WO2012032785A1 - イチゴ葉縁退緑病の病原体Candidatus Phlomobacter fragariaeの検出方法 - Google Patents

イチゴ葉縁退緑病の病原体Candidatus Phlomobacter fragariaeの検出方法 Download PDF

Info

Publication number
WO2012032785A1
WO2012032785A1 PCT/JP2011/005065 JP2011005065W WO2012032785A1 WO 2012032785 A1 WO2012032785 A1 WO 2012032785A1 JP 2011005065 W JP2011005065 W JP 2011005065W WO 2012032785 A1 WO2012032785 A1 WO 2012032785A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence
nucleic acid
nucleotides
nos
Prior art date
Application number
PCT/JP2011/005065
Other languages
English (en)
French (fr)
Inventor
穣 田中
Original Assignee
独立行政法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業・食品産業技術総合研究機構 filed Critical 独立行政法人農業・食品産業技術総合研究機構
Publication of WO2012032785A1 publication Critical patent/WO2012032785A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a high-accuracy diagnostic technique for strawberry leaf edge regression.
  • Strawberry leaf ripening disease is a disease caused by infecting strawberry with the bacterial-like microorganism Candidatus Phromobacter fragariae (hereinafter abbreviated as “Ca. P. fragariae”), and strawberry infected with this disease.
  • Ca. P. fragariae the bacterial-like microorganism
  • fruit with a commercial value cannot be produced due to poor growth or a decrease in fruit quality.
  • Japan the outbreak was first reported in 2003, but it was only reported in France before that, and it is presumed that the disease had invaded from abroad. At present, the outbreak has been limited to some areas, but this disease is insect-transmitting and systemically infects strawberry and propagates from the parent strain to the offspring through runners (toothpick). May spread throughout the country.
  • the pathogen Candidatus Phromobacter fragariae of strawberry leaf-rimmed leaf disease cannot be cultured with absolute parasitic fungi, and the size of the fungus is very small, about 25 nm wide x 250 nm long, making observation with an optical microscope difficult and morphological observation Requires an electron microscope.
  • Non-patent Document 1 Detection by PCR using a primer set Fra5 / Fra4 with the 16S ribosomal RNA gene (16S rDNA) of Candidatus Phlomobacterium fragaliae as a target gene has been reported (Non-patent Document 1).
  • Ca. P. A rapid detection method using a LAMP (Loop-mediated isometric amplification) method targeting 16S rDNA of fragariae has been reported (Non-patent Document 2). Furthermore, Ca. P.
  • Fragriae guanosine-3 ', 5'-bis (diphosphate) 3'-pyrophosphohydrase (ppGPPase) gene as a target DNA was amplified by PCR using the primer set Pfr1 / Pfr4, and then the restriction enzyme A technique for detecting and identifying pathogens by RFLP analysis using RsaI and AluI has been reported (Non-patent Document 3).
  • the base sequence of 16S rDNA is highly conserved in prokaryotic microorganisms.
  • the detection limit is about 1/10 lower than the PCR method using Fra5 / Fra4. P. It is difficult to use as a method for detecting fragariae.
  • an object of the present invention is to evaluate (quarantine) the safety (non-morbidity) of a strawberry distributed as a parent strain for seedling production and a seedling for fruit production with regard to strawberry leaf edge degeneration.
  • the present inventors have obtained Ca.
  • P. Fragriae is partially purified, DNA is extracted from the partially purified sample, and the Ca. is purified by the SSH (suppression subtractive hybridization (Suppression Subtractive Hybridization)) method.
  • P. Fragriae-specific DNA region is cloned and cloned at a high frequency by the SSH method.
  • P. The base sequence of the fragariae-specific DNA region was analyzed and revealed to be part of the plasmid replication enzyme (Rep) gene.
  • the present inventors also confirmed that the Rep gene is located on the circular extrachromosomal DNA by the inverted PCR method and determined the entire nucleotide sequence of the Rep gene.
  • Ca. P. Fragriae extrachromosomal DNA has not been reported so far and has been found to be a novel sequence.
  • the present inventors have described Ca. P. A detection and quantification system using a LAMP method and a real-time PCR method using a primer set targeting Fragaliae Rep gene was constructed. As a result, the detection limit is improved 10 to 100 times or more compared to the conventional technology, non-specific amplification is not observed, pathogens can be quantified, and the time until detection is shortened (reaction time is shortened). There is no need for electrophoresis.).
  • the present inventors have found a plurality of circular extrachromosomal DNAs by the inverse PCR (Inverted PCR) method.
  • the size and overall base sequence varied, but the Rep gene exists stably and is judged to be suitable as a target gene for gene diagnosis.
  • the present inventors succeeded in detecting from a strawberry sample collected in an actual field and an insect sample from which a pathogen was artificially obtained using the detection method of the present invention.
  • the present invention provides the following. (1) (a) the sequence shown in any one of SEQ ID NOs: 1 to 5; (B) has at least 95% identity to the sequence of (a), hybridizes to its complementary strand under stringent conditions, or one or several substitutions, additions and / or deletions in the sequence Modified sequences including deletions; (C) a nucleic acid molecule comprising a fragment sequence comprising at least 10 nucleotides of (a) or (b); or (d) a complementary strand sequence of (a), (b) or (c).
  • SEQ ID NO: includes a nucleic acid molecule containing at least 10 nucleotides among the sequences shown in 1 to 5; and SEQ ID NO: includes a nucleic acid molecule containing at least 10 nucleotides among complementary sequences of the sequences shown in 1 to 5; Primer set.
  • SEQ ID NO: includes a nucleic acid molecule containing at least 15 nucleotides among the sequences shown in 1 to 5; and SEQ ID NO: includes a nucleic acid molecule containing at least 15 nucleotides among complementary sequences of the sequences shown in 1 to 5; Item 4.
  • SEQ ID NO: includes a nucleic acid molecule containing at least 17 nucleotides among the sequences shown in 1 to 5; and SEQ ID NO: includes a nucleic acid molecule containing at least 17 nucleotides among complementary sequences of the sequences shown in 1 to 5; Item 5.
  • a primer set according to item 3 or 4. (6) The primer set according to any one of items 3 to 5, wherein the primer set is used for detecting Candidatus Phlomobacter fragriae or strawberry leaf marginal chlorosis.
  • a probe comprising at least 10 nucleotides of a sequence represented by SEQ ID NO: 1 to 5 or a complementary sequence thereof and a label.
  • the probe according to item 7 comprising at least 15 nucleotides of the sequence number shown in 1 to 5 or a complementary sequence thereof and a label.
  • the probe according to item 7 or 8 wherein the sequence number comprises at least 17 nucleotides of the sequence shown in 1 to 5 or a complementary sequence thereof and a label.
  • a kit for detecting Candidatus Phlomobacter fragriae or strawberry leaf marginal leaf disease comprising: (A) SEQ ID NO: comprises a nucleic acid molecule comprising at least 10 nucleotides among the sequences shown in 1-5, and SEQ ID NO: comprises a nucleic acid molecule comprising at least 10 nucleotides among the complementary sequences of the sequences shown in 1-5. A primer set, or a probe comprising at least 10 nucleotides of a sequence shown in SEQ ID NOs: 1 to 5 or a complementary sequence thereof and a label; and (B) a kit comprising a reagent for nucleic acid amplification.
  • the primer set includes a nucleic acid molecule comprising at least 15 nucleotides among the sequences represented by SEQ ID NOs: 1 to 5 and a nucleic acid comprising at least 15 nucleotides among the complementary sequences of the sequences represented by SEQ ID NOs: 1 to 5.
  • the primer set includes a nucleic acid molecule comprising at least 17 nucleotides among the sequences represented by SEQ ID NOs: 1 to 5 and a nucleic acid comprising at least 17 nucleotides among the complementary sequences of the sequences represented by SEQ ID NOs: 1 to 5.
  • a method for detecting Candidatus Phlomobacter fragariae or strawberry leaf marginal leaf disease (A) Using a test sample as a template, a nucleic acid molecule containing at least 10 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and at least 10 nucleotides among complementary sequences of the sequences shown in SEQ ID NOs: 1 to 5 A step of performing a nucleic acid amplification reaction using a primer set as a primer containing the nucleic acid molecule, and (B) a step of determining whether or not there is a Candidas Phlomobacter fragriae in the test sample based on the amplified nucleic acid molecule Including the method.
  • the primer set includes a nucleic acid molecule comprising at least 15 nucleotides among the sequences represented by SEQ ID NOs: 1 to 5 and a nucleic acid comprising at least 15 nucleotides among the complementary sequences of the sequences represented by SEQ ID NOs: 1 to 5.
  • the probe comprises at least 15 nucleotides of a sequence represented by SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label.
  • the primer set includes a nucleic acid molecule comprising at least 17 nucleotides among the sequences represented by SEQ ID NOs: 1 to 5 and a nucleic acid comprising at least 17 nucleotides among the complementary sequences of the sequences represented by SEQ ID NOs: 1 to 5.
  • the probe comprises at least 17 nucleotides of a sequence represented by SEQ ID NOs: 1 to 5 or a complementary sequence thereof, and a label.
  • the determining step uses a sample extracted from a strawberry infected with Candidatus Phlomobacter fragriae as a positive control.
  • a device for detecting Candidatus Phlomobacter fragriae or strawberry leaf marginal leaf disease comprising: (A) Means for conducting a nucleic acid amplification reaction; (B) SEQ ID NO: includes a nucleic acid molecule comprising at least 10 nucleotides among the sequences shown in 1-5, and SEQ ID NO: includes a nucleic acid molecule comprising at least 10 nucleotides among complementary sequences of the sequences shown in 1-5. A primer set, or a probe comprising at least 10 nucleotides of the sequence shown in SEQ ID NOs: 1 to 5 or its complementary sequence and a label; and (C) a device comprising means for detecting the nucleic acid molecule or the label.
  • a nucleic acid primer set for LAMP amplification for detecting Candidatus Phlomobacter fragriae In order from the 3 ′ end of the target sequence on the first DNA strand of the double-stranded DNA having one of the sequences shown in SEQ ID NOs: 1 to 5 to the 3 ′ end of the DNA strand, A first arbitrary sequence F1c and a second arbitrary sequence F2c are selected, respectively, and a third arbitrary sequence R1 and a fourth arbitrary sequence are sequentially arranged from the 5 ′ end of the target sequence toward the 5 ′ end of the DNA strand.
  • the inner primer consisting of A) and B) below: A) a primer comprising a sequence F2 complementary to F2c and the same sequence as F1c in this order from 3 ′ to 5 ′, or a sequence F2 complementary to F2c, the following restriction enzyme recognition sequence and A primer comprising the same sequence as F1c in this order from 3 ′ side to 5 ′ side a) forming a fragment protruding from the 3 ′ end, and b) base sequence of single-stranded region of each fragment after cleavage B) a primer comprising a primer containing the same sequence as R2, the recognition sequence of the restriction enzyme, and a sequence R1c complementary to R1 in this order from 3 ′ to 5 ′ set.
  • the present invention can be used to evaluate (quarantine) the safety (non-morbidity) related to this disease of a parent strain for seedling production or a strawberry distributed as a seedling for fruit production. In addition, in strawberry seedling production areas, etc., it can be used for early detection of the occurrence of this disease and monitoring of the transmission route.
  • FIG. 1 shows a schematic diagram of extrachromosomal DNA found in Candidatus Phromobacter fragariae (C-12 strain).
  • a schematic diagram of pPFC12-L, pPFC12-S1, and pPFC12-S2 is shown from the left. Both include Rep (ORF1).
  • FIG. 2 shows the limit of detection by real-time PCR targeting the Rep gene. 10 ⁇ 1 to 10 ⁇ 6 , which is a dilution ratio of the concentration, Ca. P. 10 to 10 6- fold dilution of a crude nucleic acid sample extracted from a strawberry (C-12 strain) infected with fragariae (detection limit in conventional PCR method is up to 10 3 fold dilution).
  • FIG. 3 shows a comparison of detection limits by the LAMP method targeting the Rep gene (1).
  • B12 + L, Ca. P. A primer set (loop primer added) designed from the base sequence of Fraggariae Rep gene was used.
  • CPF2 + L, Ca. P. A primer set (loop primer added) targeting Fragriae 16S rDNA was used. 10 ⁇ 1 to 10 ⁇ 4 indicating the concentration, Ca. P.
  • FIG. 4 shows a comparison (2) of detection limits by the LAMP method targeting the Rep gene.
  • B12 + L Ca. P.
  • a primer set (loop primer added) designed from the base sequence of Fraggariae Rep gene was used.
  • FIG. 5 is a diagram showing the detection limit by real-time PCR targeting ORF2. Real-time PCR was performed based on the procedure described in Example 1 using ExORF2-L596 (SEQ ID NO: 10) / ExORF2-R738 (SEQ ID NO: 11) as a primer set.
  • the vertical axis represents the fluorescence intensity (primary curve), and the horizontal axis represents the number of PCR cycles. 10 ⁇ 3 to 10 ⁇ 6.5 is Ca. P.
  • the dilution factor of the crude nucleic acid sample extracted from strawberry infected with fragariae (C-12 strain) is shown (10 3 to 10 6.5 times dilution). Healthy shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries.
  • NTC represents a control without addition of template DNA.
  • FIG. 6 is a diagram showing the detection limit by real-time PCR targeting ORF3.
  • ExORF3-L847 SEQ ID NO: 12
  • ExORF3-R943 SEQ ID NO: 13
  • the vertical axis represents the fluorescence intensity (primary curve), and the horizontal axis represents the number of PCR cycles. 10 ⁇ 3 to 10 ⁇ 6.5 is Ca. P.
  • the dilution factor of the crude nucleic acid sample extracted from strawberry infected with fragariae (C-12 strain) is shown (10 3 to 10 6.5 times dilution). Healthy shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries.
  • NTC represents a control without addition of template DNA.
  • FIG. 7 is a diagram showing the detection limit by real-time PCR targeting ORF3.
  • Real-time PCR was performed based on the procedure described in Example 1 using ExORF4-L572 (SEQ ID NO: 14) / ExORF4-R691 (SEQ ID NO: 15) as a primer set.
  • the vertical axis represents the fluorescence intensity (primary curve), and the horizontal axis represents the number of PCR cycles.
  • 10 ⁇ 3 to 10 ⁇ 6.5 is Ca. P.
  • the dilution factor of the crude nucleic acid sample extracted from strawberry infected with fragariae (C-12 strain) is shown (10 3 to 10 6.5 times dilution). Healthy shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries.
  • NTC represents a control without addition of template DNA.
  • FIG. 8 is a diagram showing detection limits by real-time PCR targeting a DNA region between the Rep gene and ORF-2 on pPFC12-L.
  • FIG. 5 shows the results of real-time PCR based on the procedure described in Example 1 using ExSSB-L096 (SEQ ID NO: 22) / ExSSB-R265 (SEQ ID NO: 23) / as a primer set. The numerical value indicates the dilution factor. Healthy shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries.
  • NTC represents a control without addition of template DNA.
  • FIG. 9 is a diagram showing the detection limit by real-time PCR targeting the DNA region between ORF4 and Rep gene.
  • FIG. 9 is a diagram showing the detection limit by real-time PCR targeting the DNA region between ORF4 and Rep gene.
  • Example 5 shows the results of real-time PCR based on the procedure described in Example 1 using ExExd-L236 (SEQ ID NO: 24) / ExExd-R345 (SEQ ID NO: 25) as a primer set.
  • the numerical value indicates the dilution factor. Healthy shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries. NTC represents a control without addition of template DNA.
  • FIG. 10 shows the results of Example 7. Ca. P. This is a result of an attempt to detect fragariae.
  • the numerical value indicates the dilution factor. Disased indicates a diseased strawberry, and C-12 ⁇ 10-3 indicates a 10 3 dilution. Healthy shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries. NTC represents a control without addition of template DNA.
  • Candidatus Phlomobacter fragariae refers to a bacterial-like microorganism that is a causative agent of strawberry leaf edge degeneration.
  • extrachromosomal gene of Candidas Phromobacter fragariae refers to an extrachromosomal gene first found in the present invention in Candidatus Phromobacter fragariae, and is represented by SEQ ID NO: 5 and the like.
  • the “Rep gene” is a gene related to a replication-related protein, and in Candidas Phromobacter fragariae, the nucleic acid sequence shown in SEQ ID NO: 1 (or the portion corresponding to SEQ ID NO: 1 in SEQ ID NO: 5) It is defined by the protein shown in the modified sequence or the amino acid sequence encoded by it or the amino acid sequence encoded by SEQ ID NO: 1 (SEQ ID NO: 26).
  • any “Rep gene” can be used as long as it is derived from Candidatus Phlomobacter fragariae.
  • the protein is (A) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 26 or a fragment thereof; (B) In the amino acid sequence shown in SEQ ID NO: 26, one or more amino acids have at least one mutation selected from the group consisting of substitution, addition and deletion, and have biological activity (for example, Rep gene A polypeptide having a function); (C) a polypeptide encoded by a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 1 (or a portion corresponding to SEQ ID NO: 1 in SEQ ID NO: 5); (D) a polypeptide which is a species homologue of the amino acid sequence shown in SEQ ID NO: 26; (E) a polypeptide having an amino acid sequence with at least 70% identity to any one of the polypeptides of (a)-(d) and having biological activity; or (f) (a ) Having an amino acid sequence encoded by a polynucleo
  • the nucleic acid is (A) a polynucleotide having the base sequence shown in SEQ ID NO: 1 (or a portion corresponding to SEQ ID NO: 1 in SEQ ID NO: 5) or a fragment sequence thereof; (B) a polynucleotide encoding a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 26 or a fragment thereof; (C) a variant polypeptide having at least one mutation selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 26, wherein the biological activity is A polynucleotide encoding a variant polypeptide having; (D) a polynucleotide which is a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 1 (or a portion corresponding to SEQ ID NO: 1 in SEQ ID NO: 5); (E) a polynucleotide
  • ORF2 gene”, “ORF3 gene”, and “ORF4 gene” are those found as extrachromosomal genes in Candidatus Phromobacter fragariae, respectively, and the nucleic acids shown in SEQ ID NO: 2, 3 or 4 It is defined by the protein comprising the sequence or a modified sequence thereof or the amino acid sequence encoded by it, SEQ ID NO: 27, 28 or 29.
  • any of “ORF2 gene”, “ORF3 gene” and “ORF4 gene” can be used as long as they are derived from Candidatus Phromobacter fragariae.
  • the biological functions of the “ORF2 gene”, “ORF3 gene” and “ORF4 gene” can be determined by those skilled in the art using techniques known in the art.
  • the protein is (A) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 27 or a fragment thereof; (B) a polypeptide having at least one mutation selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 27 and having biological activity; (C) a polypeptide encoded by a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 2 (or a portion corresponding to SEQ ID NO: 2 of SEQ ID NO: 5); (D) a polypeptide which is a species homologue of the amino acid sequence shown in SEQ ID NO: 27; (E) a polypeptide having an amino acid sequence with at least 70% identity to any one of the polypeptides of (a)-(d) and having biological activity; or (f) (a ) Having an amino acid sequence encoded by a polynucleotide that hybridizes under stringent hybridization conditions with
  • the nucleic acid is (A) a polynucleotide having the base sequence shown in SEQ ID NO: 2 (or the portion corresponding to SEQ ID NO: 2 in SEQ ID NO: 5) or a fragment sequence thereof; (B) a polynucleotide encoding a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 27 or a fragment thereof; (C) a variant polypeptide having at least one mutation in which at least one amino acid is selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 27, and having biological activity A polynucleotide encoding a variant polypeptide having; (D) a polynucleotide which is a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 2 (or a portion corresponding to SEQ ID NO: 2 in SEQ ID NO: 5); (E) a
  • the protein is (A) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 28 or a fragment thereof; (B) a polypeptide having at least one mutation selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 28, and having biological activity; (C) a polypeptide encoded by a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 3 (or a portion corresponding to SEQ ID NO: 3 in SEQ ID NO: 5); (D) a polypeptide which is a species homologue of the amino acid sequence shown in SEQ ID NO: 28; (E) a polypeptide having an amino acid sequence with at least 70% identity to any one of the polypeptides of (a)-(d) and having biological activity; or (f) (a ) Having an amino acid sequence encoded by a polynucleotide that hybridizes under stringent hybridization conditions with
  • the nucleic acid is (A) a polynucleotide having the base sequence shown in SEQ ID NO: 3 (or a portion corresponding to SEQ ID NO: 3 in SEQ ID NO: 5) or a fragment sequence thereof; (B) a polynucleotide encoding a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 28 or a fragment thereof; (C) a variant polypeptide having at least one mutation selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 28, wherein the biological activity is A polynucleotide encoding a variant polypeptide having; (D) a polynucleotide which is a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 3 (or a portion corresponding to SEQ ID NO: 3 in SEQ ID NO: 5); (E) a polynucleotide
  • the protein is (A) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 29 or a fragment thereof; (B) a polypeptide having at least one mutation selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 29, and having biological activity; (C) a polypeptide encoded by a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 4 (or a portion corresponding to SEQ ID NO: 4 in SEQ ID NO: 5); (D) a polypeptide which is a species homologue of the amino acid sequence shown in SEQ ID NO: 29; (E) a polypeptide having an amino acid sequence with at least 70% identity to any one of the polypeptides of (a)-(d) and having biological activity; or (f) (a ) Having an amino acid sequence encoded by a polynucleotide that hybridizes under stringent hybridization conditions with a
  • the nucleic acid is (A) a polynucleotide having the base sequence shown in SEQ ID NO: 4 (or a portion corresponding to SEQ ID NO: 4 in SEQ ID NO: 5) or a fragment sequence thereof; (B) a polynucleotide encoding a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 29 or a fragment thereof; (C) a variant polypeptide having at least one mutation in which one or more amino acids are selected from the group consisting of substitution, addition and deletion in the amino acid sequence shown in SEQ ID NO: 29, and having biological activity A polynucleotide encoding a variant polypeptide having; (D) a polynucleotide which is a splice variant or allelic variant of the base sequence shown in SEQ ID NO: 4 (or a portion corresponding to SEQ ID NO: 4 in SEQ ID NO: 5); (E) a polynucleotide having the base sequence shown in SEQ ID NO: 4 (
  • protein As used herein, the terms “protein”, “polypeptide”, “oligopeptide” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length.
  • nucleic acid As used herein, the terms “polynucleotide”, “oligonucleotide” and “nucleic acid” are used interchangeably herein and refer to nucleotide polymers of any length. Unless otherwise indicated, a particular nucleic acid sequence may also be conservatively modified (eg, degenerate codon substitutes) and complementary sequences, as well as those explicitly indicated. Is contemplated. Specifically, a degenerate codon substitute creates a sequence in which the third position of one or more selected (or all) codons is replaced with a mixed base and / or deoxyinosine residue. (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8: 91-). 98 (1994)).
  • gene refers to a factor that defines a genetic trait. Usually arranged in a certain order on the chromosome. A gene that defines the primary structure of a protein is called a structural gene, and a region that affects its expression is called a regulatory element. As used herein, “gene” may refer to “polynucleotide”, “oligonucleotide” and “nucleic acid” and / or “protein” “polypeptide”, “oligopeptide” and “peptide”.
  • the “open reading frame” or “ORF” of a gene is one of three frameworks when the base sequence of the gene is divided into 3 bases, having a start codon, and halfway A reading frame that has a certain length without a stop codon and may actually encode a protein.
  • analogs for example, peptide nucleic acids and the like
  • nucleotides as long as they can be used for detection purposes and the like.
  • corresponding genes nucleic acids, nucleic acid sequences, extranuclear genes, etc. have, or are expected to have, in a certain species, the same action as a given gene in a species to be used as a reference for comparison.
  • the genes having the same evolutionary origin are used.
  • the corresponding gene of a gene can be an ortholog of that gene. Therefore, genes corresponding to genes such as the sequence of Candidatus Phromobacter fragariae can also be found in other strains of the same pathogen.
  • Such corresponding genes can be identified using techniques well known in the art.
  • a corresponding gene in an animal can be obtained by searching the sequence database of the organism using the sequence of the gene that serves as a reference for the corresponding gene (eg, Rep gene) as a query sequence, or in a wet experiment. Can be found by screening the library.
  • corresponding amino acids and nucleic acids have, or have the same action as a predetermined amino acid and nucleic acid in a reference polypeptide and nucleic acid molecule in a certain polypeptide and nucleic acid molecule, respectively.
  • Is a predicted amino acid and nucleic acid for example, in ubiquitin, an amino acid that exists in the same position as a sequence responsible for ligation with lysine (for example, glycine at the C-terminal) and contributes similarly to catalytic activity, and A nucleic acid that encodes.
  • a nucleic acid sequence it may be a portion that exhibits the same function as the nucleic acid sequence or a specific portion encoded by the nucleic acid sequence.
  • an “isolated” substance refers to other substances in the environment in which the substance exists in nature (eg, within the cells of an organism).
  • a biological factor for example, in the case of a nucleic acid, a nucleic acid comprising a factor other than the nucleic acid and a nucleic acid sequence other than the target nucleic acid; in the case of a protein, other than the factor other than the protein and the target protein A protein substantially separated or purified from a protein containing an amino acid sequence.
  • isolated nucleic acids and proteins include nucleic acids and proteins purified by standard purification methods. Thus, isolated nucleic acids and proteins include chemically synthesized nucleic acids and proteins.
  • a “purified” substance for example, a biological factor such as a nucleic acid or a protein refers to a substance in which at least a part of factors naturally associated with the substance is removed. Therefore, the purity of the substance in the purified substance is usually higher (ie, concentrated) than the substance normally exists.
  • purified and isolated are preferably at least 75% by weight, more preferably at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight. % Of the same type of material is present.
  • homology of a gene refers to the degree of identity of two or more gene sequences to each other. Therefore, the higher the homology between two genes, the higher the sequence identity or similarity. Whether two genes have homology can be examined by direct sequence comparison or, in the case of nucleic acids, hybridization methods under stringent conditions.
  • the DNA sequence between the gene sequences is typically at least 50% identical, preferably at least 70% identical, more preferably at least 80%, 90% , 95%, 96%, 97%, 98% or 99% are identical, the genes are homologous.
  • stringent hybridization conditions refers to well-known conditions commonly used in the art.
  • Such a polynucleotide can be obtained by using colony hybridization method, plaque hybridization method, Southern blot hybridization method or the like using a polynucleotide selected from among the polynucleotides of the present invention as a probe.
  • polynucleotides that hybridize under stringent conditions are hybridized at 65 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which colony or plaque-derived DNA is immobilized.
  • composition of 1-fold concentration of SSC solution is 150 mM sodium chloride, 15 mM sodium citrate
  • Hybridization was performed in Molecular Cloning 2nd ed. , Current Protocols in Molecular Biology, Supplement 1-38, DNA Cloning 1: Core Technologies, A Practical Approach, Second Edition, Oxford Universe, etc.
  • sequence containing only the A sequence or only the T sequence is preferably excluded from the sequences that hybridize under stringent conditions.
  • hybridizable polynucleotide refers to a polynucleotide that can hybridize to another polynucleotide under the above hybridization conditions.
  • the hybridizable polynucleotide is a polynucleotide having at least 60% homology with the base sequence of DNA encoding a polypeptide having the amino acid sequence specifically shown in the present invention, preferably 80% The polynucleotide which has the above homology, More preferably, the polynucleotide which has 95% or more of homology can be mentioned.
  • sequence identity and homology evaluation are calculated using default parameters using BLAST, which is a sequence analysis tool.
  • the identity search can be performed, for example, using NCBI BLAST 2.2.23 (issued on March 22, 2010).
  • the identity value usually refers to a value when the BLAST is used and aligned under default conditions. However, if a higher value is obtained by changing the parameter, the highest value is the identity value. When identity is evaluated in a plurality of areas, the highest value among them is set as the identity value.
  • search refers to finding another nucleobase sequence having a specific function and / or property using a nucleobase sequence electronically or biologically or by other methods.
  • Electronic search includes BLAST (Altschul et al., J. Mol. Biol. 215: 403-410 (1990)), FASTA (Pearson & Lipman, Proc. Natl. Acad. Sci., USA 85: 2444-). 2448 (1988)), Smith and Waterman method (Smith and Waterman, J. Mol. Biol. 147: 195-197 (1981)), and Needleman and Wunsch method (Needleman and Wunsch, J. Mol. Biol. 44:44). -453 (1970)), but is not limited thereto.
  • Bio searches include stringent hybridization, macroarrays with genomic DNA affixed to nylon membranes, microarrays affixed to glass plates (microarray assays), PCR, and in situ hybridization. It is not limited to. In the present specification, it is intended that the promoter used in the present invention should include a corresponding sequence identified by such an electronic search or biological search.
  • Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides may also be referred to by the generally accepted single letter code.
  • fragment refers to a polypeptide or polynucleotide having a sequence length of 1 to n ⁇ 1 with respect to a full-length polypeptide or polynucleotide (length is n).
  • length is n
  • the length of the fragment can be appropriately changed according to the purpose.
  • the lower limit of the length is 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 and more amino acids, and lengths expressed in integers not specifically listed here (eg, 11 etc.) are also suitable as lower limits obtain.
  • nucleotides 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100, 200, 300, 400, 500, 600, 600, 700, 800 , 900, 1000 and more nucleotides, and lengths expressed in integers not specifically listed here (eg, 11 etc.) may also be appropriate as lower limits.
  • probe refers to a substance to be searched for in biological experiments such as screening in vitro and / or in vivo.
  • a nucleic acid molecule containing a specific base sequence or a specific Examples include, but are not limited to, peptides containing amino acid sequences.
  • examples of the nucleic acid molecule that is usually used as a probe include those having a nucleic acid sequence of at least 8 continuous nucleotides that is homologous or complementary to the nucleic acid sequence of the target gene.
  • Such a nucleic acid sequence is preferably at least 12 contiguous nucleotides long, at least 9 contiguous nucleotides, more preferably at least 10 contiguous nucleotides, and even more preferably at least 11 contiguous nucleotides.
  • Nucleic acid sequences used as probes are nucleic acid sequences that are at least 70% identical, more preferably at least 80% identical, more preferably at least 90% identical, at least 95% identical to the sequences described above Is included.
  • the “primer” refers to a substance necessary for the start of the reaction of the polymer compound to be synthesized in the polymer synthase reaction.
  • a nucleic acid molecule for example, DNA or RNA
  • complementary to a partial sequence of a polymer compound to be synthesized can be used.
  • Nucleic acid sequences used as primers are nucleic acid sequences that are at least 70% identical, more preferably at least 80% identical, more preferably at least 90% identical, at least 95% identical to the sequences described above Is included.
  • a sequence suitable as a primer may vary depending on the nature of the sequence intended for synthesis (amplification), but those skilled in the art can appropriately design a primer according to the intended sequence. Such primer design is well known in the art, and may be performed manually or using a computer program (eg, LASERGENE, PrimerSelect, DNAStar).
  • PCR reagent The normal PCR reaction is described below.
  • the reagent used for such a PCR reaction is sometimes referred to as “PCR reagent” in the present specification.
  • polymerase refers to any enzyme having the ability to synthesize nucleic acids (for example, by polymerization) and is also referred to as a nucleic acid synthase. This is a general term for enzymes that catalyze the reaction of condensing nucleotides into polynucleotides. Examples of such a polymerase include, but are not limited to, a DNA polymerase (eg, DNA-dependent DNA polymerase, RNA-dependent DNA polymerase), RNA polymerase, and the like.
  • polymerase examples include DNA polymerase I derived from Escherichia coli, DNA polymerase I Klenow fragment, Taq polymerase, KLA-Taq polymerase, KOD polymerase, Vent polymerase, AMV reverse transcriptase, Pfu polymerase, T4 DNA polymerase, and the like. But are not limited to these.
  • extension reaction refers to any reaction in which a nucleic acid extends at least one nucleotide.
  • extension reaction using a polymerase is performed, since a nucleotide is usually introduced based on a template, a specific sequence is extended in a nucleic acid to be extended such as a nucleic acid to be labeled.
  • the extension reaction of PCR is usually performed by (i) hybridization (annealing) reaction between the target nucleic acid and its complementary strand and the nucleic acid primer and nucleic acid probe, and (ii) primer strand extension reaction and probe degradation reaction by nucleic acid synthase. These reactions (i) and (ii) can be carried out in an aqueous solution containing an appropriate buffer such as a Tris-HCl buffer.
  • This hybridization reaction can be typically performed at 55 to 75 ° C., but is not limited thereto.
  • the enzyme reaction can be typically performed at 37 ° C., but is not limited thereto.
  • the denaturation of the primer extension product can be carried out, for example, by subjecting the solution containing the primer chain extension product obtained by the extension reaction to a heat treatment at 94 to 95 ° C. for 0.5 to 1 minute, for example.
  • Amplification of the target nucleic acid can be carried out, for example, by repeating the above-described extension reaction and denaturation several times under the same conditions as described above until the target nucleic acid (labeled nucleic acid) reaches a desired amount (for example, a detectable amount). Good. That is, the above extension reaction and denaturation are repeated a plurality of times under similar conditions. If the above steps are performed n times, the target nucleic acid amount is theoretically amplified to 2 n-1 times the original.
  • Such an extension reaction can be carried out simply and efficiently by using a commercially available apparatus for PCR (polymerase chain reaction) (for example, sold by Applied Biosystems).
  • PCR polymerase chain reaction
  • Extraction of the amplified nucleic acid from the mixture can be performed using any method in the art. Examples of such extraction include, but are not limited to, electrophoresis, chromatography, denaturation, alcohol precipitation, affinity purification, and antibodies.
  • the “label” refers to a presence (for example, a substance, energy, electromagnetic wave, etc.) for distinguishing a target molecule or substance from others.
  • labeling methods include, but are not limited to, RI (radioisotope) method, fluorescence method, biotin method, chemiluminescence method and the like.
  • the labeling is performed with fluorescent substances having different fluorescence emission maximum wavelengths. The difference in the maximum fluorescence emission wavelength is preferably 10 nm or more.
  • the fluorescent substance any substance can be used as long as it can bind to the base moiety of the nucleic acid.
  • cyanine dyes eg, CyDye TM series Cy3, Cy5 etc.
  • rhodamine 6G reagent N-acetoxy-N-2 -Acetylaminofluorene (AAF), AAIF (iodine derivative of AAF) and the like
  • the fluorescent substance having a difference in fluorescence emission maximum wavelength of 10 nm or more include a combination of Cy5 and rhodamine 6G reagent, a combination of Cy3 and fluorescein, a combination of rhodamine 6G reagent and fluorescein, and the like.
  • the target object can be modified so that it can be detected by the detection means used. Such modifications are known in the art, and those skilled in the art can appropriately carry out such methods depending on the label and the target object.
  • the label is radioactively labeled.
  • variants refers to a substance such as the original polypeptide or polynucleotide. Or it is a part of the array that has been changed. Such variants include substitutional variants, addition variants, deletion variants, truncated variants, allelic variants, and the like. In the present specification, any “variant” can be used as long as the object of the present invention can be achieved. For example, such a purpose may be detection of Candidatus Phlomobacter fragariae or strawberry leaf edge degeneration. An allele refers to genetic variants that belong to the same locus and are distinguished from each other.
  • an “allelic variant” refers to a variant having an allelic relationship with a certain gene.
  • “Species homologue or homolog” means homology (preferably at least 60% homology, more preferably at least 80%, at a certain amino acid level or nucleotide level within a certain species. 85% or higher, 90% or higher, 95% or higher homology). The method for obtaining such species homologues will be apparent from the description herein.
  • “Ortholog” is also called an orthologous gene, which is a gene derived from speciation from a common ancestor with two genes.
  • the human and mouse alpha hemoglobin genes are orthologs, but the human alpha and beta hemoglobin genes are paralogs (genes generated by gene duplication). . Since orthologs are useful for the estimation of molecular phylogenetic trees, the orthologs of the present invention may also be useful in the present invention.
  • the term “functional variant” refers to a variant that retains a biological activity (eg, detection of Candidatus Phromobacter fragariae or strawberry leaf marginal leaf disease, etc.) carried by a reference sequence.
  • Such a nucleic acid can be obtained by a well-known PCR method, and can also be chemically synthesized. These methods may be combined with, for example, a site-specific displacement induction method or a hybridization method.
  • substitution, addition or deletion of a polypeptide or polynucleotide is a substitution of an amino acid or a substitute thereof, or a nucleotide or a substitute thereof, respectively, with respect to the original polypeptide or polynucleotide. , Adding or removing. Such substitution, addition, or deletion techniques are well known in the art, and examples of such techniques include site-directed mutagenesis techniques. The number of substitutions, additions or deletions may be any number as long as it is one or more, and the number is increased as long as the intended function is retained in the variant having the substitution, addition or deletion. be able to.
  • such a number can be one or several, and preferably can be within 20%, within 10%, or less than 100, less than 50, less than 25, etc. of the total length.
  • any of such variants can be used as long as it can be used for detection of Candidatus Phlomobacter fragariae or strawberry leaf marginal leaf disease.
  • the present invention can use real-time PCR.
  • the real-time PCR method used in this specification is to measure DNA amplification as a template based on the amplification rate by measuring PCR amplification over time (ie, in real time). Besides, it is applied to various uses such as SNPs typing, genetically modified food inspection, detection of viruses and pathogens, analysis of transgene copy number.
  • Real-time PCR is mainly performed for quantitative analysis such as gene expression analysis, but can be used only for qualitative analysis only for positive / negative determination. This is because real-time PCR does not require confirmation of the amplification product by electrophoresis after the reaction, and thus has the advantages that the result can be obtained easily and quickly and the risk of contamination is low. In recent years, genetic tests that have been performed by conventional PCR methods are frequently performed by real-time PCR.
  • PCR DNA is doubled, doubled,... Exponentially amplified every cycle and eventually reaches a plateau.
  • An amplification curve is obtained by real-time monitoring of the amplification state. When the amount of PCR amplification product reaches an amount capable of fluorescence detection, the amplification curve starts to rise, and after a signal rises exponentially, it reaches a plateau.
  • amplification curves are obtained that are arranged at equal intervals in order of increasing amount of initial DNA.
  • a threshold value is set at a considerable portion
  • a Ct value (the number of cycles when the PCR amplification product reaches a certain amount), which is a point where the threshold value and the amplification curve intersect, is calculated.
  • the Ct value is calculated in the same manner as the standard sample and applied to the calibration curve, whereby the initial template amount can be obtained.
  • PCR amplification products can be detected by fluorescence.
  • fluorescence detection methods There are two types of fluorescence detection methods: a method using an intercalator and a method using a fluorescently labeled probe, and any of them can be used in the present invention.
  • SYBR Green I is used as an intercalator method that can be used in the present invention, but is not limited thereto.
  • the intercalator binds to double-stranded DNA synthesized by PCR, and emits fluorescence when irradiated with excitation light. By measuring the fluorescence intensity, the amount of amplification product generated can be monitored.
  • Another method is to use a fluorescent label.
  • fluorescently labeled probes There are many types of fluorescently labeled probes that can be used in the method of the present invention and are not limited to the following. For example, TaqMan probes (a type of linear probe), molecular beacons (a type of structured probe), cycling probes (a linear probe). A kind).
  • the intercalator method detects all double-stranded DNA, it is not necessary to prepare a probe for each target gene.
  • the advantage is that the experimental cost is low and the reaction system is easy to construct, but the detection specificity is not so high.
  • the method using a fluorescently labeled probe requires special software for probe design and is expensive, but has the advantage of high detection specificity.
  • the fluorescently labeled probe exhibits its power.
  • the fluorescence detection method is selected according to the experimental use. Accordingly, it is generally understood that a fluorescently labeled probe is preferably used for experiments requiring high specificity, and a simple intercalator method is used in other cases, but the present invention is not necessarily limited thereto.
  • the present invention can be implemented in a real-time PCR apparatus.
  • a real-time PCR apparatus in order to perform real-time PCR, an apparatus dedicated to real-time PCR in which a thermal cycler and a spectrofluorometer are integrated can be used. While amplifying DNA with a thermal cycler, the amplification product can be monitored with a spectrofluorometer.
  • Various types of real-time PCR devices are on the market, each with its own characteristics, such as those designed to perform PCR reactions at high speed and those capable of reacting in 96-well plate units. Depending on the analysis scale and the number of experimenters, you can select a model that is suitable for large-scale analysis or a model that is suitable for medium to small-scale analysis.
  • the “LAMP (Loop-Mediated Amplification) method” is a method for amplifying a nucleic acid, wherein an inner primer pair or an outer primer pair and a loop primer pair are added to two, four or six kinds. DNA or RNA is rapidly and inexpensively amplified under isothermal conditions (around 65 ° C.) using the specific primer of (2), a strand displacement polymerase and a nucleotide as a substrate.
  • LAMP method see Notomi, T et al. : Nucleic Acids Res. 28 (12): e63 (2000), International Publication No. WO 00/28082, or Eiken Chemical Co., Ltd.
  • sequences complementary to each other are generated at the upper end of the same strand of the amplified product, and these are annealed to form a hairpin-like loop, and an elongation reaction by the polymerase starting from the loop occurs.
  • a strand displacement type extension reaction occurs from the primer annealed in the loop, and the extension product is dissociated into single strands. Since the dissociated single strand also has a complementary sequence at the end, this reaction occurs repeatedly.
  • the inner primer is an essential primer for the LAMP method.
  • the inner primer is complementary to the X2c.
  • X2 on the inner primer is a part that specifically anneals to the template to give a starting point for complementary strand synthesis
  • X1c is a complementary sequence for the amplification (extension) product to form a loop. give. This loop is the starting point for new complementary strand synthesis.
  • the outer primer has a complementary sequence to an arbitrary sequence X3c on the outer side (3 ′ side of the template) from the inner primer, and can be annealed to the two types (one for each complementary to the double strand). ).
  • the LAMP primer set can be expressed as follows.
  • the LAMP primer set includes the first arbitrary sequence F1c and the second sequence in order from the 3 ′ end of the target sequence on the first DNA strand of the double-stranded DNA toward the 3 ′ end of the DNA strand.
  • the third arbitrary sequence R1 and the fourth arbitrary sequence R2 are respectively selected in order from the 5 ′ end of the target sequence toward the 5 ′ end of the DNA strand.
  • the length of X1 (X1c), X2 (X2c), and X3 (X3c) is preferably 5 to 100 bases, and more preferably 10 to 50 bases.
  • the above inner primer and outer primer are necessary for each of the double strands (F and R), and two types each of inner primer (F1c + F2, R1c + R2) and outer primer (F3, R3) are designed.
  • each arbitrary sequence is selected so that the amplification product obtained by the LAMP method preferentially causes intramolecular annealing rather than intermolecular annealing to form a terminal hairpin structure.
  • the numerical values indicate the number of bases not including the F1c sequence and the F2c sequence itself, and the R1 sequence and the R2 sequence itself, respectively.
  • the loop primer refers to a base sequence complementary to the sequence in the loop at the 3 ′ end when complementary sequences generated on the same strand of the amplification product by the LAMP method anneal to each other to form a loop.
  • Two types of primers one for each complementary to the double strand).
  • the outer primer and loop primer are not essential for the LAMP method, but if they are present, the amplification (extension) reaction proceeds more efficiently.
  • the template nucleic acid for amplification used in the LAMP method may be DNA or RNA, and can be prepared from a biological sample such as a tissue or a cell by a known method or a chemical synthesis method.
  • the template polynucleotide is prepared so that sequences of appropriate length (referred to as double-sided sequences) exist on both sides of the region to be amplified (referred to as target region).
  • the double-sided sequence means the sequence of the region from the 5 ′ end of the target region to the 5 ′ end of the polynucleotide chain, and the sequence of the region from the 3 ′ end of the target region to the 3 ′ end of the polynucleotide chain.
  • the length of the both-side sequence is 10 to 1000 bases, preferably 30 to 500 bases in both the 5 ′ side and 3 ′ side of the target region.
  • target sequence or “target region” means a base sequence (or region) to be synthesized as a single-stranded nucleic acid.
  • the strand containing the target sequence is usually referred to as the first strand, and the strand complementary thereto is usually referred to as the second strand.
  • a series of reactions include a buffer that gives a favorable pH to the enzyme reaction, salts necessary for maintaining the catalytic activity of the enzyme and annealing, an enzyme protecting agent, and a melting temperature (Tm) adjusting agent if necessary. It is preferable to carry out in the presence of
  • a buffering agent a neutral to weakly alkaline buffering agent such as Tris-HCl is used. The pH may be adjusted according to the DNA polymerase used.
  • the salts for example, KCl, NaCl, (NH 4 ) 2 SO 4 or the like is appropriately added for maintaining the activity of the enzyme and adjusting the melting temperature (Tm) of the DNA.
  • an enzyme protective agent bovine serum albumin or saccharide is used.
  • Tm melting temperature
  • betaine betaine, proline, dimethyl sulfoxide, or formamide can be generally used.
  • the following components (i), (ii) and (iii) are added to the template nucleic acid, and the inner primer forms a stable base pair bond with a complementary sequence on the template nucleic acid.
  • the strand displacement type polymerase can proceed by incubating at a temperature at which the enzyme activity can be maintained.
  • the incubation temperature is 50 to 75 ° C., preferably 55 to 70 ° C.
  • the incubation time is 1 minute to 10 hours, preferably 5 minutes to 4 hours.
  • Two kinds of inner primers, or two kinds of outer primers, or two kinds of loop primers ii) a strand displacement type polymerase (iii) substrate nucleotide.
  • the present invention also provides an apparatus for nucleic acid quantification.
  • the device includes means for introducing a nucleic acid detection reagent, substrate nucleotides, primers, and a DNA polymerase into a container comprising a single space in which the degree of freedom of movement of the nucleic acid molecule is substantially limited to two dimensions or less; Means for heating the container to a constant temperature to perform a nucleic acid amplification reaction; means for measuring an amplification product obtained by the amplification reaction; and analyzing the obtained measurement result to analyze the target nucleic acid Means for quantifying the initial amount.
  • the means for introducing the target nucleic acid, the nucleic acid detection reagent, the primer, the polymerase, and the substrate nucleotide into the container is a constant reaction solution containing the target nucleic acid, the primer, the polymerase, and the substrate nucleotide in order or all of them. It is a means to automatically introduce the quantity.
  • the amplification reaction is carried out by sandwiching the container from above or below, preferably from both the upper and lower sides by a heat block provided in the apparatus.
  • Means for heating to a suitable constant temperature can be mentioned. This means may include means for sealing the sample at the inlet.
  • the apparatus of the present invention may further include means for computer processing the obtained measurement data.
  • the present invention provides (a) the sequence shown in any one of SEQ ID NOs: 1 to 5; (B) has at least 95% identity to the sequence of (a), hybridizes to its complementary strand under stringent conditions, or one or several substitutions, additions and / or deletions in the sequence Modified sequences including deletions; (C) a nucleic acid molecule comprising a fragment sequence comprising at least 10 nucleotides of (a) or (b); or (d) a complementary sequence of (a), (b) or (c).
  • the nucleic acid molecule of the present invention was found for the first time in the present invention to have a sequence specific to Candidatus Phromobacter fragariae. Accordingly, the nucleic acid molecules of the present invention can be used directly or indirectly to distinguish Candidatus Phlomobacter fragariae from other Candidatus microorganisms. Since Candidatus Phlomobacter fragariae is a pathogen of strawberry leaf marginal chlorosis, it is possible to detect strawberry leaf limbic disease by using the nucleic acid molecule of the present invention.
  • examples of the sequence portion that is particularly specific or highly discriminating to Candidas Phlomobacter fragriae include, but are not limited to, SEQ ID NOs: 1 to 5.
  • SEQ ID NO: 1 to 5 SEQ ID NO: 1, positions 212-232, SEQ ID NO: 1, positions 330-351, SEQ ID NO: 1, positions 715-733, SEQ ID NO: 1, positions 769-788, SEQ ID NO: 1, positions 789-813, SEQ ID NO: 814 -838, 838-858 of SEQ ID NO: 1, 841-862 of SEQ ID NO: 1, 870-889 of SEQ ID NO: 1, 890-911 of SEQ ID NO: 1, 928-949 of SEQ ID NO: 1, sequence No.
  • at least 15 nucleotides, at least 17 nucleotides, at least 20 nucleotides or minimum length may be longer.
  • the present invention provides a primer set based on sequences (including complementary sequences) represented by SEQ ID NOs: 1 to 5.
  • a nucleic acid molecule comprising at least 10 nucleotides of the sequence shown in SEQ ID NO: 1-5, and a nucleic acid molecule comprising at least 10 nucleotides in the complementary sequence of the sequence shown in SEQ ID NO: 1-5
  • a primer set is provided.
  • the length of the nucleic acid molecule can be at least 15 nucleotides, at least 17 nucleotides, at least 20 nucleotides, or a minimum length longer. Therefore, the length of the primer used here may be any length other than these, and can be appropriately designed with reference to the description of the present specification.
  • the primer set of the present invention is for detecting Candidatus Phlomobacter fragariae or strawberry leaf edge regressive disease.
  • the present invention provides a probe based on the sequence shown in SEQ ID NOs: 1 to 5 (including complementary sequences).
  • the probe of the present invention comprises at least 10 nucleotides of a sequence represented by SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label.
  • the length of the nucleic acid molecule can be at least 15 nucleotides, at least 17 nucleotides, at least 20 nucleotides, or a minimum length longer. Therefore, the length of the probe used here may be any length other than these, and can be appropriately designed with reference to the description of the present specification.
  • the label used in the probe of the present invention may be any label as long as it allows detection, and exists to distinguish the target molecule or substance from others (for example, substance, energy Any electromagnetic wave can be used.
  • labeling methods include, but are not limited to, RI (radioisotope) method, fluorescence method, biotin method, chemiluminescence method and the like.
  • the probe of the present invention is for detecting Candidatus Phlomobacter fragariae or strawberry leaf marginal leaf disease.
  • Such a probe can detect Candidatus Phlomobacter fragariae or strawberry leaf edge regressive disease by detecting the label. Such detection can be appropriately performed by those skilled in the art depending on the label. If it is a radioisotope, the label can be detected with the naked eye, if it is fluorescent, a fluorometer, or if it emits visible light, it can be detected with the naked eye.
  • the present invention provides a kit for detecting Candidatus Phlomobacter fragariae or strawberry leaf marginal leaf disease.
  • This kit comprises (A) a nucleic acid molecule comprising at least 10 nucleotides among the sequences represented by SEQ ID NOs: 1 to 5 and a nucleic acid molecule comprising at least 10 nucleotides among complementary sequences of the sequences represented by SEQ ID NOs: 1 to 5 A probe set comprising: or a probe comprising at least 10 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or its complementary sequence and a label; and (B) a nucleic acid amplification reagent.
  • the nucleic acid amplification reagent used in the present invention include, but are not limited to, a PCR reagent and a LAMP reagent.
  • the primer set used in the present invention comprises a nucleic acid molecule comprising at least 15 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • a nucleic acid molecule comprising at least 15 nucleotides or the probe used in the device of the present invention comprises at least 15 nucleotides of the sequence shown in SEQ ID NOs: 1 to 5 or a complementary sequence thereof, and a label.
  • the primer set used in the present invention comprises a nucleic acid molecule comprising at least 17 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • a nucleic acid molecule containing at least 17 nucleotides, or a probe used in the device of the present invention contains at least 17 nucleotides of the sequence shown in SEQ ID NOs: 1 to 5 or a complementary sequence thereof, and a label.
  • the primer set used in the present invention comprises a nucleic acid molecule comprising at least 20 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • a nucleic acid molecule containing at least 20 nucleotides, or a probe used in the apparatus of the present invention contains at least 20 nucleotides of the sequence shown in SEQ ID NOs: 1 to 5 or a complementary sequence thereof, and a label.
  • the lengths of the probes and primers used here may be any length other than these, and can be appropriately designed with reference to the description of the present specification.
  • primer, probe, label, etc. used in the kit of the present invention can be in any form detailed elsewhere herein.
  • the present invention provides a method for detecting Candidatus Phlomobacter fragariae or strawberry leaf marginal leaf disease.
  • a test sample is used as a template, a nucleic acid molecule comprising at least 10 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5, and a sequence complementary to the sequence shown in SEQ ID NOs: 1 to 5
  • the primer set used in the method of the present invention comprises a nucleic acid molecule comprising at least 15 nucleotides among the sequences represented by SEQ ID NOs: 1 to 5, and a complementary sequence of the sequences represented by SEQ ID NOs: 1 to 5
  • a nucleic acid molecule comprising at least 15 nucleotides, or the probe used in the device of the present invention comprises at least 15 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label.
  • the primer set used in the method of the present invention comprises a nucleic acid molecule comprising at least 17 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • the probe used in the device of the present invention includes at least 17 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label. .
  • the primer set used in the method of the present invention comprises a nucleic acid molecule comprising at least 20 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5, and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • the probe used in the device of the present invention includes at least 20 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label.
  • the lengths of the probes and primers used here may be any length other than these, and can be appropriately designed with reference to the description of the present specification.
  • the step of determining in the method of the present invention is characterized in that a sample extracted from a strawberry infected with Candidatus Phlomobacter fragariae is used as a positive control.
  • the nucleic acid amplification reaction used in the present invention is performed by real-time PCR or LAMP method.
  • primers, probes, labels, etc. used in the methods of the present invention can use any form detailed elsewhere herein.
  • the present invention provides an apparatus for detecting Candidatus Phlomobacter fragariae or strawberry leaf marginal leaf disease.
  • the apparatus of the present invention comprises: (A) a means for performing a nucleic acid amplification reaction; (B) a nucleic acid molecule comprising at least 10 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and SEQ ID NOs: 1 to 5 A primer set comprising a nucleic acid molecule comprising at least 10 nucleotides of a complementary sequence of the sequence, or a probe comprising at least 10 nucleotides of the sequence shown in SEQ ID NO: 1-5 or its complementary sequence and a label; and (C ) Means for detecting the nucleic acid molecule or the label.
  • the means for nucleic acid amplification used in the apparatus of the present invention can be any means as long as it can amplify nucleic acid, for example, means for PCR, Although the means for LAMP etc. can be mentioned, it is not limited to it.
  • the means for detecting the nucleic acid molecule or label used in the apparatus of the present invention can be any means as long as the target nucleic acid molecule or label can be detected.
  • the nucleic acid molecule Alternatively, those skilled in the art can appropriately carry out depending on the type of label. If it is a radioisotope, a radioactivity detector can be used, and if it is fluorescence, a fluorometer can be used, or if it emits visible light, the label can be detected by the naked eye or a detection device corresponding thereto.
  • the primer set used in the apparatus of the present invention comprises a nucleic acid molecule comprising at least 15 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • a nucleic acid molecule comprising at least 15 nucleotides or the probe used in the device of the present invention comprises at least 15 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label.
  • the primer set used in the apparatus of the present invention comprises a nucleic acid molecule comprising at least 17 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • the probe used in the device of the present invention includes at least 17 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label. .
  • the primer set used in the apparatus of the present invention comprises a nucleic acid molecule comprising at least 20 nucleotides among the sequences shown in SEQ ID NOs: 1 to 5 and a complementary sequence of the sequences shown in SEQ ID NOs: 1 to 5
  • the probe used in the device of the present invention includes at least 20 nucleotides of the sequence shown in SEQ ID NO: 1 to 5 or a complementary sequence thereof, and a label.
  • the lengths of the probes and primers used here may be any length other than these, and can be appropriately designed with reference to the description of the present specification.
  • primers, probes, labels, etc. used in the apparatus of the present invention can use any form detailed elsewhere herein.
  • the present invention provides a primer for detecting Candidatus Phlomobacter fragariae, comprising a sequence selected from the sequences set forth in SEQ ID NOs: 6 to 25.
  • the present invention provides a primer for detecting Candidatus Phromobacter fragaliae, a set of SEQ ID NOs: 6 and 7, a set of SEQ ID NOs: 8 and 9, a set of SEQ ID NOs: 10 to 11, and a set of SEQ ID NOs: 12 to 13 , A set of SEQ ID NOs: 14 to 15, a set of SEQ ID NOs: 16-21, a set of SEQ ID NOs: 22-23, and a primer set comprising a sequence set selected from the sequences set forth in the sets of SEQ ID NOs: 24-25 are provided.
  • the present invention provides a nucleic acid primer set for LAMP amplification for detecting Candidatus Phlomobacter fragaliae, comprising: In order from the 3 ′ end of the target sequence on the first DNA strand of the double-stranded DNA having one of the sequences shown in SEQ ID NOs: 1 to 5 to the 3 ′ end of the DNA strand, A first arbitrary sequence F1c and a second arbitrary sequence F2c are selected, respectively, and a third arbitrary sequence R1 and a fourth arbitrary sequence are sequentially arranged from the 5 ′ end of the target sequence toward the 5 ′ end of the DNA strand.
  • the inner primer consisting of A) and B) below:
  • Nucleic acid was prepared using 2% cetyltrimethylammonium bromide, 100 mM Tris-HCl (pH 8.0), 1.4 M NaCl, 20 mM EDTA (pH 8.0), 1% polyvinylpyrrolidone (PVP-10), and ORF-1 ORF-2, ORF-3, and ORF-4 were cloned and confirmed to be novel sequences. ORF-1 was found to be a Rep gene.
  • ORF-1 to ORF-4 were located on the circular extrachromosomal DNA and determined the entire nucleotide sequence of the Rep gene (the extrachromosomal DNA of Ca. P. fragariae Not reported so far).
  • SEQ ID NO: 5 The entire sequence of extrachromosomal DNA is shown in SEQ ID NO: 5.
  • inverted PCR the presence of extrachromosomal presence by inverted PCR can be confirmed as follows. Specifically, Ca. which is not present in healthy strawberry but is specifically present in strawberry leaf edge degeneration, that is, pathogen Ca. P. fragaliae DNA fragment B12 was selected by the SSH method and cloned. Using a primer set designed to synthesize DNA from the inside to the both ends of the DNA fragment, as opposed to normal PCR (amplifies inward from both ends of the DNA fragment) using the base sequence information of B12 Inverted PCR is performed. As a result, if DNA amplification is observed, it can be seen that the DNA containing B12 has a relatively low-molecular circular structure. Thereby, B12 is Ca. P.
  • PfRep-RF1 ATATCCCTTACAGATTCGAATAACCCTTACG (SEQ ID NO: 30)
  • PfRep-RR1 CTGAAGAAAGATTGATGATGAGAAGGGTAGG (SEQ ID NO: 31)
  • B12-S2 TGGTTCTGGAGATACGGCAAG (SEQ ID NO: 32) ⁇
  • PCR reaction solution Sterile distilled water 28.5 ⁇ l 10 ⁇ l LA PCR Buffer 5 ⁇ l (final concentration 1 ⁇ ) dNTP (2.5 mM each) 8 ⁇ l (final concentration each 0.4 mM) Mg 2+ solution (25 mM) 5 ⁇ l (final concentration 2.5 mM)
  • Primer 2 (10 mM) 1 ⁇ l (final concentration 0.2 ⁇ M)
  • Template DNA (sample) 1 ⁇ l
  • the PCR amplification product was recovered from the agarose gel and purified by electrophoresis using MinElute Gel Extraction Kit (QIAGEN). 1) A portion containing the target amplified DNA was cut out from the agarose gel after electrophoresis, transferred to a microtube, and weighed (usually about 100-200 mg). 2) Three times the gel weight of the PG solution included in the kit was added to the microtube. 3) The tube was transferred to a constant temperature apparatus at 50 ° C. and left for 10 minutes with occasional mixing to completely dissolve. 4) The same amount of 2-propanol as the gel was added and mixed.
  • PfRep-RF1 ATATCCCTTACAGATTCGAATAACCCTTACG both pPFC12-S1 and S2 using the following primers for direct sequencing (SEQ ID NO: 30) B12Inv-F2 ATCAGTATGAGCACGCTTAC (both pPFC12-S1 and S2) (SEQ ID NO: 33) B12Inv-F3 ATCCGAACTCATCTTCTCTC (pPFC12-S1 only) (SEQ ID NO: 34) PfRep-RR1 CTGAAGAAAGATTGATGATGAGAGAGGTAGG (both pPFC12-S1 and S2) (SEQ ID NO: 31) B12Inv-R2 TGTGAGCAAGATGAGTCG (pPFC12-S1 only) (SEQ ID NO: 35) B12Inv-R3 AGTCACTCTTCGTTAGTACC (pPFC12-S1 only) (SEQ ID NO: 36) B12Inv-R4 TGTGACGGATCGAACGTC (pP
  • reaction solution 4 ⁇ l of Ready Reaction Premix per 0.2 ml PCR tube BigDye Sequencing Buffer (5x) 2 ⁇ l Primer (1.6 pmol / ⁇ l) 2 ⁇ l Template (gel purified DNA, about 20 ng / ⁇ l) 2 ⁇ l Sterile deionized water 10 ⁇ l Prepare the reaction solution so that
  • PCR product was purified according to the protocol using Centri-Sep spin columns as follows. (1) 2 ⁇ l of 2% SDS solution was added to the PCR product after completion of the reaction and mixed. (2) It was set in a thermal cycler (iCcycler manufactured by Bio-Rad) and heat-treated (98 ° C. for 5 minutes ⁇ 25 ° C. for 10 minutes).
  • FIG. 1 shows a schematic diagram of each plasmid containing the nucleic acids ORF-1 to ORF-4 obtained.
  • the plasmid shown on the left (pPFC12-L) is 6,840 bp long and contains ORF1 to ORF4.
  • the middle plasmid (pPFC12-S1) is 2250 bp long and contains only ORF1.
  • the right plasmid (pPFC12-S2) is 1635 bp long and contains only ORF1.
  • E. coli Pulser Bio-Rad
  • TOP10 Eleclocomponent Cell attached to the kit was dissolved on ice, and 2 ⁇ l of the reaction solution of 1) was added and gently mixed.
  • the liquid of (1) was transferred to a 0.1 cm cuvette that had been cooled on ice.
  • Electroporation was performed at a voltage of 1.8 kV.
  • 450 ⁇ l of SOC liquid medium room temperature was quickly added to the cuvette.
  • the liquid was transferred from the cuvette to a sterilized tube (Falcon 2059) and permeated for 1 hour at 37 ° C.
  • Competent Cell culture solution was applied to an LB agar medium containing kanamycin (50 ⁇ g / ml) at 50-100 ⁇ l per dish and cultured at 37 ° C. overnight.
  • the colony formed on the LB agar medium was transplanted to a new LB agar medium using a sterilized toothpick to preserve the strain.
  • colony PCR was performed to confirm whether the target DNA was inserted into the plasmid.
  • a strain confirmed to be inserted with the target DNA was inoculated into an LB liquid medium (3 ml) containing kanamycin (50 ⁇ g / ml) and cultured at 37 ° C. overnight (about 14 hours). .
  • the plasmid was purified from the culture solution using QIAGEN Plasmid Mini Kit (Qiagen).
  • the purified plasmid was digested with restriction enzymes ApaI, XbaI, XhoI, NotI, EcoRV, PstI, SacI, BamHI, and SpeI to confirm the presence or absence of a restriction enzyme site in the target gene.
  • the purified plasmid was digested with restriction enzymes SacI and SpeI, and the digested product was extracted with phenol / chloroform, precipitated with ethanol, and dried with a centrifugal evaporator.
  • the target DNA fragment inserted into the plasmid was deleted in a stepwise manner from the purified restriction enzyme digestion product using a deletion kit (Takara Bio) for Kilo-Sequence (deletion).
  • the deletion product produced by the deletion kit for Killo-Sequence was ligated back to a circular plasmid, and cloned into E. coli by electroporation in the same manner as in (2)-(6).
  • the colony formed on the LB agar medium was subjected to strain storage and colony PCR, and a deletion clone was selected so as to cover the entire length of the inserted DNA.
  • Example 1 Detection of Ca. P. fragariae by real-time PCR using Rep gene
  • Ca. P. A detection and quantification system was constructed by a real-time PCR method using a primer set targeting the Fraggariae Rep gene. This improves the detection limit by more than 10-100 times compared to the conventional technology, non-specific amplification is not observed, pathogens can be quantified, and the time until detection is shortened (reaction time is shortened). That there is no need for electrophoresis).
  • test materials used in this experiment were collected from a field in Tateyama City, Chiba Prefecture.
  • Ca. P. Strawberry (variety, Tochiotome) infected with fragaliae maintained and propagated in a precision greenhouse (set at 24 ° C in summer and 22 ° C in winter) at the Central Agricultural Research Center (Tsukuba, Ibaraki) (hereinafter referred to as C-12) was used as an infection sample.
  • healthy strawberries cultivar, Tochiotome maintained and proliferated were used as negative control samples.
  • Nucleic acid extraction was performed by extracting from about 0.1 g of a strawberry sample (petiole) by the CTAB method (described above) and finally into 50 ⁇ l of TE-RNase buffer (10 mM Tris-HCl, 1 mM EDTA, 20 ⁇ g / ml RNase A). The dissolved solution was used as a stock solution (1 ⁇ ), and a 10-fold diluted solution with TE buffer (10 mM Tris-HCl, 1 mM EDTA, 20 ⁇ g / ml) was used for the detection limit measurement. About the healthy sample, what was diluted 100 times with TE buffer was used.
  • a real-time PCR reaction solution was prepared using SYBR Premix EX Taq (registered trademark) II (Perfect Real Time) manufactured by Takara Bio Inc.
  • the reaction solution per sample is 25 ⁇ l and the composition is as follows.
  • SYBR Premix EX Taq II (2 ⁇ ) 12.5 ⁇ l Sterile distilled water 9.5 ⁇ l Forward primer (10 mM) 0.5 ⁇ l Reverse primer (10 mM) 0.5 ⁇ l (Test sample) 2 ⁇ l Total 25 ⁇ l .
  • PCR tubes are 0.2 ml 8-strip tube, individual flat caps (NJ600) manufactured by Takara Bio, or 96-well Hi-Plate for Real Time (NJ400) manufactured by Takara Bio, and when using NJ400, a Sealing Film manufactured by the same company. Sealing was performed using for Real Time (NJ500).
  • the reaction solution to which the test sample was added was immediately set in a real-time PCR apparatus (Thermal Cycler Dice (registered trademark) Real Time system (TP800) manufactured by Takara Bio Inc.), and the reaction and fluorescence measurement were performed.
  • a real-time PCR apparatus Thermal Cycler Dice (registered trademark) Real Time system (TP800) manufactured by Takara Bio Inc.
  • the PCR program is [Amplification reaction by 2step PCR] 1.95 ° C., 10 seconds 1 cycle 2.95 ° C., 5 seconds ⁇ 60 ° C., 30 seconds 40 cycles [Measurement of melting point of amplification product] 3. 95 ° C., 15 seconds ⁇ 60 ° C., 30 seconds 1 cycle.
  • the primer design for real-time PCR is the same as that described in the above document except that the length of the amplification product was shortened to 80-150 base pairs in order to increase the amplification efficiency to nearly 100%.
  • the same principle as the primer design was used.
  • the primer sequences used and the design procedures are shown below.
  • Primer design ⁇ Real-time PCR primer design procedure 1) primer3plus The site of (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) was accessed. In addition to this website, primer design is incorporated into, for example, DNASIS Pro (Hitachi Software), and these stand-alone software can also be used. 2) The base sequence of the DNA to be detected was pasted on the “Main” tab. Set “Task” to "detection” (default value) Check “Pick left primer or use left primer bellow.” (Default value) “Pick right primer or use right primer” was checked (default value).
  • the Ca. P The detection limit of fragariae is 10 3 to 10 4 times diluted when a nucleic acid extracted by the same procedure is used. In this example, the detection sensitivity is improved 10 to 100 times. On the other hand, no non-specific amplification was observed in the healthy strawberry sample or the sample not containing the template DNA.
  • Example 2 Detection of Ca.P. fragariae by real-time PCR using other extrachromosomal genes ORF-2 to ORF-4)
  • Example 2 Detection of Ca.P. fragariae by real-time PCR using other extrachromosomal genes ORF-2 to ORF-4
  • Example 1 (Materials and equipment, protocol) The same one as in Example 1 was used, but the following were changed and used.
  • Ca. P A sample obtained by diluting a nucleic acid extracted from a C-12 strain-infected strawberry by ⁇ 10 (3.16) times was used for detection limit detection of fragariae.
  • FIG. 5 is a diagram showing the detection limit by real-time PCR targeting ORF2.
  • FIG. 5 shows the results of real-time PCR based on the procedure described in Example 1 using ExORF2-L596 (SEQ ID NO: 10) / ExORF2-R738 (SEQ ID NO: 11) as a primer set.
  • FIG. 6 is a diagram showing the detection limit by real-time PCR targeting ORF3.
  • FIG. 6 shows the results of real-time PCR based on the procedure described in Example 1 using ExORF3-L847 (SEQ ID NO: 12) / ExORF3-R943 (SEQ ID NO: 13) as a primer set.
  • FIG. 7 is a diagram showing the detection limit by real-time PCR targeting ORF3. Real-time PCR was performed based on the procedure described in Example 1 using ExORF4-L572 (SEQ ID NO: 14) / ExORF4-R691 (SEQ ID NO: 15) as a primer set.
  • the vertical axis represents the fluorescence intensity (primary curve), and the horizontal axis represents the number of PCR cycles. 10 ⁇ 3 to 10 ⁇ 6.5 is Ca. P.
  • the dilution factor of the crude nucleic acid sample extracted from strawberry infected with fragariae (C-12 strain) is shown (10 3 to 10 6.5 times dilution).
  • H shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries.
  • N represents a control without addition of template DNA.
  • Example 3 Detection of Ca.P. fragariae by LAMP method using Rep gene
  • the Ca. P. Based on the sequence information of the Fraggariae Rep gene, detection by the LAMP method was demonstrated.
  • LOOPAMP registered trademark
  • real-time turbidity measurement device LA-200 (Teramex Corporation; used when measuring turbidity simultaneously with the LAMP reaction. Fluorescence cannot be measured) or aluminum block thermostat CoolThermoUnit CTU-N (Tytec; Only the LAMP reaction is performed. The result is that the turbidity or fluorescence is observed with the naked eye after the reaction is completed.
  • UV Transilluminator TM-40 Fluorescence observation
  • Reaction tube Eiken Chemical Loopamp® reaction tube (LMP905).
  • the LAMP primer is designed using 6 regions from the 5 ′ side of the target sequence: F3 region, F2 region, F1 region, B1 region, B2 region, and B3 region.
  • four types of primers (two types of inner primer and two types of outer primer) are used.
  • the inner primer links F1c and F2, and B1c and B2.
  • a forward loop primer is set in the complementary strand to the region between the F1 region and the F2 region
  • a Backward loop primer is set in the complementary strand in the region between the B1 region and the B2 region.
  • FIG. 3 shows the results of this example and shows a comparison (1) of detection limits by the LAMP method targeting the Rep gene.
  • B12 + L, Ca. P. A primer set (loop primer added) designed from the base sequence of Fraggariae Rep gene was used.
  • CPF2 + L, Ca. P. A primer set (loop primer added) targeting Fragriae 16S rDNA was used. 10 ⁇ 1 to 10 ⁇ 4 indicating the concentration, Ca. P. It indicates 10 to 104-fold dilutions of the crude nucleic acid samples extracted from infected strawberries Fragariae.
  • FIG. 4 shows a comparison (2) of detection limits by the LAMP method targeting the Rep gene.
  • B12 + L, Ca. P. A primer set (loop primer added) designed from the base sequence of Fraggariae Rep gene was used.
  • CPF2 + L, Ca. P. A primer set (loop primer added) targeting Fragriae 16S rDNA was used. 10 ⁇ 1 to 10 ⁇ 6 indicating the concentration is Ca. P. It indicates 10 to 106-fold dilution of the crude nucleic acid samples extracted from infected strawberries Fragariae.
  • Example 4 Detection of Ca. P. fragariae by LAMP method using other extrachromosomal genes ORF-2, ORF-3 and ORF-4)
  • ORF-2, ORF-3, and ORF-4 Using the same protocol as in Example 3, using the sequences of ORF-2, ORF-3, and ORF-4, similarly, the Ca. P. fragaliae detection experiments can be performed.
  • Example 5 Detection of Ca. P. fragariae by real-time PCR using regions other than the ORF region of extrachromosomal genes.
  • Example 5 Detection of Ca. P. fragariae by real-time PCR using regions other than the ORF region of extrachromosomal genes.
  • Example 1 (Materials and equipment, protocol) Although the same thing as Example 1 was utilized, the following were changed and implemented.
  • the PCR amplification reaction was shortened to 35 cycles. That is, the PCR program is [amplification reaction by 2 step PCR]. 1.95 ° C, 10 seconds 1 cycle 2.95 ° C, 5 seconds ⁇ 60 ° C, 30 seconds 35 cycles [Measurement of melting point of amplification product] 3. 95 ° C., 15 seconds ⁇ 60 ° C., 30 seconds 1 cycle.
  • FIG. 8 is a diagram showing detection limits by real-time PCR targeting a DNA region between the Rep gene and ORF-2 on pPFC12-L.
  • FIG. 6 shows the results of real-time PCR based on the procedure described in Example 1 using ExSSB-L096 (SEQ ID NO: 22) / ExSSB-R265 (SEQ ID NO: 23) as a primer set.
  • FIG. 9 is a diagram showing detection limits by real-time PCR targeting a DNA region between ORF4 and Rep gene.
  • FIG. 5 shows the results of real-time PCR based on the procedure described in Example 1 using ExExd-L236 (SEQ ID NO: 24) / ExExd-R345 (SEQ ID NO: 25) as a primer set.
  • the vertical axis represents the fluorescence intensity (primary curve), and the horizontal axis represents the number of PCR cycles.
  • 10 ⁇ 3 to 10 ⁇ 7 is Ca.
  • the dilution factor of a crude nucleic acid sample extracted from a strawberry infected with fragariae (C-12 strain) is shown (diluted solution 10 3 to 10 7 ).
  • H shows 10 two-fold dilutions of the crude nucleic acid samples extracted from healthy strawberries.
  • N represents a control without addition of template DNA.
  • FIGS. 8 to 9 show real-time PCR using the primer set ExSSB-L096 / ExSSB-R265 targeting the region between the Rep gene on pPFC12-L, which is a region other than the ORF region of the extrachromosomal gene, and ORF-2. Is the result of
  • the detection limit when targeting other than the ORF is slightly lower than when targeting the Rep gene and other ORFs. It is shown that healthy strawberry, without amplification without template, is amplified only with infected strawberry and can be used for detection.
  • Example 6 Detection of Ca.P. fragariae by LAMP method using regions other than ORF region of extrachromosomal gene
  • Example 6 Detection of Ca.P. fragariae by LAMP method using regions other than ORF region of extrachromosomal gene
  • Example 7 Detection from an insect sample which has artificially acquired a pathogen
  • a sample obtained by diluting a suspended nucleic acid solution 20-fold with TE buffer (10 mM Tris-HCl, 1 mM EDTA) was obtained by a real-time PCR method using the primer set B12-L2 / B12-R2 described in Example 1.
  • TE buffer 10 mM Tris-HCl, 1 mM EDTA
  • primer dimer generation or non-specific amplification may occur from around 35 cycles.
  • the cycle of the PCR program was 35 cycles.
  • P. Fragaliae's genetic diagnosis technique uses Ca. P. fragariae is closely related to insect symbiotic bacteria and enterobacteriaceae, so that Ca. P. fragariae was difficult to detect, but as this example shows, Ca. P. By targeting the extrachromosomal DNA of fragariae, highly specific detection is possible. This technique is disclosed in Ca. P. It can be used for identification of vector insects of fragalia and testing of the rate of insecticide.
  • the present invention can be used to evaluate (quarantine) the safety (non-morbidity) related to this disease of a parent strain for seedling production and a strawberry distributed as a seedling for fruit production.
  • the safety non-morbidity
  • it can be used for early detection of the occurrence of this disease and monitoring of the transmission route.
  • SEQ ID NO: 1 ORF-1 (Rep gene) of the present invention (1015 base pairs) (In this description, the underline indicates the sequence used for the primer and the like)
  • SEQ ID NO: 2 ORF-2 of the present invention (1161 base pairs)
  • SEQ ID NO: 3 ORF-3 of the present invention (1029 base pairs)
  • SEQ ID NO: 4 ORF-4 of the present invention (1218 base pairs)
  • SEQ ID NO: 5 Complete base sequence of pPFC12-L (6840 base pairs) TATAAAACGGGAAGTGTGAGTCAGCTTTTTTGATGGCGTTAGCCATGTAAGGCGACTAGTTGGATATTTAGGGGGCGTTTTAAGTCCATTCGCCGATACAGAGAGTGGACTTATCGAGTAGC AATTTACCCTGCGTTAGCATCC TGCTAGACGGGTTTTTTGGGGTAGTCTCTTCTTAAATTTATAATACAGATGGTGTTTCAAACTTTTTTT GTGGTGCGTGAGGCCTTTA GCCTGCCGACGATTCTTATTC ATT
  • AACCGAAAGCGGGCGAATCTTCATC SEQ ID NO: 11 Primer ExORF2-R738 used in Example 2 (complementary strand at positions 715-738 of SEQ ID NO: 2): AACGCCTGAATGCTGCGGAGAAAC SEQ ID NO: 12: Primer ExORF3-L847 used in Example 2 (positions 847-861 of SEQ ID NO: 3): TTGTCTGTTCGGTGGCGTATTGCTG SEQ ID NO: 13: Primer ExORF3-R943 used in Example 2 (complementary strands at positions 919-943 of SEQ ID NO: 3): AGGATTCGATCCTGAGTTGCCCCTTG SEQ ID NO: 14: Primer ExORF4-L572 used in Example 2 (positions 572-591 of SEQ ID NO: 4): TGGTGGTTTCGGCGTATGTC SEQ ID NO: 15: Primer ExORF4-R691 used in Example 2 (complementary strand at positions 715-738 of S

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明の目的は、イチゴの苗および果実生産現場から早期にCa.P.fragariaeを検出・排除することで本病の蔓延防止および果実生産の被害の軽減が期待できることから、本発明は、Ca.P.fragariaeを高感度で検出することができる技術を提供することである。この目的は、(a)配列番号1~5のいずれか1つに示す配列;(b)(a)の配列の少なくとも95%の同一性を有するか、ストリンジェントな条件下でその相補鎖とハイブリダイズするか、もしくはその配列において1もしくは数個の置換、付加および/もしくは欠失を含む改変配列;(c)(a)もしくは(b)の少なくとも10ヌクレオチドを含むフラグメント配列;または(d)(a)、(b)もしくは(c)の相補鎖配列を含む核酸分子によって達成される。

Description

イチゴ葉縁退緑病の病原体Candidatus Phlomobacter fragariaeの検出方法
 本発明は、イチゴ葉縁退緑病の高精度診断技術に関する。
 イチゴ葉縁退緑病は、バクテリア様微生物Candidatus Phlomobacter fragariae(本明細書において、「Ca.P.fragariae」とも省略する。)がイチゴに感染することで生じる病害であり、この病害に感染したイチゴでは生育不良、果実品質の低下等により、商品価値のある果実の生産ができなくなる。日本では2003年に発生が初めて報告されたが、それ以前はフランスで報告されているのみであり、国外からの侵入した病害と推定される。現時点ではその発生は一部地域に留まっているが、本病は昆虫伝搬性であるとともに、イチゴに全身感染しランナー(匍匐枝)を通じて親株から子株へ伝搬するため、感染した苗が流通することにより全国的に蔓延するおそれがある。
 イチゴ葉縁退緑病の病原体Candidatus Phlomobacter fragariaeは絶対寄生菌で培養できず、また菌体の大きさも幅25nm×長さ250nm程度とごく小さいため、光学顕微鏡での観察は困難であり、形態観察には電子顕微鏡が必要である。しかし、形態だけでは本菌の同定は不可能であり検出および同定が可能な手段は遺伝子診断法に限られる。
 Candidatus Phlomobacter fragariaeの16SリボゾームRNA遺伝子(16S rDNA)を標的遺伝子としたプライマーセットFra5/Fra4を用いたPCR法による検出(非特許文献1)が報告されている。また、Ca.P.fragariaeの16S rDNAを標的としたLAMP(Loop-mediated isothermal amplification)法による迅速検出法が報告されている(非特許文献2)。さらにCa.P.fragariaeのグアノシン-3’,5’-ビス(ジホスフェート)3’-ピロホスホヒドラーゼ(ppGPPase)遺伝子を標的としたプライマーセットPfr1/Pfr4を用いたPCR法により標的DNAを増幅した後、制限酵素RsaIおよびAluIによるRFLP解析により病原体を検出・同定する手法が報告されている(非特許文献3)。
 16S rDNAを標的にしたPCR法およびLAMP法に関しては、16SrDNAの塩基配列が原核微生物で高く保存性されているため、これらの手法を用いるとCa.P.fragariaeと近縁な細菌も検出される、特に昆虫の共生細菌にはCa.P.fragariaeと極めて近縁な種が存在するため、昆虫体内からの検出では非特異的な増幅が多発し、Ca.P.fragariaeの特異的な検出は困難である。また検出限界も低く無病徴感染イチゴから確実にCa.P.fragariaeを検出することは困難である。一方、昆虫における非特異増幅を避けるために開発されたプライマーセットPfr1/Pfr4を用いたPCRでは、一部の昆虫共生細菌では依然として非特異増幅が生じるため、最終的な同定を行うためにはRFLPを併用する必要があり煩雑である。また、検出限界はFra5/Fra4を用いたPCR法よりさらに1/10程低く、実用的なCa.P.fragariaeの検出法として用いることは困難である。
International Journal of Systematic Bacteriology,48:257-261,1998 平成18年度関東東海北陸農業成果情報「LAMP法によるイチゴ葉縁退緑病バクテリア様微生物の迅速検出」田中穣ら、[online]Internet URL: http://www.affrc.go.jp/ja/agropedia/seika/data_kanto/h18/12_29 Applied and Environmental Microbiology,66:3474-3480,2000
 現在、イチゴ果実の生産で用いられる主要な品種のほぼ全てで、栄養繁殖によって増殖された苗を利用しているため、苗を生産するための親株が無病化されていることが極めて重要である。また、イチゴ栽培における苗生産と果実生産との間の分業化は、海外では既に普及し、日本国内でも近年になり普及しつつあるが、将来的には国際的な苗の流通(輸出入)が進むことが想定される。以上にかんがみ、本発明は、苗生産の親株および果実生産用の苗として流通するイチゴの、イチゴ葉縁退緑病に関する安全性(無病性)を評価(検疫)することを課題とする。
 すなわち、イチゴの苗および果実生産現場から早期にCa.P.fragariaeを検出・排除することで本病の蔓延防止および果実生産の被害の軽減が期待できることから、本発明は、Ca.P.fragariaeを高感度で検出することができる技術を提供することを課題とする。
 本発明者らは、葉縁退緑病に感染したイチゴから分画遠心法によりCa.P.fragariaeの部分純化をおこない、部分純化試料からDNAを抽出し、SSH(抑制サブトラクティブハイブリダイゼーション(Suppression Subtractive Hybridization))法により、Ca.P.fragariaeに特異的なDNA領域をクローニングし、SSH法により高頻度でクローニングされるCa.P.fragariae特異的DNA領域の塩基配列を解析し、プラスミド複製酵素(Rep)遺伝子の一部であることを明らかにした。
 本発明者らはまた、Inverted PCR法により、Rep遺伝子が環状の染色体外DNAに座乗していることを確認するとともに、Rep遺伝子の全塩基配列を決定した。なお、Ca.P.fragariaeの染色体外DNAはこれまでに報告されていないものであって、新規配列であることが明らかになった。
 本発明者らは、Ca.P.fragariaeのRep遺伝子を標的としたプライマーセットを用いたLAMP法およびリアルタイムPCR法による検出・定量系を構築した。これにより、従前の技術と比べて、検出限界が10~100倍以上向上し、非特異的な増幅は認められず、病原体の定量が可能であり、検出までの時間も短縮(反応時間が短く、電気泳動の必要がない。)された。
 本発明者らは、逆PCR(Inverted PCR)法により複数の環状の染色体外DNAを見出したことになる。そのサイズや全体の塩基配列は多様であったが、Rep遺伝子に関しては安定して存在しており、遺伝子診断の標的遺伝子として適していると判断される。
 これらの知見をもとに、さらに研究を進めた結果、本発明者らは、Rep遺伝子のみならず、Rep以外のORF遺伝子、さらにはCa.P.fragariaeの染色体外DNAが、程度の差はあれ全般的にCa.P.fragariaeの検出、診断に使用することができることを見出した。
 本発明者らは、本発明の検出法を用いて、実際の圃場で採集したイチゴ試料および人為的に病原体を獲得させた昆虫試料からの検出に成功した。
 したがって、本発明は、以下を提供する。
(1)(a)配列番号1~5のいずれか1つに示す配列;
(b)(a)の配列の少なくとも95%の同一性を有するか、ストリンジェントな条件下でその相補鎖とハイブリダイズするか、もしくはその配列において1もしくは数個の置換、付加および/もしくは欠失を含む改変配列;
(c)(a)もしくは(b)の少なくとも10ヌクレオチドを含むフラグメント配列;または
(d)(a)、(b)もしくは(c)の相補鎖配列
を含む核酸分子。
(2)配列番号1の212-232位、配列番号1の330-351位、配列番号1の715-733位、配列番号1の715-738位、配列番号1の749-766位、配列番号1の769-788位、配列番号1の789-813位、配列番号1の814-838位、配列番号1の838-858位、配列番号1の841-862位、配列番号1の870-889位、配列番号1の890-911位、配列番号1の928-949位、配列番号2の596-620位、配列番号2の715-738位、配列番号3の847-861位、配列番号3の919-943位、配列番号4の572-591位、配列番号4の672-691位、配列番号5の123-144位、配列番号5の214-232位、配列番号5の2230-2250位および配列番号5の2376-2399位からなる群より選択される少なくとも1つの配列またはその相補配列の少なくとも10ヌクレオチドを含む、項目1に記載の核酸分子。
(3)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット。
(4)配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含む、項目3に記載のプライマーセット。
(5)配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、項目3または4に記載のプライマーセット。
(6)前記プライマーセットは、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのものである、項目3~5のいずれかに記載のプライマーセット。
(7)配列番号は1~5に示す配列またはその相補配列のうち、少なくとも10ヌクレオチドと、標識とを含む、プローブ。
(8)配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む、項目7に記載のプローブ。
(9)配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む、項目7または8に記載のプローブ。
(10)前記プローブは、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのものである、項目7~9のいずれかに記載のプローブ。
(11)Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのキットであって、該キットは:
 (A)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット、または配列番号は1~5に示す配列またはその相補配列のうち少なくとも10ヌクレオチドと標識とを含むプローブ;ならびに
 (B)核酸増幅用試薬
を含む、キット。
(12)前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む、項目11に記載のキット。
(13)前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む、項目11または12に記載のキット。
(14) Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するための方法であって、
 (A)被験サンプルを鋳型として用い、配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセットをプライマーとして用いて核酸増幅反応を行う工程;および
 (B)増幅された核酸分子に基づいて、該被験サンプル中にCandidatus Phlomobacter fragariaeがあるかどうかを決定する工程
を包含する、方法。
(15)前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む、項目14に記載の方法。
(16)前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む、項目14または15に記載の方法。
(17)前記決定する工程は、Candidatus Phlomobacter fragariaeに感染したイチゴから抽出したサンプルを陽性コントロールとして使用することを特徴とする、項目14~16のいずれかに記載の方法。
(18)前記核酸増幅反応は、リアルタイムPCRまたはLAMP法によって行われる、項目14~17のいずれかに記載の方法。
(19)Candidatus Phlomobacter fragariaeを検出するためのプライマーであって、配列番号6~25に記載の配列から選択される配列を含むプライマー。
(20)Candidatus Phlomobacter fragariaeを検出するためのプライマーであって、配列番号6および7のセット、配列番号8および9のセット、配列番号10~11のセット、配列番号12~13のセット、配列番号14~15のセット、配列番号16~21のセット、配列番号22~23のセット、配列番号24~25のセットに記載の配列から選択される配列セットを含むプライマーセット。
(21)Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するための装置であって、該装置は:
 (A)核酸増幅反応を行うための手段;
 (B)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット、または配列番号は1~5に示す配列またはその相補配列のうち少なくとも10ヌクレオチドと標識とを含むプローブ;ならびに
 (C)該核酸分子または該標識を検出するための手段
を含む、装置。
(22)Candidatus Phlomobacter fragariaeを検出するためのLAMP増幅用核酸プライマーセットであって、
 片方の鎖が配列番号1~5のいずれかに示す配列を有する2本鎖DNAの第1のDNA鎖上にある標的配列の3’末端から該DNA鎖の3’末端方向に向かって順に第1の任意配列F1cおよび第2の任意配列F2cをそれぞれ選択し、また該標的配列の5’末端から該DNA鎖の5’末端方向に向かって順に第3の任意配列R1および第4の任意配列R2をそれぞれ選択したとき、以下のA)およびB)からなるインナープライマー:
 A)該F2cに相補的な配列F2および該F1cと同一の配列を3’側から5’側にこの順で含むプライマー、または
 該F2cに相補的な配列F2、以下の制限酵素の認識配列および該F1cと同一の配列を3’側から5’側にこの順で含むプライマー
  a)3’末端が突出した断片を形成し、かつ
  b)切断後のそれぞれの断片の1本鎖領域の塩基配列が異なるように切断可能な制限酵素
 B)該R2と同一の配列、該制限酵素の認識配列および該R1に相補的な配列R1cを3’側から5’側にこの順で含むプライマー
を含むプライマーセット。
 これらのすべての局面において、本明細書に記載される各々の実施形態は、適用可能である限り、他の局面において適用されうることが理解される。
 複数の実施形態が開示されるが、本発明のなお他の実施形態は、以下の詳細な説明から当業者には明らかになるであろう。明らかであるように、本発明は、すべて本発明の技術思想および範囲から逸脱することなく、種々の明白な態様において修飾が可能である。従って、図面および詳細な説明は、事実上例示的であると見なされ、制限的であるとは見なされない。
 現在、イチゴ果実の生産で用いられる主要な品種のほぼ全てで、栄養繁殖によって増殖された苗を利用しているため、苗を生産するための親株が無病化されていることが極めて重要である。また、イチゴ栽培における苗生産と果実生産の分業化は、海外では既に普及し、国内でも近年になり普及しつつあるが、将来的には国際的な苗の流通(輸出入)が進むことが想定される。本発明は、苗生産の親株や、果実生産用の苗として流通するイチゴの、本病に関する安全性(無病性)を評価(検疫)するために利用できる。また、イチゴ苗の生産地等においては、本病発生の早期発見および伝染経路の特定等のモニタリングに利用できる。
図1は、Candidatus Phlomobacter fragariae(C-12株)に見出された染色体外DNAの模式図を示す。左からpPFC12-L、pPFC12-S1およびpPFC12-S2の模式図を示す。いずれにもRep(ORF1)が含まれている。 図2は、Rep遺伝子を標的にしたリアルタイムPCRによる検出限界を示す。濃度の希釈倍率である10-1~10-6、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の10~10倍希釈液(従来のPCR法での検出限界は10倍希釈まで)を示す。X軸は反応時間、Y軸は、濁度(Optical Density)を示す。グラフ中の数字は希釈倍率(べき乗)を示す(10-1等の10の右側の数値は、上付きでない文字でもべき乗を示す。)。 図3は、Rep遺伝子を標的にしたLAMP法による検出限界の比較(1)を示す。図中、B12+L、Ca.P.fragariaeのRep遺伝子の塩基配列から設計したプライマーセット(ループプライマー添加)を使用した。また、CPF2+L、Ca.P.fragariaeの16S rDNAを標的にしたプライマーセット(ループプライマー添加)を使用した。濃度を示す10-1~10-4、Ca.P.fragariaeに感染したイチゴから抽出した粗核酸試料の10~10倍希釈液を示す。実線は、B-12+L(Rep)を示す。破線は、CPF2-+L(15S rDNA)を示す。×は蒸留水を示す(Y軸に重なっている。)。ひし形は健全とちおとめを示す(Y軸に重なっている。)。X軸は反応時間、Y軸は、濁度(Optical Density)を示す。 図4は、Rep遺伝子を標的にしたLAMP法による検出限界の比較(2)を示す。図中、上段に示すB12+L、Ca.P.fragariaeのRep遺伝子の塩基配列から設計したプライマーセット(ループプライマー添加)を使用した。また、下段に示すCPF2+L、Ca.P.fragariaeの16S rDNAを標的にしたプライマーセット(ループプライマー添加)を使用した。濃度を示す10-1~10-6は、Ca.P.fragariaeに感染したイチゴから抽出した粗核酸試料の10~10倍希釈液を示す。Hは、健全とちおとめを示し、Nは鋳型DNA無添加のコントロールを示す。 図5は、ORF2を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとしてExORF2-L596(配列番号10)/ExORF2-R738(配列番号11)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った。縦軸は、蛍光強度(一次曲線)を示し、横軸はPCRのサイクル数を示す。10-3~10-6.5は、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の希釈倍数を示す(10~106.5倍希釈液)。Healthyは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。NTCは鋳型DNA無添加のコントロールを示す。 図6は、ORF3を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとして、ExORF3-L847(配列番号12)/ExORF3-R943(配列番号13)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った。縦軸は、蛍光強度(一次曲線)を示し、横軸はPCRのサイクル数を示す。10-3~10-6.5は、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の希釈倍数を示す(10~106.5倍希釈液)。Healthyは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。NTCは鋳型DNA無添加のコントロールを示す。 図7は、ORF3を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとしてExORF4-L572(配列番号14)/ExORF4-R691(配列番号15)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った。縦軸は、蛍光強度(一次曲線)を示し、横軸はPCRのサイクル数を示す。10-3~10-6.5は、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の希釈倍数を示す(10~106.5倍希釈液)。Healthyは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。NTCは鋳型DNA無添加のコントロールを示す。 図8は、pPFC12-L上のRep遺伝子とORF-2の間のDNA領域を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとしてExSSB-L096(配列番号22)/ExSSB-R265(配列番号23)/を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った結果である。数値は、希釈倍数を示す。Healthyは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。NTCは鋳型DNA無添加のコントロールを示す。 図9は、ORF4とRep遺伝子の間のDNA領域を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとして、ExExd-L236(配列番号24)/ExExd-R345(配列番号25)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った結果である。数値は、希釈倍数を示す。Healthyは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。NTCは鋳型DNA無添加のコントロールを示す。 図10は実施例7の結果である。葉縁退緑病感染イチゴを吸汁したヒシウンカ幼虫から抽出した核酸を試料として、実施例1で記したプライマーセットB12-L2/B12-R2を用いたリアルタイムPCR法により、Ca.P.fragariaeの検出を試みた結果である。数値は、希釈倍数を示す。Diseasedは病害に罹患したイチゴを示し、C-12×10-3は、10希釈のものを示す。Healthyは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。NTCは鋳型DNA無添加のコントロールを示す。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の修飾語等(例えば、英語の場合は「a」、「an」、「the」等の冠詞など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当上記分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 以下に本明細書において用いられる各用語の意味を説明する。各用語は本明細書中、統一した意味で使用し、単独で用いられる場合も、または他の用語と組み合わされて用いられる場合も、同一の意味で用いられる。
 (用語の定義)
 本明細書において「Candidatus Phlomobacter fragariae」とは、イチゴ葉縁退緑病の原因病原菌であるバクテリア様微生物をいう。
 本明細書においてCandidatus Phlomobacter fragariaeの「染色体外遺伝子」とは、Candidatus Phlomobacter fragariaeにおいて本発明においてはじめて見出された染色体外遺伝子をいい、配列番号5などで示される。
 本明細書において「Rep遺伝子」とは、複製関連タンパク質に関する遺伝子であって、Candidatus Phlomobacter fragariaeでは、配列番号1(または配列番号5のうちの配列番号1に対応する部分)に示す核酸配列もしくはその改変配列またはそれがコードするアミノ酸配列もしくは配列番号1がコードするアミノ酸配列(配列番号26)に示すタンパク質によって定義される。本明細書において「Rep遺伝子」は、Candidatus Phlomobacter fragariae由来である限り、どのようなものでも用いることができる。
 本明細書においてRep遺伝子がタンパク質を意図する場合、そのタンパク質は、
 (a)配列番号26に示すアミノ酸配列またはそのフラグメントからなる、ポリペプチド;
 (b)配列番号26に示すアミノ酸配列において、1以上のアミノ酸が置換、付加および欠失からなる群より選択される少なくとも1つの変異を有し、かつ、生物学的活性(例えば、Rep遺伝子の機能)を有する、ポリペプチド;
 (c)配列番号1(または配列番号5のうちの配列番号1に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体によってコードされる、ポリペプチド;
 (d)配列番号26に示すアミノ酸配列の種相同体である、ポリペプチド;
 (e)(a)~(d)のいずれか1つのポリペプチドに対する同一性が少なくとも70%であるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチド;または
 (f)(a)~(d)のいずれか1つのポリペプチドをコードするポリヌクレオチドとストリンジェントなハイブリダイゼーション条件下でハイブリダイズするポリヌクレオチドによりコードされるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチドであり得る。
 本明細書においてRep遺伝子が核酸を意図する場合、その核酸は、
 (a)配列番号1(または配列番号5のうちの配列番号1に対応する部分)に示す塩基配列またはそのフラグメント配列を有するポリヌクレオチド;
 (b)配列番号26に示すアミノ酸配列からなるポリペプチドまたはそのフラグメントをコードするポリヌクレオチド;
 (c)配列番号26に示すアミノ酸配列において、1以上のアミノ酸が、置換、付加および欠失からなる群より選択される少なくとも1つの変異を有する改変体ポリペプチドであって、生物学的活性を有する改変体ポリペプチドをコードする、ポリヌクレオチド;
 (d)配列番号1(または配列番号5のうちの配列番号1に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体である、ポリヌクレオチド;
 (e)配列番号26に示すアミノ酸配列からなるポリペプチドの種相同体をコードする、ポリヌクレオチド;
 (f)(a)~(e)のいずれか1つのポリヌクレオチドにストリンジェント条件下でハイブリダイズし、かつ生物学的活性を有するポリペプチドをコードするポリヌクレオチド;または
 (g)(a)~(e)のいずれか1つのポリヌクレオチドまたはその相補配列に対する同一性が少なくとも70%である塩基配列からなり、かつ、生物学的活性を有するポリペプチドをコードするポリヌクレオチドであり得る。
 本明細書において「ORF2遺伝子」、「ORF3遺伝子」および「ORF4遺伝子」とは、それぞれ、Candidatus Phlomobacter fragariaeにおいて染色体外遺伝子として見出されたものであって、配列番号2、3または4に示す核酸配列もしくはその改変配列またはそれがコードするアミノ酸配列配列番号27、28または29が構成するタンパク質によって定義される。本明細書において「ORF2遺伝子」、「ORF3遺伝子」および「ORF4遺伝子」は、Candidatus Phlomobacter fragariae由来である限り、どのようなものでも用いることができる。また、「ORF2遺伝子」、「ORF3遺伝子」および「ORF4遺伝子」の生物学的機能は、当業者が当該分野において公知の手法を用いて決定することができる。
 本明細書においてORF2遺伝子がタンパク質を意図する場合、そのタンパク質は、
 (a)配列番号27に示すアミノ酸配列またはそのフラグメントからなる、ポリペプチド;
 (b)配列番号27に示すアミノ酸配列において、1以上のアミノ酸が置換、付加および欠失からなる群より選択される少なくとも1つの変異を有し、かつ、生物学的活性を有する、ポリペプチド;
 (c)配列番号2(または配列番号5のうちの配列番号2に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体によってコードされる、ポリペプチド;
 (d)配列番号27に示すアミノ酸配列の種相同体である、ポリペプチド;
 (e)(a)~(d)のいずれか1つのポリペプチドに対する同一性が少なくとも70%であるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチド;または
 (f)(a)~(d)のいずれか1つのポリペプチドをコードするポリヌクレオチドとストリンジェントなハイブリダイゼーション条件下でハイブリダイズするポリヌクレオチドによりコードされるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチドであり得る。
 本明細書においてORF2遺伝子が核酸を意図する場合、その核酸は、
 (a)配列番号2(または配列番号5のうちの配列番号2に対応する部分)に示す塩基配列またはそのフラグメント配列を有するポリヌクレオチド;
 (b)配列番号27に示すアミノ酸配列からなるポリペプチドまたはそのフラグメントをコードするポリヌクレオチド;
 (c)配列番号27に示すアミノ酸配列において、1以上のアミノ酸が、置換、付加および欠失からなる群より選択される少なくとも1つの変異を有する改変体ポリペプチドであって、生物学的活性を有する改変体ポリペプチドをコードする、ポリヌクレオチド;
 (d)配列番号2(または配列番号5のうちの配列番号2に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体である、ポリヌクレオチド;
 (e)配列番号27に示すアミノ酸配列からなるポリペプチドの種相同体をコードする、ポリヌクレオチド;
 (f)(a)~(e)のいずれか1つのポリヌクレオチドにストリンジェント条件下でハイブリダイズし、かつ生物学的活性を有するポリペプチドをコードするポリヌクレオチド;または
 (g)(a)~(e)のいずれか1つのポリヌクレオチドまたはその相補配列に対する同一性が少なくとも70%である塩基配列からなり、かつ、生物学的活性を有するポリペプチドをコードするポリヌクレオチドであり得る。
 本明細書においてORF3遺伝子がタンパク質を意図する場合、そのタンパク質は、
 (a)配列番号28に示すアミノ酸配列またはそのフラグメントからなる、ポリペプチド;
 (b)配列番号28に示すアミノ酸配列において、1以上のアミノ酸が置換、付加および欠失からなる群より選択される少なくとも1つの変異を有し、かつ、生物学的活性を有する、ポリペプチド;
 (c)配列番号3(または配列番号5のうちの配列番号3に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体によってコードされる、ポリペプチド;
 (d)配列番号28に示すアミノ酸配列の種相同体である、ポリペプチド;
 (e)(a)~(d)のいずれか1つのポリペプチドに対する同一性が少なくとも70%であるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチド;または
 (f)(a)~(d)のいずれか1つのポリペプチドをコードするポリヌクレオチドとストリンジェントなハイブリダイゼーション条件下でハイブリダイズするポリヌクレオチドによりコードされるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチドであり得る。
 本明細書においてORF3遺伝子が核酸を意図する場合、その核酸は、
 (a)配列番号3(または配列番号5のうちの配列番号3に対応する部分)に示す塩基配列またはそのフラグメント配列を有するポリヌクレオチド;
 (b)配列番号28に示すアミノ酸配列からなるポリペプチドまたはそのフラグメントをコードするポリヌクレオチド;
 (c)配列番号28に示すアミノ酸配列において、1以上のアミノ酸が、置換、付加および欠失からなる群より選択される少なくとも1つの変異を有する改変体ポリペプチドであって、生物学的活性を有する改変体ポリペプチドをコードする、ポリヌクレオチド;
 (d)配列番号3(または配列番号5のうちの配列番号3に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体である、ポリヌクレオチド;
 (e)配列番号28に示すアミノ酸配列からなるポリペプチドの種相同体をコードする、ポリヌクレオチド;
 (f)(a)~(e)のいずれか1つのポリヌクレオチドにストリンジェント条件下でハイブリダイズし、かつ生物学的活性を有するポリペプチドをコードするポリヌクレオチド;または
 (g)(a)~(e)のいずれか1つのポリヌクレオチドまたはその相補配列に対する同一性が少なくとも70%である塩基配列からなり、かつ、生物学的活性を有するポリペプチドをコードするポリヌクレオチドであり得る。
 本明細書においてORF4遺伝子がタンパク質を意図する場合、そのタンパク質は、
 (a)配列番号29に示すアミノ酸配列またはそのフラグメントからなる、ポリペプチド;
 (b)配列番号29に示すアミノ酸配列において、1以上のアミノ酸が置換、付加および欠失からなる群より選択される少なくとも1つの変異を有し、かつ、生物学的活性を有する、ポリペプチド;
 (c)配列番号4(または配列番号5のうちの配列番号4に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体によってコードされる、ポリペプチド;
 (d)配列番号29に示すアミノ酸配列の種相同体である、ポリペプチド;
 (e)(a)~(d)のいずれか1つのポリペプチドに対する同一性が少なくとも70%であるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチド;または
 (f)(a)~(d)のいずれか1つのポリペプチドをコードするポリヌクレオチドとストリンジェントなハイブリダイゼーション条件下でハイブリダイズするポリヌクレオチドによりコードされるアミノ酸配列を有し、かつ、生物学的活性を有する、ポリペプチドであり得る。
 本明細書においてORF4遺伝子が核酸を意図する場合、その核酸は、
 (a)配列番号4(または配列番号5のうちの配列番号4に対応する部分)に示す塩基配列またはそのフラグメント配列を有するポリヌクレオチド;
 (b)配列番号29に示すアミノ酸配列からなるポリペプチドまたはそのフラグメントをコードするポリヌクレオチド;
 (c)配列番号29に示すアミノ酸配列において、1以上のアミノ酸が、置換、付加および欠失からなる群より選択される少なくとも1つの変異を有する改変体ポリペプチドであって、生物学的活性を有する改変体ポリペプチドをコードする、ポリヌクレオチド;
 (d)配列番号4(または配列番号5のうちの配列番号4に対応する部分)に示す塩基配列のスプライス変異体または対立遺伝子変異体である、ポリヌクレオチド;
 (e)配列番号29に示すアミノ酸配列からなるポリペプチドの種相同体をコードする、ポリヌクレオチド;
 (f)(a)~(e)のいずれか1つのポリヌクレオチドにストリンジェント条件下でハイブリダイズし、かつ生物学的活性を有するポリペプチドをコードするポリヌクレオチド;または
 (g)(a)~(e)のいずれか1つのポリヌクレオチドまたはその相補配列に対する同一性が少なくとも70%である塩基配列からなり、かつ、生物学的活性を有するポリペプチドをコードするポリヌクレオチドであり得る。
 本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう。
 本明細書において使用される用語「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいう。他にそうではないと示されなければ、特定の核酸配列はまた、明示的に示された配列と同様に、その保存的に改変された改変体(例えば、縮重コドン置換体)および相補配列を包含することが企図される。具体的には、縮重コドン置換体は、1またはそれ以上の選択された(または、すべての)コドンの3番目の位置が混合塩基および/またはデオキシイノシン残基で置換された配列を作成することにより達成され得る(Batzerら、Nucleic Acid Res.19:5081(1991);Ohtsukaら、J.Biol.Chem.260:2605-2608(1985);Rossoliniら、Mol.Cell.Probes 8:91-98(1994))。
 本明細書において「遺伝子」とは、遺伝形質を規定する因子をいう。通常染色体上に一定の順序に配列している。タンパク質の一次構造を規定する遺伝子を構造遺伝子といい、その発現を左右する領域を調節エレメントという。本明細書では、「遺伝子」は、「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」ならびに/あるいは「タンパク質」「ポリペプチド」、「オリゴペプチド」および「ペプチド」をさすことがある。本明細書において遺伝子の「オープンリーディングフレーム」または「ORF」とは、遺伝子の塩基配列を3塩基ずつに区切った時の3通りの枠組の1つであって、開始コドンを有し、そして途中に終止コドンが出現せずある程度の長さを持ち、実際にタンパク質をコードする可能性のある読み枠をいう。本明細書では、ヌクレオチドとしては、検出目的等に使用することができる限り、その類似体(例えば、ペプチド核酸等)も使用することができることが理解される。
 本明細書において「対応する」遺伝子、核酸、核酸配列、核外遺伝子等とは、ある種において、比較の基準となる種における所定の遺伝子と同様の作用を有するか、または有することが予測される遺伝子をいい、そのような作用を有する遺伝子が複数存在する場合、進化学的に同じ起源を有するものをいう。従って、ある遺伝子の対応する遺伝子は、その遺伝子のオルソログであり得る。したがって、Candidatus Phlomobacter fragariaeの配列などの遺伝子に対応する遺伝子は、同種の病原菌の他の株においても見出すことができる。そのような対応する遺伝子は、当該分野において周知の技術を用いて同定することができる。したがって、例えば、ある動物における対応する遺伝子は、対応する遺伝子の基準となる遺伝子(例えば、Rep遺伝子など)の配列をクエリ配列として用いてその生物の配列データベースを検索することによって、またはウェットの実験でライブラリーをスクリーニングすることによって見出すことができる。
 本明細書において「対応する」アミノ酸および核酸とは、それぞれあるポリペプチドおよび核酸分子において、比較の基準となるポリペプチドおよび核酸分子における所定のアミノ酸および核酸と同様の作用を有するか、または有することが予測されるアミノ酸および核酸をいい、例えば、ユビキチンにおいては、リジンとの連結を担う配列(例えば、C末端のグリシン)と同様の位置に存在し触媒活性に同様の寄与をするアミノ酸およびそれをコードする核酸をいう。例えば、核酸配列であれば、その核酸配列またはそれがコードする特定の部分と同様の機能を発揮する部分であり得る。
 本明細書において「単離された」物質(例えば、核酸またはタンパク質などのような生物学的因子)とは、その物質が天然に存在する環境(例えば、生物体の細胞内)の他の物質(好ましくは、生物学的因子)(例えば、核酸である場合、核酸以外の因子および目的とする核酸以外の核酸配列を含む核酸;タンパク質である場合、タンパク質以外の因子および目的とするタンパク質以外のアミノ酸配列を含むタンパク質など)から実質的に分離または精製されたものをいう。「単離された」核酸およびタンパク質には、標準的な精製方法によって精製された核酸およびタンパク質が含まれる。したがって、単離された核酸およびタンパク質は、化学的に合成した核酸およびタンパク質を包含する。
 本明細書において「精製された」物質(例えば、核酸またはタンパク質などのような生物学的因子)とは、その物質に天然に随伴する因子の少なくとも一部が除去されたものをいう。したがって、通常、精製された物質におけるその物質の純度は、その物質が通常存在する状態よりも高い(すなわち濃縮されている)。
 本明細書において「精製された」および「単離された」とは、好ましくは少なくとも75重量%、より好ましくは少なくとも85重量%、よりさらに好ましくは少なくとも95重量%、そして最も好ましくは少なくとも98重量%の、同型の物質が存在することを意味する。
 本明細書において遺伝子の「相同性」とは、2以上の遺伝子配列の、互いに対する同一性の程度をいう。従って、ある2つの遺伝子の相同性が高いほど、それらの配列の同一性または類似性は高い。2種類の遺伝子が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェントな条件下でのハイブリダイゼーション法によって調べられ得る。2つの遺伝子配列を直接比較する場合、その遺伝子配列間でDNA配列が、代表的には少なくとも50%同一である場合、好ましくは少なくとも70%同一である場合、より好ましくは少なくとも80%、90%、95%、96%、97%、98%または99%同一である場合、それらの遺伝子は相同性を有する。
 本明細書において「ストリンジェントなハイブリダイズ条件」とは、当該分野で慣用される周知の条件をいう。本発明のポリヌクレオチド中から選択されたポリヌクレオチドをプローブとして、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法あるいはサザンブロットハイブリダイゼーション法等を用いることにより、そのようなポリヌクレオチドを得ることができる。具体的には、ストリンジェントな条件でハイブリダイズするポリヌクレオチドは、コロニーあるいはプラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC(saline-sodium citrate)溶液(1倍濃度のSSC溶液の組成は、150mM 塩化ナトリウム、15mM クエン酸ナトリウムである)を用い、65℃条件下でフィルターを洗浄することにより同定できるポリヌクレオチドを意味する。ハイブリダイゼーションは、Molecular Cloning 2nd ed.,Current Protocols in Molecular Biology,Supplement 1-38、DNA Cloning 1:Core Techniques,A Practical Approach,Second Edition,Oxford University Press(1995)等の実験書に記載されている方法に準じて行うことができる。ここで、ストリンジェントな条件下でハイブリダイズする配列からは、好ましくは、A配列のみまたはT配列のみを含む配列が除外される。「ハイブリダイズ可能なポリヌクレオチド」とは、上記ハイブリダイズ条件下で別のポリヌクレオチドにハイブリダイズすることができるポリヌクレオチドをいう。ハイブリダイズ可能なポリヌクレオチドとして具体的には、本発明で具体的に示されるアミノ酸配列を有するポリペプチドをコードするDNAの塩基配列と少なくとも60%以上の相同性を有するポリヌクレオチド、好ましくは80%以上の相同性を有するポリヌクレオチド、さらに好ましくは95%以上の相同性を有するポリヌクレオチドを挙げることができる。
 本明細書では配列の同一性の算出および相同性の評価は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用いて算出される。同一性の検索は例えば、NCBIのBLAST 2.2.23(2010年3月22日発行)を用いて行うことができる。本明細書における同一性の値は通常は上記BLASTを用い、デフォルトの条件でアラインした際の値をいう。ただし、パラメーターの変更により、より高い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価される場合はそのうちの最も高い値を同一性の値とする。
 本明細書において、「検索」とは、電子的にまたは生物学的あるいは他の方法により、ある核酸塩基配列を利用して、特定の機能および/または性質を有する他の核酸塩基配列を見出すことをいう。電子的な検索としては、BLAST(Altschul et al.,J.Mol.Biol.215:403-410(1990))、FASTA(Pearson & Lipman,Proc.Natl.Acad.Sci.,USA 85:2444-2448(1988))、Smith and Waterman法(Smith and Waterman,J.Mol.Biol.147:195-197(1981))、およびNeedleman and Wunsch法(Needleman and Wunsch,J.Mol.Biol.48:443-453(1970))などが挙げられるがそれらに限定されない。生物学的な検索としては、ストリンジェントハイブリダイゼーション、ゲノムDNAをナイロンメンブレン等に貼り付けたマクロアレイまたはガラス板に貼り付けたマイクロアレイ(マイクロアレイアッセイ)、PCRおよび in situハイブリダイゼーションなどが挙げられるがそれらに限定されない。本明細書において、本発明において使用されるプロモーターとしては、このような電子的検索、生物学的検索によって同定された対応する配列も含まれるべきであることが意図される。
 アミノ酸は、その一般に公知の3文字記号か、またはIUPAC-IUB Biochemical Nomenclature Commissionにより推奨される1文字記号のいずれかにより、本明細書中で言及され得る。ヌクレオチドも同様に、一般に受け入れられた1文字コードにより言及され得る。
 本明細書において、「フラグメント」とは、全長のポリペプチドまたはポリヌクレオチド(長さがn)に対して、1~n-1の配列長を有するポリペプチドまたはポリヌクレオチドをいう。フラグメントの長さは、その目的に応じて、適宜変更することができ、例えば、その長さの下限としては、ポリペプチドの場合、3、4、5、6、7、8、9、10、15,20、25、30、40、50およびそれ以上のアミノ酸が挙げられ、ここで具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。また、ポリヌクレオチドの場合、5、6、7、8、9、10、15,20、25、30、40、50、75、100、200、300、400、500、600、600、700、800、900、1000およびそれ以上のヌクレオチドが挙げられ、ここで具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。
 本明細書において「プローブ」とは、インビトロおよび/またはインビボなどのスクリーニングなどの生物学的実験において用いられる、検索の対象となる物質をいい、例えば、特定の塩基配列を含む核酸分子または特定のアミノ酸配列を含むペプチドなどが挙げられるがそれに限定されない。
 本明細書において通常プローブとして用いられる核酸分子としては、目的とする遺伝子の核酸配列と相同なまたは相補的な、少なくとも8の連続するヌクレオチド長の核酸配列を有するものが挙げられる。そのような核酸配列は、好ましくは、少なくとも9の連続するヌクレオチド長の、より好ましくは少なくとも10の連続するヌクレオチド長の、さらに好ましくは少なくとも11の連続するヌクレオチド長の、少なくとも12の連続するヌクレオチド長の、少なくとも13の連続するヌクレオチド長の、少なくとも14の連続するヌクレオチド長の、少なくとも15の連続するヌクレオチド長の、少なくとも20の連続するヌクレオチド長の、少なくとも25の連続するヌクレオチド長の、少なくとも30の連続するヌクレオチド長の、少なくとも40の連続するヌクレオチド長の、少なくとも50の連続するヌクレオチド長の、少なくとも核酸配列であり得る。プローブとして使用される核酸配列には、上述の配列に対して、少なくとも70%同一な、より好ましくは、少なくとも80%同一な、さらに好ましくは、少なくとも90%同一な、少なくとも95%同一な核酸配列が含まれる。
 本明細書における「プライマー」とは、高分子合成酵素反応において、合成される高分子化合物の反応の開始に必要な物質をいう。核酸分子の合成反応では、合成されるべき高分子化合物の一部の配列に相補的な核酸分子(例えば、DNAまたはRNAなど)が用いられ得る。
 通常プライマーとして用いられる核酸分子としては、目的とする遺伝子の核酸配列と相補的な、少なくとも8の連続するヌクレオチド長の核酸配列を有するものが挙げられる。そのような核酸配列は、好ましくは、少なくとも9の連続するヌクレオチド長の、より好ましくは少なくとも10の連続するヌクレオチド長の、さらに好ましくは少なくとも11の連続するヌクレオチド長の、少なくとも12の連続するヌクレオチド長の、少なくとも13の連続するヌクレオチド長の、少なくとも14の連続するヌクレオチド長の、少なくとも15の連続するヌクレオチド長の、少なくとも16の連続するヌクレオチド長の、少なくとも17の連続するヌクレオチド長の、少なくとも18の連続するヌクレオチド長の、少なくとも19の連続するヌクレオチド長の、少なくとも20の連続するヌクレオチド長の、少なくとも25の連続するヌクレオチド長の、少なくとも30の連続するヌクレオチド長の、少なくとも40の連続するヌクレオチド長の、少なくとも50の連続するヌクレオチド長の、核酸配列であり得る。プライマーとして使用される核酸配列には、上述の配列に対して、少なくとも70%同一な、より好ましくは、少なくとも80%同一な、さらに好ましくは、少なくとも90%同一な、少なくとも95%同一な核酸配列が含まれる。プライマーとして適切な配列は、合成(増幅)が意図される配列の性質によって変動し得るが、当業者は、意図される配列に応じて適宜プライマーを設計することができる。そのようなプライマーの設計は当該分野において周知であり、手動でおこなってもよくコンピュータプログラム(例えば、LASERGENE,PrimerSelect,DNAStar)を用いて行ってもよい。
 以下に通常のPCR反応について述べる。このようなPCR反応に用いる試薬を本明細書において「PCR用試薬」ということがある。
 本明細書において「ポリメラーゼ」とは、核酸を合成する能力(たとえば、重合による。)を有する任意の酵素をいい、核酸合成酵素とも称される。これは、ヌクレオチドを縮合させてポリヌクレオチドにする反応を触媒する酵素の総称である。このようなポリメラーゼとしては、例えば、DNAポリメラーゼ(例えば、DNA依存性DNAポリメラーゼ、RNA依存性DNAポリメラーゼ)、RNAポリメラーゼ、などを挙げることができるがそれらに限定されない。このようなポリメラーゼとしては、例えば、Escherichia coli由来のDNAポリメラーゼI、DNAポリメラーゼIクレノウフラグメント、Taqポリメラーゼ、KLA-Taqポリメラーゼ、KODポリメラーゼ、Ventポリメラーゼ、AMV逆転写酵素、Pfuポリメラーゼ、T4 DNAポリメラーゼなどを挙げることができるがそれらに限定されない。
 本明細書において「伸長反応」とは、核酸について言及するとき、その核酸が少なくとも1ヌクレオチド伸びるような任意の反応をいう。ポリメラーゼを用いた伸長反応を行う場合、通常、鋳型に基づいてヌクレオチドが導入されることから、特定の配列が標識対象核酸などの伸長すべき核酸において伸長することになる。
 PCRの伸長反応は、通常、(i)標的核酸およびその相補鎖と核酸プライマーおよび核酸プローブとのハイブリダイゼーション(アニーリング)反応と、(ii)核酸合成酵素によるプライマー鎖の伸長反応およびプローブの分解反応からなりこれら反応(i)および(ii)は、例えばトリス塩酸緩衝液等の適当な緩衝液を含む水溶液中で実施することができる。このハイブリダイゼーション反応は、代表的には、55~75℃で実施することができるがそれに限定されない。酵素反応は、代表的には、37℃で実施することができるがそれに限定されない。プライマー伸長産物の変性は、上記伸長反応で得られるプライマー鎖伸長産物を含む溶液を、例えば94~95℃で0.5~1分間加熱処理するなどを行うことによって実施することができる。
 標的核酸の増幅は、例えば、その標的核酸(標識対象核酸)が所望の量(たとえば、検出可能な量)になるまで、工程上記伸長反応および変性を上記と同様の条件下で複数回繰り返せばよい。すなわち、上記の伸長反応および変性を、類似の条件下で複数回繰り返して行う。上記工程をn回行えば、理論的には標的核酸量は当初の2n-1倍にまで増幅されることとなる。
 このような伸長反応は、市販のPCR(ポリメラーゼ連鎖反応)のための装置(例えば、Applied Biosystemsから販売されている)を用いれば、簡便かつ効率的に実施することができる。
 増幅した核酸を混合物から取り出しは、当該分野において任意の方法を用いて行うことができる。そのような取り出しとしては、例えば、電気泳動、クロマトグラフィー、変性、アルコール沈澱、アフィニティー精製、抗体などを用いることができるがそれらに限定されない。
 本明細書において「標識」とは、目的となる分子または物質を他から識別するための存在(たとえば、物質、エネルギー、電磁波など)をいう。そのような標識方法としては、RI(ラジオアイソトープ)法、蛍光法、ビオチン法、化学発光法等を挙げることができるが、それらに限定されない。上記の核酸断片および相補性を示すオリゴヌクレオチドを何れも蛍光法によって標識する場合には、蛍光発光極大波長が互いに異なる蛍光物質によって標識を行う。蛍光発光極大波長の差は、10nm以上であることが好ましい。蛍光物質としては、核酸の塩基部分と結合できるものであれば何れも用いることができるが、シアニン色素(例えば、CyDyeTMシリーズのCy3、Cy5等)、ローダミン6G試薬、N-アセトキシ-N-2-アセチルアミノフルオレン(AAF)、AAIF(AAFのヨウ素誘導体)等を使用することができる。蛍光発光極大波長の差が10nm以上である蛍光物質としては、例えば、Cy5とローダミン6G試薬との組み合わせ、Cy3とフルオレセインとの組み合わせ、ローダミン6G試薬とフルオレセインとの組み合わせ等を挙げることができる。本発明では、このような標識を利用して、使用される検出手段に検出され得るように目的とする対象を改変することができる。そのような改変は、当該分野において公知であり、当業者は標識におよび目的とする対象に応じて適宜そのような方法を実施することができる。1つの好ましい実施形態では、標識は放射能標識される。
 本明細書において、「改変体」(variant)または「改変配列」(本明細書において「改変体」とまとめて総称することがある。)とは、もとのポリペプチドまたはポリヌクレオチドなどの物質または配列に対して、一部が変更されているものをいう。そのような改変体としては、置換改変体、付加改変体、欠失改変体、短縮(truncated)改変体、対立遺伝子変異体などが挙げられる。本明細書において「改変体」は、本発明の目的を達成することができる限り、いかなるものも使用することができる。たとえば、そのような目的としては、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病の検出等であり得る。対立遺伝子(allele)とは、同一遺伝子座に属し、互いに区別される遺伝的改変体のことをいう。従って、「対立遺伝子変異体」とは、ある遺伝子に対して、対立遺伝子の関係にある改変体をいう。「種相同体またはホモログ(homolog)」とは、ある種の中で、ある遺伝子とアミノ酸レベルまたはヌクレオチドレベルで、相同性(好ましくは、60%以上の相同性、より好ましくは、80%以上、85%以上、90%以上、95%以上の相同性)を有するものをいう。そのような種相同体を取得する方法は、本明細書の記載から明らかである。「オルソログ(ortholog)」とは、オルソロガス遺伝子(orthologous gene)ともいい、二つの遺伝子がある共通祖先からの種分化に由来する遺伝子をいう。例えば、多重遺伝子構造をもつヘモグロビン遺伝子ファミリーを例にとると、ヒトとマウスのαヘモグロビン遺伝子はオルソログであるが,ヒトのαヘモグロビン遺伝子とβヘモグロビン遺伝子はパラログ(遺伝子重複で生じた遺伝子)である。オルソログは、分子系統樹の推定に有用であることから、本発明のオルソログもまた、本発明において有用であり得る。
 本明細書において「機能的改変体」とは、基準となる配列が担う生物学的活性(例えば、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病の検出等)を保持する改変体をいう。
 このような核酸は、周知のPCR法により得ることができ、化学的に合成することもできる。これらの方法に、例えば、部位特異的変位誘発法、ハイブリダイゼーション法などを組み合わせてもよい。
 本明細書において、ポリペプチドまたはポリヌクレオチドの「置換、付加または欠失」とは、もとのポリペプチドまたはポリヌクレオチドに対して、それぞれアミノ酸もしくはその代替物、またはヌクレオチドもしくはその代替物が、置き換わること、付け加わることまたは取り除かれることをいう。このような置換、付加または欠失の技術は、当該分野において周知であり、そのような技術の例としては、部位特異的変異誘発技術などが挙げられる。置換、付加または欠失は、1つ以上であれば任意の数でよく、そのような数は、その置換、付加または欠失を有する改変体において目的とする機能が保持される限り、多くすることができる。例えば、そのような数は、1または数個であり得、そして好ましくは、全体の長さの20%以内、10%以内、または100個以下、50個以下、25個以下などであり得る。本発明は、そのような改変体は、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病の検出等に用いることができる限りどのようなものでも使用することができる。
 1つの実施形態において、本発明は、リアルタイムPCRを用いることができる。
 本明細書において使用されるリアルタイムPCR法は、PCRによる増幅を経時的(すなわち、リアルタイム)に測定することで、増幅率に基づいて鋳型となるDNAの定量を行なうものであって、遺伝子発現解析の他に、SNPsタイピング、遺伝子組み換え食品の検査、ウイルスや病原菌の検出、導入遺伝子のコピー数の解析などさまざまな用途に応用されている。リアルタイムPCRは、遺伝子発現解析のような定量解析を行うことが主であるが、プラス/マイナス判定だけの定性分析のためのみでも利用されうる。これは、リアルタイムPCRが反応後に電気泳動で増幅産物の確認を行う必要がないので、簡便・迅速に結果が得られ、汚染のリスクが低いといった長所も持つためである。近年、従来のPCR法で行われていた遺伝子検査は、リアルタイムPCRで行うことが頻繁となりつつある。
 リアルタイムPCRによる定量の原理は以下のとおりである。リアルタイムPCRでは、PCR増幅産物をリアルタイムでモニタリングするため、指数関数的増幅域で正確な定量を行うことができる。これは、エンドポイントで分析するRT-PCR法などとは大きく異なる点である。以下、その定量の原理について手短に記載する。
 PCRでは、1サイクルごとにDNAが2倍、2倍、・・と指数関数的に増幅し、やがてプラトーに達する。この増幅の状態をリアルタイムモニタリングしたものが増幅曲線であり、PCR増幅産物量が蛍光検出できる量に達すると増幅曲線が立ち上がり始め、指数関数的にシグナルが上昇した後、プラトーに達する。
 初発のDNA量が多いほど、増幅産物量は早く検出可能な量に達するので、増幅曲線が早いサイクルで立ち上がる。従って、段階希釈したスタンダードサンプルを用いてリアルタイムPCRを行うと、初発DNA量が多い順番に等間隔で並んだ増幅曲線が得られる。ここで、相当な箇所に閾値を設定すると、閾値と増幅曲線が交わる点であるCt値(PCR増幅産物がある一定量に達したときのサイクル数)が算出される。Ct値と初期鋳型量の間には直線関係がある。未知サンプルについても標準サンプルと同様にCt値を算出し、この検量線に当てはめれば、初期鋳型量を求めることができる。
 リアルタイムPCRでは、PCR増幅産物を蛍光により検出することができる。蛍光検出方法には、インターカレーターを用いる方法と蛍光標識プローブを用いる方法の2種類があり、本発明では、いずれも用いることができる。
 本発明で利用されうるインターカレーター法には、一般的に、例えばSYBR Green Iを使用するがこれに限定されない。インターカレーターは、PCRによって合成された二本鎖DNAに結合し、励起光の照射により蛍光を発する。この蛍光強度を測定することにより、増幅産物の生成量をモニターすることができる。
 別の手法として、蛍光標識を用いる方法がある。本発明の方法で用いられうる蛍光標識プローブには多くの種類があり、以下に束縛されないが、例えば、TaqManプローブ(Linear Probeの一種)、Molecular Beacon(Structured Probeの一種)、サイクリングプローブ (Linear Probeの一種)などを挙げることができる。
 インターカレーター法は、二本鎖DNAをすべて検出するため、ターゲット遺伝子ごとにプローブを用意する必要がない。実験コストが安く反応系の構築も容易なのが長所であるが、検出特異性はあまり高くない。一方、蛍光標識プローブを用いる方法は、プローブ設計のための専用ソフトが必要でコストも高いが、検出特異性が高いというメリットがある。相同性の高い配列同士を区別する場合やSNPsタイピングのようにマルチプレックス検出が必要な場合には、蛍光標識プローブがその威力を発揮する。蛍光検出方法は、実験用途に合わせて選択する。従って、一般的に、高い特異性が求められる実験には蛍光標識プローブを、それ以外の場合には簡便なインターカレーター法を用いるのがよいが、必ずしもこれに限定されないことが理解される。
 本発明は、リアルタイムPCR装置において実施することができる。例えば、リアルタイムPCRを行うには、サーマルサイクラーと分光蛍光光度計とを一体化したリアルタイムPCR専用装置を利用することができる。サーマルサイクラーでDNAをPCR増幅しつつ、分光蛍光光度計でその増幅産物をモニタリングすることができる。さまざまな種類のリアルタイムPCR装置が販売されており、高速でPCR反応が行えるように工夫されたものや96ウェルのプレート単位で反応できるものなど、それぞれ特性を備えている。分析規模や実験者の人数に合わせ、大規模解析に適した機種あるいは中規模~小規模解析に適した小回りの利く機種を選択することができる。また、装置によって検出できる蛍光色素の種類が異なるので、複数種類の蛍光色素を使用する実験を行う場合には、その点にも注意が必要である。さらには、複数種類の蛍光色素が検出できる装置でも、それらの蛍光色素間でクロストークがあると、同時に正確な検出を行うことはできない。同時検出する蛍光色素について、クロストークがないことも確認しておくべきである。
 (LAMP法)
 本明細書において「LAMP(Loop-Mediated Isothermal Amplification)方法」とは、核酸の増幅方法で、インナープライマー対あるいはこれにアウタープライマー対、さらにループプライマー対を加えた、2種、4種あるいは6種の特異的プライマーと、鎖置換型ポリメラーゼおよび基質であるヌクレオチドを用いて、等温条件下(65℃前後)でDNAまたはRNAを迅速かつ安価に増幅する方法であ る。LAMP法の概要については、Notomi, T et al.:Nucleic Acids Res.28(12):e63(2000)、国際公開WO00/28082号、あるいは栄研化学(株)ウェブサイト(http://www.loopamp.eiken.co.jp/)を参照。Nagamine et.al.,Clinical Chemistry(2001),Vol.47,No.9,1742-1743、国際公開WO01/34838、国際公開WO02/34709等)等もまた参酌することができ、その記載の全体は、参照として本明細書中において援用される。
 LAMP法では、増幅生成物の同一鎖上末端に互いに相補的な配列が生成し、これらがアニールしてヘアピン状のループが形成され、そのループを起点としたポリメラーゼによる伸長反応が起きる。同時に、ループ内にアニールしたプライマーからは鎖置換型伸長反応が起こり、先の伸長生成物を1本鎖に解離させていく。解離した1本鎖もまた、末端に相補的配列を有するため、この反応は繰り返し起きる。こうして、LAMP法では増幅生成物の同一鎖上の複数の位置で、伸長反応と増幅反応が同時進行するため、DNAの増幅が超指数関数的にしかも等温条件下で達成され、微量核酸を効率的に増幅することができる。
 LAMP法ではインナープライマー、アウタープライマー、ループプライマーと呼ばれる、特異的プライマーが用いられる。
 インナープライマーとはLAMP法に必須のプライマーであって、鋳型DNAのそれぞれの鎖において、3’側に存在する任意配列X2c、これより5’側の任意配列X1cを選択したとき、該X2cに相補的配列X2と該X1cと同一の配列X1cを3’側から5’側にこの順で含む(X1c+X2の構造をもつ)プライマーをいう。機能的にいえば、インナープライマー上のX2は鋳型に特異的にアニールして相補鎖合成の起点を与える部分であり、X1cは増幅(伸長)生成物がループを形成するための相補的配列を与える。そして、このループが新たな相補鎖合成の起点となる。
 アウタープライマーとは、インナープライマーよりも外側(鋳型の3’側)の任意配列X3cに相補的配列を有し、これにアニールしうるプライマー2種(2本鎖に相補的な各々について1つずつ)をいう。
 以上から、LAMP法のプライマーセットは以下のように表現することができる。
 すなわち、LAMP法のプライマーセットは、2本鎖DNAの第1のDNA鎖上にある標的配列の3’末端から該DNA鎖の3’末端方向に向かって順に第1の任意配列F1cおよび第2の任意配列F2cをそれぞれ選択し、また該標的配列の5’末端から該DNA鎖の5’末端方向に向かって順に第3の任意配列R1および第4の任意配列R2をそれぞれ選択したとき、以下のA)およびB)からなるインナープライマー:
 A)該F2cに相補的な配列F2および該F1cと同一の配列を3’側から5’側にこの順で含むプライマー、または
 該F2cに相補的な配列F2、以下の制限酵素の認識配列および該F1cと同一の配列を3’側から5’側にこの順で含むプライマー
  a)3’末端が突出した断片を形成し、かつ
  b)切断後のそれぞれの断片の1本鎖領域の塩基配列が異なるように切断可能な制限酵素
 B)該R2と同一の配列、該制限酵素の認識配列および該R1に相補的な配列R1cを3’側から5’側にこの順で含むプライマーを含む。
 LAMP法のプライマーの鋳型核酸へのアニールを容易にするため、上記X1(X1c)、X2(X2c)、X3(X3c)の長さは5~100塩基が好ましく、10~50塩基がさらに好ましい。
 上記インナープライマーおよびアウタープライマーは、2本鎖(FおよびR)のそれぞれについて必要であり、インナープライマー(F1c+F2、R1c+R2)、アウタープライマー(F3、R3)の各々2種が設計される。
 各任意配列は、LAMP法により得られる増幅産物が分子間アニールではなく、分子内アニールを優先的に生じ、末端ヘアピン構造を形成するように選択することが好ましい。例えば、分子内アニールを優先的に生じさせるためには、任意配列の選択に当たって、F1c配列とF2c配列との間の距離およびR1配列とR1c配列との間の距離を考慮することが重要である。具体的には、両者各配列が、0~500塩基、好ましくは0~100塩基、最も好ましくは10~70塩基の距離を介して存在するように選択することが好ましい。ここで、数値はそれぞれ、F1c配列およびF2c配列自身並びにR1配列およびR2配列自身を含まない塩基数を示している。
 また、ループプライマーとは、LAMP法による増幅生成物の同一鎖上に生じる相補的配列が互いにアニールしてループを形成するとき、該ループ内の配列に相補的な塩基配列をその3’末端に含むプライマー2種(2本鎖に相補的な各々について1つずつ)をいう。前記アウタープライマーとループプライマーはLAMP法に必須のプライマーではないが、これらがあれば増幅(伸長)反応はより効率的に進行する。
 LAMP法で用いられる増幅用鋳型核酸はDNAであってもRNAであってもよく、組織または細胞等の生物学的試料から公知方法により、あるいは化学合成法により調製することができる。この場合、増幅すべき領域(標的領域という)の両側には、適当な長さの配列(両側配列という)が存在するように鋳型ポリヌクレオチドを調製する。両側配列とは、当該標的領域の5’末端からポリヌクレオチド鎖の5’末端までの領域の配列、および当該標的領域の3’末端からポリヌクレオチド鎖の3’末端までの領域の配列を意味する。両側配列の長さは、標的領域の5’側および3’側のいずれの領域も、10~1000塩基、好ましくは、30~500塩基である。このような配列は、いったん標的となる配列(例えば、本発明のCandidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病の検出に使用するための標的配列。)が決定されると、上記原理にもとづいて当業者は任意に設計することができることが理解される。
 本明細書において、「標的配列」または「標的領域」とは、1本鎖核酸として合成すべき塩基配列(あるいは領域)を意味する。また、鋳型となる2本鎖DNAのうち、該標的配列を含む方の鎖は、通常第1鎖といい、これに相補的な鎖を通常第2鎖という。
 一連の反応は、酵素反応に好ましいpHを与える緩衝剤、酵素の触媒活性の維持やアニールのために必要な塩類、酵素の保護剤、更には必要に応じて融解温度(Tm)の調整剤等の共存下で行うことが好ましい。緩衝剤としては、Tris-HCl等の中性から弱アルカリ性に緩衝作用を持つものが用いられる。pHは使用するDNAポリメラーゼに応じて調整すればよい。塩類としては、例えばKCl、NaCl、あるいは(NHSO等が、酵素の活性維持とDNAの融解温度(Tm)調整のために適宜添加される。酵素の保護剤としては、ウシ血清アルブミンや糖類が利用される。また、融解温度(Tm)調整剤としては、ベタイン、プロリン、ジメチルスルホキシド、あるいはホルムアミドを一般的に利用することができる。
 LAMP法における反応は、鋳型核酸に対して、以下の成分(i)(ii)(iii)を加え、インナープライマーが鋳型核酸上の相補的配列に対して安定な塩基対結合を形成することができ、かつ鎖置換型ポリメラーゼが酵素活性を維持しうる温度でインキュベートすることにより進行する。インキュベート温度は50~75℃、好ましくは55~70℃であり、インキュベート時間は1分~10時間、好ましくは5分~4時間である。
(i)インナープライマー2種、あるいはさらにアウタープライマー2種、あるいはさらにループプライマー2種
(ii)鎖置換型ポリメラーゼ
(iii)基質ヌクレオチド。
 (核酸定量装置)
 本発明はまた、核酸定量のための装置を提供する。該装置は、核酸分子の運動の自由度が実質的に2次元以下に制限された単一の空間を備える容器内に、核酸検出試薬、基質ヌクレオチド、プライマー、およびDNAポリメラーゼを導入する手段と;前記容器を一定温度に加熱して核酸増幅反応を行わせるための手段と;前記増幅反応によって得られた増幅産物を計測するための手段と;得られた計測結果を解析して、標的核酸の初期量を定量するための手段とを備える。
 ここで、容器に標的核酸、核酸検出試薬、プライマー、ポリメラーゼ、および基質ヌクレオチドを導入する手段は、標的核酸、プライマー、ポリメラーゼ、および基質ヌクレオチドをそれぞれを順番に、あるいはこれら全て含む反応液を、一定量自動的に導入する手段である。前記容器を一定温度に加熱して核酸増幅反応を行わせるための手段としては、例えば、装置内に備えられたヒートブロックによって容器を上または下から、好ましくは上下両面から挟んで、増幅反応に適した一定温度に加熱する手段が挙げられる。この手段には、試料を導入口で密封する手段を含みうる。
 前記増幅反応によって得られた蛍光輝点等を計測するための手段については、公知の蛍光画像解析手段を利用することができる。本発明の装置には、さらに得られた測定データをコンピューター処理する手段を備えていてもよい。
 (本明細書において用いられる一般的技術)
 本明細書において使用される技術は、そうではないと具体的に指示しない限り、当該分野の技術範囲内にある、糖鎖科学、マイクロフルイディクス、微細加工、有機化学、生化学、遺伝子工学、分子生物学、微生物学、遺伝学および関連する分野における周知慣用技術を使用する。そのような技術は、例えば、以下に列挙した文献および本明細書において他の場所おいて引用した文献においても十分に説明されている。
 微細加工については、例えば、Campbell,S.A.(1996).The Science and Engineering of Microelectronic Fabrication,Oxford University Press;Zaut,P.V.(1996).Micromicroarray Fabrication:a Practical Guide to Semiconductor Processing,Semiconductor Services;Madou,M.J.(1997).Fundamentals of Microfabrication,CRC1 5 Press;Rai-Choudhury,P.(1997).Handbook of Microlithography,Micromachining,& Microfabrication:Microlithographyなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法、糖鎖科学的手法は、当該分野において周知であり慣用されるものであり、例えば、Maniatis,T.et al.(1989).Molecular Cloning:A Laboratory Manual,Cold Spring Harborおよびその3rd Ed.(2001); Ausubel,F.M.,et al. eds,Current Protocols in Molecular Biology,John Wiley & Sons Inc.,NY,10158(2000);Innis,M.A.(1990).PCR Protocols:A Guide to Methods and Applications,Academic Press;Innis,M.A.et al.(1995).PCR Strategies,Academic Press;Sninsky,J.J.et al.(1999).PCR Applications:Protocols for Functional Genomics,Academic Press;Gait,M.J.(1985).Oligonucleotide Synthesis:A Practical Approach,IRL Press;Gait,M.J.(1990).Oligonucleotide Synthesis:A Practical Approach,IRL Press;Eckstein,F.(1991).Oligonucleotides and Analogues:A Practical Approac ,IRL Press;Adams,R.L.et al.(1992).The Biochemistry of the Nucleic Acids,Chapman & Hall;Shabarova,Z.et al.(1994).Advanced Organic Chemistry of Nucleic Acids,Weinheim;Blackburn,G.M.et al.(1996).Nucleic Acids in Chemistry and Biology,Oxford University Press;Hermanson,G.T.(1996).Bioconjugate Techniques,Academic Press;Method in Enzymology 230、242、247、Academic Press、1994;別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
 (好ましい実施形態の説明)
 以下に好ましい実施形態の説明を記載するが、この実施形態は本発明の例示であり、本発明の範囲はそのような好ましい実施形態に限定されないことが理解されるべきである。当業者はまた、以下のような好ましい実施例を参考にして、本発明の範囲内にある改変、変更などを容易に行うことができることが理解されるべきである。
 1つの局面において、本発明は、(a)配列番号1~5のいずれか1つに示す配列;
(b)(a)の配列の少なくとも95%の同一性を有するか、ストリンジェントな条件下でその相補鎖とハイブリダイズするか、もしくはその配列において1もしくは数個の置換、付加および/もしくは欠失を含む改変配列;
(c)(a)もしくは(b)の少なくとも10ヌクレオチドを含むフラグメント配列;または
(d)(a)、(b)もしくは(c)の相補鎖配列
を含む核酸分子を提供する。
 本発明の核酸分子は、Candidatus Phlomobacter fragariaeに特異的な配列を有することが本発明において初めて見出された。したがって、本発明の核酸分子は、Candidatus Phlomobacter fragariaeを他のCandidatusの微生物から識別するために直接または間接に用いることができる。Candidatus Phlomobacter fragariaeは、イチゴ葉縁退緑病の病原体であるから、本発明の核酸分子を用いることによって、イチゴ葉縁退緑病を検出することができる。
 本発明の核酸配列において、Candidatus Phlomobacter fragariaeに特に特異的なあるいは識別性が高い配列部分としては、配列番号1~5のうち、以下を挙げることができるがこれらに限定されない:
配列番号1の212-232位、配列番号1の330-351位、配列番号1の715-733位、配列番号1の769-788位、配列番号1の789-813位、配列番号1の814-838位、配列番号1の838-858位、配列番号1の841-862位、配列番号1の870-889位、配列番号1の890-911位、配列番号1の928-949位、配列番号2の596-620位、配列番号2の715-738位、配列番号3の847-861位、配列番号3の919-943位、配列番号4の572-591位、配列番号4の672-691位、配列番号5の123-144位、配列番号5の214-232位、配列番号5の2230-2250位、および配列番号5の2376-2399位からなる群より選択される少なくとも1つの配列またはその相補配列の少なくとも10ヌクレオチド、少なくとも15ヌクレオチド、少なくとも17ヌクレオチド、少なくとも20ヌクレオチド、あるいは最低限の長さはそれより長くありうる。
 1つの局面において、本発明は、配列番号は1~5に示す配列(相補配列を含む)に基づくプライマーセットを提供する。
 1つの実施形態では、配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセットを提供する。好ましくは、この核酸分子の長さは、少なくとも15ヌクレオチド、少なくとも17ヌクレオチド、少なくとも20ヌクレオチド、あるいは最低限の長さはそれより長くありうる。したがって、ここで使用されるプライマーの長さは、これら以外の任意の長さであってもよく、本明細書の説明を参照して適宜設計することができる。
 1つの実施形態では、本発明のプライマーセットは、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのものである。
 1つの局面において、本発明は、配列番号は1~5に示す配列(相補配列を含む)に基づくプローブを提供する。
 1つの実施形態では、本発明のプローブは、配列番号は1~5に示す配列またはその相補配列のうち、少なくとも10ヌクレオチドと、標識とを含む。好ましくは、この核酸分子の長さは、少なくとも15ヌクレオチド、少なくとも17ヌクレオチド、少なくとも20ヌクレオチド、あるいは最低限の長さはそれより長くありうる。したがって、ここで使用されるプローブの長さは、これら以外の任意の長さであってもよく、本明細書の説明を参照して適宜設計することができる。
 本発明のプローブに用いられる標識は、検出を可能にするものであれば、どのような標識であってもよく、目的となる分子または物質を他から識別するための存在(たとえば、物質、エネルギー、電磁波など)であればどのようなものでも用いることができる。そのような標識方法としては、RI(ラジオアイソトープ)法、蛍光法、ビオチン法、化学発光法等を挙げることができるが、それらに限定されない。
 1つの実施形態では、本発明のプローブは、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのものである。
 このようなプローブは、標識を検出することによって、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出することができる。そのような検出は、標識に応じて適宜当業者は実施することができる。ラジオアイソトープであれば、放射能検出器、蛍光であれば蛍光測定器、あるいは可視光を発するものであれば肉眼でも標識の検出を行うことができる。
 別の局面において、本発明は、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのキットを提供する。このキットは、(A)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット、または配列番号は1~5に示す配列またはその相補配列のうち少なくとも10ヌクレオチドと標識とを含むプローブ;ならびに(B)核酸増幅用試薬を備える。本発明で使用される核酸増幅用試薬は、PCR用試薬、LAMP試薬などを挙げることができるがこれらに限定されない。
 1つの実施形態では、本発明において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む。
 1つの実施形態では、本発明において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む。
 1つの実施形態では、本発明において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも20ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも20ヌクレオチドを含む核酸分子とを含む、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも20ヌクレオチドと、標識とを含む。ここで使用されるプローブおよびプライマーの長さは、これら以外の任意の長さであってもよく、本明細書の説明を参照して適宜設計することができる。
 本発明のキットにおいて使用されるプライマー、プローブ、標識などは、本明細書において他の場所で詳述される任意の形態を使用することができることが理解される。
 別の局面において、本発明は、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するための方法を提供する。本発明の方法は、(A)被験サンプルを鋳型として用い、配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセットをプライマーとして用いて核酸増幅反応を行う工程;および(B)増幅された核酸分子に基づいて、該被験サンプル中にCandidatus Phlomobacter fragariaeがあるかどうかを決定する工程を包含する。
 1つの実施形態において、本発明の方法において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む。
 別の実施形態において、本発明の方法において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む。
 別の実施形態において、本発明の方法において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも20ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも20ヌクレオチドを含む核酸分子とを含む、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも20ヌクレオチドと、標識とを含む。ここで使用されるプローブおよびプライマーの長さは、これら以外の任意の長さであってもよく、本明細書の説明を参照して適宜設計することができる。
 1つの実施形態では、本発明の方法における決定する工程は、Candidatus Phlomobacter fragariaeに感染したイチゴから抽出したサンプルを陽性コントロールとして使用することを特徴とする。
 1つの実施形態では、本発明において使用される核酸増幅反応は、リアルタイムPCRまたはLAMP法によって行われる。
 本発明の方法において使用されるプライマー、プローブ、標識などは、本明細書において他の場所で詳述される任意の形態を使用することができることが理解される。
 別の局面では、本発明は、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するための装置を提供する。本発明の装置は、(A)核酸増幅反応を行うための手段;(B)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット、または配列番号は1~5に示す配列またはその相補配列のうち少なくとも10ヌクレオチドと標識とを含むプローブ;ならびに(C)該核酸分子または該標識を検出するための手段を含む。
 本発明の装置において使用される、核酸増幅のための手段は、核酸を増幅することができる手段であれば、どのような手段であっても用いることができ、例えば、PCRのための手段、LAMPのための手段などを挙げることができるがそれに限定されない。
 本発明の装置において用いられる核酸分子または標識を検出するための手段は、目的とする核酸分子または標識を検出することができれば、どのような手段であっても用いることができ、例えば、核酸分子または標識の種類に応じて適宜当業者は実施することができる。ラジオアイソトープであれば、放射能検出器、蛍光であれば蛍光測定器を用いることができ、あるいは可視光を発するものであれば肉眼またはそれに相当する検出機器でも標識を検出することができる。
 1つの実施形態において、本発明の装置において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む。
 別の実施形態において、本発明の装置において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む。
 別の実施形態において、本発明の装置において用いられるプライマーセットは、配列番号は1~5に示す配列のうち、少なくとも20ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも20ヌクレオチドを含む核酸分子とを含む、あるいは、本発明の装置において用いられるプローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも20ヌクレオチドと、標識とを含む。ここで使用されるプローブおよびプライマーの長さは、これら以外の任意の長さであってもよく、本明細書の説明を参照して適宜設計することができる。
 本発明の装置において使用されるプライマー、プローブ、標識などは、本明細書において他の場所で詳述される任意の形態を使用することができることが理解される。
 別の局面では、本発明は、Candidatus Phlomobacter fragariaeを検出するためのプライマーであって、配列番号6~25に記載の配列から選択される配列を含むプライマーを提供する。あるいは、本発明は、Candidatus Phlomobacter fragariaeを検出するためのプライマーであって、配列番号6および7のセット、配列番号8および9のセット、配列番号10~11のセット、配列番号12~13のセット、配列番号14~15のセット、配列番号16~21のセット、配列番号22~23のセット、配列番号24~25のセットに記載の配列から選択される配列セットを含むプライマーセットを提供する。
 1つの局面では、本発明は、Candidatus Phlomobacter fragariaeを検出するためのLAMP増幅用核酸プライマーセットであって、
 片方の鎖が配列番号1~5のいずれかに示す配列を有する2本鎖DNAの第1のDNA鎖上にある標的配列の3’末端から該DNA鎖の3’末端方向に向かって順に第1の任意配列F1cおよび第2の任意配列F2cをそれぞれ選択し、また該標的配列の5’末端から該DNA鎖の5’末端方向に向かって順に第3の任意配列R1および第4の任意配列R2をそれぞれ選択したとき、以下のA)およびB)からなるインナープライマー:
A)上記F2cに相補的な配列F2および上記F1cと同一の配列を3’側から5’側にこの順で含むプライマー、または
 上記F2cに相補的な配列F2、以下の制限酵素の認識配列および上記F1cと同一の配列を3’側から5’側にこの順で含むプライマー
a)3’末端が突出した断片を形成し、かつ
b)切断後のそれぞれの断片の1本鎖領域の塩基配列が異なる
ように切断可能な制限酵素
B)上記R2と同一の配列、上記制限酵素の認識配列および上記R1に相補的な配列R1cを3’側から5’側にこの順で含むプライマー
を含むプライマーセットを提供する。
 このようなプライマーセットは、具体的には、当業者は、本明細書に記載される概括的説明および実施例を参照して、必要に応じてLAMP法の文献等(例えば、Notomi, T et al.:Nucleic Acids Res.28(12):e63(2000)、国際公開WO00/28082号、栄研化学(株)ウェブサイト(http://www.loopamp.eiken.co.jp/)を参照。Nagamine et.al.,Clinical Chemistry(2001),Vol.47,No.9,1742-1743、国際公開WO01/34838、国際公開WO02/34709など)を参考にして、実施することができる。ここで使用されるプライマーの長さは、これら以外の任意の長さであってもよく、本明細書の説明を参照して適宜設計することができる。
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以下に、実施例に基づいて本発明を説明するが、以下の実施例は、例示の目的のみに提供される。従って、本発明の範囲は、上記実施形態にも下記実施例にも限定されるものではなく、添付の特許請求の範囲によってのみ限定される。以下に示した実施例において使用した試薬、樹脂等は、特に言及しない限り栄研化学、タカラバイオ、和光純薬、Sigma-Aldrich等から得ることができる。
 本実施例で用いられる略語は以下の意味を有する。
 Ca.P.fragariae:Candidatus Phlomobacter fragariae
 PCR:ポリメラーゼ連鎖反応(Polymerase Chain Reaction)
 LAMP:ループ媒介定温増幅(Loop-Mediated Isothermal Amplification)
 (調製実施例)
 本調整実施例では、葉縁退緑病に感染したイチゴから、イチゴの葉柄組織からCTAB法で粗核酸を抽出する方法(Nakashima et al. 1991. Applied and Environmental Microbiology 57:3570-3575)に従って、2%セチルトリメチルアンモニウムブロミド、100mM Tris-HCl (pH8.0)、1.4M NaCl、20mM EDTA (pH8.0)、1%ポリビニルピロリドン(PVP-10)を用いて核酸を調製し、ORF-1、ORF-2、ORF-3、およびORF-4をクローニングし、新規配列であることを確認した。ORF-1はRep遺伝子であることが判明した。
 Inverted PCR法により、ORF-1~ORF-4が環状の染色体外DNAに座乗していることを確認するとともに、Rep遺伝子の全塩基配列を決定した(Ca.P.fragariaeの染色体外DNAはこれまでに報告されていない)。
 その配列は、配列番号1~4に示す。染色体外DNA全体の配列は配列番号5に示す。
 以下に示すInverted PCR法により、ORF-1~ORF-4が環状の染色体外DNAに座乗していることを確認した。Inverted PCRを用いれば、その結果が陽性である(すなわち、妥当な大きさのDNA断片が増幅する)ことを確認することにより、目的となる遺伝子が環状の染色体に乗っている(すなわち、DNAが増幅する=対象のDNA断片が、環状かつPCRで増幅可能な大きさ(<<染色体DNA)のDNA上に座乗している場合である)のか、そうでない(すなわち、PCRでDNAが増幅しない=対象のDNAが線状のDNAに座乗しているか、または環状であっても巨大なDNA(=染色体DNA)に座乗している場合である)のかを理解することができる。理論に束縛されないが、Inverted PCRで染色体外における存在を確認できるのは、以下のとおりである。詳細には、健全イチゴには存在せず、イチゴ葉縁退緑病に特異的に存在する、すなわち病原体であるCa.P.fragariaeのDNA断片B12をSSH法で選抜し、クローニングした。B12の塩基配列情報を用いて、通常のPCR(DNA断片の両端から内にむかって増幅する)とは逆にDNA断片の内側から両端に向けてDNA合成するように設計されたプライマーセットを用いてInverted PCRを行い、その結果DNA増幅が認められれば、B12が含まれるDNAは比較的低分子の環状構造をとっていることが分かる。これによりB12がCa.P.fragariaeのゲノム上に存在するか、ゲノムDNAと比べて低分子の環状DNA(染色体外DNA)上に存在するかを判断することができる。なお、Inverted PCRで陰性の場合、さらなる確定手法により確認することにより、染色体外DNAに座乗していないと断定することが好ましい。
 (Inverted PCR)
○試料:Ca.P.fragariae 分離株C-12に感染したイチゴからCTAB法で抽出した粗核酸原液を100倍に希釈したもの
○試薬:タカラバイオ社 TaKaRa LA Taq
○機器:バイオ・ラッド社 iCycler
○プライマーセット:
PfRep-RF1/PfRep-RR1あるいは
PfRep-RF1/B12-S2
 各プライマーの配列は以下のとおりである。
PfRep-RF1:ATATCCCTTACGATTCGAATAACCCTTACG(配列番号30)
PfRep-RR1:CTGAAGAAAGATTGATGATGAGAAGGTAGG(配列番号31)
B12-S2:TGGTTCTGAGGATACGGCAAG(配列番号32)
○PCR反応液
 調製  
滅菌蒸留水            28.5μl
10x LA PCR Buffer 5  μl(終濃度1×)
dNTP(各2.5mM)      8  μl(終濃度各0.4mM)
Mg2+溶液(25mM)       5  μl(終濃度2.5mM)
プライマー1(10mM)      1  μl(終濃度0.2μM)
プライマー2(10mM)      1  μl(終濃度0.2μM)
TaKaRa LA Taq          0.5μl(5units/μl)
鋳型DNA(試料)         1  μl
計                 50 μl
○PCRのプログラム
1  95℃ 1分
2 1)95℃ 30秒
  2)55℃ 30秒
  3)72℃ 6分
  30回繰り返す
3 72℃ 4分。
 ○電気泳動
PCR終了後、得られたPCR産物を以下の緩衝液に入れ、電気泳動にかけた。
 ゲル :1%アガロースゲル(ナカライテスク社、MEアガロース)
 緩衝液:1xTAE
 泳動槽:ミューピッド
 泳動条件:50Vで1.5時間程度
 ゲルは、エチジウムブロマイドで染色し、UVトランスイルミネーター上で蛍光を励起して、写真撮影した。
 [結果]
1)PfRep-RF1/PfRep-RR1では約1500および1000塩基対の二種のDNAが増幅した。
2)PfRep-RF1/B12-S2では、約1900塩基対および6400塩基対の二種のDNAが増幅した。
 ○ゲルからのDNA精製
 以下のように、PCR増幅産物を電気泳動後にMinElute Gel Extraction Kit(QIAGEN)を用いてアガロースゲルから回収、精製した。
1)泳動後のアガロースゲルから目的とする増幅DNAを含む箇所を切り出してマイクロチューブに移し、重量を測定した(通常100-200mg程度)。
2)マイクロチューブにキット付属のPG液をゲル重量の3倍量加えた。
3)チューブを50℃の恒温装置に移し、時々混ぜながら10分間置き完全に溶かした。4)ゲルと等量の2-プロパノールを加えて混和した。
5)溶液をMinEluteカラム(カラムはキット付属の2mlチューブの上にセットしてある)に通した。
6)13,000rpm、1分間、室温で遠心分離した。
7)2mlチューブに落ちたろ液を捨てた。
8)カラムに500μlのPG液を加えた。
9)13,000rpm、1分間、室温で遠心分離した。
10)2mlチューブに落ちたろ液を捨てた。
11)カラムに750μlのキット付属のPE液を加えた。
12)3分間静置した。
13)13,000rpm、1分間、室温で遠心分離した。
14)2mlチューブに落ちたろ液を捨てた。
15)13,000rpm、1分間、室温で遠心分離する。
16)カラムを新しい1.5mlチューブに移した。
17)10μlのキット付属EB液をカラムの中心に加えた。
18)1分間静置した。
19)13,000rpm、1分間、室温で遠心分離した。
20)マイクロチューブに落ちたDNA溶液を回収し、使用時まで-20℃で保存した。
○ 配列決定反応 プライマーセット、PfRep-RF1/PfRep-RR1を用いたPCRで増幅した約1500および1000塩基対のDNA断片については、直接の配列決定(Direct Sequencing)によって塩基配列を決定した。
 直接の配列決定には以下のプライマーを用いた
PfRep-RF1 ATATCCCTTACGATTCGAATAACCCTTACG(pPFC12-S1、S2共)(配列番号30)
B12Inv-F2 ATCAGTATGAGCACGCTTAC(pPFC12-S1、S2共)(配列番号33)
B12Inv-F3 ATCCGACTCATCTTGCTC(pPFC12-S1のみ)(配列番号34)
PfRep-RR1 CTGAAGAAAGATTGATGATGAGAAGGTAGG(pPFC12-S1、S2共)(配列番号31)
B12Inv-R2 TGTGAGCAAGATGAGTCG(pPFC12-S1のみ)(配列番号35)
B12Inv-R3 AGTCATCTTCTGTTAGTACC(pPFC12-S1のみ)(配列番号36)
B12Inv-R4 TGTGACGATCGAACGTC(pPFC12-S2のみ)(配列番号37)。
 アプライドバイオシステムズ(ABI)社のBigDye(登録商標) Terminator v3.1 Cycle Sequencing Kitを用いて、同社が供給する日本語版プロトコールに従って配列決定反応を行った。
 1)反応液の調製
 0.2mlのPCRチューブ1本あたり
 Ready Reaction Premix        4μl
 BigDye Sequencing Buffer(5x) 2μl
 プライマー(1.6pmol/μl)            2μl
 テンプレート(ゲル精製したDNA、約20ng/μl)   2μl
 滅菌脱イオン水                     10μl
になるように反応液を調製する。
 2)サーマルサイクラーを用いた配列決定反応
 以下の条件を使用してサーマルサイクラーを用いた配列決定反応を行った。
 機器:バイオ・ラッド社製 iCycler 
 カラム:Centri-Sepスピンカラム(CS-901,アプライドバイオシステムズ社) 
 プログラム:
   (1)96℃ 1分
   (2)96℃ 10秒
      50℃ 5秒
      60℃ 4分 
      を25サイクル
   (3)4℃ 
 3)PCR産物の精製
 PCR産物は、以下のようにCentri-Sep spin columns を用いてプロトコール通りに精製した。
(1)反応終了後のPCR産物に2%SDS溶液を2μl加え混和した。
(2)サーマルサイクラー(バイオ・ラッド社製 iCcycler)にセットして熱処理(98℃5分→25℃10分)した。
(3)あらかじめ(二時間以上前)、0.8mlの蒸留水を加えて膨潤させておいたカラムの上下のフタをとり、水を自然落下させた。
(4)カラムを付属のウォッシュチューブにセットし、730xg、2分間遠心分離した。
(5)カラムを付属のサンプルコレクションチューブにセットした。
(6)(2)のSDS処理後の反応液をカラム中央に加えた。
(7)730xg、2分間遠心分離した。
(8)カラムを捨て、サンプルコレクションチューブに落下した反応液を遠心エバポレーターで乾燥させた(20~30分間)。
 4) 配列決定
 配列決定は、3130 ジェネティックアナライザ(ABI社)を用いて以下の手順で行った。
 (プロトコール)
(1)乾燥させたPCR産物に20μlのHi-Di Formamide(ABI社)を加えて溶かした。
(2)溶液を95℃、2分間の熱変性処理を行った後、氷水上に移し急冷し、そのまま5分間静置した。
(3) 溶液をマイクロプイレート(MicroAmp Optical 96-well reaction Plate (ABI社)に移し、プレートベースに乗せ、プレートセプタ、プレートリテーナーをセットした。
(4)3130ジェネティックアナライザにセットし、配列を決定した。
 (結果)
 図1に得られたORF-1~ORF-4の核酸が含まれる各々のプラスミドの模式図を示す。左側に示すプラスミド(pPFC12-L)は、6,840 bp長であり、ORF1~ORF4を含む。中央のプラスミド(pPFC12-S1)は、2250bp長であり、ORF1のみが含まれる。右側のプラスミド(pPFC12-S2)は、1635bp長であり、ORF1のみが含まれる。
 この段階では、pPFC12-S1およびS2の情報のみが判明した。次に、pPFC12-Lの塩基配列を決定するために、以下の工程を行った。なぜなら、DNA断片長が大きく、クローニングが必要であったためである。
 (ORF-1~ORF-4の塩基配列決定)
 プライマーセットPfRep-RF1/B12-S2を用いたPCRで増幅した約および6400塩基対のDNA断片については、大腸菌にクローニング後、デリーションクローンを作製し、それぞれから精製したプラスミドを鋳型に配列決定反応を行い、塩基配列の決定を行った。
 1) DNA断片のベクターへの結合
 Invitrogen社 TOPO XL PCR Cloning Kit(K4700-20)を用いてマニュアルに準じて以下のようにクローニングを行った。
(1)滅菌済マイクロチューブにゲル精製済みのPCR産物4μlおよびpCR-XL-TOPO vector 1μlを入れ混和した。
(2)室温で5分間反応させた。
(3)6×TOPO Cloning Stop Solutionを加えて混和し、反応を停止する。
(4)短時間遠心して反応液をチューブの底に集め氷上に静置した。
 2)エレクトロポレーション法での大腸菌への導入
 作製したベクターをE.coli Pulser(バイオ・ラッド社)を用いてエレクトロポレーション法で以下のように大腸菌に導入した。
(1)キット付属のTOP10 Elecrocompetent Cellを氷上で溶解し、2μlの1)の反応液を加え穏やかに混和した。
(2)氷上で冷やしておいた0.1cmキュベットに(1)の液を移した。
(3)1.8kVの電圧でエレクトロポレーションを行った。
(4)速やかにキュベットに450μlのSOC液体培地(室温)を加えた。
(5)キュベットから液体を滅菌済のチューブ(ファルコン2059)に移し、37℃で1時間浸透培養した。
(6)Competent Cell培養液を、カナマイシン(50μg/ml)を含むLB寒天培地にシャーレ1枚当たり50-100μl塗布し、37℃で一晩培養した。
(7)LB寒天培地上に形成されたコロニーを、滅菌済み爪楊枝を用いて、新しいLB寒天培地に移植して菌株を保存した。同時にコロニーPCRを行い、目的のDNAがプラスミドに挿入されているか確認した。
(8)目的のDNAが挿入されていることが確認された菌株を、カナマイシン(50μg/ml)を含むLB液体培地(3ml)に植菌し、37℃で一晩(約14時間)培養した。
(9)培養液を、QIAGEN Plasmid Mini Kit(キアゲン社)でプラスミドを精製した。
(10)精製プラスミドを、制限酵素ApaI、XbaI、XhoI、NotI、EcoRV、PstI、SacI、BamHI、SpeIで消化し、目的遺伝子内の制限酵素サイトの有無を確認した。
(11)精製プラスミドを制限酵素SacIおよびSpeIで消化し、消化産物をフェノール/クロロホルム抽出、エタノール沈殿し、遠心エバポレーターで乾燥させた。
(12)精製した制限酵素消化産物をKilo-Sequence用 Deletion Kit(タカラバイオ社)を用いて、プラスミドに挿入されている目的DNA断片を段階的に短く欠損させた(デリーション)。
(13)Kilo-Sequence用 Deletion Kitで作製したデリーション産物をライゲーションして、環状プラスミドに戻し、(2)-(6)と同様にエレクトロポレーションにより、大腸菌にクローニングした。
(14)(7)と同様にLB寒天培地上に形成されたコロニーについて、菌株保存およびコロニーPCRを行い、挿入DNAの全長をカバーするようにデリーションクローンの菌株を選抜した。
(15)デリーション前の全長プラスミド、および選抜されたデリーションクローンから精製したプラスミドを鋳型に、M13 forward(-20)プライマー<TGTAAAACGACGGCCAGT(配列番号38)>、M13 Reverse プライマー<CAGGAAACAGCTATGACC(配列番号39)>を用いて配列決定を行った。
(16)得られた配列決定結果を、DNA解析ソフトウエア(DNASIS Pro、日立ソフトウェアエンジニアリング株式会社)で解析してPCR増幅産物の全長塩基配列を決定し、さらにInverted PCRの基となったDNA断片B12の塩基配列とあわせて染色体外DNAの全長塩基配列を決定した。本発明において、ORF以外の配列であっても、別の箇所において説明したように、検出に使用しうることが明らかになった。
 (結果)
 以上により、pPFC12-L等の塩基配列が判明した。ORF-1~ORF-4の配列は、配列番号1~4に示すとおりである。pPFC12-Lの全塩基配列は、配列番号5に示す。
 (実施例1:Rep遺伝子を用いたリアルタイムPCRによるCa.P.fragariaeの検出)
 本実施例では、Ca.P.fragariaeのRep遺伝子を標的としたプライマーセットを用いたリアルタイムPCR法による検出・定量系を構築した。これにより、従前の技術と比べて、検出限界が10-100倍以上向上し、非特異的な増幅は認められず、病原体の定量が可能であり、検出までの時間も短縮(反応時間が短く、電気泳動の必要がない)されることを実証した。
 (プロトコール)
 当該分野で公知の文献(例えば、Dieffenbach,C.W. and Dveksler,G.S.(Eds.)PCR Primer:A Laboratory Manual, Cold Spring harbor Laboratory Press, New York,(1995).)に基づきリアルタイムPCRを行った。
 (試料)
 本実験に使用した試験材料は、千葉県館山市の圃場から採集した。Ca.P.fragariaeに感染したイチゴ(品種、とちおとめ)を、中央農業総合研究センター(茨城県つくば市)の精密温室内(夏期24℃、冬季22℃に設定)で維持増殖した株(以後C-12株)を、感染試料として用いた。また同様に維持増殖した健全なイチゴ(品種、とちおとめ)を陰性対照試料として用いた。核酸抽出は、約0.1gのイチゴ試料(葉柄)からCTAB法(前述)により抽出し、最終的に50μlのTE-RNase緩衝液(10mM Tris-HCl、1mM EDTA、20μg/ml RNase A)に溶解したものをの原液(1倍)とし、TE緩衝液(10mM Tris-HCl、1mM EDTA、20μg/ml)で10倍ずつ段階希釈したものを検出限界の測定に供した。健全試料については、TE緩衝液で100倍に希釈したものを用いた。
 (試薬)
 タカラバイオ社製のSYBR Premix EX Taq(登録商標)II (Perfect Real Time)を用いてリアルタイムPCR反応液を調製した。一検体あたりの反応液は25μlで組成は以下のとおりである。 
SYBR Premix EX Taq II (2×) 12.5μl
滅菌蒸留水                       9.5μl
フォワードプライマー(10mM)            0.5μl
リバースプライマー(10mM)             0.5μl
(検定試料)                        2μl
合計                           25μl
 クリーンベンチ内で、検定試料以外の試薬を検体数に2を加えた数の分をまとめて調製し、PCRチューブに23μlずつ分注する。クリーンベンチ外で検定試料を2μl加える。PCRチューブはタカラバイオ社製 0.2ml 8-strip tube, individual Flat caps(NJ600)、あるい同社製は96well Hi-Plate for Real Time(NJ400)を用い、NJ400を用いる際は、同社製Sealing Film for Real Time(NJ500)を用いてシーリングを行った。
 (機器、プログラム)
 検定試料を加えた反応液は、速やかにリアルタイムPCR装置(タカラバイオ社製 Thermal Cycler Dice(登録商標) Real Time system (TP800)にセットし、反応及び蛍光測定を行った。
 PCRプログラムは、
[2step PCRによる増幅反応]
1.95℃、10秒 1サイクル
2.95℃、5秒 → 60℃、30秒 40サイクル
[増幅産物の融点の測定]
3.95℃、15秒 → 60℃、30秒 1サイクル
で、行った。
 なお、リアルタイムPCR用のプライマー設計は、増幅効率を100%近くに上げるために、増幅産物の長さを80-150塩基対と短くして行った以外は、上記文献等に記載される通常のプライマー設計と同様の原理で行った。以下に使用したプライマーの配列およびその設計手順を示す。
 (使用したプライマー)
○1)ORF-1のリアルタイムPCR用プライマーセット(B12-L2/B12-R2)
 配列番号6:B12-L2 GGTGCGCTAAAAGATGTGACC (配列番号1の838-858)
 配列番号7:B12-R2 ATCTTGCCGTATCCTCAGAACC(配列番号1の928-949の相補鎖)
 2)Rep-L212/Rep-R351
 リアルタイムPCR用プライマーセット Rep-L212/Rep-R351
 Rep-L212 CTCCTGAAACGGGTGAACTTG (配列番号8:配列番号1の212-232)
 リアルタイムPCR用プライマーセット Rep-L212/Rep-R351
 Rep-R351 GTCTTCAGCAACAACAGGAAGG (配列番号9:配列番号1の330-351の相補鎖)。
 (プライマーの設計)
○リアルタイムPCRプライマーの設計手順
1)primer3plus
(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi)のサイトにアクセスした。なお、プライマー設計は、このウェブサイト以外にも、例えば、DNASIS Pro(日立ソフト)などに組み込まれており、これらのスタンドアローンソフトウェアを利用することもできる。
2)「Main」タブで検出対象DNAの塩基配列をペーストした。
「Task」を「detection」に(デフォルト値)し、
「Pick left primer or use left primer below.」にチェック(デフォルト値)し、
「Pick right primer or use right primer」にチェック(デフォルト値)した。
3)「General Settings」タブで、「Product Size Range」に「80-150」を入力し、
「Primer Size」「Min:」に「17」、「Opt:」に「20」、「Max:」に「25」を入力し、
「Primer Tm」「Min:」に「60」、「Opt:」に「62」、「Max:」に「65」を入力し、
「Primer GC%」「Min:」に「45」、「Opt:」に「50」、「Max:」に「55」を入力し、
「Maximum Tm Difference」に「4」を入力し、他はデフォルト値のままで行った。
4)「Advanced Setteings」タブで、
「Max Poly-X」に「4」を入力し、
「Number To Return」に適当な数値(表示したいプライマーセット候補の数)を入力し、
「Max Self Complementarity」に「8」を入力(デフォルト値)し、
「Max 3’ Self Complementarity」に「3」を入力(デフォルト値)し、他はデフォルト値のままで行った。
5)「Penalty Weights」タブで、
「For Primers」の列の、
「Tm」「Lt:」に「0.5」、「Gt:」に「0.5」を入力し、
「Self Complementarity」に「0.5」を入力し、
「3’ Self Complementarity」に「1.0」を入力し、
「For Primer Pairs」の列の、
「Tm Difference」に「0.5」を入力し、
「Any Complementarity」に「0.5」を入力し、
「3’ Self Complementarity 」に「1.0」を入力し、
他の欄は全て「0」にして行った。
6)「Pick Primers」ボタンを押した。
(プライマーセット候補が表示された)。
7)ソフトでは対応していない注意点であって、本実施例で注意すべき点(3’末端領域のGC%の偏り、3’末端は「G」か「C」にするなど)をチェックした。
8)BLAST(http://blast.ddbj.nig.ac.jp/top-j.htmlなど)で、特異性を確認した。
9)プライマー合成を注文し、入手した(製造:北海道システムサイエンス株式会社 簡易カラム精製)
10)陽性対照(感染イチゴから抽出した粗核酸)、陰性対照(健全イチゴから抽出した粗核酸)、陰性対照(鋳型核酸なし、緩衝液のみ)を用いて、実際にリアルタイムPCR装置で、特異性、増幅性を検証した。
 (結果)
 本実施例の結果を図2に示す。具体的には、図2に示されるように、Rep遺伝子(ORF-1)またはORF-2~ORF-4を標的にしたリアルタイムPCRによる検出限界が実証された。
 10-1~10-6、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の10~10倍希釈液(従来のPCR法での検出限界は10倍希釈まで)を示す。
 配列番号5および6の組合せ、ならびに配列番号7および8の組み合わせは、ORF-1遺伝子(Rep遺伝子)を検出するのに非常に高感度であることが明らかになった。
 (考察)
 従来入手可能であったリボゾームRNA遺伝子の 配列情報に基づいて可能であったPCR法ではCa.P.fragariaeの検出限界は、同様の手順で抽出した核酸を用いた場合に10~10倍希釈であり、本実施例ではその10~100倍の検出感度の向上が認められる。一方で健全イチゴ試料や鋳型DNAを含まない検体における非特異的な増幅は全く認められなかった。また、従来のPCR法ではCa.P.fragariaeの検出に、PCR反応及び電気泳動を合わせて5時間程度必要であったが、本実施例では1時間30分程度に短縮された。これらの結果はCa.P.fragariaeに特異的かつ細胞内のコピー数が多い、染色体外DNAをPCRの標的DNAに用いた効果と考えられる。
 (実施例2:他の染色体外遺伝子ORF-2~ORF-4を用いたリアルタイムPCRによるCa.P.fragariaeの検出)
 実施例1と同様のプロトコールを用いて、ORF-2,ORF-3およびORF-4の配列を用いて、同様にリアルタイムPCRによるCa.P.fragariaeの検出実験を行った。
 検出用プライマーとしてORF-2~ORF-4に由来するプライマーを用いたこと以外は、実施例1と同様にリアルタイムPCRによるCa.P.fragariaeの検出を実証した。
 (材料および装置、プロトコール)
 実施例1と同様のものを利用したが、以下を変更して使用した。
 すなわち、Ca.P.fragariaeの検出限界測定に、C-12株感染イチゴから抽出した核酸を√10(3.16)倍ずつ希釈した試料を用いた。
 (使用したプライマーセット)
○ORF-2検出に有効なリアルタイムPCR用プライマーセット
ExORF2-L596/ExORF2-R738
ExORF2-L596:AACCGAAAGCGGCGGAATCTTCATC (596-620)(配列番号10)
ExORF2-R738: ATCTTGCCGTATCCTCAGAACC(715-738)の相補鎖)(配列番号11)
○ORF-3検出に有効なリアルタイムPCR用プライマーセット
ExORF3-L847/ExORF3-R943
ExORF3-L847:TTGTCTGTTCGGTGGCGTATTGCTG (847-861)(配列番号12)
ExORF3-R943:AGGATTCGATCCTGAGTTGCCCCTG(919-943)の相補鎖)(配列番号13)
○ORF-4検出に有効なリアルタイムPCR用プライマーセット
ExORF4-L572/ExORF4-R691
ExORF4-L572:TGGTGGTTTCGGCGTATGTC(572-591)(配列番号14)
ExORF4-R691:ATCCCGCTTCCTTACCCATC(672-691)の相補鎖)(配列番号15)。
 (結果)
 結果を図5~7に示す。
 図5は、ORF2を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとしてExORF2-L596(配列番号10)/ExORF2-R738(配列番号11)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った結果である。図6は、ORF3を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとして、ExORF3-L847(配列番号12)/ExORF3-R943(配列番号13)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った結果である。図7は、ORF3を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとしてExORF4-L572(配列番号14)/ExORF4-R691(配列番号15)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った。
 図5~7において、縦軸は、蛍光強度(一次曲線)を示し、横軸はPCRのサイクル数を示す。10-3~10-6.5は、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の希釈倍数を示す(10~106.5倍希釈液)。Hは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。Nは鋳型DNA無添加のコントロールを示す。
 図5~7の結果から明らかなように、Rep遺伝子の検出限界と同様な増幅曲線の図が示され、健全イチゴ、鋳型無しでは増幅せず、感染イチゴのみで増幅していることが示される。
 (考察)
 Inverted PCR法により複数の環状の染色体外DNAが見出され、そのサイズや全体の塩基配列は多様であったが、Rep遺伝子のほか、ORF2、ORF3およびORF4についても、遺伝子診断の標的遺伝子として適していると判断される。これらの結果から、ORF1(Rep遺伝子)を標的DNAに用いた場合と同様に、従来のPCR法に比べて検出感度及び精度の向上が認められる。
 (実施例3:Rep遺伝子を用いたLAMP法によるCa.P.fragariaeの検出)
 本実施例では、本発明で同定したCa.P.fragariaeのRep遺伝子の配列情報に基づいて、LAMP法による検出を実証した。
 (材料および装置)
 (LAMP法のための試薬・装置)
 本実施例におけるLAMP法のために、以下の試薬、および装置を使用した。
 (試薬)
 本実施例におけるLAMP法のために、以下の試薬を使用した。
 Loopamp(登録商標) DNA増幅試薬キット (栄研化学;LMP206)
 DNA増幅を肉眼で明瞭に観察したい場合には、試薬に栄研化学 Loopamp(登録商標)蛍光・目視検出試薬(LMP201)を加えて、反応後にUVトランスイルミネーター等を用いて蛍光を観察する。
 (装置)
 Loopamp(登録商標)リアルタイム濁度測定装置 LA-200(テラメックス株式会社;LAMP反応と同時に濁度を測定する場合に使用する。蛍光は測定できない)または
 アルミブロック恒温槽 CoolThermoUnit CTU-N(タイテック社;LAMP反応のみを行う、結果は反応終了後に濁度あるいは蛍光を肉眼で観察する)
 UVトランスイルミネーター TM-40(フナコシ株式会社;蛍光観察する場合)
 反応チューブ:栄研化学Loopamp(登録商標)反応チューブ(LMP905)。
 (サンプル)
 サンプルとして用いたプライマーは北海道システム・サイエンス株式会社の受託DNA合成サービスにより、合成およびHPLC精製されたものを利用した。
 (プライマー設計)
 Ca.P.fragariaeに対するLAMP法のプライマーの設計は、製造業者のマニュアル(Primer Explorer Ver.4;栄研化学株式会社)にしたがって行った。
 簡潔には、LAMP法プライマーの設計は標的配列の5′側から、F3領域、F2領域、F1領域、B1領域、B2領域、B3領域という6つの領域を利用して実施する。基本的なLAMP法では4種類(インナープライマー2種類およびアウタープライマー2種類)のプライマーを使用する。インナープライマーは、F1cとF2、B1cとB2を連結する。さらにF1領域とF2領域の間の領域に対する相補鎖にForward側のループプライマーを設定し、B1領域とB2領域の間の領域の相補鎖にBackward側のループプライマーを設定する。この際、Tm値、各プライマー領域の末端安定性、GC含量、二次構造の4つの事項を考慮して設計された。
 (プライマー配列)
 その配列は以下のとおりである。
LAMP法用のプライマーセット
B12-F3 GCGTTATTAGAGACCACGA(配列番号1の715-733)(配列番号16)
B12-B3 TCCTCCGTATAAATCAAATCCT(配列番号1の890-911の相補鎖)(配列番号17)
B12-FIP TTGAACCTGCTCAAAATAACTCAAC-CGGTGAAACCTGAGGAAT(配列番号1の789-813の相補鎖-配列番号1の749-766)(配列番号18)
B12-BIP CGTTTGAAATTCATTACGTCTGGTG-CATCCGTCTCTTTTTTCGTC(配列番号1の814-838-配列番号1の869-888の相補鎖)(配列番号19)
B12-LF GCCCATTCTGGATCTGCCTC(配列番号1の769-788の相補鎖)
(配列番号20)
B12-LB GCGCTAAAAGATGTGACCAAGC(配列番号1の841-862)(配列番号21)。
 (プロトコール:LAMP法の実施)
 本実施例におけるLAMP法は、製造業者のマニュアルに基づいて以下のように行った。
 (a)サンプルおよびサンプルからのDNAの調製
 葉縁退緑病に感染したイチゴおよび健全イチゴの葉柄からCTAB法により抽出した粗核酸を検出用試料として用いた。
 (b)試薬の調製
 製造業者のマニュアルに基づき、クリーンベンチ内で、以下を調製した。
Loopamp(登録商標) DNA増幅試薬キットに含まれる、2x ReactionMix.、stilled Water(DW)、Bst DNA polymerase。
 (c)サンプルDNA/RNAの添加
 調製した上記試薬に、上記調整したDNAまたはRNAを添加した。
 (d)LAMP反応(増幅)
 60~65℃(または、使用した酵素または他の条件の変更に応じて他の適切な温度)に15分~1時間または目的物の視認もしくは別の手段での検出が可能になるまでインキュベートした。
 (e)検出は、目視ないしリアルタイム濁度検出でおこなった。
 (結果)
 図3は、本実施例の結果を示し、Rep遺伝子を標的にしたLAMP法による検出限界の比較(1)を示す。図中、B12+L、Ca.P.fragariaeのRep遺伝子の塩基配列から設計したプライマーセット(ループプライマー添加)を使用した。また、CPF2+L、Ca.P.fragariaeの16S rDNAを標的にしたプライマーセット(ループプライマー添加)を使用した。濃度を示す10-1~10-4、Ca.P.fragariaeに感染したイチゴから抽出した粗核酸試料の10~10倍希釈液を示す。
 また、図4は、Rep遺伝子を標的にしたLAMP法による検出限界の比較(2)を示す。図中、B12+L、Ca.P.fragariaeのRep遺伝子の塩基配列から設計したプライマーセット(ループプライマー添加)を使用した。また、CPF2+L、Ca.P.fragariaeの16S rDNAを標的にしたプライマーセット(ループプライマー添加)を使用した。濃度を示す10-1~10-6は、Ca.P.fragariaeに感染したイチゴから抽出した粗核酸試料の10~10倍希釈液を示す。
 (考察)
 Ca.P.fragariaeのRep遺伝子を標的としたプライマーセットを用いたLAMP法による検出・定量系を構築した。これにより、従前の技術と比べて、検出限界が10-100倍以上向上し、非特異的な増幅は認められず、病原体の定量が可能であり、検出までの時間も短縮(反応時間が短く、電気泳動の必要がない)されることが実証された。
 (実施例4:他の染色体外遺伝子ORF-2,ORF-3およびORF-4を用いたLAMP法によるCa.P.fragariaeの検出)
 実施例3と同様のプロトコールを用いて、ORF-2,ORF-3およびORF-4の配列を用いて、同様にLAMP法によるCa.P.fragariaeの検出実験を行うことができる。
 (実施例5:染色体外遺伝子のORF領域以外の領域を用いたリアルタイムPCR法によるCa.P.fragariaeの検出)
 実施例1と同様のプロトコールを用いて、染色体外遺伝子のORF領域以外の領域の配列を用いて、同様にリアルタイムPCR法によるCa.P.fragariaeの検出実験を行った。
 (材料および装置、プロトコール)
 実施例1と同様のものを利用したが、以下を変更して実施した。
 (使用したプライマーセット)
○ Rep遺伝子(ORF1)とORF-2の間の領域に存在
する一本鎖結合タンパク質(Single Stand binding protein)(SSB)遺伝子に相同性のあるDNA領域から設計したリアルタイムPCR用プライマーセット
検出に有効なリアルタイムPCR用プライマーセット
ExSSB-L096/ExSSB-R265
ExSSB-L096:GCCTGCCGACGATTCTTATTC(配列番号5の中の2230-2250)(配列番号22)
ExSSB-R265: CAAGCCACATTCTGAGTTCTTCAC(配列番号5の中の2376-2399)(配列番号23)
○ORF-4とORF1の間のDNA領域から設計したリアルタイムPCR用プライマーセット
ExExd-L236/ExExd-R345
ExExd-L236:AATTTACCCTGCGTTAGCATCC(配列番号5の中の123-144)(配列番号24)
ExExd-R345:TAAAGGCCTCACGCACCAC(配列番号5の中の214-232の相補鎖)(配列番号25)
(プログラム) 以上のプライマーセットを用いると、他のプライマーセットを用いた場合と同様にリアルタイムPCR反応において40サイクルの増幅反応を行うと、35サイクル以降にプライマーダイマーの生成が生じることが多いため、PCR増幅反応を35サイクルに短縮した。
すなわち、PCRプログラムは
[2step PCRによる増幅反応]
1.95℃、10秒 1サイクル
2.95℃、5秒 → 60℃、30秒 35サイクル
[増幅産物の融点の測定]
3.95℃、15秒 → 60℃、30秒 1サイクル
で、行った。
 (結果)
 結果を図8~図9に示す。図8は、pPFC12-L上のRep遺伝子とORF-2の間のDNA領域を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとしてExSSB-L096(配列番号22)/ExSSB-R265(配列番号23)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った結果である。
 図9は、ORF4とRep遺伝子の間のDNA領域を標的にしたリアルタイムPCRによる検出限界を示す図である。プライマーセットとして、ExExd-L236(配列番号24)/ExExd-R345(配列番号25)を使用し、実施例1に記載の手順に基づいて、リアルタイムPCRを行った結果である。
 図8~9において、縦軸は、蛍光強度(一次曲線)を示し、横軸はPCRのサイクル数を示す。10-3~10-7は、Ca.P.fragariaeに感染したイチゴ(C-12株)から抽出した粗核酸試料の希釈倍数を示す(10~107倍希釈液)。Hは、健全なイチゴから抽出した粗核酸試料の10倍希釈液を示す。Nは鋳型DNA無添加のコントロールを示す。
 図8~9の結果から明らかなように、Rep遺伝子の検出限界と同様な増幅曲線の図が示され、健全イチゴ、鋳型無しでは増幅せず、感染イチゴのみで増幅していることが示される。図8~9は染色体外遺伝子のORF領域以外の領域であるpPFC12-L上のRep遺伝子とORF-2との間の領域を標的にしたプライマーセットExSSB-L096/ExSSB-R265を用いたリアルタイムPCRの結果である。
 図8~9はの結果で示した増幅曲線から、ORF以外を標的にした場合の検出限界は、Rep遺伝子や他のORFを標的とした場合より若干低下するものの、同様な増幅曲線の結果が示され、健全イチゴ、鋳型無しでは増幅せず、感染イチゴのみで増幅していることが示され、検出に使用可能であることが理解される。
 (考察)
 Inverted PCR法により多数の染色体外遺伝子が見いだされ、そして染色体外遺伝子のORF領域以外の領域について、そのサイズや全体の塩基配列は多様であったが、染色体外遺伝子に関しては安定して存在しており、遺伝子診断の標的遺伝子として適していると判断される。
 (実施例6:染色体外遺伝子のORF領域以外の領域を用いたLAMP法によるCa.P.fragariaeの検出)
 実施例3と同様のプロトコールを用いて、染色体外遺伝子のORF領域以外の領域の配列を用いて、同様の方法にもとづいて、適宜変更を加えCa.P.fragariaeの検出実験を行うことができる。
 (実施例7:人為的に病原体を獲得させた昆虫試料からの検出)
 本検出法を用いて、人為的に病原体を獲得させた昆虫試料からの検出に成功している。
  (材料および装置)
 北海道栗山町で採集したヒシウンカ(学名Pentastridius apicalis)雌成虫を、筒状のケージ内でCa.P.fragariaeが感染したイチゴ(品種、とちおとめ)及び健全イチゴ上に放飼して産卵させる。イチゴ上で孵化したヒシウンカ幼虫は少なくとも半年程度はイチゴの根を吸汁して生存が可能である。孵化から約2ヶ月後に、ヒシウンカ幼虫をとりだし、1頭づつCTAB法により核酸抽出を行い、最終的に20μlのTE-RNase緩衝液(10mM Tris-HCl、1mM EDTA、20μg/ml RNase A)に再懸濁した核酸溶液をTE緩衝液(10mM Tris-HCl、1mM EDTA)で20倍希釈したものを試料として、実施例1で記したプライマーセットB12-L2/B12-R2を用いたリアルタイムPCR法により、Ca.P.fragariaeの検出を試みた。
 (プロトコール)
 実施例1と同様のものを利用したが、以下を変更して実験を行った。
 ヒシウンカから抽出した核酸試料を鋳型に用いてプライマーセットB12-L2/B12-R2を用いてリアルタイムPCRを行うと、35サイクル前後からプライマーダイマーの生成あるいは非特異的増幅が生じる場合があることから、PCRプログラムのサイクルを35サイクルとした。
 (結果)
 図10の結果で示した増幅曲線から、感染イチゴを吸汁したヒシウンカ幼虫は5頭中3頭の試料で、20サイクル前後から明瞭な増幅が認められ、幼虫体内におけるCa.P.fragariaeの存在(増殖)が検知できた。一方で、健全イチゴを吸汁したヒシウンカ幼虫の試料ではPCR産物の増幅は認められなかった。
 (考察)
 従来の16SリボソームRNA遺伝子を標的にしたCa.P.fragariaeの遺伝子診断技術では、Ca.P.fragariaeが昆虫共生細菌及び腸内細菌に近縁であることから、特異的にCa.P.fragariaeを検出することは困難であったが、本実施例が示すように、Ca.P.fragariaeの染色体外DNAを標的にすることで、特異性の高い検出が可能である。この技術は、Ca.P.fragariaeの媒介昆虫の特定や保毒虫率の検定に利用することができる。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本出願は、2010年9月10日に出願された日本国出願特願2010-203701に対して優先権を主張するものであり、その全体の内容は、具体的に本明細書に記載されているのと同様に本明細書の一部を構成するものとして援用されるべきであることが理解される。
 本発明は、苗生産の親株や、果実生産用の苗として流通するイチゴの、本病に関する安全性(無病性)を評価(検疫)するために利用できる。また、イチゴ苗の生産地等においては、本病発生の早期発見および伝染経路の特定等のモニタリングに利用できる。
配列番号1:本発明のORF-1(Rep遺伝子)(1015塩基対)(本説明では、下線は、プライマー等に使用された配列を示す。)
ATGAGTCAAAAGGACGTTAAGTGGGATAGTAAGCGTGCTCATACTGATATGTTGGCGGAATTTTTAGCTAATTTTTCTGGCAGTAATTCGTTACTACAAAATTCTTACCCACATCTTTTCCTTAAATTTGCTGATTGCAGCATAAAATGGCAGAAATGGGCGAACAGAATGGTTGACTGTTCTGGTTTTCTTCGTTTTGCCATGGTCATTTCTCCTGAAACGGGTGAACTTGCGTTAAAATTAAGACAGGCATATTTTTGTCATTTCAGACATTGTCCTGTTTGTAATTGGAGACGCCAGTTGAAATTATTAGCTCGTTTTTTGGAATACCTTCCTGTTGTTGCTGAAGACAATCCTAAATCCCGTTGGGTTTTTATGACTTTAACGGTGCCAAATGTGCCTATTGAATATCTGCGCGAAGAATTAAACAACATGAATAAGGCGTGGAATCGTTTAAAAGGGCGCAAAGAGTTTAAGCCAGTTAAAGGCTGGGTTCGTACTACGGAAGTCACTCGTGAAGGTAGCCGTAAGGGTTATTCGAATCGTAAGGGATATGCCCATCCGCATTTTCATTGTTTGTTAATGGTGCCGTCTTATTGGTTTACTAGCGCATATACGAAGCAGAACAGATGGGCTGAAATCTGGGGTGAGTGTATGCGCGCGGATTCGGATTTGATGGTTGATATTCGGGCGGTGAAAAATGGTGTCGATAAAGCGTTATTAGAGACCACGAAAACATTTACTTATTCGGTGAAACCTGAGGAATTAGAGGCAGATCCAGAATGGGCGTTGAGTTATTTTGAGCAGGTTCAACGTTTGAAATTCATTACGTCTGGTGGTGCGCTAAAAGATGTGACCAAGCGGATTGAGACGAAAAAAGAGACGGATGAGGATTTGATTTATACGGAGGATAATCCAGCGCCTGATGGTTCTGAGGATACGGCAAGATTGGCCTTTAAATGGGGAAATGCAGAAAAAAGATTTAAGCGTTTTCCTAAGGGGGATGTGAAGTGA
配列番号2:本発明のORF-2(1161塩基対)
ATGCGCTTGGGCGGTTATACAAGGATTGGACTCCTGATTTTTTCCATTTTTTTTGCGGGCTTTTCGTCGGCGCAGGTGTGGGAAAGCGTCAAGATATTGAAGCATACGGCGTTTAAGGTGGGCGATGATGAAAATGATGGGCAAGCGAAAACAAAAGCCTGTGAGGAAGCAAAAGCCGAAGTATGGGGTTTGTTTGAATCTCATAAAAGAAATTTTAGTCGTCAGTATCCGGATGCCACTTATCGTCTTTTGATGGATGGGAATTGCCAGTTTGATATGACGAAATATAGGGATTATGTCCGTTTTTCAGCAACCATATCGGGCGATATGCAGCGGTCATTTGTCGATAAAACCGCAAAGTCACCAGAGCAGATTTGTAAAGAGAAGCCGATTTTAAATCAAACAGCATTGGGTGTTTCTCGTAAGGTTGGTTCTGATTATTTTGTTTATCTTGATGGCTGTGAATATATTGCCACCGGGGTGATTTTACTGGTTGGCGGTAATGTTACTGCAGACTGGAAGACGACGGGTGAAGTGGCAGGTGATGGTGATGGTAAGGTGAGTGGGACGATGGCGTCTGTTTCGTCGCAGGATAAACCGAAAGCGGCGGAATCTTCATCATCGGAGTTGTTATCACAGGGAGAGGCGGATAAGTCATCTGGTTTGATTAAAGGTACGCCGGTTAGTCCGGGGAGTGCCAGTCATTCAGCATCGGTTTCTCCGCAGCATTCAGGCGTTTCCGCAGAGGCGGGAAAAATGCCATCAGAGGGTGGTTTATCTCGTTCGGAAAATGAGCCTAGGAAGCAGTCTTTCAGTCCGTTAGCGGCGGATCATGCGTCTTCGGCTTCTGGTATATCTGTGGGTAGGGGAGGGCAAGGTGATAGGCTGGATCTATCTCATCCTGATAAGGGTGAACCTGATTTGGATCCACCGACAGCTGAGAAGATTTTATCACCGTTGCAAAATTTGTTTCCTTTCCTGAAAAAGTTCAGTTTGCCGGAACGTCAGGTCAAATGTCCGGTGGTAAGTTTTGATGTGTTTGATCGTCATTATGTGATGGATTCCCATTGTTTTCTGTTTGAAAAAGTCCGTGACCTGTTAAGGCTTTTTTCCATGATTTGCTGGTCTTTTCTTGGGCTGCGTATTGTGCTGTCTGCTTAA
配列番号3:本発明のORF-3(1029塩基対)
ATGGCGATTTCTGCGTATGTTGGGATCCCGGGCAGCGGTAAATCCTATGAAGTGGTTTGTAATGTCATTATTCCGGCTTTTATGAAGGGTCGGCGGGTAGTGACCAATATTTATGGTCTTTCGGTAGAAAAGATCACTGCTTATTGTCTGGAGAAGAAAAAGGCGGATGAAAGTCAGTTTGGCGAGCTGGTTTTTGTTGAAAATGAACGGATTAAAGAAGGTAATTTTTTCCCATTTAAAACGGAAACGGGGATAGCAGAGGATACGTTTTGTCAGGCAGGGGATTTGATTTGTATTGATGAAGCGTGGTGCGTTTGGAAGAGTGATAAAATTTTGCCACAACATCGCTCATTCATTGCCGAACATCGGCATTTTGTTAATGCAGAAGGTGTTACCTGTGATTTGGTGGTATTAAATCAGTCGGTGTCGGGTTTGCCAAAGTTTATTAAAGATCGGATTGAGACGACTTATCAAATGACCAAACTGGTGATGTTAGGATTACGCAGTCGTTATCGGGTTGATGTGTATCCCGGTATTAAGGTGGCCAAAAACAATCGTACCTCATCTTATCAGTGCAGTTATGACAAAGCGATTTTCCCACTTTATCATTCTTATGAAGGCGGTCATGGACAGGAACAGGTGGTTGATAAGCGTCAGAGTATTTTTAGTCTGCGTCGAGTTTTGATAATCGGATTGGTGTTTTTGTTGATGCTGTCTTTCTCGTTTTATTATCTGAGTCGTTTTTTTTCTGGTCAGGCGATGATCCCTAAAAATCAGTCGGCGTCTGAATCTGTTAATAAGCCAGTAATGGGGCAAAATTCATTTCAGAATTCGTCGCAACAGAATTTGTCTGTTCGGTGGCGTATTGCTGGCAAGGTCAGTCAGCGGGGTCAGGCGTGGGTAGTATTATTGGGTGATCAGGGGCAACTCAGGATCGAATCCTTGTCGAAATTTCGTTTTTCGGATTTGCGTATGATGGGTGAGATTGAGGGTGATGTTGTAACAACATACTCAGGAGCCGTCAAATGA
配列番号4:本発明のORF-4(1218塩基対)
ATGAAAAAGGCAGTGTTAGGCGTATTATGTTTGATGAGTCCGTTACTTTTTGCCAAAGGGGTAATGGTAGAGTTGAATAGTGTGCCGTTACCGCAAGCCTTGAATGTGCTTTACAGTCAGGTTTTTTTGCGTCCTTTCATGTTATCGCCAGAGTTGATCAATGATCCCCGTAAAGTGACTTTTCGTATTACTCAAGATATTGATGAACGGGCTTTTGTTAAGCGTTATTTGCATAATTTACAGATTGCGATCCATGAACGTGAAGGTGTTGATTATTTGGTCACGTTTACGCCAAGGCAGCCGATTGTGCTTAAGGAAACTTATGTCTATCAACCAGTTTATCGTTCAGTTGAATATTTGTCTGATTTGTTACGCGGTCAGTTTGCAGGTAATTTTAATGCGTTGGGACAGGGGATTTCTGGTAGTCAAATAGCACCACAGGATGCGGTATCAGGTACGGCGTCTGATTTTTTGAACCGGACGGGCGATGTACTGGTTTATTACGGTACCCGAGCGGATATTGTACGGTTAAAGGCACTGTTACCGAAAATTGATACGGTGACTGATGAGGTGGTGGTTTCGGCGTATGTCTTTGAAGTACAGACAGCGGAGCGTAATGGTTCAGGCTTGGCGCTGGCAGCTAAACTGGTTTCCGGTAAATTGAATATAGGGATGGGTAAGGAAGCGGGATTTGATAATTTTGTTCGTTTTAATTTAGGTTCATTGGATGCTTTGTATGAGCTGTTTCGGACGGATAGCCGTTTCCATGTGGTGAGTTCGCCGAGACTGCGGGTAAAAAATGGGGCGAGGGCGTCGTTTCTGGTGGGCTCTGAGGTGCCGGTATTAGGTCAGGTCAGTTATGCCGATAATAAGCCTGTTCAGTCGATAGAATATCGCTCTAGTGGGGTTATCTTGAATGTGCGTCCGCAAATTCGGCAACAGGGCGTTGATTTAATTATTGACCAGCAATTATCCAATTTTGCGAAAACGGAAACGGGCGTGAATAACAGTCCAACCCTTATCAAGCGTGAAGTGAGTACGCAGGTGAGTGTGGCGGATGGCGATATTATCCTGTTAGGCGGTTTGGCGGAAAACAAGCTGACAGAAGCGGATACCGGATTTTCGTTTTTTCCAAAAGGTGTGTTTACCGGTGCTTCGGCGGAGAATAATAAGACTGATATTTTAGTGGTTTTGCAGGTTAAGAAGGTTAAACGTTAG
配列番号5:pPFC12-Lの全塩基配列(6840塩基対)
TATAAAACGGGAAGTGTGAGTCAGCTTTTTTGATGGCGTTAGCCATGTAAGGCGACTAGTTGGATATTTAGGGGGCGTTTTAAGTCCATTCGCCGATACAGAGAGTGGACTTATCGAGTAGCAATTTACCCTGCGTTAGCATCCTGCTAGACGGGTTTTTTGGGGTAGTCTCTTCTTAAATTTATAATACAGATGGTGTTTCAAACTTTTTTTGTGGTGCGTGAGGCCTTTACTGGCGTGGGTTTTGTGGGAAACTTGACATAACGAAGAAAACCTTGTAGATTTAATGGAGTCTAAGCCAAAATCAAACAAGGTTTTTTTCTGTGACGATCGGACGTCTTAATCATTATTGTAGCGAGAAAATTTGCGGATGCAATAGGGGAAGTGAGATTTCTTCTGTTGAATCTGATATTTTTTTGTCGGATATGAGTCAAAAGGACGTTAAGTGGGATAGTAAGCGTGCTCATACTGATATGTTGGCGGAATTTTTAGCTAATTTTTCTGGCAGTAATTCGTTACTACAAAATTCTTACCCACATCTTTTCCTTAAATTTGCTGATTGCAGCATAAAATGGCAGAAATGGGCGAACAGAATGGTTGACTGTTCTGGTTTTCTTCGTTTTGCCATGGTCATTTCTCCTGAAACGGGTGAACTTGCGTTAAAATTAAGACAGGCATATTTTTGTCATTTCAGACATTGTCCTGTTTGTAATTGGAGACGCCAGTTGAAATTATTAGCTCGTTTTTTGGAATACCTTCCTGTTGTTGCTGAAGACAATCCTAAATCCCGTTGGGTTTTTATGACTTTAACGGTGCCAAATGTGCCTATTGAATATCTGCGCGAAGAATTAAACAACATGAATAAGGCGTGGAATCGTTTAAAAGGGCGCAAAGAGTTTAAGCCAGTTAAAGGCTGGGTTCGTACTACGGAAGTCACTCGTGAAGGTAGCCGTAAGGGTTATTCGAATCGTAAGGGATATGCCCATCCGCATTTTCATTGTTTGTTAATGGTGCCGTCTTATTGGTTTACTAGCGCATATACGAAGCAGAACAGATGGGCTGAAATCTGGGGTGAGTGTATGCGCGCGGATTCGGATTTGATGGTTGATATTCGGGCGGTGAAAAATGGTGTCGATAAAGCGTTATTAGAGACCACGAAAACATTTACTTATTCGGTGAAACCTGAGGAATTAGAGGCAGATCCAGAATGGGCGTTGAGTTATTTTGAGCAGGTTCAACGTTTGAAATTCATTACGTCTGGTGGTGCGCTAAAAGATGTGACCAAGCGGATTGAGACGAAAAAAGAGACGGATGAGGATTTGATTTATACGGAGGATAATCCAGCGCCTGATGGTTCTGAGGATACGGCAAGATTGGCCTTTAAATGGGGAAATGCAGAAAAAAGATTTAAGCGTTTTCCTAAGGGGGATGTGAAGTGAAAAAATTTGTGGTTTCTACTTCTAATATGAATTTTACACCTAAATTTTTTAGTTCCAAGAATTTAGCGGGTGAGTACTGTTTAAGGAATAATGCTTATTACTTTTTTGAGATGCGTGAGAATTCTGTTGATTACCCAAAAAGAGTTTGGGTGGTTAAAAGACAGGCGGGTTCGTTGAAATATAACTTTTTCACGTGGGAAGAGTATTCATTATTGAAGGATCTTTTTTCTTGTTATGCCGAAGGTAGTCGTCAATGTAAATTGTTACATTAGTTTTTTGTTCTAGGCGCTGTATAGCCGGACTGAGAATCCGACCATACAGCTATCACACAAACCTTTCATGGGAGGTTCATATGAGTCGTTCCGATCTTAATAACTTTTCAGATTTGTTCAAGGCTATTTCTGTGCTTTGTGATTCAGTTGATTCAATTCAGCTGGCCGCTTATCAGTTGCCGTCTTCGTCAGATGATATGAGTTTTTTCGTGAAGTTGTGTGATGACTGTCAGTTAAATTTGACGCATTTGCGCGAAGAGCTTTTCATCTTGCTTGAAGAACCATTTAAAAATTCCCCTAAAACGTCCTGAGAGCCATTCTAAGCCTTTTTTTAGGTTTTGGAATGTTATGTCATGGATTGTGATTCTTTACGTCTTAAGGGAGCGTTTTAGGCTTTTCTGTTGACATGTAGGAGAAAGTATTATGGCAGTTTCAAGTATTAATAAAGCGTTTATTACTGGGAAGATCCTTAAATCTGAGAATTCCGATAAAGGGGAGTTTTATACGTTGGTGGTTTTGCCTGCCGACGATTCTTATTCATTGCCGCCAGTTGTGAAGGTCAGTTCTAAACGTCGTTTAGGGGCACAGGGTGATGTCGTTAATGATCTGGCTTGCCGTTTTCGGGGTTTTGTTAGGACTTTTACGCTTAGTTCCGGAGGAAAAGGTGAAGAACTCAGAATGTGGCTTGAATTGGTGGAGTAAGAGATCGTGATGCGTTTTTTCGGCAATATTATCGGACGATTGATGGCGAATATCGTAATGATTTCGGCGCTTTTTGTTGCGGGTATTTCCGTTTCTTATGGCGATGAGATGAATGTGAAATTATTGAAGGTTGAATCTTTGGTAATTTCCAGTCAGGGAGGTCTTGATATTGATTATGCTCAGGCAGCTCAGTTTTGGGGTCTTTCTTTTACGACGGTCATTTCCCTTTGGTTATTTTCGAAAGGGGTAGAGGCAGTCATTAATATGTTTAAAGGAGGTTAGTTATGGTTAAGCAAATTAAGCGTATTTTGCTGGGTTTATCGGTGGCGATGTTTTCTGCGGTTTCAGTTGCAGGGGATCCGCCTAAAATGGATTTTTCTTCATTGACCAATTCGATTAATTTGGAAGCGGTTATTACGGGCGTTTTGGGGATCGCAGCAGCACTTCTTTTTATCTATGTTGCTGTTAAGGGTGCAAAAACGTTGGTTGCTTTCTTCAGAGGGGCTTAATGAGGATAGGGGCAGATAAATGCCCCTTTTTTTGCGTATGTTACCTGTAATGTTTAATTATCTGTGTTTCCTCTGGGGGTTGTTATGCGCTTGGGCGGTTATACAAGGATTGGACTCCTGATTTTTTCCATTTTTTTTGCGGGCTTTTCGTCGGCGCAGGTGTGGGAAAGCGTCAAGATATTGAAGCATACGGCGTTTAAGGTGGGCGATGATGAAAATGATGGGCAAGCGAAAACAAAAGCCTGTGAGGAAGCAAAAGCCGAAGTATGGGGTTTGTTTGAATCTCATAAAAGAAATTTTAGTCGTCAGTATCCGGATGCCACTTATCGTCTTTTGATGGATGGGAATTGCCAGTTTGATATGACGAAATATAGGGATTATGTCCGTTTTTCAGCAACCATATCGGGCGATATGCAGCGGTCATTTGTCGATAAAACCGCAAAGTCACCAGAGCAGATTTGTAAAGAGAAGCCGATTTTAAATCAAACAGCATTGGGTGTTTCTCGTAAGGTTGGTTCTGATTATTTTGTTTATCTTGATGGCTGTGAATATATTGCCACCGGGGTGATTTTACTGGTTGGCGGTAATGTTACTGCAGACTGGAAGACGACGGGTGAAGTGGCAGGTGATGGTGATGGTAAGGTGAGTGGGACGATGGCGTCTGTTTCGTCGCAGGATAAACCGAAAGCGGCGGAATCTTCATCATCGGAGTTGTTATCACAGGGAGAGGCGGATAAGTCATCTGGTTTGATTAAAGGTACGCCGGTTAGTCCGGGGAGTGCCAGTCATTCAGCATCGGTTTCTCCGCAGCATTCAGGCGTTTCCGCAGAGGCGGGAAAAATGCCATCAGAGGGTGGTTTATCTCGTTCGGAAAATGAGCCTAGGAAGCAGTCTTTCAGTCCGTTAGCGGCGGATCATGCGTCTTCGGCTTCTGGTATATCTGTGGGTAGGGGAGGGCAAGGTGATAGGCTGGATCTATCTCATCCTGATAAGGGTGAACCTGATTTGGATCCACCGACAGCTGAGAAGATTTTATCACCGTTGCAAAATTTGTTTCCTTTCCTGAAAAAGTTCAGTTTGCCGGAACGTCAGGTCAAATGTCCGGTGGTAAGTTTTGATGTGTTTGATCGTCATTATGTGATGGATTCCCATTGTTTTCTGTTTGAAAAAGTCCGTGACCTGTTAAGGCTTTTTTCCATGATTTGCTGGTCTTTTCTTGGGCTGCGTATTGTGCTGTCTGCTTAAGGGGGTGAGAGATGTATGCATTGATTGTCTCGGCGCTTAATGGCATGTTGGCGTTTATATTTCGTACCCTTGTCGTTAAGTTTGTGGTTTTTTCTGTGCTGTTTCTTATTGTGTCGGAATTTTTGCCGATTTTACTGTCTTTGTTACCTGCGTCGACTAATTTGCCGGATCTGTTTCAGAAGTTACCTGATAGTGCGTGGTATTTCATGAATATGTTTGCCGTGACAGAGGGCGTGAAGATCGTGATTTCAGCTTATCTGACTCGTTTTACGATCCGACGTATTCCAGTTATAGGGTGATTTATGGCGATTTCTGCGTATGTTGGGATCCCGGGCAGCGGTAAATCCTATGAAGTGGTTTGTAATGTCATTATTCCGGCTTTTATGAAGGGTCGGCGGGTAGTGACCAATATTTATGGTCTTTCGGTAGAAAAGATCACTGCTTATTGTCTGGAGAAGAAAAAGGCGGATGAAAGTCAGTTTGGCGAGCTGGTTTTTGTTGAAAATGAACGGATTAAAGAAGGTAATTTTTTCCCATTTAAAACGGAAACGGGGATAGCAGAGGATACGTTTTGTCAGGCAGGGGATTTGATTTGTATTGATGAAGCGTGGTGCGTTTGGAAGAGTGATAAAATTTTGCCACAACATCGCTCATTCATTGCCGAACATCGGCATTTTGTTAATGCAGAAGGTGTTACCTGTGATTTGGTGGTATTAAATCAGTCGGTGTCGGGTTTGCCAAAGTTTATTAAAGATCGGATTGAGACGACTTATCAAATGACCAAACTGGTGATGTTAGGATTACGCAGTCGTTATCGGGTTGATGTGTATCCCGGTATTAAGGTGGCCAAAAACAATCGTACCTCATCTTATCAGTGCAGTTATGACAAAGCGATTTTCCCACTTTATCATTCTTATGAAGGCGGTCATGGACAGGAACAGGTGGTTGATAAGCGTCAGAGTATTTTTAGTCTGCGTCGAGTTTTGATAATCGGATTGGTGTTTTTGTTGATGCTGTCTTTCTCGTTTTATTATCTGAGTCGTTTTTTTTCTGGTCAGGCGATGATCCCTAAAAATCAGTCGGCGTCTGAATCTGTTAATAAGCCAGTAATGGGGCAAAATTCATTTCAGAATTCGTCGCAACAGAATTTGTCTGTTCGGTGGCGTATTGCTGGCAAGGTCAGTCAGCGGGGTCAGGCGTGGGTAGTATTATTGGGTGATCAGGGGCAACTCAGGATCGAATCCTTGTCGAAATTTCGTTTTTCGGATTTGCGTATGATGGGTGAGATTGAGGGTGATGTTGTAACAACATACTCAGGAGCCGTCAAATGAAAAAGGCAGTGTTAGGCGTATTATGTTTGATGAGTCCGTTACTTTTTGCCAAAGGGGTAATGGTAGAGTTGAATAGTGTGCCGTTACCGCAAGCCTTGAATGTGCTTTACAGTCAGGTTTTTTTGCGTCCTTTCATGTTATCGCCAGAGTTGATCAATGATCCCCGTAAAGTGACTTTTCGTATTACTCAAGATATTGATGAACGGGCTTTTGTTAAGCGTTATTTGCATAATTTACAGATTGCGATCCATGAACGTGAAGGTGTTGATTATTTGGTCACGTTTACGCCAAGGCAGCCGATTGTGCTTAAGGAAACTTATGTCTATCAACCAGTTTATCGTTCAGTTGAATATTTGTCTGATTTGTTACGCGGTCAGTTTGCAGGTAATTTTAATGCGTTGGGACAGGGGATTTCTGGTAGTCAAATAGCACCACAGGATGCGGTATCAGGTACGGCGTCTGATTTTTTGAACCGGACGGGCGATGTACTGGTTTATTACGGTACCCGAGCGGATATTGTACGGTTAAAGGCACTGTTACCGAAAATTGATACGGTGACTGATGAGGTGGTGGTTTCGGCGTATGTCTTTGAAGTACAGACAGCGGAGCGTAATGGTTCAGGCTTGGCGCTGGCAGCTAAACTGGTTTCCGGTAAATTGAATATAGGGATGGGTAAGGAAGCGGGATTTGATAATTTTGTTCGTTTTAATTTAGGTTCATTGGATGCTTTGTATGAGCTGTTTCGGACGGATAGCCGTTTCCATGTGGTGAGTTCGCCGAGACTGCGGGTAAAAAATGGGGCGAGGGCGTCGTTTCTGGTGGGCTCTGAGGTGCCGGTATTAGGTCAGGTCAGTTATGCCGATAATAAGCCTGTTCAGTCGATAGAATATCGCTCTAGTGGGGTTATCTTGAATGTGCGTCCGCAAATTCGGCAACAGGGCGTTGATTTAATTATTGACCAGCAATTATCCAATTTTGCGAAAACGGAAACGGGCGTGAATAACAGTCCAACCCTTATCAAGCGTGAAGTGAGTACGCAGGTGAGTGTGGCGGATGGCGATATTATCCTGTTAGGCGGTTTGGCGGAAAACAAGCTGACAGAAGCGGATACCGGATTTTCGTTTTTTCCAAAAGGTGTGTTTACCGGTGCTTCGGCGGAGAATAATAAGACTGATATTTTAGTGGTTTTGCAGGTTAAGAAGGTTAAACGTTAGATGAATCGGCTCTTCCCGTTTTTTTTCAACTGAAGAAAGATTGATGATGAGAAGGTAGGGGACACACCACAGCGAGAGTCGAGCGAGGAGTGACCCCTATCTTCGAAGAAGAAAACAATAAGCAGAAG
配列番号6:実施例1で用いたORF-1増幅に使用したプライマー(ORF-1のリア
ルタイムPCR用プライマーセット(B12-L2;配列番号1の838-858位)):GGTGCGCTAAAAGATGTGACC
配列番号7:実施例1で用いたORF-1増幅に使用したプライマー(ORF-1のリア
ルタイムPCR用プライマーセット(B12-R2;配列番号1の928-949位の相補鎖)):ATCTTGCCGTATCCTCAGAACC
配列番号8:実施例1で用いたリアルタイムPCR用プライマーRep-L212(配列
番号1の212-232位):CTCCTGAAACGGGTGAACTTG
配列番号9:実施例1で用いたリアルタイムPCR用プライマーRep-R351(配列
番号1の330-351位の相補鎖):GTCTTCAGCAACAACAGGAAGG配列番号10:実施例2で用いたプライマーExORF2-L596(配列番号2の596-620位):AACCGAAAGCGGCGGAATCTTCATC
配列番号11:実施例2で用いたプライマーExORF2-R738(配列番号2の715-738位の相補鎖):AACGCCTGAATGCTGCGGAGAAAC
配列番号12:実施例2で用いたプライマーExORF3-L847(配列番号3の847-861位):TTGTCTGTTCGGTGGCGTATTGCTG
配列番号13:実施例2で用いたプライマーExORF3-R943(配列番号3の919-943位の相補鎖):AGGATTCGATCCTGAGTTGCCCCTG
配列番号14:実施例2で用いたプライマーExORF4-L572(配列番号4の572-591位):TGGTGGTTTCGGCGTATGTC
配列番号15:実施例2で用いたプライマーExORF4-R691(配列番号4の672-691位の相補鎖):ATCCCGCTTCCTTACCCATC
配列番号16:実施例3で用いたLAMP法用のプライマーB12-F3(配列番号1の715-733位):GCGTTATTAGAGACCACGA
配列番号17:実施例3で用いたLAMP法用のプライマーB12-B3(配列番号1の890-911位の相補鎖):TCCTCCGTATAAATCAAATCCT
配列番号18:実施例3で用いたLAMP法用のプライマーB12-FIP(配列番号1の789-813位の相補鎖-配列番号1の749-766位):TTGAACCTGCTCAAAATAACTCAAC-CGGTGAAACCTGAGGAAT
配列番号19:実施例3で用いたLAMP法用のプライマーB12-BIP(配列番号1の814-838位-配列番号1の870-889位の相補鎖):CGTTTGAAATTCATTACGTCTGGTG-CATCCGTCTCTTTTTTCGTC
配列番号20:実施例3で用いたLAMP法用のプライマーB12-LF(配列番号1の769-788位の相補鎖):GCCCATTCTGGATCTGCCTC
配列番号21:実施例3で用いたLAMP法用のプライマーB12-LB(配列番号1の841-862位):GCGCTAAAAGATGTGACCAAGC
配列番号22:実施例5で用いたExSSB-L096(配列番号5の2230-225
0位):GCCTGCCGACGATTCTTATTC
配列番号23:実施例5で用いたExSSB-R265(配列番号5の2376-2399位の相補鎖):CAAGCCACATTCTGAGTTCTTCAC
配列番号24:実施例5で用いたExExd-L236(配列番号5の123-144位):AATTTACCCTGCGTTAGCATCC
配列番号25:実施例5で用いたExExd-R345(配列番号5の214-232位の相補鎖):TAAAGGCCTCACGCACCAC
配列番号26:配列番号1がコードするアミノ酸配列
配列番号27:配列番号2がコードするアミノ酸配列
配列番号28:配列番号3がコードするアミノ酸配列
配列番号29:配列番号4がコードするアミノ酸配列
配列番号30:調製実施例で用いたPfRep-RF1プライマー:ATATCCCTTACGATTCGAATAACCCTTACG
配列番号31:調製実施例で用いたPfRep-RR1プライマー:CTGAAGAAAGATTGATGATGAGAAGGTAGG
配列番号32:調製実施例で用いたB12-S2プライマー:TGGTTCTGAGGATACGGCAAG
配列番号33:調製実施例で用いたB12Inv-F2プライマー:ATCAGTATGAGCACGCTTAC
配列番号34:調製実施例で用いたB12Inv-F3プライマー:ATCCGACTCATCTTGCTC
配列番号35:調製実施例で用いたB12Inv-R2プライマー:TGTGAGCAAGATGAGTCG
配列番号36:調製実施例で用いたB12Inv-R3プライマー:AGTCATCTTCTGTTAGTACC
配列番号37:調製実施例で用いたB12Inv-R4プライマー:TGTGACGATCGAACGTC
配列番号38:調製実施例で用いたM13 forward(-20)プライマー
TGTAAAACGACGGCCAGT
配列番号39:調製実施例で用いたM13 Reverseプライマー
CAGGAAACAGCTATGACC

Claims (21)

  1. (a)配列番号1~5のいずれか1つに示す配列;
    (b)(a)の配列の少なくとも95%の同一性を有するか、ストリンジェントな条件下でその相補鎖とハイブリダイズするか、もしくはその配列において1もしくは数個の置換、付加および/もしくは欠失を含む改変配列;
    (c)(a)もしくは(b)の少なくとも10ヌクレオチドを含むフラグメント配列;または
    (d)(a)、(b)もしくは(c)の相補鎖配列
    を含む核酸分子。
  2. 配列番号は1~5中以下の箇所:配列番号1の212-232位、配列番号1の330-351位、配列番号1の715-733位、配列番号1の715-738位、配列番号1の749-766位、配列番号1の769-788位、配列番号1の789-813位、配列番号1の814-838位、配列番号1の838-858位、配列番号1の841-862位、配列番号1の870-889位、配列番号1の890-911位、配列番号1の928-949位、配列番号2の596-620位、配列番号2の715-738位、配列番号3の847-861位、配列番号3の919-943位、配列番号4の572-591位、配列番号4の672-691位、配列番号5の123-144位、配列番号5の214-232位、配列番号5の2230-2250位および配列番号5の2376-2399位からなる群より選択される少なくとも1つの配列またはその相補配列の少なくとも10ヌクレオチドを含む、請求項1に記載の核酸分子。
  3. 配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット。
  4. 配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含む、請求項3に記載のプライマーセット。
  5. 配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、請求項3に記載のプライマーセット。
  6. 前記プライマーセットは、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのものである、請求項3に記載のプライマーセット。
  7. 配列番号は1~5に示す配列またはその相補配列のうち、少なくとも10ヌクレオチドと、標識とを含む、プローブ。
  8. 配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む、請求項7に記載のプローブ。
  9. 配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む、請求項7に記載のプローブ。
  10. 前記プローブは、Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのものである、請求項7に記載のプローブ。
  11. Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するためのキットであって、該キットは:
     (A)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット、または配列番号は1~5に示す配列またはその相補配列のうち少なくとも10ヌクレオチドと標識とを含むプローブ;ならびに
     (B)核酸増幅用試薬
    を含む、キット。
  12. 前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む、請求項11に記載のキット。
  13. 前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む、請求項11に記載のキット。
  14.  Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するための方法であって、
     (A)被験サンプルを鋳型として用い、配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセットをプライマーとして用いて核酸増幅反応を行う工程;および
     (B)増幅された核酸分子に基づいて、該被験サンプル中にCandidatus Phlomobacter fragariaeがあるかどうかを決定する工程
    を包含する、方法。
  15. 前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも15ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも15ヌクレオチドを含む核酸分子とを含み、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも15ヌクレオチドと、標識とを含む、請求項14に記載の方法。
  16. 前記プライマーセットは、配列番号は1~5に示す配列のうち、少なくとも17ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも17ヌクレオチドを含む核酸分子とを含む、あるいは、前記プローブは配列番号は1~5に示す配列またはその相補配列のうち、少なくとも17ヌクレオチドと、標識とを含む、請求項14に記載の方法。
  17. 前記決定する工程は、Candidatus Phlomobacter fragariaeに感染したイチゴから抽出したサンプルを陽性コントロールとして使用することを特徴とする、請求項14に記載の方法。
  18. 前記核酸増幅反応は、リアルタイムPCRまたはLAMP法によって行われる、請求項14に記載の方法。
  19. Candidatus Phlomobacter fragariaeを検出するためのプライマーであって、配列番号6~25に記載の配列から選択される配列を含むプライマー。
  20. Candidatus Phlomobacter fragariaeを検出するためのプライマーであって、配列番号6および7のセット、配列番号8および9のセット、配列番号10~11のセット、配列番号12~13のセット、配列番号14~15のセット、配列番号16~21のセット、配列番号22~23のセット、配列番号24~25のセットに記載の配列から選択される配列セットを含むプライマーセット。
  21. Candidatus Phlomobacter fragariaeまたはイチゴ葉縁退緑病を検出するための装置であって、該装置は:
     (A)核酸増幅反応を行うための手段;
     (B)配列番号は1~5に示す配列のうち、少なくとも10ヌクレオチドを含む核酸分子と、配列番号は1~5に示す配列の相補配列のうち、少なくとも10ヌクレオチドを含む核酸分子とを含む、プライマーセット、または配列番号は1~5に示す配列またはその相補配列のうち少なくとも10ヌクレオチドと標識とを含むプローブ;ならびに
     (C)該核酸分子または該標識を検出するための手段
    を含む、装置。
PCT/JP2011/005065 2010-09-10 2011-09-09 イチゴ葉縁退緑病の病原体Candidatus Phlomobacter fragariaeの検出方法 WO2012032785A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-203701 2010-09-10
JP2010203701A JP5741894B2 (ja) 2010-09-10 2010-09-10 イチゴ葉縁退緑病の病原体CandidatusPhlomobacterfragariaeの検出方法

Publications (1)

Publication Number Publication Date
WO2012032785A1 true WO2012032785A1 (ja) 2012-03-15

Family

ID=45810395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005065 WO2012032785A1 (ja) 2010-09-10 2011-09-09 イチゴ葉縁退緑病の病原体Candidatus Phlomobacter fragariaeの検出方法

Country Status (2)

Country Link
JP (1) JP5741894B2 (ja)
WO (1) WO2012032785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463128A (zh) * 2014-10-30 2016-04-06 四川省农业科学院园艺研究所 一种草莓病毒的定量检测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930027B2 (ja) * 2012-05-11 2016-06-08 株式会社島津製作所 試薬調製支援装置、それを実現するプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
DE112014004154T5 (de) * 2013-10-22 2016-06-02 Hitachi High-Technologies Corporation Automatische Analysevorrichtung
WO2024176977A1 (ja) * 2023-02-20 2024-08-29 東洋鋼鈑株式会社 遺伝子変異の検査方法及び検査装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINORU TANAKA: "Detection of 'Candidatus Phlomobacter fragariae' 16S rDNA by Loop- mediated Isothermal Amplification (LAMP) Method", JAPANESE JOURNAL OF PHYTOPATHOLOGY, vol. 73, no. 3, 2007, pages 266 - 267 *
TANAKA M. ET AL.: "Occurrence of strawberry marginal chlorosis caused by "Candidatus Phlomobacter fragariae"", J GEN PLANT PATHOL, vol. 72, 2006, JAPAN, pages 374 - 377, XP019463108, DOI: doi:10.1007/s10327-006-0308-6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463128A (zh) * 2014-10-30 2016-04-06 四川省农业科学院园艺研究所 一种草莓病毒的定量检测方法

Also Published As

Publication number Publication date
JP2012055271A (ja) 2012-03-22
JP5741894B2 (ja) 2015-07-01

Similar Documents

Publication Publication Date Title
KR101883117B1 (ko) 토마토 청고병 저항성 토마토 판별용 snp 마커
JP5741894B2 (ja) イチゴ葉縁退緑病の病原体CandidatusPhlomobacterfragariaeの検出方法
RU2720255C1 (ru) Способы и наборы для выявления мучнистой росы
JP5654265B2 (ja) ビソクラミス属に属する菌類の検出方法
JP5562007B2 (ja) ゲオスミチア(Geosmithia)属に属する菌類の検出方法
KR101955074B1 (ko) 무 판별용 snp 마커
JP5718575B2 (ja) 特定カビ検出用マイクロアレイ、及び特定カビ検出用マイクロアレイの使用方法
JP5548387B2 (ja) タラロマイセス属に属する菌類の検出方法
JP5548357B2 (ja) アスペルギルスフミガタス(Aspergillusfumigatus)類縁菌の検出方法
WO2003097828A1 (en) Method of identifying nucleic acid
KR20220087096A (ko) 고추 역병 저항성 판별용 프라이머 세트 및 이를 이용한 고추 역병 저항성 판별 방법
KR101955072B1 (ko) 무 판별용 snp 마커
KR20110074204A (ko) 사과의 품종 판별용 scar 표지 및 이의 용도
JP5548389B2 (ja) ビソクラミス属に属する菌類の検出方法
KR100764559B1 (ko) Epsps 유전자 검색에 활용할 수 있는 fret형광검출용 프로브
KR101820048B1 (ko) 유전자 변형체의 검정을 위한 표준 플라스미드, 이를 이용한 분석 방법 및 검정용 키트
KR102291826B1 (ko) 잔디품종 및 제초제 저항성 유전자 변형 판별용 조성물 및 이의 용도
JP2002112773A (ja) Dnaマーカーを用いるパパイアの性識別方法
JP2018143147A (ja) カビ検出用担体、カビの検出方法、及びカビ検出用キット
JP5697881B2 (ja) パエシロマイセスサトゥラタス及びパエシロマイセスディバリカタスの検出方法
JP5769377B2 (ja) 特定カビ検出システム、特定カビ検出方法、及びpcr反応液
JP6381771B1 (ja) 萎黄病菌由来の核酸を増幅するためのプライマーセットおよび萎黄病菌の検出方法
JP6722904B2 (ja) ビソクラミス属に属する菌の検出方法
KR20230168683A (ko) 뿌리이상비대병 병원성 균주 검출을 위한 조성물
Bashyal et al. Development of Specific Marker for Identification and Characterization of Fungal Plant Pathogens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823264

Country of ref document: EP

Kind code of ref document: A1