WO2012032593A1 - エレベータの制御装置 - Google Patents

エレベータの制御装置 Download PDF

Info

Publication number
WO2012032593A1
WO2012032593A1 PCT/JP2010/065231 JP2010065231W WO2012032593A1 WO 2012032593 A1 WO2012032593 A1 WO 2012032593A1 JP 2010065231 W JP2010065231 W JP 2010065231W WO 2012032593 A1 WO2012032593 A1 WO 2012032593A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
speed
torque
electric motor
command value
Prior art date
Application number
PCT/JP2010/065231
Other languages
English (en)
French (fr)
Inventor
一文 平林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020137008839A priority Critical patent/KR101461349B1/ko
Priority to PCT/JP2010/065231 priority patent/WO2012032593A1/ja
Priority to CN201080068926.4A priority patent/CN103079978B/zh
Priority to US13/813,966 priority patent/US9242833B2/en
Priority to EP10856943.5A priority patent/EP2615053B1/en
Priority to JP2012532748A priority patent/JP5737292B2/ja
Publication of WO2012032593A1 publication Critical patent/WO2012032593A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/304Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor with starting torque control

Definitions

  • This invention relates to an elevator control device.
  • T (x, L) T ⁇ (L) + Tub (L) + Tcmp (x) + Tloss
  • T ⁇ (L) is a torque generated during acceleration / deceleration of the elevator.
  • Tub (L) is a torque generated by a deviation between the weight of the elevator car and the equipment around the car and the weight of the counterweight.
  • Tcmp (x) is a torque generated by a deviation between the rope weight on the car side and the rope weight on the counterweight side based on the car position x.
  • Tloss is a torque generated by friction between a roller attached to the car and a hoistway rail when the car moves.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator control device that can appropriately perform feedforward compensation and improve the speed control performance of the elevator. That is.
  • An elevator control device includes a model torque calculation unit that calculates a model torque command value of the electric motor that does not depend on the rotation speed of the electric motor based on a speed command value for the electric motor that drives the elevator,
  • the storage unit storing the relationship between the speed-dependent loss torque of the electric motor that fluctuates with the fluctuation of the rotational speed and the rotational speed of the electric motor, and the detected value based on the detected value of the rotational speed of the electric motor.
  • a speed-dependent loss torque calculation unit that calculates the speed-dependent loss torque value obtained, and adding the speed-dependent loss torque value related to the detected value to the model torque command value to drive the motor
  • a drive torque calculation unit that calculates a torque command value for this.
  • FIG. 1 is a configuration diagram of an elevator in which an elevator control apparatus according to Embodiment 1 of the present invention is used.
  • a motor (electric motor) 1 is provided on the elevator hoistway (not shown).
  • a sheave 2 is attached to the motor 1.
  • a rope 3 is wound around the sheave 2.
  • a car 4 is suspended from one end of the rope 3.
  • a counterweight 5 is suspended from the other end of the rope 3. The counterweight 5 balances with the car 4 with 50% load.
  • a governor 6 is provided at the upper part of the hoistway.
  • a governor rope 7 is wound around the governor 6. The governor rope 7 is connected to the car 4.
  • the motor 1 is connected to a motor speed detector 8.
  • the motor speed detector 8 outputs a motor speed detection value corresponding to the rotation of the motor 1.
  • a governor speed detector 9 is connected to the governor 6.
  • the governor speed detector 9 outputs a governor speed detection value corresponding to the rotation of the governor 6.
  • the car 4 is provided with a weight detection device 10.
  • the weight detection device 10 outputs a weight value in the car according to the weight value of the load in the car 4.
  • the motor 1 and the sheave 2 are provided with a rotating body temperature detection device 11.
  • the rotating body temperature detection device 11 outputs a rotating body temperature value corresponding to the temperature of a rotating body (not shown) that rotates following the rotation of the motor 1 and the sheave 2.
  • the motor speed detection value, the governor speed detection value, the car loaded weight value, and the rotating body temperature value are input to the control device body 12.
  • the main control unit 13 of the control device main body 12 outputs a speed command value according to the operation of the elevator.
  • the speed command value is input to the speed control unit 14 of the control device body 12.
  • the speed control unit 14 of the control device body 12 calculates a torque command value (not shown) based on the speed command value, the motor speed detection value, the governor speed detection value, the car loaded weight value, and the rotating body temperature value. .
  • the torque command value is input to the power converter 15.
  • the power converter 15 is driven based on the torque command value.
  • electric power is supplied to the motor 1.
  • the motor 1 is driven by this power supply.
  • the sheave 2 rotates.
  • the rope 3 moves.
  • the car 4 and the counterweight 5 are raised and lowered in opposite directions.
  • FIG. 2 is a block diagram of the speed control unit of the elevator control apparatus according to Embodiment 1 of the present invention.
  • the speed control unit 14 includes a model torque calculation unit 16 and a torque compensation unit 17.
  • the model torque calculation unit 16 includes a first subtracter 18, a gain multiplier 19, an inertia multiplier 20, and an integrator 21.
  • the gain multiplier 19 multiplies the calculated value of the first subtracter 18 by the proportional gain K to calculate the model torque command value T ⁇ (L).
  • the inertia multiplier 20 multiplies the model torque command value T ⁇ (L) by the reciprocal of the model inertia J from an inertia calculation unit (not shown).
  • the integrator 21 integrates the calculated value of the inertia multiplier 20 to calculate a model speed command value.
  • the model torque calculator 16 also functions as a model speed calculator that calculates the model speed command value.
  • the speed command value V * is input from the main control unit 13 to one of the input terminals of the first subtractor 18.
  • the model speed command value is input from the integrator 21 to the other input terminal of the first subtractor 18.
  • the first subtracter 18 calculates a difference between the speed command value V * and the model speed command value. For this reason, the gain multiplier 19 calculates the model torque command value T ⁇ (L) based on the difference calculated by the first subtracter 18.
  • the model torque command value T ⁇ (L) is calculated so that the model speed command value follows the speed command value V * .
  • the model torque command value T ⁇ (L) and the model speed command value do not consider various loss torques. Therefore, the final torque command value for driving the motor 1 is calculated by the torque compensator 17 in consideration of various loss torques and the like. Hereinafter, the torque compensator 17 will be described.
  • the torque compensator 17 includes a second subtracter 22, a PID controller (proportional integral derivative controller) 23, a first adder 24, a first compensator (speed / temperature-dependent loss torque calculator) 25, and a second adder. 26, car position detector 27, second compensator (rope unbalance torque calculator) 28, third adder 29, third compensator (cage unbalance torque calculator) 30, fourth adder 31, 4 compensator (loss torque calculator without speed / temperature dependency) 32 and a fifth adder (drive torque calculator) 33.
  • PID controller proportional integral derivative controller
  • the model speed command value is input from the integrator 21 to one input terminal of the second subtractor 22.
  • the motor speed detection value V is input from the motor speed detector 8 to the other input terminal of the second subtracter 22.
  • the second subtracter 22 calculates the difference between the model speed command value and the motor speed detection value V.
  • the calculated value of the second subtracter 22 is input to the PID controller 23.
  • the PID controller 23 functions as a compensation calculation unit that calculates an error compensation torque value (not shown) by proportionally integrating and differentiating the calculated value of the second subtracter 22.
  • the model torque command value T ⁇ (L) is input from the gain multiplier 19 to one input terminal of the first adder 24.
  • the error compensation torque value is input from the PID controller 23 to the other input terminal of the first adder 24.
  • the first adder 24 adds an error compensation torque value to the model torque command value T ⁇ (L) to calculate a preliminary torque command value (not shown).
  • the motor speed detection value V is input from the motor speed detector 8 to one of the input ends of the first compensator 25.
  • the rotating body temperature value ⁇ is input from the rotating body temperature detection device 11 to the other input terminal of the first compensator 25.
  • the first compensator 25 is based on the motor speed detection value V and the rotating body temperature value ⁇ , and the first compensation value (speed / speed) that varies with the rotation speed of the motor 1 or the temperature of the rotating body of the motor 1 or the like.
  • Temperature dependent loss torque compensation value) Tloss (V, ⁇ ) is calculated.
  • the preliminary torque command value is input from the first adder 24 to one of the input terminals of the second adder 26.
  • the first loss torque compensation value Tloss (V, ⁇ ) is input from the first compensator 25 to the other input terminal of the second adder 26.
  • the second adder 26 calculates the first torque command value (not shown) by adding the first compensation value Tloss (V, ⁇ ) to the preliminary torque command value.
  • the car position detector 27 receives the governor speed detection value V GOV from the governor speed detector 9.
  • the car position detector 27 integrates the governor speed detection value V GOV to calculate the car position x.
  • the information on the car position x is input from the car position detector 27 to the second compensator 28.
  • the second compensator 28 based on the car position x, generates a second compensation value (rope unbalanced torque compensation value) Tcmp (the rope 3 weight on the car 4 side and the rope 3 weight on the counterweight 5 side). x) is calculated.
  • the first torque command value is input from the second adder 26 to one of the input terminals of the third adder 29.
  • the second compensation value Tcmp (x) is input from the second compensator 28 to the other input terminal of the third adder 29.
  • the third adder 29 calculates a second torque command value (not shown) by adding the second compensation value Tcmp (x) to the first torque command value.
  • the third load compensator 30 is input with the car loaded weight value L from the weight detection device 10.
  • the third compensator 30 calculates an unbalanced weight value that is the difference between the weight value L in the car and the weight value of the counterweight 5.
  • the third compensator 30 calculates a third compensation value (unbalance torque compensation value) Tub (L) based on the unbalance weight value.
  • the second torque command value is input from the third adder 29 to one of the input terminals of the fourth adder 31.
  • the third compensation value Tub (L) is input from the third compensator 30 to the other input terminal of the fourth adder 31.
  • the fourth adder 31 calculates a third torque command value (not shown) by adding the third compensation value Tub (L) to the second torque command value.
  • the fourth compensator 32 calculates a fourth compensation value Tloss that does not depend on the rotational speed of the motor 1 or the temperature of the rotating body of the motor 1 or the like.
  • the third torque command value is input from the fourth adder 31 to one input terminal of the fifth adder 33.
  • the fourth compensation value Tloss is input from the fourth compensator 32 to the other input terminal of the fifth adder 33.
  • the fifth adder 33 calculates the final torque command value by adding the fourth compensation value Tloss to the third torque command value.
  • the final torque command value is output toward the power converter 15.
  • T (x, L) T ⁇ (L) + Tub (L) + Tcmp (x) + Tloss + Tloss (V, ⁇ ) (1)
  • the first compensation value Tloss (V, ⁇ ) can be ignored. Therefore, if the rotational speed of the motor 1 is decreased, the model torque command value T ⁇ (L), the second compensation value Tcmp (x), and the third compensation are performed in a method equivalent to the method described in Japanese Patent No. 4230139.
  • the value Tub (L) and the fourth compensation value Tloss can be calculated.
  • the first compensation value Tloss (V, ⁇ ) cannot be ignored in an ultra-high speed elevator or a large capacity elevator. For this reason, it is necessary to appropriately calculate the first compensation value Tloss (V, ⁇ ).
  • a method of obtaining the first compensation value Tloss (V, ⁇ ) will be described with reference to FIG.
  • FIG. 3 is a diagram for explaining a loss torque compensation value used in the elevator control apparatus according to Embodiment 1 of the present invention.
  • the horizontal axis in FIG. 3 represents the rotating body temperature.
  • the vertical axis in FIG. 3 is the loss torque.
  • the loss torque that fluctuates with the fluctuation of the rotation speed of the motor 1 may be a bearing loss of a rotating body such as the motor 1 or the sheave 2. Further, a loss due to friction between the sheave 2 and the rope 3 can be considered. On the other hand, as the loss torque that fluctuates with the fluctuation of the rotating body temperature, a loss torque corresponding to the stirring resistance of viscous components such as grease used for the rotation of the rotating body can be considered.
  • the elevator is driven, and the relationship between the rotor temperature and the loss torque for each elevator speed is collected.
  • This relationship is stored in a storage unit (not shown) of the first compensator 25.
  • the motor speed detection value V and the rotating body temperature value ⁇ are input, and the first compensation value Tloss (V, ⁇ ) is calculated. Based on this calculation result, the speed-dependent loss torque component and the temperature-dependent loss torque component of the motor 1 are compensated as feed-forward components.
  • the final torque command value is obtained by adding the speed-dependent loss torque compensation value to the model torque command value.
  • the feedforward compensation can be appropriately performed to improve the speed control performance of the motor 1. That is, it is difficult for the motor 1 to have excessive or insufficient torque, and the speed deviation component of the motor 1 is reduced.
  • the error compensation torque value is also added to the final torque value.
  • the speed deviation component of the motor 1 is small. For this reason, it is possible to prevent an elevator start shock and a speed overshoot during acceleration / deceleration. As a result, the riding comfort of the elevator can be improved.
  • the temperature dependent loss torque compensation value is added to the final torque command value. For this reason, the speed control performance of the motor 1 can be further improved. Thereby, the riding comfort of the elevator can be further improved.
  • FIG. FIG. 4 is an elevator configuration diagram in which the elevator control apparatus according to Embodiment 2 of the present invention is used.
  • symbol is attached
  • Embodiment 1 the rotator temperature is detected using the rotator temperature detector 11.
  • Embodiment 2 the rotating body temperature is estimated without using the rotating body temperature detection device 11.
  • FIG. 5 is a block diagram of a speed control unit of the elevator control apparatus according to Embodiment 2 of the present invention. As shown in FIG. 5, in the second embodiment, a rotating body temperature estimator 34 is provided. The rotator temperature estimator 34 estimates the rotator temperature value ⁇ using the fact that the temperature of the viscous component in the rotator varies depending on the work of the elevator.
  • FIG. 6 is a diagram for explaining a rotating body temperature estimator used in the speed control unit of the elevator control apparatus according to Embodiment 2 of the present invention.
  • the rotating body temperature estimator 34 includes an absolute value calculator 35 and a first-order lag filter 36.
  • the absolute value calculator 35 receives the detected motor speed value V.
  • the absolute value calculator 35 calculates the absolute value of the detected motor speed value V.
  • the absolute value of the motor speed detection value V is input to the primary delay filter 36 from the absolute value calculator 35.
  • the first-order lag filter 36 calculates an estimated value of the rotating body temperature value ⁇ based on the absolute value of the detected motor speed value V, the proportionality constant K 1 , and the time constant T 1 .
  • the proportionality constant K 1 and the time constant T 1 are determined in consideration of the thermal time constant of the viscous component of the rotating body.
  • the temperature-dependent loss torque compensation value can be calculated without using the rotating body temperature detection device 11. For this reason, an apparatus structure can be simplified.
  • FIG. FIG. 7 is a diagram for explaining a rotating body temperature estimator used in a speed control unit of an elevator control apparatus according to Embodiment 3 of the present invention.
  • symbol is attached
  • the input to the rotating body temperature estimator 34 is the motor speed detection value V.
  • the input to the rotating body temperature estimator 34 is a final torque command value.
  • the setting of the primary delay filter 37 is different from the setting of the primary delay filter 36 of the second embodiment.
  • a proportional constant K 2 and a time constant T 2 are set in the first-order lag filter 37. These constants are also determined in consideration of the thermal time constant of the viscous component of the rotating body.
  • the temperature-dependent loss torque compensation value can be calculated without using the rotating body temperature detection device 11 as in the second embodiment. For this reason, an apparatus structure can be simplified.
  • FIG. FIG. 8 is an elevator configuration diagram in which the elevator control apparatus according to Embodiment 4 of the present invention is used.
  • symbol is attached
  • the elevator according to the fourth embodiment is obtained by adding a heat source 38 to the elevator according to the first embodiment.
  • the heat source 38 is provided in the vicinity of a rotating body such as the motor 1.
  • FIG. 9 is a flowchart for illustrating functions of the elevator control apparatus according to Embodiment 3 of the present invention.
  • step S1 a rotational temperature value is collected. Then, it progresses to step S2 and it is determined whether a rotary body temperature value is less than a regulation value. When the rotating body temperature is equal to or higher than the specified value, the operation ends.
  • step S3 the drive command for the heat source 38 is turned ON.
  • the heat source 38 is driven by this command. By this driving, the rotating body temperature rises.
  • step S4 it is determined in step S4 whether or not the elevator is at rest. If the elevator is not at rest, the operation ends. On the other hand, when the elevator is at rest, the process proceeds to step S5. In step S5, an elevator start command is output and the operation ends.
  • the speed command value corresponding to this start command is output. Based on this speed command value, the speed control unit 14 outputs a final torque command value. Based on this final torque command value, the power converter 15 drives the motor 1. Following this drive, the rotating body rotates. Due to this rotation, the rotating body temperature rises.
  • the rotator temperature rises when the rotator temperature value is less than the specified value. For this reason, the stirring resistance of the viscous component utilized for a rotating body falls. Due to this decrease, the loss torque of the motor 1 can be reduced. As a result, the output of the motor 1 can be reduced. For this reason, the motor 1 having a small capacity can be used even when the ambient temperature of the elevator machine room or the like is low.
  • the elevator control apparatus according to the present invention can be used for an elevator that improves speed control performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Elevator Control (AREA)

Abstract

 フィードフォワード補償を適切に行って、エレベータの速度制御性能を向上することができるエレベータの制御装置を提供する。このため、エレベータを駆動する電動機に対する速度指令値に基づいて、電動機の回転速度に依存しない電動機のモデルトルク指令値を演算するモデルトルク演算部と、電動機の回転速度の変動に伴って変動する電動機の速度依存性ロストルクと電動機の回転速度との関係を記憶した記憶部と、電動機の回転速度の検出値に基づいて、検出値に関係付けられた速度依存性ロストルク値を演算する速度依存性ロストルク演算部と、モデルトルク指令値に、検出値に関係付けられた速度依存性ロストルク値を加算して、電動機を駆動するためのトルク指令値を演算する駆動トルク演算部と、を備える構成とした。

Description

エレベータの制御装置
 この発明は、エレベータの制御装置に関するものである。
 エレベータを駆動するモータの速度制御として、機械系のイナーシャを用いるモデル規範追従制御が提案されている。このモデル規範追従制御においては、エレベータの加減速時に発生する加速トルク成分をフィードフォワード補償する。この補償により、エレベータの乗り心地が向上する(例えば、特許文献1参照)。
日本特許第4230139号公報
 フィードフォワード補償されたトルクは、エレベータのかご位置x、かご内負荷Lを用いた次式で表される。
 T(x、L)=Tα(L)+Tub(L)+Tcmp(x)+Tloss
 ただし、Tα(L)は、エレベータが加減速中に発生するトルクである。Tub(L)は、エレベータのかご及びかご回りの機器の重量と釣合おもりの重量との偏差によって発生するトルクである。Tcmp(x)は、かご位置xに基づくかご側のロープ重量と釣合おもり側のロープ重量の偏差によって発生するトルクである。Tlossは、かごが移動する際にかごに取り付けられたローラと昇降路内レールとの摩擦によって発生するトルクである。
 しかしながら、エレベータのモータにおいては、トルクT(x、L)以外に、エレベータの速度の変動に伴って変動する速度依存性ロストルクも存在する。このため、超高速エレベータのように速度が速い場合、トルクT(x、L)では、フィードフォワード補償を十分に行えない。このため、モータに、トルク過不足が発生する。この過不足により、モータに、速度偏差が発生する。その結果、エレベータに、起動ショックや速度オーバーシュートが発生する。これにより、エレベータの乗り心地が悪くなる。
 この発明は、上述のような課題を解決するためになされたもので、その目的は、フィードフォワード補償を適切に行って、エレベータの速度制御性能を向上することができるエレベータの制御装置を提供することである。
 この発明に係るエレベータの制御装置は、エレベータを駆動する電動機に対する速度指令値に基づいて、前記電動機の回転速度に依存しない前記電動機のモデルトルク指令値を演算するモデルトルク演算部と、前記電動機の回転速度の変動に伴って変動する前記電動機の速度依存性ロストルクと前記電動機の回転速度との関係を記憶した記憶部と、前記電動機の回転速度の検出値に基づいて、前記検出値に関係付けられた前記速度依存性ロストルク値を演算する速度依存性ロストルク演算部と、前記モデルトルク指令値に、前記検出値に関係付けられた前記速度依存性ロストルク値を加算して、前記電動機を駆動するためのトルク指令値を演算する駆動トルク演算部と、を備えたものである。
 この発明によれば、フィードフォワード補償を適切に行って、エレベータの速度制御性能を向上することができる。
この発明の実施の形態1におけるエレベータの制御装置が利用されるエレベータの構成図である。 この発明の実施の形態1におけるエレベータの制御装置の速度制御部のブロック図である。 この発明の実施の形態1におけるエレベータの制御装置に利用されるロストルク補償値を説明するための図である。 この発明の実施の形態2におけるエレベータの制御装置が利用されるエレベータの構成図である。 この発明の実施の形態2におけるエレベータの制御装置の速度制御部のブロック図である。 この発明の実施の形態2におけるエレベータの制御装置の速度制御部に利用される回転体温度推定器を説明するための図である。 この発明の実施の形態3におけるエレベータの制御装置の速度制御部に利用される回転体温度推定器を説明するための図である。 この発明の実施の形態4におけるエレベータの制御装置が利用されるエレベータの構成図である。 この発明の実施の形態4におけるエレベータの制御装置の機能を説明するためのフローチャートである。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1はこの発明の実施の形態1におけるエレベータの制御装置が利用されるエレベータの構成図である。
 図1において、エレベータの昇降路(図示せず)上部には、モータ(電動機)1が設けられる。モータ1には、シーブ2が取り付けられる。シーブ2には、ロープ3が巻き掛けられる。ロープ3の一端には、かご4が吊り下げされる。ロープ3の他端には、釣合おもり5が吊り下げられる。釣合おもり5は、50%負荷のかご4と釣り合う。
 昇降路上部には、ガバナ6が設けられる。ガバナ6には、ガバナロープ7が巻き掛けられる。ガバナロープ7は、かご4に接続される。
 モータ1には、モータ速度検出器8が接続される。モータ速度検出器8は、モータ1の回転に応じたモータ速度検出値を出力する。ガバナ6には、ガバナ速度検出器9が接続される。ガバナ速度検出器9は、ガバナ6の回転に応じたガバナ速度検出値を出力する。
 かご4には、重量検出装置10が設けられる。重量検出装置10は、かご4内の負荷の重量値に応じたかご内積載重量値を出力する。モータ1、シーブ2には、回転体温度検出装置11が設けられる。回転体温度検出装置11は、モータ1、シーブ2の回転に追従して回転する回転体(図示せず)の温度に応じた回転体温度値を出力する。
 モータ速度検出値、ガバナ速度検出値、かご内積載重量値、回転体温度値は、制御装置本体12に入力される。制御装置本体12の主制御部13は、エレベータの運行に応じて速度指令値を出力する。速度指令値は、制御装置本体12の速度制御部14に入力される。制御装置本体12の速度制御部14は、速度指令値、モータ速度検出値、ガバナ速度検出値、かご内積載重量値、回転体温度値に基づいて、トルク指令値(図示せず)を算出する。
 トルク指令値は、電力変換器15に入力される。トルク指令値に基づいて、電力変換器15が駆動する。この駆動により、モータ1に電力が供給される。この電力供給により、モータ1が駆動する。この駆動により、シーブ2が回転する。この回転により、ロープ3が移動する。この移動により、かご4と釣合おもり5とが反対方向に昇降する。
 次に、図2を用いて、制御装置本体12の速度制御部14を説明する。
 図2はこの発明の実施の形態1におけるエレベータの制御装置の速度制御部のブロック図である。
 図2に示すように、速度制御部14は、モデルトルク演算部16とトルク補償部17とを備える。
 まず、モデルトルク演算部16を説明する。
 モデルトルク演算部16は、第1減算器18、ゲイン乗算器19、イナーシャ乗算器20、積分器21を備える。
 ゲイン乗算器19は、第1減算器18の算出値に比例ゲインKを乗算して、モデルトルク指令値Tα(L)を算出する。イナーシャ乗算器20は、モデルトルク指令値Tα(L)にイナーシャ算出部(図示せず)からのモデルイナーシャJの逆数を乗算する。積分器21は、イナーシャ乗算器20の算出値を積分して、モデル速度指令値を算出する。このように、モデルトルク演算部16は、モデル速度指令値を算出するモデル速度演算部としても機能する。
 ここで、第1減算器18の入力端の一方には、主制御部13から速度指令値Vが入力される。第1減算器18の入力端の他方には、積分器21からモデル速度指令値が入力される。第1減算器18は、速度指令値Vとモデル速度指令値との差分を算出する。このため、ゲイン乗算器19は、第1減算器18が算出した差分に基づいて、モデルトルク指令値Tα(L)を演算する。
 このとき、第1減算器18が算出した差分が小さいほど、モデルトルク指令値Tα(L)は小さくなる。そして、第1減算器18が算出した差分が零になると、モデルトルク指令値Tα(L)も零となる。すなわち、モデル速度指令値が速度指令値Vに追従するように、モデルトルク指令値Tα(L)が演算される。
 モデルトルク指令値Tα(L)やモデル速度指令値は、種々のロストルク等を考慮したものではない。そこで、トルク補償部17によって種々のロストルク等を考慮し、モータ1を駆動するための最終トルク指令値が演算される。以下、トルク補償部17を説明する。
 トルク補償部17は、第2減算器22、PID制御器(比例積分微分制御器)23、第1加算器24、第1補償器(速度・温度依存性ロストルク演算部)25、第2加算器26、かご位置検出器27、第2補償器(ロープアンバランストルク演算部)28、第3加算器29、第3補償器(かご内アンバランストルク演算部)30、第4加算器31、第4補償器(速度・温度依存性なしロストルク演算部)32、第5加算器(駆動トルク演算部)33を備える。
 第2減算器22の入力端の一方には、積分器21からモデル速度指令値が入力される。第2減算器22の入力端の他方には、モータ速度検出器8からモータ速度検出値Vが入力される。第2減算器22は、モデル速度指令値とモータ速度検出値Vとの差分を算出する。
 PID制御器23には、第2減算器22の算出値が入力される。PID制御器23は、第2減算器22の算出値を比例積分微分して、誤差補償トルク値(図示せず)を算出する補償演算部として機能する。
 第1加算器24の入力端の一方には、ゲイン乗算器19からモデルトルク指令値Tα(L)が入力される。第1加算器24の入力端の他方には、PID制御器23から誤差補償トルク値が入力される。第1加算器24は、モデルトルク指令値Tα(L)に誤差補償トルク値を加算して、予備トルク指令値(図示せず)を算出する。
 第1補償器25の入力端の一方には、モータ速度検出器8からモータ速度検出値Vが入力される。第1補償器25の入力端の他方には、回転体温度検出装置11から回転体温度値θが入力される。第1補償器25は、モータ速度検出値Vと回転体温度値θとに基づいて、モータ1の回転速度やモータ1等の回転体温度の変動に伴って変動する第1補償値(速度・温度依存性ロストルク補償値)Tloss(V、θ)を算出する。
 第2加算器26の入力端の一方には、第1加算器24から予備トルク指令値が入力される。第2加算器26の入力端の他方には、第1補償器25から第1ロストルク補償値Tloss(V、θ)が入力される。第2加算器26は、予備トルク指令値に第1補償値Tloss(V、θ)を加算して、第1トルク指令値(図示せず)を算出する。
 かご位置検出器27には、ガバナ速度検出器9からガバナ速度検出値VGOVが入力される。かご位置検出器27は、ガバナ速度検出値VGOVを積分して、かご位置xを算出する。
 第2補償器28には、かご位置検出器27からかご位置xの情報が入力される。第2補償器28は、かご位置xに基づいて、かご4側のロープ3重量と釣合おもり5側のロープ3重量の偏差によって発生する第2補償値(ロープアンバランストルク補償値)Tcmp(x)を算出する。
 第3加算器29の入力端の一方には、第2加算器26から第1トルク指令値が入力される。第3加算器29の入力端の他方には、第2補償器28から第2補償値Tcmp(x)が入力される。第3加算器29は、第1トルク指令値に第2補償値Tcmp(x)を加算して、第2トルク指令値(図示せず)を算出する。
 第3補償器30には、重量検出装置10からかご内積載重量値Lが入力される。第3補償器30は、かご内積載重量値Lと釣合おもり5の重量値との差分であるアンバランス重量値を算出する。第3補償器30は、アンバランス重量値に基づいて、第3補償値(アンバランストルク補償値)Tub(L)を算出する。
 第4加算器31の入力端の一方には、第3加算器29から第2トルク指令値が入力される。第4加算器31の入力端の他方には、第3補償器30から第3補償値Tub(L)が入力される。第4加算器31は、第2トルク指令値に第3補償値Tub(L)を加算して、第3トルク指令値(図示せず)を算出する。
 第4補償器32は、モータ1の回転速度やモータ1等の回転体温度に依存しない第4補償値Tlossを算出する。
 第5加算器33の入力端の一方には、第4加算器31から第3トルク指令値が入力される。第5加算器33の入力端の他方には、第4補償器32から第4補償値Tlossが入力される。第5加算器33は、第3トルク指令値に第4補償値Tlossを加算して、最終トルク指令値を算出する。最終トルク指令値は、電力変換器15に向かって出力される。
 このような速度制御部14によれば、最終トルク指令値は、次の(1)式となる。
 T(x、L)=Tα(L)+Tub(L)+Tcmp(x)
        +Tloss+Tloss(V、θ)     (1)
 ここで、モータ1の回転速度が遅ければ、第1補償値Tloss(V、θ)は無視できる。したがって、モータ1の回転速度を遅くすれば、特許第4230139号公報等に記載された方法と同等の方法で、モデルトルク指令値Tα(L)、第2補償値Tcmp(x)、第3補償値Tub(L)、第4補償値Tlossを算出できる。
 しかしながら、超高速エレベータや大容量エレベータにおいては、第1補償値Tloss(V、θ)は無視できない。このため、第1補償値Tloss(V、θ)を適切に算出する必要がある。以下、図3を用いて、第1補償値Tloss(V、θ)を求める方法を説明する。
 図3はこの発明の実施の形態1におけるエレベータの制御装置に利用されるロストルク補償値を説明するための図である。
 図3の横軸は回転体温度である。図3の縦軸はロストルクである。
 モータ1の回転速度の変動に伴って変動するロストルクとしては、モータ1やシーブ2等の回転体のベアリングロスが考えられる。また、シーブ2とロープ3との摩擦によるロスも考えられる。これに対し、回転体温度の変動に伴って変動するロストルクとしては、回転体の回転に利用されるグリス等の粘性成分の攪拌抵抗に対応したロストルクが考えられる。
 図3に示すように、これらのロストルクの合計は、モータ1の回転速度が速くなるほど大きくなり、回転体温度が低いほど大きくなる。これらの関係は、エレベータのシステムによって異なる。
 そこで、本実施の形態においては、エレベータを駆動して、エレベータの速度毎の回転体温度とロストルクとの関係が採取される。この関係が、第1補償器25の記憶部(図示せず)に記憶される。この関係に対し、モータ速度検出値V、回転体温度値θを入力して、第1補償値Tloss(V、θ)が算出される。この算出結果に基づいて、モータ1の速度依存性ロストルク成分と温度依存性ロストルク成分とがフィードフォワード成分として補償される。
 以上で説明した実施の形態1によれば、モデルトルク指令値に速度依存性ロストルク補償値を加算したものが最終トルク指令値となる。このため、フィードフォワード補償を適切に行って、モータ1の速度制御性能を向上することができる。すなわち、モータ1のトルク過不足が発生しにくく、モータ1の速度偏差成分が小さくなる。
 ここで、最終トルク値には、誤差補償トルク値も加算される。しかしながら、モータ1の速度偏差成分が小さくなっている。このため、エレベータの起動ショックや加減速時の速度オーバーシュートを防止することができる。その結果、エレベータの乗り心地を向上することができる。
 特に、エレベータのブレーキ開放時に適切なアンバランストルクを供給することができる。その結果、ブレーキ開放時に発生する起動ショックを解消することができる。
 また、最終トルク指令値には、温度依存性ロストルク補償値も加算される。このため、モータ1の速度制御性能をより向上させることができる。これにより、エレベータの乗り心地をさらに向上することができる。
実施の形態2.
 図4はこの発明の実施の形態2におけるエレベータの制御装置が利用されるエレベータの構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1においては、回転体温度検出装置11を利用して、回転体温度を検出していた。一方、実施の形態2においては、回転体温度検出装置11を利用せずに、回転体温度を推定する。
 図5はこの発明の実施の形態2におけるエレベータの制御装置の速度制御部のブロック図である。
 図5に示すように、実施の形態2においては、回転体温度推定器34が設けられる。回転体温度推定器34は、回転体内の粘性成分の温度がエレベータの仕事量に依存して変動することを利用して、回転体温度値θを推定する。
 図6はこの発明の実施の形態2におけるエレベータの制御装置の速度制御部に利用される回転体温度推定器を説明するための図である。
 回転体温度推定器34は、絶対値計算器35と1次遅れフィルタ36とを備える。
 絶対値計算器35には、モータ速度検出値Vが入力される。絶対値計算器35は、モータ速度検出値Vの絶対値を演算する。1次遅れフィルタ36には、絶対値計算器35からモータ速度検出値Vの絶対値が入力される。1次遅れフィルタ36は、モータ速度検出値Vの絶対値、比例定数K、時定数Tに基づいて、回転体温度値θの推定値を演算する。ここで、比例定数K、時定数Tは、回転体の粘性成分の熱時定数等を加味して決定される。
 以上で説明した実施の形態2によれば、回転体温度検出装置11を用いることなく、温度依存性ロストルク補償値を演算することができる。このため、機器構成を簡素にすることができる。
実施の形態3.
 図7はこの発明の実施の形態3におけるエレベータの制御装置の速度制御部に利用される回転体温度推定器を説明するための図である。なお、実施の形態2と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態2においては、回転体温度推定器34への入力は、モータ速度検出値Vであった。一方、実施の形態3においては、回転体温度推定器34への入力は、最終トルク指令値である。この場合、1次遅れフィルタ37の設定は、実施の形態2の1次遅れフィルタ36の設定と異なる。具体的には、1次遅れフィルタ37には、比例定数K、時定数Tが設定される。これらの定数も、回転体の粘性成分の熱時定数等を加味して決定される。
 以上で説明した実施の形態3によれば、実施の形態2と同様に、回転体温度検出装置11を用いることなく、温度依存性ロストルク補償値を演算することができる。このため、機器構成を簡素にすることができる。
実施の形態4.
 図8はこの発明の実施の形態4におけるエレベータの制御装置が利用されるエレベータの構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態4のエレベータは、実施の形態1のエレベータに熱源38を付加したものである。熱源38は、モータ1等の回転体近傍に設けられる。
 次に、図9を用いて、制御装置本体12の主制御部13に追加された機能を説明する。
 図9はこの発明の実施の形態3におけるエレベータの制御装置の機能を説明するためのフローチャートである。
 まず、ステップS1では、回転温度値が採取される。その後、ステップS2に進み、回転体温度値が規定値未満か否かが判定される。回転体温度が規定値以上の場合は、動作が終了する。
 これに対し、回転体温度が規定値未満の場合は、ステップS3に進む。ステップS3では、熱源38の駆動指令がONとなる。この指令により、熱源38が駆動する。この駆動により、回転体温度が上昇する。
 その後、ステップS4でエレベータが休止中か否かが判定される。エレベータが休止中でない場合は、動作が終了する。これに対し、エレベータが休止中の場合は、ステップS5に進む。ステップS5では、エレベータ起動指令が出力され、動作が終了する。
 この起動指令に対応した速度指令値が出力される。この速度指令値に基づいて、速度制御部14が最終トルク指令値を出力する。この最終トルク指令値に基づいて、電力変換器15がモータ1を駆動する。この駆動に追従して、回転体が回転する。この回転により、回転体温度が上昇する。
 以上で説明した実施の形態3によれば、回転体温度値が規定値未満の場合に、回転体温度が上昇する。このため、回転体に利用される粘性成分の攪拌抵抗が低下する。この低下により、モータ1のロストルクを軽減することができる。その結果、モータ1の出力を低減することができる。このため、エレベータの機械室等の周辺環境温度が低い場合でも、容量の小さいモータ1を利用することができる。
 以上のように、この発明に係るエレベータの制御装置によれば、速度制御性能を向上するエレベータに利用できる。
 1 モータ
 2 シーブ
 3 ロープ
 4 かご
 5 釣合おもり
 6 ガバナ
 7 ガバナロープ
 8 モータ速度検出器
 9 ガバナ速度検出器
10 重量検出装置
11 回転体温度検出装置
12 制御装置本体
13 主制御部
14 速度制御部
15 電力変換器
16 モデルトルク演算部
17 トルク補償部
18 第1減算器
19 ゲイン乗算器
20 イナーシャ乗算器
21 積分器
22 第2減算器
23 PID制御器
24 第1加算器
25 第1補償器
26 第2加算器
27 かご位置検出器
28 第2補償器
29 第3加算器
30 第3補償器
31 第4加算器
32 第4補償器
33 第5加算器
34 回転体温度推定器
35 絶対値計算器
36、37 1次遅れフィルタ
38 熱源

Claims (6)

  1.  エレベータを駆動する電動機に対する速度指令値に基づいて、前記電動機の回転速度に依存しない前記電動機のモデルトルク指令値を演算するモデルトルク演算部と、
     前記電動機の回転速度の変動に伴って変動する前記電動機の速度依存性ロストルクと前記電動機の回転速度との関係を記憶した記憶部と、
     前記電動機の回転速度の検出値に基づいて、前記検出値に関係付けられた前記速度依存性ロストルク値を演算する速度依存性ロストルク演算部と、
     前記モデルトルク指令値に、前記検出値に関係付けられた前記速度依存性ロストルク値を加算して、前記電動機を駆動するためのトルク指令値を演算する駆動トルク演算部と、
    を備えたことを特徴とするエレベータの制御装置。
  2.  前記速度指令値に基づいて、前記電動機の回転速度に依存しない前記電動機のモデル速度指令値を演算するモデル速度演算部と、
     前記モデル速度指令値と前記電動機の回転速度の検出値との差に基づいて、誤差補償トルク値を演算する補償演算部と、
    を備え、
     前記モデルトルク演算部は、前記モデル速度指令値が前記速度指令値に追従するように、前記モデルトルク指令値を演算し、
     前記駆動トルク演算部は、前記モデルトルク指令値に、前記誤差補償トルク値を加算して、前記トルク指令値を演算することを特徴とする請求項1記載のエレベータの制御装置。
  3.  前記電動機の回転に追従して回転する回転体の温度を検出する温度検出装置と、
     前記回転体の温度の値に基づいて、前記回転体に利用される粘性成分の温度変動に伴って変動する前記電動機の温度依存性ロストルク値を演算する温度依存性ロストルク演算部と、
    を備え、
     前記駆動トルク演算部は、前記モデルトルク指令値に、前記温度依存性ロストルク値を加算して、前記トルク指令値を演算することを特徴とする請求項1又は請求項2に記載のエレベータの制御装置。
  4.  前記電動機の回転速度の検出値に基づいて、前記電動機に追従して回転する回転体の温度を推定する推定部と、
     前記回転体の温度の値に基づいて、前記回転体に利用される粘性成分の温度変動に伴って変動する前記電動機の温度依存性ロストルク値を演算する温度依存性ロストルク演算部と、
    を備え、
     前記駆動トルク演算部は、前記モデルトルク指令値に、前記温度依存性ロストルク値を加算して、前記トルク指令値を演算することを特徴とする請求項1又は請求項2に記載のエレベータの制御装置。
  5.  前記回転体の温度の値が規定値未満の場合に、前記回転体を温める熱源を備えたことを特徴とする請求項2~請求項4のいずれかに記載のエレベータの制御装置。
  6.  前記電動機が停止しているときに前記回転体の温度の値が規定値未満の場合に、前記電動機を駆動させる主制御部を備えたことを特徴とする請求項2~請求項5のいずれかに記載のエレベータの制御装置。
PCT/JP2010/065231 2010-09-06 2010-09-06 エレベータの制御装置 WO2012032593A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137008839A KR101461349B1 (ko) 2010-09-06 2010-09-06 엘리베이터의 제어 장치
PCT/JP2010/065231 WO2012032593A1 (ja) 2010-09-06 2010-09-06 エレベータの制御装置
CN201080068926.4A CN103079978B (zh) 2010-09-06 2010-09-06 电梯控制装置
US13/813,966 US9242833B2 (en) 2010-09-06 2010-09-06 Control device of elevator
EP10856943.5A EP2615053B1 (en) 2010-09-06 2010-09-06 Control device for elevator
JP2012532748A JP5737292B2 (ja) 2010-09-06 2010-09-06 エレベータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065231 WO2012032593A1 (ja) 2010-09-06 2010-09-06 エレベータの制御装置

Publications (1)

Publication Number Publication Date
WO2012032593A1 true WO2012032593A1 (ja) 2012-03-15

Family

ID=45810219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065231 WO2012032593A1 (ja) 2010-09-06 2010-09-06 エレベータの制御装置

Country Status (6)

Country Link
US (1) US9242833B2 (ja)
EP (1) EP2615053B1 (ja)
JP (1) JP5737292B2 (ja)
KR (1) KR101461349B1 (ja)
CN (1) CN103079978B (ja)
WO (1) WO2012032593A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120061187A1 (en) * 2009-06-08 2012-03-15 Mitsubishi Electric Corporation Control device for elevator
KR102176580B1 (ko) * 2013-06-24 2020-11-09 삼성전자주식회사 영구자석 동기 전동기의 마찰 토크를 보상하는 방법 및 장치.
KR101901080B1 (ko) * 2015-01-13 2018-09-20 미쓰비시덴키 가부시키가이샤 엘리베이터 제어 장치
DE102017008380A1 (de) 2016-09-22 2018-03-22 Sew-Eurodrive Gmbh & Co Kg System, umfassend einen ersten Wechselrichter und einen zweiten Wechselrichter
US10407274B2 (en) * 2016-12-08 2019-09-10 Mitsubishi Electric Research Laboratories, Inc. System and method for parameter estimation of hybrid sinusoidal FM-polynomial phase signal
CN108931950B (zh) * 2018-08-02 2021-03-05 重庆市联康科技发展有限公司 一种儿童摇摇车的安全智能控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101578U (ja) * 1984-12-07 1986-06-28
JPH0485273A (ja) * 1990-07-25 1992-03-18 Toshiba Corp エレベータ制御装置
JPH04213571A (ja) * 1990-12-12 1992-08-04 Toshiba Corp エレベータの制御装置
JP2002027774A (ja) * 2000-07-05 2002-01-25 Mitsubishi Electric Corp メカロス補償量算出装置およびメカロス補償制御装置
JP2004010224A (ja) * 2002-06-05 2004-01-15 Mitsubishi Electric Corp エレベータの制御装置
WO2005030627A1 (ja) * 2003-09-29 2005-04-07 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置
JP4230139B2 (ja) 2001-10-23 2009-02-25 三菱電機株式会社 エレベータの制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI66328C (fi) * 1979-10-18 1984-10-10 Elevator Gmbh Foerfarande och anordning foer att stanna en laengs med en styrd bana gaoende anordning saosom en hiss
JPS5733174A (en) * 1980-08-01 1982-02-23 Hitachi Ltd Controller for elevator
JPS61101578A (ja) 1984-10-24 1986-05-20 Sekisui Chem Co Ltd 粘着剤組成物
US5077508A (en) * 1989-01-30 1991-12-31 Wycoff David C Method and apparatus for determining load holding torque
JPH04179686A (ja) * 1990-11-14 1992-06-26 Toshiba Corp ギヤードエレベータの制御装置
JP3883611B2 (ja) * 1996-07-03 2007-02-21 三菱電機株式会社 エレベータドア制御装置
JP3832237B2 (ja) * 2000-09-22 2006-10-11 日産自動車株式会社 ハイブリッド車の制御装置
US6527130B2 (en) * 2001-02-16 2003-03-04 General Electric Co. Method and system for load measurement in a crane hoist
JP4146141B2 (ja) * 2002-03-12 2008-09-03 東芝エレベータ株式会社 振動調整装置および振動調整方法
WO2004028950A1 (ja) * 2002-09-27 2004-04-08 Mitsubishi Denki Kabushiki Kaisha エレベータドアの制御装置
JP2005051865A (ja) * 2003-07-30 2005-02-24 Toshiba Elevator Co Ltd エレベータのモータ駆動制御装置
EP1780095B1 (en) * 2005-10-28 2015-07-08 Nsk Ltd. Electric power steering apparatus and controller thereof
EP2454182B1 (en) * 2009-07-15 2019-08-28 Otis Elevator Company Energy savings with optimized motion profiles
KR101202884B1 (ko) * 2011-07-05 2012-11-19 엘에스산전 주식회사 유도전동기의 속도제어 장치
KR102176580B1 (ko) * 2013-06-24 2020-11-09 삼성전자주식회사 영구자석 동기 전동기의 마찰 토크를 보상하는 방법 및 장치.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101578U (ja) * 1984-12-07 1986-06-28
JPH0485273A (ja) * 1990-07-25 1992-03-18 Toshiba Corp エレベータ制御装置
JPH04213571A (ja) * 1990-12-12 1992-08-04 Toshiba Corp エレベータの制御装置
JP2002027774A (ja) * 2000-07-05 2002-01-25 Mitsubishi Electric Corp メカロス補償量算出装置およびメカロス補償制御装置
JP4230139B2 (ja) 2001-10-23 2009-02-25 三菱電機株式会社 エレベータの制御装置
JP2004010224A (ja) * 2002-06-05 2004-01-15 Mitsubishi Electric Corp エレベータの制御装置
WO2005030627A1 (ja) * 2003-09-29 2005-04-07 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置

Also Published As

Publication number Publication date
EP2615053B1 (en) 2018-08-08
US9242833B2 (en) 2016-01-26
US20130126276A1 (en) 2013-05-23
KR101461349B1 (ko) 2014-11-13
EP2615053A4 (en) 2017-08-23
JP5737292B2 (ja) 2015-06-17
CN103079978A (zh) 2013-05-01
CN103079978B (zh) 2015-01-07
KR20130065708A (ko) 2013-06-19
JPWO2012032593A1 (ja) 2013-12-12
EP2615053A1 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5737292B2 (ja) エレベータの制御装置
CN101068736B (zh) 电梯装置
CN103580574A (zh) 电动机控制装置
CN101918298A (zh) 升降机系统的运动控制
US20190300339A1 (en) Load detector, and winding apparatus for crane comprising said detector
JP5659727B2 (ja) クレーン振れ角検出方法及び装置、並びにクレーン振れ止め制御方法及び装置
JP5298506B2 (ja) エレベータの制御装置
Knežević et al. Model of elevator drive with jerk control
JP5194660B2 (ja) クレーン振れ止め制御装置およびクレーンの振れ止め制御方法
JP6707707B2 (ja) エレベーター
JP5746373B2 (ja) エレベーターの制御装置およびその制御方法
JP2013053978A (ja) エンジンベンチシステムの制御装置
JP2011195286A (ja) エレベータの制御装置
JP2000211829A (ja) エレベ―タ制御装置
CN113169703B (zh) 用于运行动力传动系的方法以及动力传动系
CN116056995A (zh) 驱动系统及用于控制驱动系统的方法
JP2011526233A (ja) 可変速ドライブの速度ループを設定する方法
CN111776899A (zh) 无称重电梯的启动控制方法及系统
JP6390394B2 (ja) エレベータ制御装置
JP6578260B2 (ja) エレベーターシステムおよびその制御方法
WO2020032078A1 (ja) モータ制御方法、モータ制御装置、モータおよび電動オイルポンプ
JP2020058216A (ja) 制御装置
JP4289275B2 (ja) 多関節型ロボットの制御方法
JP4008342B2 (ja) 電動機の位置制御装置
US11750128B2 (en) External force estimation device, external force estimation method, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068926.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532748

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13813966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010856943

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137008839

Country of ref document: KR

Kind code of ref document: A