが知られている。したがって、本発明では、タッチパネルデバイスと表示装置との間の空気層の厚さを小さくした場合にも、ニュートンリングの発生等の問題を抑制するタッチパネルデバイス、及びタッチパネルデバイス付表示装置を提供する。
 第1の本発明の静電容量式タッチパネルデバイスは、観察側表面及び表示装置側表面を有する保護透明基材、並びに保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルムを有し、かつ保護透明基材の表示装置側表面に配置されている全てのポリマーフィルムの面方向の線膨張係数の最小値と最大値との差が、10.0×10-6cm/cm・℃以下である。
 第2の本発明の静電容量式タッチパネルデバイスは、観察側表面及び表示装置側表面を有する保護透明基材、保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルム、並びに保護透明基材の表示装置側表面に配置されている偏光板を有し、かつ偏光板よりも表示装置側の全ての層の合計位相差が、波長550nmの光に対して略λ/4である。
 本発明のタッチパネルデバイス、及び本発明のタッチパネルデバイス付表示装置によれば、タッチパネルデバイスと表示装置との間の空気層の厚さが小さい場合にも、ニュートンリングの発生等の問題が抑制される。
参考例のタッチパネルデバイス付表示装置の構成を示す概念図である。 比較例のタッチパネルデバイス付表示装置の構成を示す概念図である。 実施例1のタッチパネルデバイス付表示装置の構成を示す概念図である。 実施例2のタッチパネルデバイス付表示装置の構成を示す概念図である。
 〈第1の本発明の静電容量式タッチパネルデバイス〉
 第1の本発明の静電容量式タッチパネルデバイスは、観察側表面及び表示装置側表面を有する保護透明基材、並びに保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルムを有し、かつ保護透明基材の表示装置側表面に配置されている全てのポリマーフィルムの面方向の線膨張係数の最小値と最大値との差が、10.0×10-6cm/cm・℃以下、8.0×10-6cm/cm・℃以下、6.0×10-6cm/cm・℃以下、又は5.0×10-6cm/cm・℃以下である。
 なお、ポリマーフィルムの熱膨張係数の測定は、タッチパネルデバイスを使用することが考慮される温度範囲、例えば20℃~60℃の温度範囲について行うことができる。
 本発明の第1の静電容量式タッチパネルデバイスによれば、温度変化が生じたときにも、保護透明基材の表示装置側表面に配置されているポリマーフィルムの面方向の線膨張係数の差による歪み、及びそれによる微細な凹凸が生じるのを抑制できる。したがって、本発明の第1の静電容量式タッチパネルデバイスによれば、タッチパネルデバイスと表示装置との間の空気層の厚さが小さい場合であっても、空気層の上側界面及び下側界面において生じる反射による干渉によってニュートンリングが発生することを抑制できる。
 この態様に関して、ポリマーフィルム層間の粘着剤の面方向の線膨張係数も、ポリマーフィルムの面方向の線膨張係数と同様にすることが好ましいと考えられる。しかしながら、実際には、ポリマーフィルム層間の粘着剤は一般に薄く、また弾性率が小さいので、粘着剤の熱膨張による影響は実質的に無視することができる。したがって、粘着剤の面方向の線膨張係数は、ポリマーフィルムの面方向の線膨張係数と同様であっても、実質的に異なっていてもよい。
 保護透明基材は、使用者がタッチパネルデバイスを使用する際の圧力等からタッチパネルデバイスを保護できる任意の透明基材であってよい。この保護透明基材は例えば、ガラス基材、ポリメチルメタクリレート基材、ポリカーボネート基材、又はそれらの組合せであってよい。この保護透明基材がタッチパネルデバイスの使用の際にたわむと、タッチパネルデバイスと表示装置との間の空気層の厚さが局所的に変化し、それによってニュートンリングが発生することがある。したがって、保護透明基材としては、剛性の基材、特にガラス基材を用いることが好ましい。
 また、この保護透明基材の厚さは例えば、0.1mm以上、0.2mm以上、0.3mm以上であって、2.0mm以下、1.0mm以下、又は0.8mm以下であってよい。
 本発明のタッチパネルデバイスで用いられるポリマーフィルムは、透明性が高く、かつ表面が平滑である任意のポリマーフィルムであってよい。このポリマーフィルムを構成する樹脂としては例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、非晶性ポリオレフィン、三酢酸セルロースなどのセルロース系樹脂、ポリスチレン、ポリエーテルスルホン、ポリスルホンなどが挙げられる。この中でも耐熱性、透明性、機械的特性等のバランスからポリカーボネート樹脂が好ましい。
 また、このポリマーフィルムの厚さは例えば、0.01mm以上、0.02mm以上、0.03mm以上であって、1.0mm以下、0.5mm以下、又は0.3mm以下であってよい。
 本発明のタッチパネルデバイスで用いられる位置検出用電極層は、随意にパターン化されている透明電極層であってよい。このような透明電極層は、透明導電性材料、例えば酸化インジウム-スズから作ることができる。
 第1の本発明のタッチパネルデバイスは、保護透明基材の表示装置側表面に配置されている電磁波シールド用電極層付きポリマーフィルムを更に有し、かつこの電磁波シールド用電極層付きポリマーフィルムが、2つの位置検出用電極層付きポリマーフィルムよりも表示装置側に配置されていてもよい。
 この態様によれば、電磁波シールド用電極層付きポリマーフィルムによって表示装置から出る電磁波を遮断し、それによってこの電磁波が位置検出用電極層による位置検出に好ましくない影響を与えることを防ぐことができる。
 この態様で使用されるポリマーフィルムについては、上記のポリマーフィルムに関する記載を参照できる。
 この態様で使用される電磁波シールド用電極層については、電磁波をシールド(遮蔽)できる任意の電極層であってよく、特に均一な厚さを有する透明導電性材料の層、例えば酸化インジウム-スズの層であってよい。
 第1の本発明のタッチパネルデバイスは、保護透明基材の表示装置側表面に配置されている表示装置側保護透明基材を更に有し、かつ表示装置側保護透明基材が、最も表示装置側に配置されていてもよい。
 この態様によれば、剛直な保護透明基材をタッチパネルデバイスの観察者側及び表示装置側の両面に配することになり、より剛性を高めることができ、タッチパネルデバイスを指で強く押し当てる操作をしても、タッチパネルデバイスが撓んで表示装置と接触したり、表示装置の傷つきを防ぐことができる。
 この表示装置側保護透明基材の材料及び厚さについては、保護透明基材に関する上記の記載を参照することができる。
 なお、第1の本発明のタッチパネルデバイスは、上記の第1の本発明のタッチパネルデバイスの特徴に加えて、下記の第2の本発明のタッチパネルデバイスに関して示されている特徴、すなわち静電容量式タッチパネルデバイスが、保護透明基材の表示装置側表面に配置されている偏光板を有し、かつ偏光板よりも表示装置側の全ての層の合計位相差が波長550nmの光に対して略λ/4であるという特徴を更に有することもできる。
 〈第1の本発明のタッチパネルデバイス付表示装置〉
 第1の本発明のタッチパネルデバイス付表示装置は、第1の本発明の静電容量式タッチパネルデバイスが、表示装置の表示面上に空気層を介して配置されており、かつ空気層の厚さが、0.500mm以下、0.400mm以下、0.300mm以下、0.200mm以下、又は0.100mm以下である。
 第1の本発明のタッチパネルデバイス付表示装置によれば、空気層の厚さが薄く、したがってタッチパネルデバイス付表示装置全体の厚さが薄いにもかかわらず、ニュートンリングの発生を抑制することができる。
 第1の本発明のタッチパネルデバイス付表示装置において使用される表示装置は、任意の表示装置であってよく、例えば液晶ディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイ、無機ELディスプレイ、ブラウン管ディスプレイ、電界放出ディスプレイ(FED)、電子ペーパー、又はプラズマディスプレイであってよい。
 〈第2の本発明の静電容量式タッチパネルデバイス〉
 第2の本発明の静電容量式タッチパネルデバイスは、観察側表面及び表示装置側表面を有する保護透明基材、保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルム、並びに保護透明基材の表示装置側表面に配置されている偏光板を有し、かつ偏光板よりも表示装置側の全ての層の合計位相差が、波長550nmの光に対して略λ/4である。
 この態様によれば、空気層の上側及び下側界面において反射が生じる場合であっても、偏光板及びλ/4の位相差によって、空気層の上側界面及び下側界面において生じる反射光が保護透明基材側から出ないようにされているので、ニュートンリングの発生を抑制することができる。
 具体的には、この態様によれば、保護透明基材の観察側表面から入射した外光が、偏光板の透過軸を通過することによって一方向の直線偏光にされ、この直線偏光がλ/4の位相差を受けて円偏光となり、そして空気層との界面において反射し、再びλ/4の位相差を受けて直線偏光に戻る。これによれば、反射光は、入射したときの直線偏光との位相差がλ/2になり、それによって90°異なる角度の直線偏光になるので、偏光板の吸収軸によって吸収されるようにできる。なお、この目的のためには、偏光板の吸収軸と、λ/4の位相差を有するポリマーフィルムの遅相軸との角度が、45°±5°以内、特に45°±1°以内になるようにすることができる。
 偏光板よりも表示装置側の全ての層の合計位相差が、波長550nmの光に対して略λ/4にするためには、2つの位置検出用電極層付きポリマーフィルム、更に他の随意のポリマーフィルムが存在する場合は他の随意のポリマーフィルムも含めた全てのポリマーフィルムの合計位相差が、波長550nmの光に対して略λ/4であるようにできる。
 これは例えば、1つの位置検出用電極付きポリマーフィルムの位相差が、波長550nmの光に対してλ/4であり、他のポリマーフィルムが位相差を有さないようにすることができる。また、2つの位置検出用電極層付きポリマーフィルムの合計位相差が、波長550nmの光に対して略0となるようにし、かつ他の随意のポリマーフィルムが波長550nmの光に対して略λ/4の位相差を有するようにすることもできる。あるいは2つの位置検出用電極層付きポリマーフィルムがいずれも位相差を有さないようにし、他のポリマーフィルムが波長550nmの光に対して略λ/4の位相差を有するようにすることもできる。
 ここで、波長550nmの光は人間の眼で観察したときに最も強く感じる光であり、したがって全ての層の合計位相差が、波長550nmの光に対して略λ/4であるようにすることは、最も効果的にニュートンリングの発生を抑制できる。しかしながら、可視光領域の他の波長についても、全ての層の合計位相差が略λ/4であることが好ましい。一般的なポリマーフィルムは、より短い波長の光に対して位相差が大きくなるので(すなわち、正波長分散性を有するので)、可視光領域全体に渡って、全ての層の合計位相差を略λ/4にすることは、一般に困難である。しかしながら、特開2000-137116号公報で示されるような、より短い波長の光に対して位相差が小さくなる波長分散性(すなわち、逆波長分散性)を有するポリマーフィルムを用いることによって、可視光領域全体に渡って、全ての層の合計位相差が略λ/4にすることが可能になる。
 本発明に関して、偏光板としては、染料によって染色したポリマーフィルムを延伸して得られる吸収型偏光板だけでなく、複数枚の位相差フィルムをその遅相軸方向が直交するようにして交互に積層して得られる反射型偏光板を用いることもできる。ここで、このような反射型偏光板では、一方の偏光に対しては、各層の屈折率が実質的に同一であり、それによって各層間の界面における入射光の反射が起こらないようにし、かつ他方の偏光に対しては、各層の屈折率が異なっており、それによって位相差フィルムの界面において入射光が反射して戻るようにする。あるいは、フィルム上に波長サイズよりも小さな幅の金属細線を連続的に配置したワイヤーグリッド偏光板を用いることもできる。また、本発明に関して、偏光板としては、上記のような直線偏光板だけでなく、右円偏光と左円偏光とを分離する円偏光板を用いることもできる。
 なお、第2の本発明のタッチパネルデバイスは、上記の第2の本発明のタッチパネルデバイスの特徴に加えて、上記の第1の本発明のタッチパネルデバイスに関して示されている特徴、すなわち保護透明基材の表示装置側表面に配置されている全てのポリマーフィルムの面方向の線膨張係数の最小値と最大値との差が、10.0×10-6cm/cm・℃以下であるという特徴を更に有することもできる。また、第2の本発明のタッチパネルデバイスについて、ポリマーフィルム、保護透明基材、位置検出用電極層付きポリマーフィルム、シールド用電極層付きポリマーフィルム、表示装置側保護透明基材等については、第1の本発明のタッチパネルデバイスに関する記載を参照できる。
 〈第2の本発明のタッチパネルデバイス付表示装置〉
 (第1の態様)
 第2の本発明のタッチパネルデバイス付表示装置の第1の態様では、第2の本発明の静電容量式タッチパネルデバイスが、表示装置の表示面上に空気層を介して配置されており、空気層の厚さが、0.500mm以下、0.400mm以下、0.300mm以下、0.200mm以下、又は0.100mm以下であり、表示装置が偏光、特に直線偏光又は円偏光によって表示を行い、かつ表示装置の観察側表面に、波長550nmの光に対して略λ/4の位相差を有する位相差フィルムが配置されている。
 第2の本発明のタッチパネルデバイス付表示装置の第1の態様によれば、空気層の厚さが薄く、したがってタッチパネルデバイス付表示装置の厚さを小さいにもかかわらず、ニュートンリングの発生を抑制することができる。
 また、このタッチパネルデバイス付表示装置によれば、表示装置が偏光によって表示を行い、かつ表示装置の観察側表面に波長550nmの光に対して略λ/4の位相差を有する位相差フィルムが配置されていることによって、表示装置から出た偏光である表示光が、表示装置の観察側表面の位相差フィルムを通過してλ/4の位相差を受け、空気層を通過し、第2の本発明のタッチパネルデバイスにおいて再びλ/4の位相差を受ける。これによれば、表示装置から出た偏光と、タッチパネルデバイスでλ/4の位相差を受けた偏光との位相差が、0又はλ/2になる。
 具体的には、表示装置の表示光が直線偏光である場合、表示装置上の位相差フィルムにおいてλ/4の位相差を受け、且つタッチパネルデバイスでλ/4の位相差を受けた表示光は、表示装置から出た直線偏光と同じ角度又は90°異なる角度の直線偏光になり、これがタッチパネルデバイスの直線偏光板の透過軸を通って観察者に観察されるようにできる。また、表示装置の表示光が円偏光である場合、表示装置上の位相差フィルムにおいてλ/4の位相差を受け、且つタッチパネルデバイスでλ/4の位相差を受けた表示光は、表示装置から出た円偏光と同じ又は反対の旋回方向の円偏光になり、これがタッチパネルデバイスの円偏光板の透過軸を通って観察者に観察されるようにできる。
 なお、この目的のためには、表示装置の観察側(すなわち、タッチパネル側)の偏光板の吸収軸と、表示装置の観察側表面のλ/4の位相差を有する位相差フィルムの遅相軸との角度が、45°±5°以内、特に45°±1°以内になるようにすることができる。また、液晶ディスプレイの観察側の偏光板の吸収軸と、タッチパネルデバイスの偏光板の吸収軸との角度を、0°±5°以内、特に0°±1°以内、又は90°±5°以内、特に90°±1°以内にすることができる。
 第2の本発明のタッチパネルデバイス付表示装置の第1の態様では特に、表示光が本質的に偏光となっている表示装置、例えば液晶ディスプレイであってよい。
 (第2の態様)
 第2の本発明のタッチパネルデバイス付表示装置の第2の態様では、第2の本発明の静電容量式タッチパネルデバイスが、表示装置の表示面上に空気層を介して配置されており、空気層の厚さが、0.500mm以下、0.400mm以下、0.300mm以下、0.200mm以下、又は0.100mm以下であり、表示装置が非偏光によって表示を行う。
 第2の本発明のタッチパネルデバイス付表示装置の第2の態様によれば、空気層の厚さが薄く、したがってタッチパネルデバイス付表示装置の厚さを小さいにもかかわらず、ニュートンリングの発生を抑制することができる。
 また、このタッチパネルデバイス付表示装置の第2の態様によれば、表示装置から出た非偏光である表示光が、空気層を通過し、第2の本発明のタッチパネルデバイスにおいてλ/4の位相差を受けるが、非偏光である表示光のうちの一部は、タッチパネルデバイスの偏光板の透過軸を通って観察者に観察されるようにできる。
 第2の本発明のタッチパネルデバイス付表示装置の第2の態様では特に、表示光が本質的に非偏光となっている表示装置、例えば有機ELディスプレイ、無機ELディスプレイ、ブラウン管ディスプレイ、電界放出ディスプレイ、電子ペーパー、又はプラズマディスプレイであってよい。
 実施例中における各種の測定は、下記のとおり行った。
 〈線膨張係数〉
 フィルムの線膨張係数は、4mm幅×30mmのサンプルを、25℃及び相対湿度50%にて24時間置いた後に、熱・応力-歪測定装置(SIIナノテクノロジー社製SS6100)を用いて、昇温速度5℃/分にて3回測定し、温度範囲20℃~60℃における線膨張係数を算出し、その平均値を求めた。
 〈位相差〉
 日本分光(株)製分光エリプソメーターM220を使用し、光線波長550nmで測定した。
 〈参考例〉
 図1に示す構成を有するようにして、参考例の静電容量式タッチパネルデバイス付表示装置を作成した。具体的には、下記に示すようにして、参考例の静電容量式タッチパネルデバイス付表示装置を作成した。
 (1)静電容量式タッチパネルデバイス付表示装置の作成
 0.5mmの厚さのコーニング社製超硬ガラス(10)を保護透明基材とし、アクリル樹脂よりなる粘着剤(24)を介して、第1の位置検出用電極層付きポリマーフィルム(20a、22)を貼合した。次に更にアクリル樹脂よりなる粘着材(34)を介して、第2の位置検出用電極層付きポリマーフィルム(30a、32)を貼合した。次に更にアクリル樹脂よりなる粘着材(44)を介して、電磁波シールド用電極層付きポリマーフィルム(40、42)を貼合して、静電容量式タッチパネルデバイス(100)を作成した。
 0.8mmの厚さの液晶ディスプレイパネル(300)の額縁部分に接着剤を配し、液晶ディスプレイパネル(300)と静電容量式タッチパネルデバイス(100)とを、1.0mmの空気層(200)を介して接着した。
 このようにして得た参考例の静電容量式タッチパネルデバイス付表示装置について、下記の表1にまとめている。
 (2)評価
 参考例のタッチパネルデバイス付表示装置の全体(タッチパネルデバイス+空気層+液晶パネル)の厚みは2.862mmであった。参考例のタッチパネルデバイス付表示装置は、常温においてニュートンリングの発生がなく、また50℃においてもニュートンリングの発生は見られなかった。ただし、このタッチパネルデバイス付表示装置は、反射防止機能は有していないため、強い外光を当てると表示装置が白っぽくなり表示が見にくかった。この結果について、下記の表5にまとめている。
 (3)第1及び第2の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)
 上記の第1及び第2の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)のためのポリマーフィルム(20a、30a)は、125μmの厚さの二軸延伸ポリエチレンテレフタレート(PET)フィルムであった。ここで、このポリマーフィルムは、位相差が制御されておらず、1,000nm以上の位相差を有していた。このポリマーフィルムの両面にアクリル樹脂を主成分とする2μm程度の厚さのハードコート層を配した(合計129μm)。このハードコート層のうちの一方の表面上に、酸化チタンナノ粒子を分散させた有機シロキサン系樹脂を主成分とする0.1μm程度の厚さの光学調整層を配し、更にこの光学調整層の上に20nm程度の厚さのインジウム-スズ酸化物(ITO)をスパッタ成膜した。ここで、光学調整層は、インジウム-スズ酸化物で形成される電極パターンを見えにくくするためのものである。
 このインジウム-スズ酸化物層を有するポリマーフィルムを、画角3.0インチの液晶ディスプレイパネルと貼合するための大きさにカットし、電極パターニングを行い、そして130℃にて90分間熱処理を行うことによりこのインジウム-スズ酸化物層を結晶化させて位置検出用電極層(22、32)とし、それによって第1及び第2の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)を作成した。
 結晶化したインジウム-スズ酸化物層の表面抵抗値は、200Ω/□であった。基材として使用したポリエチレンテレフタレートフィルムは、流れ方向の線膨張係数が37×10-6cm/cm・℃であり、流れ方向に対して垂直方向の線膨張係数が34×10-6cm/cm・℃であった。
 (4)電磁波シールド用電極層付きポリマーフィルム(40、42)
 上記の電磁波シールド用電極層付きポリマーフィルム(40、42)のためのポリマーフィルム(40)は、流延法により作成した厚さ100μmの無延伸ポリカーボネート(PC)フィルムであった。ここで、このポリマーフィルムは、位相差がほぼ0nmであった。このポリマーフィルムの両面にアクリル樹脂を主成分とする2μm程度の厚さのハードコート層を配した(合計104μm)。このハードコート層のうちの一方の面上に、20nm程度の厚さのインジウム-スズ酸化物(ITO)をスパッタ成膜した。
 このインジウム-スズ酸化物を有するポリマーフィルムを、画角3.0インチの液晶ディスプレイパネルと貼合するための大きさにカットし、130℃にて90分間熱処理を行うことによりこのインジウム-スズ酸化物層を結晶化させて電磁波シールド用電極層(42)とし、それによって電磁波シールド用電極層付きポリマーフィルム(40、42)を作成した。
 結晶化したインジウム-スズ酸化物層の表面抵抗値は、200Ω/□であった。基材として使用したポリカーボネートフィルムは、流れ方向及び流れ方向に対して垂直方向の線膨張係数がいずれも75×10-6cm/cm・℃であった。
 (5)液晶ディスプレイパネル(300)
 液晶ディスプレイパネルは、画角3.0インチ及び厚さ0.8mmのVA(Vertical Alignment)方式の液晶ディスプレイパネルであり、0.6mmの厚みの液晶セルの両面に光学補償フィルム及び偏光板を貼合したものであった。
 〈比較例〉
 図2に示す構成を有するようにして、比較例の静電容量式タッチパネルデバイス付表示装置を作成した。具体的には、下記に示すようにして、比較例の静電容量式タッチパネルデバイス付表示装置を作成した。
 (1)静電容量式タッチパネルデバイス付表示装置の作成
 液晶ディスプレイパネル(300)と静電容量式タッチパネルデバイス(100)との間の空気層の厚さを小さくしたこと、具体的には空気層の厚さを1mmではなく0.1mmとした小さくしたことを除いて参考例と同様にして、比較例の静電容量式タッチパネルデバイス付表示装置を作成した。
 このようにして得た比較例の静電容量式タッチパネルデバイス付表示装置について、下記の表2にまとめている。
 (2)評価
 比較例の表示装置の全体の厚みは1.962mmであり、参考例よりも0.900mm薄かった。比較例のタッチパネルデバイス付表示装置は、常温においてニュートンリングの発生がなかったが、50℃においてはニュートンリングが発生した。また、このタッチパネルデバイス付表示装置は、反射防止機能は有していないため、強い外光を当てると表示装置が白っぽくなり表示が見にくかった。この結果について、下記の表5にまとめている。
 〈実施例1〉
 図3に示す構成を有するようにして、実施例1の静電容量式タッチパネルデバイス付表示装置を作成した。具体的には、下記に示すようにして、実施例1の静電容量式タッチパネルデバイス付表示装置を作成した。
 (1)静電容量式タッチパネルデバイス付表示装置の作成
 2軸延伸ポリエチレンテレフタレート(PET)フィルム(20a、30a)を有する第1及び第2の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)の代わりに、無延伸ポリカーボネート(PC)フィルム(20b、30b)を有する第1及び第2の位置検出用電極層付きポリマーフィルム(20b、22;30b、32)を用いたことを除いて比較例と同様にして、実施例1の静電容量式タッチパネルデバイス付表示装置を作成した。
 このようにして得た実施例1の静電容量式タッチパネルデバイス付表示装置について、下記の表3にまとめている。
 (2)評価
 実施例1のタッチパネルデバイス付表示装置の全体の厚みは1.912mmであり、参考例よりも約0.950mm薄かった。実施例1のタッチパネルデバイス付表示装置は、常温においてニュートンリングの発生がなく、また50℃においてもニュートンリングの発生は見られなかった。ただし、このタッチパネルデバイス付表示装置は、反射防止機能は有していないため、強い外光を当てると表示装置が白っぽくなり表示が見にくかった。この結果について、下記の表5にまとめている。
 (3)第1及び第2の位置検出用電極層付きポリマーフィルム(20b、22;30b、32)
 125μmの厚さの二軸延伸ポリエチレンテレフタレート(PET)フィルムの代わりに流延法により作成した厚さ100μmの無延伸ポリカーボネート(PC)フィルムを用いたことを除いて参考例の第1及び第2の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)と同様にして、上記の第1及び第2の位置検出用電極層付きポリマーフィルム(20b、22;30b、32)のためのポリマーフィルム(20b、30b)を得た。
 結晶化したインジウム-スズ酸化物層の表面抵抗値は、200Ω/□であった。基材として使用したポリカーボネートフィルムは、流れ方向及び流れ方向に対して垂直方向の線膨張係数がいずれも75×10-6cm/cm・℃であった。
 〈実施例2〉
 図4に示す構成を有するようにして、実施例2の静電容量式タッチパネルデバイス付表示装置を作成した。具体的には、下記に示すようにして、実施例2の静電容量式タッチパネルデバイス付表示装置を作成した。
 (1)静電容量式タッチパネルデバイス付表示装置の作成
 0.5mmの厚さのコーニング社製超硬ガラスを保護透明基材と第1の位置検出用電極層付きポリマーフィルム(20a、22)との間に、アクリル樹脂よりなる粘着剤を介して、100μmの厚さの偏光フィルムを貼合したこと;無延伸ポリカーボネート(PC)フィルム(20b)を有する第1の位置検出用電極層付きポリマーフィルム(20b、22)の代わりに、一軸延伸ポリカーボネート(PC)フィルム(20c)を有する第1の位置検出用電極層付きポリマーフィルム(20c、22)を用いたこと;一軸延伸ポリカーボネートフィルム(20c)と同様な一軸延伸ポリカーボネートフィルム(60)を、アクリル粘着剤(64)を介して、液晶ディスプレイパネル(300)の表面に貼合したことを除いて、実施例1と同様にして、実施例2の静電容量式タッチパネルデバイス付表示装置を作成した。
 このようにして得た実施例2の静電容量式タッチパネルデバイス付表示装置について、下記の表2にまとめている。
 (2)評価
 実施例2の表示装置の全体の厚みは2.012mmであり、参考例よりも約0.850mm薄かった。実施例2のタッチパネルデバイス付表示装置は、常温においてニュートンリングの発生がなく、また50℃においてもニュートンリングの発生は見られなかった。また、このタッチパネルデバイス付表示装置は、反射防止機能を有しているため、強い外光を当てた場合にも、表示装置が白っぽくならなかった。この結果について、下記の表5にまとめている。
 (3)偏光フィルム(50)
 上記の偏光フィルム(50)としては、流延法により作成した位相差がほぼ0nmである三酢酸セルロースを基材として、偏光子としてヨウ素を吸着させたポリビニルアルコール層を貼合したフィルムを使用した。この偏光フィルムの吸収軸を、液晶ディスプレイパネルの上面(タッチパネルデバイスと貼合する側)の偏光板の吸収軸と揃える(すなわち、それぞれの吸収軸のなす角が0度となる)ように大きさにカットした。この偏光フィルムの吸収軸方向の線膨張係数は74×10-6cm/cm・℃であり、流れ方向に対して垂直方向の線膨張係数は78×10-6cm/cm・℃であった。
 (4)第1の位置検出用電極層付きポリマーフィルム(20c、22)
 上記の第1の位置検出用電極層付きポリマーフィルム(20c、22)のためのポリマーフィルム(20c)は、流延法により作成した100μmの厚さの無延伸ポリカーボネート(PC)フィルムを一軸延伸して得たフィルムであった。ここで、このフィルムは、550nmにおける位相差が138nm(すなわち波長の1/4の位相差)であった。2軸延伸ポリエチレンテレフタレート(PET)フィルム(20a、30a)を有する第1の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)の代わりに、この一軸延伸ポリカーボネート(PC)フィルム(20c)を用いたこと;及びこの一軸延伸ポリカーボネート(PC)フィルム(20c)を、液晶ディスプレイパネルの上面(タッチパネルデバイスと貼合する側)の偏光板の吸収軸と、この第1の位置検出用電極層付きポリマーフィルム(20c、22)の遅相軸がなす角が45度となるように大きさにカットしたことを除いて参考例の第1及び第2の位置検出用電極層付きポリマーフィルム(20a、22;30a、32)と同様にして、上記の第1の位置検出用電極層付きポリマーフィルム(20c、22)を得た。
 結晶化したインジウム-スズ酸化物層の表面抵抗値は200Ω/□であった。基材として使用した一軸延伸ポリカーボネートフィルムは、流れ方向の線膨張係数が74×10-6cm/cm・℃であり、かつ流れ方向に対して垂直方向の線膨張係数が77×10-6cm/cm・℃であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 10  保護透明基材
 20a、20b、20c、30a、30b  位置検出用電極層付きポリマーフィルム
 22、32  位置検出用電極層
 40  シールド用電極層付きポリマーフィルム
 42  シールド用電極層
 50  偏光板
 60  位相差フィルム(λ/4フィルム)
 24、34、44、54、64  粘着剤
 100  タッチパネルデバイス
 200  空気層
 300  表示装置

Claims (12)

  1.  観察側表面及び表示装置側表面を有する保護透明基材、並びに前記保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルムを有する、静電容量式タッチパネルデバイスであって、
     前記保護透明基材の表示装置側表面に配置されている全てのポリマーフィルムの面方向の線膨張係数の最小値と最大値との差が、10.0×10-6cm/cm・℃以下である、静電容量式タッチパネルデバイス。
  2.  前記静電容量式タッチパネルデバイスが、前記保護透明基材の前記表示装置側表面に配置されている偏光板を有し、かつ前記偏光板よりも表示装置側の全ての層の合計位相差が、波長550nmの光に対して略λ/4である、請求項1に記載のタッチパネルデバイス。
  3.  前記保護透明基材が、ガラス基材、ポリメチルメタクリレート基材、ポリカーボネート基材、又はそれらの組合せである、請求項1又は2に記載のタッチパネルデバイス。
  4.  前記保護透明基材の表示装置側表面に配置されているシールド用電極層付きポリマーフィルムを更に有し、かつ前記シールド用電極層付きポリマーフィルムが、前記2つの位置検出用電極層付きポリマーフィルムよりも表示装置側に配置されている、請求項1~3のいずれかに記載のタッチパネルデバイス。
  5.  請求項1~4のいずれかに記載の静電容量式タッチパネルデバイスを有するタッチパネルデバイス付表示装置であって、
     前記静電容量式タッチパネルデバイスが、前記表示装置の表示面上に空気層を介して配置されており、かつ前記空気層の厚さが、0.500mm以下である、タッチパネルデバイス付表示装置。
  6.  観察側表面及び表示装置側表面を有する保護透明基材、並びに前記保護透明基材の表示装置側表面に配置されている2つの位置検出用電極層付きポリマーフィルムを有する、静電容量式タッチパネルデバイスであって、
     前記静電容量式タッチパネルデバイスが、前記保護透明基材の前記表示装置側表面に配置されている偏光板を有し、かつ前記偏光板よりも表示装置側の全ての層の合計位相差が、波長550nmの光に対して略λ/4である、静電容量式タッチパネルデバイス。
  7.  前記保護透明基材が、ガラス基材、ポリメチルメタクリレート基材、ポリカーボネート基材、又はそれらの組合せである、請求項6に記載のタッチパネルデバイス。
  8.  前記保護透明基材の表示装置側表面に配置されているシールド用電極層付きポリマーフィルムを更に有し、かつ前記シールド用電極層付きポリマーフィルムが、前記2つの位置検出用電極層付きポリマーフィルムよりも表示装置側に配置されている、請求項6又は7に記載のタッチパネルデバイス。
  9.  請求項6~8のいずれかに記載の静電容量式タッチパネルデバイスを有するタッチパネルデバイス付表示装置であって、
     前記静電容量式タッチパネルデバイスが、前記表示装置の表示面上に空気層を介して配置されており、前記空気層の厚さが、0.500mm以下であり、前記表示装置が偏光によって表示を行い、かつ前記表示装置の観察側表面に、波長550nmの光に対して略λ/4の位相差を有する位相差フィルムが配置されている、タッチパネルデバイス付表示装置。
  10.  前記表示装置が、液晶ディスプレイである、請求項9に記載のタッチパネルデバイス付表示装置。
  11.  請求項6~8のいずれかに記載の静電容量式タッチパネルデバイスを有するタッチパネルデバイス付表示装置であって、
     前記静電容量式タッチパネルデバイスが、前記表示装置の表示面上に空気層を介して配置されており、前記空気層の厚さが、0.500mm以下であり、前記表示装置が非偏光によって表示を行う、タッチパネルデバイス付表示装置。
  12.  前記表示装置が、有機ELディスプレイ、無機ELディスプレイ、ブラウン管ディスプレイ、電界放出ディスプレイ、電子ペーパー、及びプラズマディスプレイからなる群より選択される、請求項11に記載のタッチパネルデバイス付表示装置。
PCT/JP2011/070510 2010-09-08 2011-09-08 タッチパネルデバイス、及びタッチパネルデバイス付表示装置 WO2012033169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137005913A KR101564150B1 (ko) 2010-09-08 2011-09-08 터치 패널 디바이스, 및 터치 패널 디바이스 부착 표시 장치
EP11823643.9A EP2615527A4 (en) 2010-09-08 2011-09-08 TOUCH SCREEN DEVICE AND DISPLAY DEVICE WITH TOUCH SCREEN DEVICE
US13/821,471 US9189112B2 (en) 2010-09-08 2011-09-08 Touch panel device and display device with touch panel device
CN201180043131.2A CN103097995B (zh) 2010-09-08 2011-09-08 触摸面板器件、及带有触摸面板器件的显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-200753 2010-09-08
JP2010200753A JP5601944B2 (ja) 2010-06-28 2010-09-08 タッチパネルデバイス、及びタッチパネルデバイス付表示装置

Publications (1)

Publication Number Publication Date
WO2012033169A1 true WO2012033169A1 (ja) 2012-03-15

Family

ID=45810765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070510 WO2012033169A1 (ja) 2010-09-08 2011-09-08 タッチパネルデバイス、及びタッチパネルデバイス付表示装置

Country Status (7)

Country Link
US (1) US9189112B2 (ja)
EP (1) EP2615527A4 (ja)
JP (1) JP5601944B2 (ja)
KR (1) KR101564150B1 (ja)
CN (1) CN103097995B (ja)
TW (1) TWI527002B (ja)
WO (1) WO2012033169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941681B1 (en) * 2013-01-07 2019-07-24 Microsoft Technology Licensing, LLC Capacitive touch surface in close proximity to display

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069683A1 (ja) 2011-11-07 2013-05-16 王子ホールディングス株式会社 静電容量式タッチパネル付き表示装置、静電容量式タッチパネル
JP5355741B2 (ja) 2012-04-13 2013-11-27 株式会社東芝 無線端末装置
JP2014016589A (ja) * 2012-07-11 2014-01-30 Dainippon Printing Co Ltd 偏光板一体型導電性光学積層体及びそれを用いた表示装置
JP6127251B2 (ja) * 2012-09-24 2017-05-17 グンゼ株式会社 タッチパネル
CN103970336B (zh) * 2013-02-01 2017-09-29 群创光电股份有限公司 触控显示面板及触控显示装置
KR20140100793A (ko) * 2013-02-07 2014-08-18 삼성전자주식회사 자체발광 디스플레이 패널 및 이를 가지는 디스플레이장치
JP6432506B2 (ja) * 2013-04-10 2018-12-05 日本ゼオン株式会社 静電容量式タッチパネル付き表示装置
CN105247393B (zh) * 2013-05-16 2019-07-19 日本瑞翁株式会社 带静电容量式触摸面板的显示装置
KR102151205B1 (ko) * 2013-05-21 2020-09-03 삼성디스플레이 주식회사 표시 장치
JP6328984B2 (ja) * 2013-05-22 2018-05-23 日東電工株式会社 両面透明導電性フィルムおよびタッチパネル
TWI636285B (zh) * 2013-08-09 2018-09-21 住友化學股份有限公司 Optical film
KR102457408B1 (ko) * 2013-08-09 2022-10-24 스미또모 가가꾸 가부시키가이샤 광학 필름
US9547395B2 (en) 2013-10-16 2017-01-17 Microsoft Technology Licensing, Llc Touch and hover sensing with conductive polarizer
JP6297846B2 (ja) 2014-01-30 2018-03-20 日東電工株式会社 両面透明導電性フィルム及びその巻回体、並びにタッチパネル
CN104020880A (zh) * 2014-05-27 2014-09-03 京东方科技集团股份有限公司 一种触摸显示装置
JP2016051255A (ja) * 2014-08-29 2016-04-11 凸版印刷株式会社 タッチパネル及びそれを用いたタッチ式情報入力画像表示装置
KR20160128513A (ko) * 2015-04-28 2016-11-08 삼성디스플레이 주식회사 터치 센서를 포함하는 표시 장치
CN105096758A (zh) * 2015-07-23 2015-11-25 上海和辉光电有限公司 一种显示器件
JP6475126B2 (ja) * 2015-09-08 2019-02-27 アルプスアルパイン株式会社 静電容量式タッチパネルを備えた入力機器、及び、入力機器の製造方法
JP6331226B2 (ja) 2015-10-23 2018-05-30 Smk株式会社 大型タッチパネル装置の製造方法
KR102460003B1 (ko) 2016-01-08 2022-10-31 삼성디스플레이 주식회사 λ/4 위상 지연 필름, 표시 장치 및 이의 제조 방법
CN105808021B (zh) * 2016-03-09 2021-01-22 京东方科技集团股份有限公司 光感式触控面板、显示装置和触摸定位方法
US10474295B2 (en) 2016-11-10 2019-11-12 Samsung Display Co., Ltd. Display device including sensor and auxiliary sensor parts
FI20175373A1 (en) * 2017-04-25 2018-10-26 Canatu Oy A process for making a laminated film
JP7278792B2 (ja) * 2019-02-08 2023-05-22 ホーチキ株式会社 表示灯、及び表示方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137116A (ja) 1998-10-30 2000-05-16 Teijin Ltd 位相差板及びそれを用いた液晶表示装置
JP2002189565A (ja) 2000-10-13 2002-07-05 Denso Corp タッチパネルおよび表示装置
JP2003511799A (ja) 1999-10-08 2003-03-25 シナプティクス インコーポレイテッド 電子デバイスのためのフレキシブルで透明な接触検出システム
JP2004077887A (ja) 2002-06-18 2004-03-11 Sony Corp 表示装置および表示装置を有する電子機器
WO2006028131A1 (ja) * 2004-09-10 2006-03-16 Gunze Co., Ltd. タッチパネル及びタッチパネル用フィルム材料の製造方法
JP2009265924A (ja) * 2008-04-24 2009-11-12 Smk Corp 座標入力装置
JP2010160670A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp タッチパネルの製造方法、タッチパネル、表示装置、及び電子機器
JP2010162746A (ja) * 2009-01-14 2010-07-29 Jsr Corp 透明導電性積層フィルム及びそれを用いたタッチパネル

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696860A (en) * 1985-09-26 1987-09-29 John Fluke Mfg. Co., Inc. Particulate spacers for inhibiting Newton rings in touch sensitive overlays
JP3411774B2 (ja) * 1997-02-14 2003-06-03 リケンテクノス株式会社 導電性樹脂組成物
JP3531835B2 (ja) * 1997-06-23 2004-05-31 帝人化成株式会社 光学用フィルムおよびその製造方法
US6589650B1 (en) * 2000-08-07 2003-07-08 3M Innovative Properties Company Microscope cover slip materials
EP1078733A4 (en) * 1998-05-15 2003-05-21 Toyo Boseki TRANSPARENT CONDUCTIVE FILM AND TOUCH SCREEN
ATE516531T1 (de) * 1998-09-10 2011-07-15 Gunze Kk Berührungstafel
JP4593721B2 (ja) * 1999-05-19 2010-12-08 グンゼ株式会社 タッチパネル
DE60125210T2 (de) 2000-10-13 2007-09-20 Denso Corp., Kariya Berührungsempfindliche tafel für ein fahrzeug und verfahren zu dessen herstellung
US6759600B2 (en) * 2001-04-27 2004-07-06 Shinko Electric Industries Co., Ltd. Multilayer wiring board and method of fabrication thereof
US6787253B2 (en) * 2001-06-27 2004-09-07 Bridgestone Corporation Transparent electroconductive film and touch panel
JP2003050674A (ja) * 2001-08-08 2003-02-21 Nagano Fujitsu Component Kk タッチパネル及びタッチパネルを備えた入力装置
AU2003216481A1 (en) * 2002-03-01 2003-09-16 Planar Systems, Inc. Reflection resistant touch screens
US6620509B1 (en) * 2002-04-22 2003-09-16 Mitsubishi Gas Chemical Company, Inc. Transparent resin laminate and molded article used the same
TW200428268A (en) * 2002-07-15 2004-12-16 Fuji Photo Film Co Ltd Internal touch panel, and process for producing it and display device
US7833588B2 (en) * 2002-12-20 2010-11-16 Teijin Limited Transparent conductive laminate, touch panel and touch panel-equipped liquid crystal display
JP2004259256A (ja) * 2003-02-05 2004-09-16 Nitto Denko Corp 透明積層体、ペン入力画像表示装置および画像表示方法
JP2005018551A (ja) * 2003-06-27 2005-01-20 Teijin Ltd 電磁波シールド機能を有するタッチパネル、およびそれに用いる透明積層フィルム
JP4423264B2 (ja) * 2003-11-28 2010-03-03 帝人株式会社 透明導電性積層体及びそれを用いた透明タッチパネル
JPWO2007139138A1 (ja) * 2006-06-01 2009-10-08 帝人株式会社 偏光板およびその製造方法
EP2056166B1 (en) * 2006-08-23 2012-03-14 Mitsubishi Gas Chemical Company, Inc. Electrophotographic photoreceptor belt
US9710095B2 (en) * 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
ATE555483T1 (de) * 2007-01-16 2012-05-15 Teijin Ltd Transparenter leitfähiger mehrschichtiger körper und daraus hergestellter berührungsschirm
JP2008305829A (ja) * 2007-06-05 2008-12-18 Mitsubishi Gas Chem Co Inc 光干渉縞防止光透過型電磁波シールド材料
TWI369534B (en) * 2008-02-26 2012-08-01 Wintek Corp Touch display, liquid crystal display with a built-in touch panel and fabricating method thereof
JP2010055944A (ja) * 2008-08-28 2010-03-11 Jsr Corp 導電性積層フィルムおよびそれを用いたタッチパネル
JP2010155974A (ja) * 2008-12-01 2010-07-15 Nitto Denko Corp アクリル系感圧性接着シート、アクリル系感圧性接着シートの製造方法、及び積層構成
US8525809B2 (en) * 2009-07-02 2013-09-03 Applied Vacuum Coating Technologies Co., Ltd. Digital capacitive touch panel structure
JP5258717B2 (ja) * 2009-09-16 2013-08-07 富士フイルム株式会社 保護フィルムおよび太陽電池用フロントシート
KR20130109090A (ko) * 2010-06-11 2013-10-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 힘 측정을 갖는 포지셔널 터치 센서

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137116A (ja) 1998-10-30 2000-05-16 Teijin Ltd 位相差板及びそれを用いた液晶表示装置
JP2003511799A (ja) 1999-10-08 2003-03-25 シナプティクス インコーポレイテッド 電子デバイスのためのフレキシブルで透明な接触検出システム
JP2002189565A (ja) 2000-10-13 2002-07-05 Denso Corp タッチパネルおよび表示装置
JP2004077887A (ja) 2002-06-18 2004-03-11 Sony Corp 表示装置および表示装置を有する電子機器
WO2006028131A1 (ja) * 2004-09-10 2006-03-16 Gunze Co., Ltd. タッチパネル及びタッチパネル用フィルム材料の製造方法
JP2009265924A (ja) * 2008-04-24 2009-11-12 Smk Corp 座標入力装置
JP2010160670A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp タッチパネルの製造方法、タッチパネル、表示装置、及び電子機器
JP2010162746A (ja) * 2009-01-14 2010-07-29 Jsr Corp 透明導電性積層フィルム及びそれを用いたタッチパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615527A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941681B1 (en) * 2013-01-07 2019-07-24 Microsoft Technology Licensing, LLC Capacitive touch surface in close proximity to display

Also Published As

Publication number Publication date
JP2012033135A (ja) 2012-02-16
CN103097995A (zh) 2013-05-08
KR20130109108A (ko) 2013-10-07
US20130169593A1 (en) 2013-07-04
EP2615527A4 (en) 2014-08-20
CN103097995B (zh) 2016-07-27
TW201222501A (en) 2012-06-01
JP5601944B2 (ja) 2014-10-08
TWI527002B (zh) 2016-03-21
US9189112B2 (en) 2015-11-17
KR101564150B1 (ko) 2015-10-28
EP2615527A1 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2012033169A1 (ja) タッチパネルデバイス、及びタッチパネルデバイス付表示装置
JP6579245B2 (ja) 静電容量式タッチパネル付き表示装置
US10656468B2 (en) Display device with a capacitive touch panel
KR101975536B1 (ko) 플렉서블 터치 스크린 패널
KR101945439B1 (ko) 플렉서블 터치 스크린 패널
KR101381817B1 (ko) 터치 스크린 패널
TWI520039B (zh) Electrostatic capacitive touch sensor, electronic machine and transparent conductive film laminated body manufacturing method
JP6929586B2 (ja) 反射防止用光学フィルタ及び有機発光装置
US20160070382A1 (en) Display device with capacitive touch panel
TW201022793A (en) Liquid crystal display device with touch screen function
KR20150115815A (ko) 화상 표시 장치
WO2013042674A1 (ja) 静電容量式タッチセンサ及びこれを備えた表示装置
US20160062509A1 (en) Display device with capacitive touch panel
KR20110134573A (ko) 편광판 일체형 내측 터치패널 및 터치패널 일체형 액정표시장치
KR102627997B1 (ko) 광학 적층체 및 화상 표시 장치
JP2000112663A (ja) 透明タッチパネルおよび透明タッチパネル付液晶セル
WO2014021093A1 (ja) 表示システム
TWM334968U (en) Anti-reflection semi-reflective capacitive flat touch panel display
KR20120120848A (ko) 광 시야각을 갖는 수평 전계형 액정표시장치
US11703966B2 (en) Touch display module
JPH11249812A (ja) 透明タッチパネル付液晶セル
KR20230012952A (ko) 터치 디스플레이 모듈
TW202305413A (zh) 觸控顯示模組

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043131.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005913

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13821471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011823643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823643

Country of ref document: EP