WO2012032656A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2012032656A1
WO2012032656A1 PCT/JP2010/065643 JP2010065643W WO2012032656A1 WO 2012032656 A1 WO2012032656 A1 WO 2012032656A1 JP 2010065643 W JP2010065643 W JP 2010065643W WO 2012032656 A1 WO2012032656 A1 WO 2012032656A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
heat
housing
conductor
components
Prior art date
Application number
PCT/JP2010/065643
Other languages
English (en)
French (fr)
Inventor
伊藤 寛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/065643 priority Critical patent/WO2012032656A1/ja
Priority to JP2012532819A priority patent/JP5496345B2/ja
Publication of WO2012032656A1 publication Critical patent/WO2012032656A1/ja
Priority to JP2013045917A priority patent/JP5615398B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20518Unevenly distributed heat load, e.g. different sectors at different temperatures, localised cooling, hot spots
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure

Definitions

  • the present invention relates to a power conversion device.
  • Electrical circuit components that make up the power converter include components that generate significant heat during operation (for example, semiconductor switch elements and reactors), components that generate a small amount of heat but have a shorter life if they continue to operate in a high-temperature environment (for example, electrolytic capacitors) ), Parts whose performance deteriorates under a high temperature environment, that is, parts having a low allowable operating temperature (for example, relays) are mixed. If these components are classified from the viewpoint of whether or not they are thermal generation sources, the switching element and the reactor can be classified as heat generating components, and the electrolytic capacitor and the relay can be classified as low heat generating components.
  • a power conversion device such as a power conditioner (power conditioner) for photovoltaic power generation installed outdoors has a casing in which an electric circuit section is hermetically sealed in order to prevent intrusion of dust and rainwater that cause tracking. Stored in the body. For this reason, during operation of the power conversion device, the temperature inside the housing rises due to the heat generated by the switching element, the reactor, and the like, and the temperature of the electrolytic capacitor, the relay, etc. rises accordingly.
  • Patent Document 1 is a power conditioner manufactured by REFU Elektronik.
  • REFUSOL 11k a reactor that is a heat generating component and other components are stored in different storage units (Non-Patent Document 1).
  • a switching element formed of a silicon semiconductor As a switching element constituting the power conversion device, a switching element formed of a silicon semiconductor is generally used. However, since the switching element formed of a silicon semiconductor has a low power conversion efficiency under a high temperature environment, sufficient cooling is required to protect the switching element itself from overheating. For this reason, it is difficult to store the switching element together with the reactor, which is a heat-generating component, in the first storage portion that is at a high temperature, and it must be stored together with the electrolytic capacitor and the relay in the second storage portion at a relatively low temperature. It was.
  • the switching element generates a large amount of heat during operation of the power conversion device, and the temperature around the switching element rises. For this reason, according to the above-described prior art concept, it is necessary to perform component placement in consideration of the thermal effect of heat generated by the switching element on low heat-generating components such as electrolytic capacitors and relays, and there is little freedom for component placement. There was a problem.
  • the present invention has been made in view of the above, and an object thereof is to provide a power conversion device capable of increasing the degree of freedom with respect to component arrangement.
  • a power conversion device includes various components including a switching element that switches DC power to convert it into AC power, and a housing in which each surface is formed of a conductor. And the various components include the switching element, a plurality of types of heat generating components that generate a large amount of heat during operation, and a plurality of types of low heat generation components that generate a smaller amount of heat during operation than the heat generating components.
  • the switching element is formed of a wide band gap semiconductor, and in the casing, all of the divided heat generating components are disposed above the divided low heat generating components. .
  • FIG. 1 is a diagram of a configuration example of the power conversion apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a power converter using Si switching elements.
  • FIG. 3 is a diagram of a configuration example of the power conversion apparatus according to the second embodiment.
  • FIG. 4 is a diagram of a configuration example of the power conversion apparatus according to the third embodiment.
  • FIG. 5 is a diagram of a configuration example of the power conversion apparatus according to the fourth embodiment.
  • FIG. 6 is a diagram of a configuration example of the power conversion apparatus according to the fifth embodiment.
  • FIG. 7 is a diagram of a configuration example of the power conversion apparatus according to the sixth embodiment.
  • FIG. 8 is a diagram of a configuration example of the power conversion apparatus according to the seventh embodiment.
  • a power conditioner that converts DC power supplied from a solar cell module into AC power and supplies it to a load such as an electric device in a house and a power system.
  • the output power of the power converter is consumed by a load such as an electric device in the house, and surplus power that cannot be consumed by the load such as the electric device in the house is reversely flowed to the power system.
  • the solar cell module cannot generate power due to low solar radiation, such as during cloudy weather or at night, power is supplied from the power system to a load such as an electrical device in the house.
  • FIG. 1 is a diagram of a configuration example of the power conversion apparatus according to the first embodiment.
  • FIG. 1A is a front view of a housing 1 in which the components constituting the power conversion device according to the first embodiment are housed. ")" Shows an overview of the parts that can be seen through. Note that the housing 1 is composed of conductors on all six sides.
  • FIG. 1B is a side view of the housing 1 as viewed from the side, and shows an overview of components (some components are omitted) that can be seen through the side conductors constituting the housing 1. Yes.
  • the temperature inside the housing 1 is such that a temperature distribution in which the upper part of the housing 1 becomes high and the lower part becomes low is caused by the rise of the air heated by the heat generating components.
  • a region above the broken line A is a high temperature region
  • a region below the broken line A is a low temperature region.
  • the power conversion apparatus includes, for example, DC power output from a step-up / down circuit (not shown) that boosts or steps down DC power from a solar cell module (not shown).
  • Switching element 10 that controls switching to AC power
  • electrolytic capacitor 11 that accumulates electric charge by DC power
  • reactor 12 that removes high-frequency components from the output of switching element 10 together with a capacitor (not shown)
  • AC A relay 13 for connecting power to a power system (not shown) and a control circuit 14 for controlling the switching element 10, the relay 13, and the like are provided.
  • the switching element 10 is formed of, for example, silicon carbide (SiC), a gallium nitride (GaN) -based material, or a wide band gap (WBG) semiconductor such as diamond. Since the switching element 10 formed of these WBG semiconductors can operate at a high temperature (about 200 ° C. or higher), the switching element 10 is disposed above the broken line A that is a high temperature region in the housing 1. Hereinafter, the switching element 10 will be described as the SiC switching element 10.
  • the electrolytic capacitor 11 is a low heat generating component and has a short life under a high temperature environment. Therefore, the electrolytic capacitor 11 is disposed in a lower part from a broken line A that is a low temperature region in the housing 1.
  • the reactor 12 is a heat-generating component that generates a large amount of heat during operation, like the SiC switching element 10, the reactor 12 is disposed in the upper high temperature region from the broken line A together with the SiC switching element 10.
  • the relay 13 is a low heat-generating component that generates a small amount of heat during operation in the same manner as the electrolytic capacitor 11, and the operating voltage range becomes narrow in a high-temperature environment. Therefore, the relay 13 is disposed together with the electrolytic capacitor 11 in the lower temperature region from the broken line A. .
  • control circuit 14 Since the calorific value during operation of the control circuit 14 is relatively small, the control circuit 14 is disposed together with the electrolytic capacitor 11 and the relay 13 in a low temperature region below the broken line A.
  • FIG. 2 shows a power conversion device using a silicon switching element (hereinafter referred to as “Si switching element”) which is a general-purpose switching element.
  • Si switching element a silicon switching element which is a general-purpose switching element.
  • the description will be given with reference.
  • Silicon has a narrower band gap than SiC or the like, and thus belongs to a group called a narrow band gap (NBG) semiconductor.
  • FIG. 2 is a diagram showing a configuration example of a power conversion device using Si switching elements.
  • FIG. 2A is a front view of the housing 1 in which each component constituting the power conversion device is housed, and it can be seen when the front conductor constituting the housing 1 is seen through like the first embodiment. An overview of the parts is shown.
  • FIG. 2B is a side view of the housing 1 as viewed from the side, and shows an overview of components (some components are omitted) that can be seen through the side conductors constituting the housing 1.
  • FIG. 2C shows the relative value of the temperature distribution with respect to the height of the housing 1. In the example illustrated in FIG. 2, for convenience, a region above the broken line A is a high temperature region, and a region below the broken line B drawn below the broken line A is a low temperature region.
  • the Si switching element 15 is a heat-generating component that generates a large amount of heat during operation, the power conversion efficiency is reduced in a high-temperature environment. Therefore, sufficient cooling is required to protect the Si switching element 15 from overheating. For this reason, in the example shown in FIG. 2, the Si switching element 15 is arranged in the upper portion of the low temperature region divided by the broken line B in the housing 1.
  • the electrolytic capacitor 11, the relay 13, and the control circuit 14 are disposed in a region sandwiched between a high temperature region and a low temperature region above the Si switching element 15. Further, as shown in FIG. 2, a heat sink 16 and a fan 17 that blows air to the heat sink 16 are provided outside the housing 1 to dissipate heat generated by the Si switching element 15 to the outside.
  • the electrolytic capacitor 11 is disposed below the relay 13, but the electrolytic capacitor 11 may be disposed above the relay 13.
  • the electrolytic capacitor 11 and the relay 13 are arranged side by side, but it can be said that there is hardly any degree of freedom to change the arrangement.
  • the degree of freedom with respect to the arrangement of the heat generating components in the high temperature region is also increased.
  • the SiC switching element 10 is disposed on the upper part of the reactor 12, but the SiC switching element 10 may be disposed on the lower part of the reactor 12 or in the vicinity of the reactor 12.
  • the switching element is formed of a WBG semiconductor capable of high-temperature operation, the switching element can be arranged in a high-temperature region in the upper part of the housing. It becomes possible.
  • the switching element by arranging the switching element together with the reactor in the high temperature region in the upper part of the casing, the temperature distribution in the casing can be made clearer, The temperature in the low temperature region can be kept low. By this action, an effect that the degree of freedom of arrangement with respect to low heat-generating parts such as an electrolytic capacitor and a relay can be increased is obtained.
  • the temperature of the electrolytic capacitor can be kept low, so that the life of the electrolytic capacitor can be extended.
  • the power conversion device of the first embodiment it is not necessary to select special parts with enhanced heat resistance performance, so that the selection range of parts constituting the power conversion device can be expanded.
  • the switching element formed of the WBG semiconductor has high voltage resistance and high allowable current density, so that the switching element can be miniaturized. By using this miniaturized switching element, the switching element can be reduced. It is possible to reduce the size of the power conversion device incorporating the.
  • the switching element formed of the WBG semiconductor has high heat resistance, it is possible to delete the heat sink or to reduce the size of the heat sink fin of the heat sink, thereby further reducing the size of the power conversion device.
  • the switching element formed of the WBG semiconductor has low power loss, it is possible to increase the efficiency of the switching element, and further increase the efficiency of the power conversion device.
  • FIG. FIG. 3 is a diagram of a configuration example of the power conversion apparatus according to the second embodiment.
  • symbol is attached
  • the first storage unit 2 in which the SiC switching element 10 is arranged in the upper part of the housing 1 and the components other than the SiC switching element 10 are arranged.
  • the second storage portion 3 is partitioned along the broken line A by an internal heat insulating wall 18 having a heat insulating function.
  • the switching element is arranged in the upper part of the housing, and the switching element and other components are partitioned by the internal heat insulating wall having a heat insulating function.
  • low heat-generating components such as electrolytic capacitors and relays are not easily affected by the heat generated by the switching element.
  • low heat generation components such as electrolytic capacitors and relays can be arranged on the upper side of the second storage portion. Therefore, the component arrangement of low heat generation components such as electrolytic capacitors and relays is further increased than in the first embodiment. The degree of freedom can be increased, and the life of the electrolytic capacitor can be further extended.
  • the SiC switching element 10 is arranged in the first housing part 2.
  • the SiC switching element 10 and the reactor 12 are arranged in the first housing part 2, and the SiC switching element 10 and It is also possible to store components other than the reactor 12 in the second storage unit 3. If it does in this way, the 1st storage part 2 in which the SiC switching element 10 and the reactor 12 will be arrange
  • FIG. FIG. 4 is a diagram of a configuration example of the power conversion apparatus according to the third embodiment.
  • symbol is attached
  • the first storage unit 2 in which the SiC switching element 10 is disposed, and the second storage unit 3 in which components other than the SiC switching element 10 are disposed. are separated by an internal heat insulating EMC shield wall 19 made of a conductor having a heat insulating function along a broken line A.
  • the SiC switching element 10 generates high-frequency radiation noise in accordance with the switching operation. This radiation noise causes malfunction of the relay 13 and the control circuit 14. Therefore, by arranging the SiC switching element 10 serving as a generation source of radiation noise in the first storage unit 2 and partitioning the first storage unit 2 and the second storage unit 3 by the internal heat insulating EMC shield wall 19, the relay 13. And the control circuit 14 and the like are less likely to be affected by radiation noise generated from the SiC switching element 10.
  • the switching element is arranged in the upper part of the housing, and the switching element and the other components are manufactured with a conductor having a heat insulating function. Since the internal heat insulation EMC shield wall is used for partitioning, in addition to the effects of the second embodiment, relays, control circuits, and the like are not easily affected by radiation noise generated from switching elements, and relays, control circuits, etc. Malfunction can be suppressed.
  • FIG. FIG. 5 is a diagram of a configuration example of the power conversion apparatus according to the fourth embodiment.
  • symbol is attached
  • the second storage portion 3 is partitioned along the broken line A by an internal heat insulating EMC shield wall 19 similar to that of the third embodiment.
  • the reactor 12 generates high-frequency radiation noise in the same manner as the SiC switching element 10 when shaping the output waveform of the SiC switching element 10. Therefore, the SiC switching element 10 and the reactor 12 that are noise generation sources are arranged in the first storage unit 2, and the first storage unit 2 and the second storage unit 3 are partitioned by the internal heat insulating EMC shield wall 19. 13, the control circuit 14, and the like are hardly affected by radiation noise generated from the reactor 12.
  • both the SiC switching element 10 and the reactor 12 arranged in the first storage unit 2 are heat-generating components, the first storage unit 2 in which the SiC switching element 10 and the reactor 12 are arranged, and the electrolytic capacitor 11.
  • the maximum temperature of the temperature distribution in the second storage unit 2 is further reduced by thermally isolating the second storage unit 3 in which low heat-generating components such as the relay 13 and the like are disposed. That is, the low heat generating components such as the electrolytic capacitor 11 and the relay 13 arranged in the second storage unit 3 are not easily affected by the heat generated by the reactor 12.
  • the switching element and the reactor are arranged in the upper part of the housing, and the switching element and the reactor and other components have a heat insulating function.
  • it is less susceptible to radiation noise caused by the reactor as a source, and malfunctions of relays, control circuits, etc. Can be further suppressed.
  • the switching element and the reactor that are the generation source of the radiation noise are isolated by the casing that is a conductor and the internal heat insulating EMC shield wall, the propagation of the radiation noise to the outside of the power converter can be reduced.
  • the low heat-generating parts such as the electrolytic capacitor and the relay are not easily affected by the heat generated by the reactor, and the low heat-generating parts such as the electrolytic capacitor and the relay are more resistant than the first embodiment.
  • the degree of freedom with respect to component placement can be increased, and the life of the electrolytic capacitor can be further extended.
  • FIG. FIG. 6 is a diagram of a configuration example of the power conversion apparatus according to the fifth embodiment.
  • symbol is attached
  • FIG. 6A shows a front view of the power conversion device
  • FIG. 6B shows a side view of the power conversion device.
  • SiC switching element 10 and reactor 12 are housed in first housing 4 whose surfaces are covered with a conductor
  • the components other than the reactor 12 are similarly housed in the second housing 5 whose surfaces are covered with a conductor, and are disposed in the second housing 5 and the components disposed in the first housing 4.
  • the parts are connected by a signal line 20.
  • the first housing 4 and the second housing 5 are installed so as to be able to ventilate the outside air.
  • the SiC switching element 10 and the reactor 12 housed in the first housing 4 are both heat-generating components.
  • the first housing 4 in which the SiC switching element 10 and the reactor 12 are housed, and the second housing 5 in which components such as the electrolytic capacitor 11, the relay 13, and the control circuit 14 are housed can allow outside air to flow.
  • the heat insulation between the SiC switching element 10 and the reactor 12, the electrolytic capacitor 11, the relay 13, and the like is strengthened, and the low heat-generating parts such as the electrolytic capacitor 11 and the relay 13 are made of SiC. It becomes more difficult to be affected by the heat generated by the switching element 10 and the reactor 12.
  • the heat generated by the SiC switching element 10 and the reactor 12 is exhausted from the upper surface conductor and the side conductors constituting the housing 1, but the power conversion according to the fifth embodiment is performed.
  • heat can be exhausted from all outer wall surface conductors constituting the first housing 4, and the temperatures of the SiC switching element 10 and the reactor 12 can be lowered as compared with the first to fourth embodiments.
  • the SiC switching element 10 and the reactor 12 housed in the first housing 4 are both sources of high-frequency radiation noise.
  • the relay 13 and the control circuit 14 are components that are easily affected by radiation noise.
  • the SiC switching element 10 and the reactor 12 that are sources of radiation noise are isolated in the first housing 4, and the relay 13 and the control circuit 14 that are easily affected by radiation noise are isolated in the second housing 5.
  • the influence of radiation noise on the relay 13 and the control circuit 14 can be further reduced as compared with the fourth embodiment.
  • the first housing 4 and the second housing 5 are arranged in a non-contact state, high-frequency conduction noise from the SiC switching element 10 and the reactor 12 to the relay 13 and the control circuit 14 is also reduced. .
  • SiC switching element 10 and reactor 12 are isolated by first housing 4, propagation of radiation noise to the outside of the power converter can be reduced.
  • the switching element and the reactor which are heat-generating components, are housed in the first housing whose surfaces are covered with the conductor, and other than the switching element and the reactor.
  • the component parts are housed in a second housing whose surfaces are covered with a conductor, and the first and second housings are separated from each other so that outside air can be ventilated. Therefore, low heat-generating parts such as electrolytic capacitors and relays are less susceptible to the heat generated by the switching elements and reactors, and the freedom to place parts of low heat-generating parts such as electrolytic capacitors and relays is further increased than in the fourth embodiment. Therefore, the lifetime of the electrolytic capacitor can be further extended.
  • the switching element and the reactor that are the sources of radiation noise are isolated in the first casing, and the relays and control circuits that are easily affected by the radiation noise are isolated in the second casing.
  • the first housing and the second housing are arranged in a non-contact state, so that the influence of conduction noise can be reduced. Since it can be reduced, malfunctions such as relays and control circuits can be further suppressed.
  • the switching element and the reactor are isolated in the first housing, it is possible to reduce the propagation of radiation noise to the outside of the power conversion device.
  • FIG. FIG. 7 is a diagram of a configuration example of the power conversion apparatus according to the sixth embodiment.
  • symbol is attached
  • FIG. 7A shows a front view of the power converter
  • FIG. 7B shows a side view of the power converter as viewed from the side.
  • the heat sink 21 is arranged on the outer wall surface conductor constituting the first housing 4 described in the fifth embodiment.
  • the heat generated by the SiC switching element 10 and the reactor 12 is exhausted to the outside through the outer wall surface conductor constituting the first housing 4.
  • the heat sink 21 on the outer wall surface conductor constituting the first housing 4, the heat exhaust area can be expanded, and the temperature in the first housing 4 is higher than that in the fifth embodiment. Can be reduced. In the example shown in FIG.
  • the heat sink 21 is disposed on the back conductor of the first housing 4, but the outer wall surface conductor on which the heat sink 21 is disposed is not limited to this, and the heat sink is disposed on the top conductor or other side conductors. 21 may be disposed, and a plurality of heat sinks respectively corresponding to the plurality of outer wall surface conductors may be disposed.
  • one or a plurality of heat sinks are arranged on the outer wall surface conductor constituting the first casing in which the switching element and the reactor as the heat generating components are arranged. Since it did in this way, an exhaust heat area can be expanded and the temperature in a 1st housing
  • the configuration in which the heat sink is arranged on the outer wall surface conductor of the first housing shown in the configuration of the fifth embodiment has been described.
  • the upper surface conductor of the housing described in the first embodiment, or The same effect can be obtained even if a heat sink is arranged on the side conductor. Further, the same effect can be obtained even if a heat sink is arranged on the upper surface conductor or the side surface conductor of the first housing portion described in the second to fourth embodiments.
  • FIG. FIG. 8 is a diagram of a configuration example of the power conversion apparatus according to the seventh embodiment.
  • symbol is attached
  • the outside air can flow outside the upper surface conductor and the side surface conductor of the first storage unit 2 in which the SiC switching element 10 and the reactor 12 are arranged. It is covered with an external heat insulating wall 22.
  • the first storage portion 2 and the second storage portion 3 are configured to be partitioned by the internal heat insulating EMC shield wall 19 along the broken line A, but may be configured to be partitioned by the internal heat insulating wall 18. It is.
  • the temperature of the outer wall surface conductor of the housing 1 rises due to the heat generated by the SiC switching element 10 and the reactor 12 housed in the first housing portion 2. For example, depending on the installation state of the power converter, the housing 1 In some cases, the temperature of the outer wall surface conductor of the metal affects an object installed outside the housing 1. In such a case, by covering the outside of the upper surface conductor and the side conductor of the first storage part 2 with the external heat insulating wall 22 so that the outside air can be vented, the temperature of the external heat insulating wall 22 is a temperature around the outside air temperature. The temperature of the outer wall surface conductor of the housing 1 can be prevented from affecting an object installed outside the housing 1.
  • the external heat insulation wall so that the outside air can be vented to the outside of the upper surface conductor and the side surface conductor of the first storage unit in which the switching element and the reactor are arranged. Since the temperature of the external heat insulating wall is maintained at a temperature close to the outside air temperature, it is possible to prevent the temperature of the outer wall surface conductor of the housing from affecting an object installed outside the housing.
  • the configuration has been described in which the outer surface of the upper surface conductor and the side surface conductor of the first storage unit shown in the configurations of the second to fourth embodiments is covered with an external heat insulating wall so that the outside air can be vented.
  • the same effect can be obtained even when the outer surface of the upper surface conductor and the upper surface of the side surface conductor described in Embodiment 1 are covered with an external heat insulating wall so that the outside air can be vented.
  • the same effect can be obtained even if the outer surface of the upper surface conductor and the side surface conductor of the first housing described in the fifth embodiment is covered with an external heat insulating wall so that the outside air can be ventilated.
  • the same effect can be obtained even when the outside of the heat sink described in the sixth embodiment is covered with an external heat insulating wall so that the outside air can be vented.
  • the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.
  • the power conversion device according to the present invention is useful as an invention capable of increasing the degree of freedom with respect to component arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

 部品配置に対する自由度を増大することができる電力変換装置を得ること。スイッチング素子10を高温動作が可能なワイドバンドギャップ半導体によって形成し、筐体1内の上部の高温領域に配置できるようにした。スイッチング素子10をリアクトル12と共に筐体1内の上部の高温領域に配置することにより、筐体1内の温度分布がより明確となり、電解コンデンサ11やリレー13等の低発熱部品を配置する筐体1内の下部の低温領域の温度を低く保つようにした。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 電力変換装置を構成する電気回路部品には、運転中に大きく発熱する部品(例えば半導体スイッチ素子、リアクトル)、発熱量は少ないが高温環境下で動作を続けると寿命が短くなる部品(例えば電解コンデンサ)、高温環境下では性能が劣化する部品、すなわち動作許容温度の低い部品(例えばリレー)が混在している。なお、これらの部品を熱的発生源であるか否かの観点から区分すれば、スイッチング素子およびリアクトルは発熱部品として区分され、電解コンデンサおよびリレーは低発熱部品として区分することができる。
 一般に、屋外に設置される太陽光発電用パワーコンディショナ(パワコン)のような電力変換装置は、トラッキングの原因となる埃の侵入や雨水の浸入を防止するため、電気回路部が密閉された筐体内に収納される。このため、電力変換装置の運転中には、スイッチング素子やリアクトル等が発する熱により、筐体内部の温度が上昇し、これに伴い電解コンデンサやリレー等の温度も上昇する。
 電解コンデンサやリレー等への熱的影響を軽減する技術として、電源部の発熱部分を収納する第1収納部と、電源部の非発熱部分と電源部以外の部品とを収納する第2収納部とを設け、これら2つの収納部を隔離、断熱した電子機器筐体が提案されている(例えば、特許文献1)。
 また、上記特許文献1と同様の構成がREFU Elektronik社製のパワーコンディショナであるREFUSOL11kにおいて採用されている。このREFUSOL11kでは、発熱部品であるリアクトルとその他の部品とをそれぞれ異なる収納部に収納している(非特許文献1)。
特開2008-244214号公報
"PHOTON International" September 2008, "inverter tests", p.88(http://reb2b-portal.xsite.be/public/uploads/files/Photon%20International%20-%20Testresultaat%20Refusol%2011%20K%20inverter.pdf:2010年7月26日検索)
 電力変換装置を構成するスイッチング素子としては、シリコン半導体により形成されたスイッチング素子を用いることが一般的である。しかしながら、シリコン半導体により形成されたスイッチング素子は、高温環境下では電力変換効率が低下するため、スイッチング素子自身を過熱から守るために充分な冷却が必要となる。このため、高温となる第1収納部内に発熱部品であるリアクトルと共にスイッチング素子を収納することは困難であり、比較的低温となる第2収納部内に電解コンデンサやリレー等と共に収納せざるを得なかった。
 一方、スイッチング素子は、電力変換装置の運転中における発熱量が大きく、スイッチング素子の周囲の温度が上昇する。このため、上記従来技術の考え方では、スイッチング素子による発熱が電解コンデンサやリレー等の低発熱部品に与える熱的影響を考慮して部品配置を行う必要があり、部品配置に対する自由度が少ない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、部品配置に対する自由度を増大することができる電力変換装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる電力変換装置は、直流電力をスイッチングして交流電力に変換するスイッチング素子を含む各種部品と、各面が導体で構成された筐体と、を備え、前記各種部品は、前記スイッチング素子を含み、動作中の発熱量が大きい複数種の発熱部品と、前記発熱部品よりも動作中の発熱量が小さい複数種の低発熱部品と、に区分され、前記スイッチング素子は、ワイドバンドギャップ半導体によって形成され、前記筐体内において、前記区分した発熱部品の全てが、前記区分した低発熱部品よりも上部に配置されることを特徴とする。
 本発明によれば、部品配置に対する自由度を増大することができる、という効果を奏する。
図1は、実施の形態1にかかる電力変換装置の一構成例を示す図である。 図2は、Siスイッチング素子を使用した電力変換装置の一構成例を示す図である。 図3は、実施の形態2にかかる電力変換装置の一構成例を示す図である。 図4は、実施の形態3にかかる電力変換装置の一構成例を示す図である。 図5は、実施の形態4にかかる電力変換装置の一構成例を示す図である。 図6は、実施の形態5にかかる電力変換装置の一構成例を示す図である。 図7は、実施の形態6にかかる電力変換装置の一構成例を示す図である。 図8は、実施の形態7にかかる電力変換装置の一構成例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる電力変換装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
 本実施の形態にかかる電力変換装置としては、太陽電池モジュールから供給される直流電力を交流電力に変換し、住宅内の電気機器等の負荷および電力系統に供給するパワーコンディショナに適用する例を示している。この例では、電力変換装置の出力電力は、住宅内の電気機器等の負荷で消費されるとともに、住宅内の電気機器等の負荷により消費できない余剰電力は、電力系統に逆潮流される。曇天時や夜間など、日射量が少なく太陽電池モジュールが発電できないときには、電力系統から住宅内の電気機器等の負荷に電力が供給される。
実施の形態1.
 図1は、実施の形態1にかかる電力変換装置の一構成例を示す図である。図1(a)は、実施の形態1にかかる電力変換装置を構成する各部品が収納される筐体1の正面図であり、筐体1を構成する正面の電気伝導体(以下単に「導体」という)を透視した場合に見える部品の概観を示している。なお、筐体1は、各6面が全て導体で構成されている。また、図1(b)は、筐体1を側面から見た側面図であり、筐体1を構成する側面導体を透視した場合に見える部品の概観(一部の部品は省略)を示している。
 筐体1内の温度は、発熱部品によって熱せられた空気が上昇することにより、筐体1内の上部が高温となり、下部が低温となる温度分布が生じる。図1に示す例では、破線Aよりも上部の領域を高温領域とし、破線Aよりも下部の領域を低温領域として示している。
 図1に示すように、実施の形態1にかかる電力変換装置は、例えば太陽電池モジュール(図示せず)からの直流電力を昇圧または降圧する昇降圧回路(図示せず)から出力された直流電力をスイッチング制御して交流電力に変換するスイッチング素子10と、直流電力により電荷を蓄積する電解コンデンサ11と、コンデンサ(図示せず)と共にスイッチング素子10の出力から高周波成分を除去するリアクトル12と、交流電力を電力系統(図示せず)に連系するためのリレー13と、スイッチング素子10やリレー13等を制御する制御回路14と、を備えている。
 スイッチング素子10は、例えば炭化珪素(SiC)、窒化ガリウム(GaN)系材料、またはダイヤモンド等のワイドバンドギャップ(WBG)半導体により形成される。これらのWBG半導体によって形成されたスイッチング素子10は、高温動作(約200℃以上)が可能であるため、筐体1内において高温領域となる破線Aから上部に配置される。なお、これ以降、このスイッチング素子10をSiCスイッチング素子10として説明する。
 電解コンデンサ11は、低発熱部品であり、高温環境下では寿命が短くなるため、筐体1内において低温領域となる破線Aから下部に配置される。
 リアクトル12は、SiCスイッチング素子10と同様に、動作中の発熱量が大きい発熱部品であるため、SiCスイッチング素子10と共に破線Aから上部の高温領域に配置される。
 リレー13は、電解コンデンサ11と同様に動作中の発熱量が小さい低発熱部品であり、高温環境下では使用電圧範囲が狭くなるため、電解コンデンサ11と共に破線Aから下部の低温領域に配置される。
 制御回路14は、動作中の発熱量は比較的小さいため、電解コンデンサ11およびリレー13と共に破線Aから下部の低温領域に配置される。
 つぎに、実施の形態1にかかる電力変換装置との比較対象として、汎用的なスイッチング素子であるシリコン製のスイッチング素子(以下「Siスイッチング素子」という)を用いた電力変換装置について、図2を参照して説明する。なお、シリコンは、SiCなどと比較して、バンドギャップが狭いため、ナローバンドギャップ(NBG)半導体と呼ばれるグループに属する。
 図2は、Siスイッチング素子を使用した電力変換装置の一構成例を示す図である。図2(a)は、電力変換装置を構成する各部品が収納される筐体1の正面図であり、実施の形態1と同様に、筐体1を構成する正面導体を透視した場合に見える部品の概観を示している。図2(b)は、筐体1を側面から見た側面図であり、筐体1を構成する側面導体を透視した場合に見える部品の概観(一部の部品は省略)を示している。また、図2(c)は、筐体1の高さに対する温度分布の相対値を示している。なお、図2に示す例では、便宜上、破線Aよりも上部の領域を高温領域とし、破線Aの下方側に引かれた破線Bよりも下部の領域を低温領域としている。
 Siスイッチング素子15は、動作中の発熱量が大きい発熱部品でありながら、高温環境下では電力変換効率が低下するため、Siスイッチング素子15自身を過熱から守るために充分な冷却が必要である。このため、図2に示す例では、Siスイッチング素子15は、筐体1内において、破線Bによって区分される低温領域の上部側に配置されている。
 これに対して、電解コンデンサ11、リレー13、および制御回路14は、Siスイッチング素子15よりも上部側の高温領域と低温領域とに挟まれた領域に配置されている。また、図2に示すように、筐体1の外部に、ヒートシンク16や、ヒートシンク16に送風するファン17を設け、Siスイッチング素子15が発する熱を外部へ放熱する構造としている。
 しかしながら、このような配置構成の場合、図2(c)に示すように、Siスイッチング素子15を配置した付近、すなわち低温領域の上部側では、Siスイッチング素子15の発する熱により温度が高くなる。また、これに伴い、高温領域と低温領域とに挟まれる領域、すなわち電解コンデンサ11やリレー13が配置された領域の温度が上昇する。したがって、電解コンデンサ11やリレー13等の低発熱部品への熱的影響の軽減を考慮して部品配置を行ったり、耐熱性能を強化した特殊な部品(例えば、高温環境下で動作可能な高温仕様のリレー)を選定したりする必要がある。
 一方、SiCに代表されるワイドバンドギャップ半導体は、ナローバンドギャップ半導体と比較して耐熱性が高く、高温動作が可能である。このため、図1にも示したように、破線Aから上部の高温領域にSiCスイッチング素子10を配置することが可能となる。このとき、SiCスイッチング素子10とリアクトル12とは、共に筐体1内の高温領域に配置されることとなり、筐体1内の温度分布がより明確となる。また、高温領域の温度が従来よりも高温になるのと引き換えに、破線Aから下部の領域の温度をより低く保つことができるので、電解コンデンサ11やリレー13等の低発熱部品の配置に対する自由度が大きくなる。
 例えば、図1に示す例では、電解コンデンサ11をリレー13よりも下部に配置しているが、電解コンデンサ11をリレー13よりも上部に配置することも可能である。一方、図2に示す例では、電解コンデンサ11とリレー13を横並びで配置しているが、配置を変更する自由度は殆ど残っていないと言うことができる。
 また、実施の形態1の場合、高温領域における発熱部品の配置に対する自由度も大きくなる。例えば、図1に示す例では、リアクトル12の上部にSiCスイッチング素子10を配置しているが、リアクトル12の下部あるいは、リアクトル12の近傍にSiCスイッチング素子10を配置することも可能である。
 以上説明したように、実施の形態1の電力変換装置によれば、スイッチング素子を高温動作が可能なWBG半導体によって形成するようにしたので、スイッチング素子を筐体内上部の高温領域に配置することが可能となる。
 また、実施の形態1の電力変換装置によれば、スイッチング素子をリアクトルと共に筐体内上部の高温領域に配置することにより、筐体内の温度分布をより明確にすることができ、筐体内の下部の低温領域の温度を低く保つことができる。この作用により、電解コンデンサやリレー等の低発熱部品に対する配置の自由度を増大することができるという効果が得られる。
 また、実施の形態1の電力変換装置によれば、電解コンデンサの温度を低く保つことが可能となるので、電解コンデンサの長寿命化を図ることができる。
 さらに、実施の形態1の電力変換装置によれば、耐熱性能を強化した特殊な部品を選定する必要がなくなるので、電力変換装置を構成する部品の選択範囲を広げることができる。
 なお、WBG半導体によって形成されたスイッチング素子は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子の小型化が可能であり、この小型化されたスイッチング素子を用いることにより、このスイッチング素子を組み込んだ電力変換装置の小型化が可能となる。
 また、WBG半導体によって形成されたスイッチング素子は、耐熱性が高いことにより、ヒートシンクの削除あるいはヒートシンクの放熱フィンの小型化が可能であるので、電力変換装置のさらなる小型化が可能になる。
 さらに、WBG半導体によって形成されたスイッチング素子は、電力損失が低いため、スイッチング素子の高効率化が可能であり、延いては電力変換装置の高効率化が可能になる。
実施の形態2.
 図3は、実施の形態2にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 図3に示すように、実施の形態2にかかる電力変換装置では、筐体1内の上部にSiCスイッチング素子10が配置された第1収納部2と、SiCスイッチング素子10以外の構成部品が配置された第2収納部3とが、破線Aに沿って断熱機能を有する内部断熱壁18で仕切られている。これにより、第1収納部2と第2収納部3とが熱的に隔離され、第2収納部3内の温度分布の最高温度が低下し、第2収納部3内に配置される電解コンデンサ11やリレー13等は、SiCスイッチング素子10が発する熱の影響を受け難くなるという効果が得られる。
 以上説明したように、実施の形態2の電力変換装置によれば、筐体内の上部にスイッチング素子を配置して、そのスイッチング素子と他の構成部品とを、断熱機能を有する内部断熱壁で仕切るようにしたので、電解コンデンサやリレー等の低発熱部品は、スイッチング素子が発する熱の影響を受け難くなる。その結果、例えば電解コンデンサやリレー等の低発熱部品を第2収納部の上部側に配置することも可能となるので、実施の形態1よりもさらに電解コンデンサやリレー等の低発熱部品の部品配置に対する自由度を増大することができ、電解コンデンサのさらなる長寿命化を図ることができる。
 なお、図3に示す例では、SiCスイッチング素子10のみを第1収納部2に配置するようにしたが、SiCスイッチング素子10およびリアクトル12を第1収納部2に配置し、SiCスイッチング素子10およびリアクトル12以外の構成部品を第2収納部3に収納するようにすることも可能である。このようにすれば、SiCスイッチング素子10およびリアクトル12が配置された第1収納部2と、電解コンデンサ11やリレー13等が配置された第2収納部3とが熱的に隔離され、第2収納部2内の温度分布の最高温度はさらに低下し、第2収納部3内に配置される電解コンデンサ11やリレー13等の低発熱部品は、リアクトル12が発する熱の影響をも受け難くなるので、図3に示す例よりもさらに電解コンデンサ11やリレー13等の低発熱部品の部品配置に対する自由度を増大することができ、電解コンデンサ11のさらなる長寿命化を図ることができる。
実施の形態3.
 図4は、実施の形態3にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1および2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 図4に示すように、実施の形態3にかかる電力変換装置では、SiCスイッチング素子10が配置された第1収納部2と、SiCスイッチング素子10以外の構成部品が配置された第2収納部3とが、破線Aに沿って断熱機能を有する導体で製作された内部断熱EMCシールド壁19で仕切られている。
 SiCスイッチング素子10は、スイッチング動作に伴い、高周波の放射ノイズを発生する。この放射ノイズは、リレー13や制御回路14等の誤動作の要因となる。したがって、第1収納部2内に放射ノイズの発生源となるSiCスイッチング素子10を配置し、第1収納部2と第2収納部3とを内部断熱EMCシールド壁19で仕切ることにより、リレー13や制御回路14等がSiCスイッチング素子10を発生源とする放射ノイズによる影響を受け難くしている。
 以上説明したように、実施の形態3の電力変換装置によれば、筐体内の上部にスイッチング素子を配置して、そのスイッチング素子と他の構成部品とを、断熱機能を有する導体で製作された内部断熱EMCシールド壁で仕切るようにしたので、実施の形態2の効果に加えて、リレーや制御回路等は、スイッチング素子を発生源とする放射ノイズによる影響を受け難くなり、リレーや制御回路等の誤動作を抑制することができる。
実施の形態4.
 図5は、実施の形態4にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1乃至3と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 図5に示すように、実施の形態4にかかる電力変換装置では、SiCスイッチング素子10およびリアクトル12が配置された第1収納部2と、SiCスイッチング素子10およびリアクトル12以外の構成部品が配置された第2収納部3とが、破線Aに沿って実施の形態3と同様の内部断熱EMCシールド壁19で仕切られている。
 リアクトル12は、SiCスイッチング素子10の出力波形を整形する際に、SiCスイッチング素子10と同様に、高周波の放射ノイズを発生する。したがって、第1収納部2内にノイズ発生源となるSiCスイッチング素子10およびリアクトル12を配置し、第1収納部2と第2収納部3とを内部断熱EMCシールド壁19で仕切ることにより、リレー13や制御回路14等がリアクトル12を発生源とする放射ノイズによる影響をも受け難くしている。
 また、第1収納部2内に配置されたSiCスイッチング素子10およびリアクトル12は、共に発熱部品であるので、これらSiCスイッチング素子10およびリアクトル12が配置された第1収納部2と、電解コンデンサ11やリレー13等の低発熱部品が配置された第2収納部3とが熱的に隔離されることにより、第2収納部2内の温度分布の最高温度はさらに低下する。つまり、第2収納部3内に配置される電解コンデンサ11やリレー13等の低発熱部品は、リアクトル12が発する熱の影響をも受け難くなる。
 以上説明したように、実施の形態4の電力変換装置によれば、筐体内の上部にスイッチング素子およびリアクトルを配置して、それらのスイッチング素子およびリアクトルと他の構成部品とを、断熱機能を有する導体で製作された内部断熱EMCシールド壁で仕切るようにしたので、実施の形態3の効果に加えて、リアクトルを発生源とする放射ノイズによる影響をも受け難くなり、リレーや制御回路等の誤動作をさらに抑制することができる。
 また、放射ノイズの発生源となるスイッチング素子およびリアクトルが導体である筐体および内部断熱EMCシールド壁で隔離されるので、電力変換装置の外部への放射ノイズの伝搬を低減することができる。
 また、実施の形態2と同様に、電解コンデンサやリレー等の低発熱部品は、リアクトルが発する熱の影響をも受け難くなり、実施の形態1よりもさらに電解コンデンサやリレー等の低発熱部品の部品配置に対する自由度を増大することができ、電解コンデンサのさらなる長寿命化を図ることができる。
実施の形態5.
 図6は、実施の形態5にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1乃至4と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 図6(a)は、電力変換装置の正面図を示し、図6(b)は、電力変換装置の側面図を示している。図6に示すように、実施の形態5にかかる電力変換装置では、SiCスイッチング素子10およびリアクトル12は、各面が導体で覆われた第1筐体4内に収納され、SiCスイッチング素子10およびリアクトル12以外の構成部品は、同様に各面が導体で覆われた第2筐体5内に収納され、第1筐体4内に配置された部品と第2筐体5内に配置された部品との間は、信号線20により接続されている。また、第1筐体4と第2筐体5との間は、外気が通気可能なように離されて設置されている。
 第1筐体4内に収納されたSiCスイッチング素子10およびリアクトル12は、共に発熱部品である。これらのSiCスイッチング素子10およびリアクトル12が収納された第1筐体4と、電解コンデンサ11、リレー13、および制御回路14等の部品が収納された第2筐体5とが、外気が通気可能なように離されて配置されることにより、SiCスイッチング素子10およびリアクトル12と電解コンデンサ11およびリレー13等との間の断熱が強化され、電解コンデンサ11やリレー13等の低発熱部品は、SiCスイッチング素子10およびリアクトル12が発する熱の影響をさらに受け難くなる。また、上述した実施の形態1乃至4では、SiCスイッチング素子10およびリアクトル12が発する熱は、筐体1を構成する上面導体および側面導体から排熱していたが、実施の形態5にかかる電力変換装置では、第1筐体4を構成する全ての外壁面導体から排熱することができ、実施の形態1乃至4よりもSiCスイッチング素子10およびリアクトル12の温度を低下させることができる。
 また、第1筐体4内に収納されたSiCスイッチング素子10およびリアクトル12は、共に高周波の放射ノイズの発生源でもある。一方、リレー13および制御回路14は、放射ノイズによる影響を受け易い部品である。放射ノイズの発生源であるSiCスイッチング素子10およびリアクトル12が第1筐体4内に隔離され、放射ノイズによる影響を受け易いリレー13や制御回路14等が第2筐体5内に隔離されることにより、実施の形態4よりもさらにリレー13や制御回路14等への放射ノイズによる影響を低減することができる。また、第1筐体4と第2筐体5とが非接触状態で配置されることにより、SiCスイッチング素子10およびリアクトル12からリレー13や制御回路14等への高周波の伝導ノイズも低減される。さらに、SiCスイッチング素子10およびリアクトル12が第1筐体4で隔離されるので、電力変換装置の外部への放射ノイズの伝搬を低減することができる。
 以上説明したように、実施の形態5の電力変換装置によれば、発熱部品であるスイッチング素子およびリアクトルを、各面が導体で覆われた第1筐体内に収納し、スイッチング素子およびリアクトル以外の構成部品を、同様に各面が導体で覆われた第2筐体内に収納して、第1筐体と第2筐体との間を、外気が通気可能なように離して設置するようにしたので、電解コンデンサやリレー等の低発熱部品は、スイッチング素子およびリアクトルが発する熱の影響をさらに受け難くなり、実施の形態4よりもさらに電解コンデンサやリレー等の低発熱部品の部品配置に対する自由度を増大することができ、電解コンデンサのさらなる長寿命化を図ることができる。
 また、第1筐体を構成する全ての外壁面導体からスイッチング素子およびリアクトルが発する熱を排熱することができるので、実施の形態1乃至4よりもスイッチング素子およびリアクトルの温度を低下させることができる。
 さらに、放射ノイズの発生源となるスイッチング素子およびリアクトルが第1筐体内に隔離され、放射ノイズによる影響を受け易いリレーや制御回路等が第2筐体内に隔離されるので、実施の形態4よりもさらにリレーや制御回路等への放射ノイズによる影響を低減することができ、さらには、第1筐体と第2筐体とが非接触状態で配置されることにより、伝導ノイズによる影響をも低減することができるので、リレーや制御回路等の誤動作をさらに抑制することができる。また、スイッチング素子およびリアクトルが第1筐体内に隔離されるので、電力変換装置の外部への放射ノイズの伝搬を低減することができる。
実施の形態6.
 図7は、実施の形態6にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1乃至5と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 図7(a)は、電力変換装置の正面図を示し、図7(b)は、電力変換装置を側面から見た側面図を示している。なお、図7(b)に示すように、実施の形態6にかかる電力変換装置では、実施の形態5で説明した第1筐体4を構成する外壁面導体にヒートシンク21を配置している。
 SiCスイッチング素子10およびリアクトル12が発する熱は、第1筐体4を構成する外壁面導体を介して外部に排熱されるが、例えば、電力変換装置が設置される地域、あるいは供給する電力量によっては、SiCスイッチング素子10やリアクトル12の発する熱を十分に排熱できない場合がある。このような場合に、第1筐体4を構成する外壁面導体にヒートシンク21を配置することにより、排熱面積を拡大することができ、実施の形態5よりも第1筐体4内の温度を低下させることができる。なお、図7に示す例では、第1筐体4の背面導体にヒートシンク21を配置しているが、ヒートシンク21を配置する外壁面導体はこれに限らず、上面導体あるいはその他の側面導体にヒートシンク21を配置してもよく、さらには複数の外壁面導体にそれぞれ対応する複数個のヒートシンクを配置してもよい。
 以上説明したように、実施の形態6の電力変換装置によれば、発熱部品であるスイッチング素子およびリアクトルが配置された第1筐体を構成する外壁面導体に一つあるいは複数のヒートシンクを配置するようにしたので、排熱面積を拡大することができ、実施の形態5よりも第1筐体内の温度を低下させることができる。
 なお、実施の形態6では、実施の形態5の構成に示した第1筐体の外壁面導体にヒートシンクを配置する構成について説明したが、実施の形態1において説明した筐体の上面導体、あるいは側面導体の上部にヒートシンクを配置しても、同様の効果を得ることができる。また、実施の形態2乃至4において説明した第1収納部の上面導体、あるいは側面導体にヒートシンクを配置しても、同様の効果を得ることができる。
実施の形態7.
 図8は、実施の形態7にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1乃至6と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 図8に示すように、実施の形態7にかかる電力変換装置では、SiCスイッチング素子10およびリアクトル12が配置された第1収納部2の上面導体、および側面導体の外側を外気が通気可能なように外部断熱壁22で覆われている。なお、図8では、第1収納部2と第2収納部3とを、破線Aに沿って内部断熱EMCシールド壁19で仕切る構成としているが、内部断熱壁18で仕切る構成とすることも可能である。
 筐体1の外壁面導体の温度は、第1収納部2内に収納されたSiCスイッチング素子10およびリアクトル12が発する熱により上昇するが、例えば、電力変換装置の設置状態によっては、筐体1の外壁面導体の温度が筐体1の外部に設置された物体に影響を及ぼす場合がある。このような場合に、第1収納部2の上面導体、および側面導体の外側を外気が通気可能なように外部断熱壁22で覆うことにより、外部断熱壁22の温度は、外気温度付近の温度を維持することができ、筐体1の外壁面導体の温度が筐体1の外部に設置された物体に影響することを防ぐことができる。
 以上説明したように、実施の形態7の電力変換装置によれば、スイッチング素子およびリアクトルが配置された第1収納部の上面導体、および側面導体の外側を外気が通気可能なように外部断熱壁で覆い、外部断熱壁の温度が外気温度付近の温度を維持するようにしたので、筐体の外壁面導体の温度が筐体の外部に設置された物体に影響することを防ぐことができる。
 なお、実施の形態7では、実施の形態2乃至4の構成に示した第1収納部の上面導体、および側面導体の外側を外気が通気可能なように外部断熱壁で覆う構成について説明したが、実施の形態1において説明した筐体の上面導体、および側面導体の上部の外側を外気が通気可能なように外部断熱壁で覆う構成としても、同様の効果を得ることができる。また、実施の形態5において説明した第1筐体の上面導体、および側面導体の外側を外気が通気可能なように外部断熱壁で覆う構成としても、同様の効果を得ることができる。さらには、実施の形態6において説明したヒートシンクの外側を外気が通気可能なように外部断熱壁で覆う構成としても、同様の効果を得ることができる。
 なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明にかかる電力変換装置は、部品配置に対する自由度を増大することができる発明として有用である。
 1 筐体
 2 第1収納部
 3 第2収納部
 4 第1筐体
 5 第2筐体
 10 (SiC)スイッチング素子
 11 電解コンデンサ
 12 リアクトル
 13 リレー
 14 制御回路
 15 Siスイッチング素子
 16 ヒートシンク
 17 ファン
 18 内部断熱壁
 19 内部断熱EMCシールド壁
 20 信号線
 21 ヒートシンク
 22 外部断熱壁

Claims (13)

  1.  直流電力をスイッチングして交流電力に変換するスイッチング素子を含む各種部品と、
     各面が導体で構成された筐体と、
     を備え、
     前記各種部品は、
     前記スイッチング素子を含み、動作中の発熱量が大きい複数種の発熱部品と、
     前記発熱部品よりも動作中の発熱量が小さい複数種の低発熱部品と、
     に区分され、
     前記スイッチング素子は、ワイドバンドギャップ半導体によって形成され、
     前記筐体内において、前記区分した発熱部品の全てが、前記区分した低発熱部品の全てよりも上部に配置される
     ことを特徴とする電力変換装置。
  2.  前記筐体の上面導体、あるいは側面導体の上部に一つあるいは複数のヒートシンクを配置したことを特徴とする請求項1に記載の電力変換装置。
  3.  前記筐体の上面導体、および側面導体の上部の外側を外気が通気可能に外部断熱壁で覆われたことを特徴とする請求項1または2に記載の電力変換装置。
  4.  直流電力をスイッチングして交流電力に変換するスイッチング素子を含む各種部品と、
     各面が導体で構成された筐体と、
     を備え、
     前記各種部品は、
     前記スイッチング素子を含み、動作中の発熱量が大きい複数種の発熱部品と、
     前記発熱部品よりも動作中の発熱量が小さい複数種の低発熱部品と、
     に区分され、
     前記スイッチング素子は、ワイドバンドギャップ半導体によって形成され、
     前記筐体は、断熱機能を有する内部断熱壁で上部の第1収納部と下部の第2収納部とに仕切られ、
     前記第1収納部内に前記スイッチング素子が収納され、前記第2収納部内に前記スイッチング素子以外の前記発熱部品および前記区分した低発熱部品が収納され、
     前記第2収納部内において、前記スイッチング素子以外の前記発熱部品が、前記区分した低発熱部品の全てよりも上部に配置される
     ことを特徴とする電力変換装置。
  5.  直流電力をスイッチングして交流電力に変換するスイッチング素子を含む各種部品と、
     各面が導体で構成された筐体と、
     を備え、
     前記各種部品は、
     前記スイッチング素子を含み、動作中の発熱量が大きい複数種の発熱部品と、
     前記発熱部品よりも動作中の発熱量が小さい複数種の低発熱部品と、
     に区分され、
     前記スイッチング素子は、ワイドバンドギャップ半導体によって形成され、
     前記筐体は、断熱機能を有する内部断熱壁で上部の第1収納部と下部の第2収納部とに仕切られ、
     前記第1収納部内に前記区分した発熱部品の全てが収納され、前記第2収納部内に前記区分した低発熱部品の全てが収納される
     ことを特徴とする電力変換装置。
  6.  前記内部断熱壁は、導体で製作された内部断熱EMCシールド壁であることを特徴とする請求項4または5に記載の電力変換装置。
  7.  前記第1収納部の上面導体、あるいは側面導体に一つあるいは複数のヒートシンクを配置したことを特徴とする請求項4~6のいずれか一項に記載の電力変換装置。
  8.  前記第1収納部の上面導体、および側面導体の外側を外気が通気可能に外部断熱壁で覆われたことを特徴とする請求項4~7のいずれか一項に記載の電力変換装置。
  9.  直流電力をスイッチングして交流電力に変換するスイッチング素子を含む各種部品と、
     各面が導体で構成された第1筐体と、
     各面が導体で構成された第2筐体と、
     を備え、
     前記各種部品は、
     前記スイッチング素子を含み、動作中の発熱量が大きい複数種の発熱部品と、
     前記発熱部品よりも動作中の発熱量が小さい複数種の低発熱部品と、
     に区分され、
     前記スイッチング素子は、ワイドバンドギャップ半導体によって形成され、
     前記第1筐体と前記第2筐体とは、前記第1筐体と前記第2筐体との間を外気が通気可能に離されて設置され、
     前記区分した発熱部品の全てが前記第1筐体内に収納され、
     前記区分した低発熱部品の全てが前記第2筐体内に収納される
     ことを特徴とする電力変換装置。
  10.  前記第1筐体の外壁面導体に一つあるいは複数のヒートシンクを配置したことを特徴とする請求項9に記載の電力変換装置。
  11.  前記第1筐体の上面導体、および側面導体の外側を外気が通気可能に外部断熱壁で覆われたことを特徴とする請求項9または10に記載の電力変換装置。
  12.  直流電力をスイッチングして交流電力に変換するスイッチング素子を含む各種部品と、
     各面が導体で構成された第1筐体と、
     各面が導体で構成された第2筐体と、
     を備え、
     前記各種部品は、
     前記スイッチング素子を含み、高周波ノイズの発生源となる複数種のノイズ源部品と、
     前記ノイズ源部品以外の複数種の非ノイズ源部品と、
     に区分され、
     前記スイッチング素子は、ワイドバンドギャップ半導体によって形成され、
     前記第1筐体と前記第2筐体とは、非接触状態で設置され、
     前記区分したノイズ源部品の全てが前記第1筐体内に収納され、
     前記区分した非ノイズ源部品の全てが前記第2筐体内に収納される
     ことを特徴とする電力変換装置。
  13.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、またはダイヤモンドであることを特徴とする請求項1~12のいずれか一項に記載の電力変換装置。
PCT/JP2010/065643 2010-09-10 2010-09-10 電力変換装置 WO2012032656A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/065643 WO2012032656A1 (ja) 2010-09-10 2010-09-10 電力変換装置
JP2012532819A JP5496345B2 (ja) 2010-09-10 2010-09-10 電力変換装置
JP2013045917A JP5615398B2 (ja) 2010-09-10 2013-03-07 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/065643 WO2012032656A1 (ja) 2010-09-10 2010-09-10 電力変換装置
JP2013045917A JP5615398B2 (ja) 2010-09-10 2013-03-07 電力変換装置

Publications (1)

Publication Number Publication Date
WO2012032656A1 true WO2012032656A1 (ja) 2012-03-15

Family

ID=55710452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065643 WO2012032656A1 (ja) 2010-09-10 2010-09-10 電力変換装置

Country Status (2)

Country Link
JP (2) JP5496345B2 (ja)
WO (1) WO2012032656A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165597A (ja) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd パワーコンディショナ
JP2013201870A (ja) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp 電力変換器
JP2014064374A (ja) * 2012-09-20 2014-04-10 Yaskawa Electric Corp 電力変換装置
JP2015006018A (ja) * 2013-06-19 2015-01-08 富士電機株式会社 電力変換装置
JP2015080373A (ja) * 2013-10-18 2015-04-23 パナソニックIpマネジメント株式会社 電力変換装置
JP6026059B1 (ja) * 2015-05-21 2016-11-16 三菱電機株式会社 電子機器
JP2017216772A (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 電力変換装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303130B2 (ja) * 2014-03-31 2018-04-04 パナソニックIpマネジメント株式会社 電力変換装置
GB2549128B (en) * 2016-04-06 2019-06-12 Ge Aviat Systems Ltd Power control system with improved thermal performance
JP2018148613A (ja) * 2017-03-01 2018-09-20 日本電産株式会社 電源装置及び冷蔵庫
WO2024084666A1 (ja) * 2022-10-20 2024-04-25 ファナック株式会社 ノイズフィルタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547429U (ja) * 1978-09-22 1980-03-28
JPH02290099A (ja) * 1988-08-31 1990-11-29 Hitachi Ltd インバータ装置
JP2004186504A (ja) * 2002-12-04 2004-07-02 Hitachi Unisia Automotive Ltd 半導体装置
JP2008244214A (ja) * 2007-03-28 2008-10-09 Shindengen Electric Mfg Co Ltd 電子機器筐体
JP2010098859A (ja) * 2008-10-16 2010-04-30 Fuji Electric Systems Co Ltd 電力変換システム
JP2010172183A (ja) * 2008-12-26 2010-08-05 Daikin Ind Ltd 電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812323B2 (ja) * 1997-03-21 1998-10-22 株式会社日立製作所 インバータ装置
JPH10284236A (ja) * 1997-04-01 1998-10-23 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2007134532A (ja) * 2005-11-11 2007-05-31 Shindengen Electric Mfg Co Ltd 電子機器筐体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547429U (ja) * 1978-09-22 1980-03-28
JPH02290099A (ja) * 1988-08-31 1990-11-29 Hitachi Ltd インバータ装置
JP2004186504A (ja) * 2002-12-04 2004-07-02 Hitachi Unisia Automotive Ltd 半導体装置
JP2008244214A (ja) * 2007-03-28 2008-10-09 Shindengen Electric Mfg Co Ltd 電子機器筐体
JP2010098859A (ja) * 2008-10-16 2010-04-30 Fuji Electric Systems Co Ltd 電力変換システム
JP2010172183A (ja) * 2008-12-26 2010-08-05 Daikin Ind Ltd 電力変換装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165597A (ja) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd パワーコンディショナ
JP2013201870A (ja) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp 電力変換器
JP2014064374A (ja) * 2012-09-20 2014-04-10 Yaskawa Electric Corp 電力変換装置
JP2015006018A (ja) * 2013-06-19 2015-01-08 富士電機株式会社 電力変換装置
JP2015080373A (ja) * 2013-10-18 2015-04-23 パナソニックIpマネジメント株式会社 電力変換装置
JP6026059B1 (ja) * 2015-05-21 2016-11-16 三菱電機株式会社 電子機器
US10098256B2 (en) 2015-05-21 2018-10-09 Mitsubishi Electric Corporation Electronic device
JP2017216772A (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP5615398B2 (ja) 2014-10-29
JP2013102696A (ja) 2013-05-23
JP5496345B2 (ja) 2014-05-21
JPWO2012032656A1 (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5496345B2 (ja) 電力変換装置
CN101501867B (zh) 用于防止各个太阳能电池板过热的接线盒
US9270199B2 (en) Power conversion apparatus with a laminated bus bar comprising an exposed heat radiating portion
JP6303130B2 (ja) 電力変換装置
JP5851599B2 (ja) パワーモジュール
JP5777580B2 (ja) 端子ボックス
CN111837323A (zh) 充放电装置
JP6457895B2 (ja) コンデンサモジュール
JP2006049555A (ja) インバータ装置
KR101346393B1 (ko) 전기차 추진 제어장치
KR101020730B1 (ko) 태양전지 모듈장치
JP5511749B2 (ja) 太陽光発電用接続箱
JP2016146438A (ja) 電力変換装置
CN106856668B (zh) 功率转换装置
CN113170597A (zh) 用于冷却汇流排的装置
JP2006211805A (ja) スイッチング装置
CN106856375B (zh) 逆变器装置
WO2016181494A1 (ja) 車両用制御装置
CN112701880A (zh) 一种功率电源的电容器模块绝缘散热方式
CN220711438U (zh) 接线盒
JP6785721B2 (ja) Dcdcコンバータ一体インバータ装置。
JP2019022300A (ja) 電源装置
JP2014239161A (ja) 端子ボックス
JP6556954B2 (ja) 電力変換装置
JP2016146714A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532819

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857000

Country of ref document: EP

Kind code of ref document: A1