WO2012031417A1 - Procédé de maîtrise des défauts dans un barreau de silicium monocristallin obtenu par la méthode de czochralski - Google Patents

Procédé de maîtrise des défauts dans un barreau de silicium monocristallin obtenu par la méthode de czochralski Download PDF

Info

Publication number
WO2012031417A1
WO2012031417A1 PCT/CN2010/077860 CN2010077860W WO2012031417A1 WO 2012031417 A1 WO2012031417 A1 WO 2012031417A1 CN 2010077860 W CN2010077860 W CN 2010077860W WO 2012031417 A1 WO2012031417 A1 WO 2012031417A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
defects
silicon single
crystal rod
Prior art date
Application number
PCT/CN2010/077860
Other languages
English (en)
Chinese (zh)
Inventor
戴小林
吴志强
邓树军
崔彬
姜舰
王雅南
周旗钢
张果虎
屠海令
肖清华
Original Assignee
有研半导体材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研半导体材料股份有限公司 filed Critical 有研半导体材料股份有限公司
Publication of WO2012031417A1 publication Critical patent/WO2012031417A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the invention relates to a method for adjusting defects in a Czochralski silicon single crystal rod.
  • the shape of the crystal growth interface, the temperature gradient of the interface, and the crystal growth are adjusted by adjusting the number of the holding drums and the wall thickness of the drum provided on the heat-insulating cylinder seat in the furnace of the Czochralski furnace.
  • the method of speed is achieved by adjusting the defects in the Czochralski silicon single crystal rod.
  • the semiconductor silicon single crystals for integrated circuits are fabricated by the Czochralski method.
  • polycrystalline silicon is packed into a quartz crucible, and after heating and melting, the molten silicon is slightly cooled, giving a certain degree of subcooling, and a specific crystal orientation of the silicon single crystal (called seed crystal) and the melt.
  • Silicon contact by adjusting the temperature of the melt and the upward lifting speed of the seed crystal, when the seed crystal grows to near the target diameter, the lifting speed is increased, and the single crystal is grown near the constant diameter.
  • the silicon melt in the crucible has not yet been fully proposed.
  • the crystal diameter is gradually reduced to form a tail cone, when the cone is When the tip is small enough, the crystal will detach from the melt, thereby completing the crystal growth process.
  • silicon interstitial atoms There are two types of point defects widely found in silicon single crystals: silicon interstitial atoms and vacancies.
  • silicon interstitial atoms In a nutshell, if a silicon atom is trapped in a normal lattice region of a silicon, the silicon atom is called a silicon interstitial atom, see Figure 4b.
  • the presence of silicon interstitial atoms causes the local silicon lattice to be stressed (outward pressure); if a silicon atom is removed in the normal silicon lattice region, the remaining gap is called "vacancy", see Figure 4c.
  • the vacancy causes the crystal lattice around it to be subjected to inward pressure.
  • vacancy crystal V-rich
  • silicon-rich interstitial crystal I- Rich
  • V refers to the crystal growth rate at the crystal growth interface
  • G refers to the longitudinal temperature gradient at the crystal growth interface.
  • Modern integrated circuits are mostly made of a polishing pad or an epitaxial wafer processed by cutting, grinding, polishing, and cleaning a silicon single crystal rod.
  • IC process parameters such as particle, focus, oxide or diffusion layer quality, etc.
  • Primary Wafer used to make circuit chips
  • they have different requirements for defects in silicon single wafers.
  • “Test strips” for monitoring particle levels in small environments are best for interstitial silicon-type (I-rich) wafers, while fast-drawing epitaxial V-rich sheets are commonly used. Positive film (Prime Wafer).
  • upper holding zone affects the temperature field distribution of the single crystal furnace (mainly the axial temperature gradient and radial temperature gradient near the growth interface).
  • the maximum theoretical growth rate of the crystal ⁇ is proportional to - ⁇ or - ⁇ ⁇ G ;
  • AH AH p c dz
  • p c p c is the thermal conductivity of the silicon crystal
  • AH is the entropy change upon crystallization
  • A is the density of the silicon crystal
  • G dz is the axial temperature gradient at the solid-liquid interface.
  • the present invention provides a method of adjusting the crystal growth rate and the growth interface temperature gradient and the shape of the interface, which can adjust the distribution of defects in the silicon single crystal rod.
  • the object of the present invention is to provide a method for adjusting defects in a Czochralski silicon single crystal rod, which can adjust the shape of the growth interface, adjust the crystal growth rate and the temperature gradient of the interface, and the method can be applied to a Czochralski silicon single crystal furnace.
  • Device for adjusting defects in a Czochralski silicon single crystal rod, which can adjust the shape of the growth interface, adjust the crystal growth rate and the temperature gradient of the interface, and the method can be applied to a Czochralski silicon single crystal furnace.
  • the method for adjusting the defects in the Czochralski silicon single crystal rod is to adjust the number of the heat preservation drums, the thickness of each layer, and the wall of the drum by adjusting the heat preservation cylinder seat located in the heat chamber of the CZ furnace. Thickness or a combination thereof, thereby adjusting the shape of the crystal growth interface, the temperature gradient of the interface, and the crystal growth rate, achieves adjustment of the defects in the Czochralski silicon single crystal rod.
  • the upper heat preservation cylinder seat can be provided with a plurality of annular grooves, and the heat preservation drum is inserted in the annular groove, and the number of the heat preservation drums is one or more.
  • the annular groove has a cross-sectional shape of a square or a U shape.
  • the cross-sections of the plurality of annular grooves opened in the upper heat-insulating cylinder base may be all square or all U-shaped or square-shaped alternately with U-shaped.
  • the width W of the cross section of the annular groove, the depth H, and the rounded corner R are 1.5-200 mm, 1.5-50 mm, and 1-50 mm, respectively.
  • the insulated drum has a wall thickness of 1.4-200 mm.
  • the material of the heat preservation drum is molybdenum, graphite, carbon-carbon composite material (commonly known as carbon fiber material), solidified carbon felt, graphite soft felt or a combination thereof.
  • the insulated drum is also referred to as "upper insulation”.
  • the shape of the growth interface, the rate of crystal growth, and the temperature gradient of the interface were adjusted by adjusting the number and thickness of the increased holding drums.
  • the principle of adjustment is as follows: Increasing the number or thickness of the holding cylinder is equivalent to lowering the temperature gradient of the surface of the molten silicon, making the crystal growth interface flatter; making the distribution of defects in the crystal more uniform and reducing the maximum speed of crystal growth. Reducing the number of holding drums is equivalent to increasing the temperature gradient of the surface of the molten silicon, making the crystal growth interface more uneven; it is not conducive to uniform distribution of defects in the crystal, but can increase the maximum speed of crystal growth.
  • maximum speed of crystal growth here refers to the maximum allowable speed when the crystal diameter is not distorted when the crystal is grown in a specific thermal field, process parameters, and crystal growth.
  • the advantages of the invention are: The method is simple and effective.
  • Figure 1 Schematic diagram of the thermal field of a Czochralski silicon single crystal furnace.
  • Figure 2 Schematic diagram of the thermal field of a Czochralski silicon single crystal furnace.
  • Fig. 3 is a schematic view showing the thermal field adjustment of a Czochralski silicon single crystal furnace of the present invention.
  • Figure 4a Intrinsic Schematic of a Czochralski Silicon Single Crystal (Perfect Silicon Lattice).
  • Figure 4b Schematic diagram of intrinsic defects in a Czochralski silicon single crystal (silicon self-interstitial atoms).
  • Figure 4c Schematic diagram of intrinsic defects in a Czochralski silicon single crystal (silicon vacancies).
  • Figure 5 Schematic diagram of the interface (solid-liquid interface) between a silicon single crystal rod and a silicon melt.
  • Figure 6a Schematic diagram of the upper holding cylinder seat with square grooves.
  • Figure 6b Schematic diagram of two upper insulation (heat preservation drums) on the square groove of Figure 6a.
  • Figure 7a Schematic diagram of the square groove and U-shaped groove on the upper insulation cylinder base.
  • Figure 7b When a square groove is formed in the upper insulation cylinder seat, its height is indicated by H and the width is represented by W.
  • Figure 7c When the U-shaped groove is opened on the upper holding cylinder base, its height is indicated by H, the width is represented by W, and the rounded corner is indicated by R.
  • Figure 8a Schematic diagram of the effect of seed insulation on the shape of the interface.
  • Figure 8b Schematic diagram of the effect of another thermal insulation on the shape of the interface.
  • Figure 8c A schematic diagram of the effect of upper insulation on the shape of the interface.
  • Figure 0 FPD density at different locations in a silicon single crystal rod under different conditions of thermal insulation.
  • Figure ⁇ i The shape of the streamline defect (called FPD defect) in a silicon single crystal observed under a microscope.
  • FIG. 1 after entering the argon gas from the top, it flows along the periphery of the crystal from the furnace 21 and the intermediate heat preservation 6, and finally exits from the gas outlets 17 (2-4).
  • the components in Figure 1 are as follows: upper furnace 1, furnace cover 2, guide tube 3, upper insulation 4, upper thermal insulation cylinder base 5, medium thermal insulation cylinder 7, heater 8, lower furnace 9, medium thermal insulation 10, lower insulation 11, lower insulation tube 12, bottom insulation 13, electrode 15, electrode plate 16, lower shaft 18, bottom 19, centering plate 20, graphite crucible 22, quartz crucible 23, silicon melt 24, thermal insulation
  • the barrel 25 has a hole in its side for gas flow, a single crystal 26, and a seed crystal 27.
  • the thermal field is divided into an upper heat preservation zone, a medium heat preservation zone and a lower heat retention zone.
  • the upper heat preservation zone is located above the silicon melt, and is mainly composed of a draft tube 3, an upper heat preservation 4, an upper heat preservation cylinder 25, and an upper heat preservation cylinder base 5.
  • the medium heat preservation zone is in the part of the heater, and the main components are composed of a heater 8, a medium heat preservation 6, a medium heat insulation tube 7, and a medium heat insulation tube holder 10.
  • the lower holding zone is at the bottom of the temperature field, and the main components are composed of lower insulation 11, lower insulation cylinder 12 and bottom insulation 13.
  • Fig. 3 compared with Fig. 1, the original flat-type upper thermal insulation cylinder base 5 is changed to an upper thermal insulation cylinder holder 5' having a plurality of grooves and a groove width changeable, and the original upper thermal insulation 4 is changed into There are more than 2 upper holding drums 4-1 or 4-2 whose thickness and material can be changed. The number, thickness and material of these upper holding drums can be adjusted according to the thickness.
  • the material of the upper heat insulating tube may be graphite, graphite soft felt, graphite hard felt or molybdenum, or a combination thereof.
  • each small circle represents a silicon atom.
  • Fig. 5 24 is a silicon melt, 26 is a silicon single crystal rod, and 28 is a solid-liquid interface.
  • a polysilicon material of 130KG was loaded, and a 207 mm diameter silicon single crystal with a crystal orientation of 100 was grown.
  • the shape of the solid-liquid interface after using different upper thermal insulation structures is shown in Fig. 8a, Fig. 8b, Fig. 8c. .
  • the sample is taken from the equal-diameter 400 mm portion of the crystal, and after a specific heat treatment method, the shape of the solid-liquid interface can be displayed.
  • Fig. 8a, Fig. 8b, and Fig. 8c are the interface shapes when different insulation layers, thicknesses, and materials are used, respectively.
  • the shape of the interface can be represented by its arc down or up and the height of the arc.
  • Figure 8a shows the addition of a 30 mm thick solidified carbon felt to the upper holding cylinder.
  • the results of the interface shape measurement are: arc down, height 5 mm, not very flat;
  • Figure 8b shows a 2 mm thick molybdenum cylinder (made as an inner layer) and a 20 mm thick graphite barrel (made as an outer layer) on the upper holding cylinder base as the upper insulation.
  • the measurement of the interface shape is : The arc is still down, but the height is reduced to 2.3 mm, which is flatter than the previous one;
  • Figure 8c shows the addition of three layers of 50 mm thick cured carbon felt to the upper holding sleeve, with a gap of 2-5 mm between each barrel.
  • the total thickness of the upper insulation is 150 mm.
  • the shape of the detected interface shape is: the arc is W-shaped and the height is only 1.5 mm, which is relatively flat; it can be seen that the shape of the solid-liquid interface is more controllable and flat after the number of layers and thickness of the upper insulation is increased.
  • the units in the figure are all millimeters.
  • the polysilicon material is loaded into 180KG, and the growth crystal orientation is 100.
  • the 207 mm diameter crystal the crystal begins to finish at 155 KG, and the weight of the remaining polysilicon is about 15-20 KG.
  • the test compares the maximum pulling speed of the crystal in the case of the equal length of the crystal at 60 mm, 500 mm, and 1100 mm (the phenomenon that the ingot will be twisted beyond this speed).
  • the curve is the highest speed curve of the crystal when it is insulated into a 40 mm thick cured carbon felt
  • the curve of the country is the highest drawing speed curve of the crystal when the three layers of solidified carbon felt with a thickness of 40 mm are respectively insulated. At this time, the number of layers of the upper insulation layer is three, and the total thickness is 120 mm. The results show that reducing the thickness of the upper insulation can increase the crystal growth rate by 20-27%. The result is shown in Figure 9.
  • FIG. 10 is a graph showing the distribution of defects in crystals when using different thermal insulation layers and materials.
  • the abscissa of the graph is the crystal isometric length (mm), and the ordinate is the density of the FPD defects (per/cm 2 ).
  • FPD It is a vacancy type structural defect of a silicon single crystal, which is also called a streamline type defect.
  • Figure 10 (counting from top to bottom), the three curves are made of three layers of cured carbon felt each having a thickness of 30 mm, and a layer of 30 mm thick cured carbon felt for insulation.
  • the 2 mm molybdenum cylinder is used as the upper insulation.
  • the results show that the density distribution of FPD defects (a vacancy type defect, or D defect) in the crystal changes significantly after adjusting the thickness and material of the upper insulation layer, indicating that the patented invention can be used as a kind of adjustment of intra-crystal defects.
  • Figure 11 is a streamlined defect (referred to as FPD defect) in a silicon single crystal.
  • the shape observed under the microscope has three inverted V words representing one FPD defect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé destiné à maîtriser les défauts dans un barreau de silicium monocristallin obtenu par la méthode de Czochralski, caractérisé en ce que la forme de l'interface de croissance du cristal, le gradient de température de l'interface et la vitesse de croissance du cristal peuvent être régulés en agissant sur le nombre de cylindres d'isolation thermique, l'épaisseur de chaque couche, l'épaisseur de paroi des cylindres et leurs combinaisons de façon à maîtriser les défauts dans un barreau de silicium monocristallin obtenu par la méthode de Czochralski. Les cylindres d'isolation thermique sont situés au niveau de la portée d'isolation thermique supérieure du champ thermique dans le laboratoire du four à monocristaux de Czochralski. Le principe de commande est le suivant : à l'augmentation du nombre ou de l'épaisseur des cylindres d'isolation thermique correspond une diminution du gradient de température de la surface du silicium fondu, ce qui rend l'interface de croissance du cristal plus régulière et, en même temps, fait se répartir plus uniformément les défauts du monocristal, ce qui peut diminuer la vitesse maximale de croissance du cristal. A une diminution du nombre de cylindres d'isolation thermique correspond une augmentation du gradient de température à la surface du silicium fondu, ce qui rend l'interface de croissance du cristal plus irrégulière tout en n'étant pas propice à la répartition uniforme des défauts dans le monocristal, et ce qui peut accroître la vitesse maximale de croissance du cristal. Le procédé de commande présente les avantages de la simplicité et d'un rendement assez satisfaisant.
PCT/CN2010/077860 2010-09-08 2010-10-19 Procédé de maîtrise des défauts dans un barreau de silicium monocristallin obtenu par la méthode de czochralski WO2012031417A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102780527A CN102400210A (zh) 2010-09-08 2010-09-08 一种直拉硅单晶棒内缺陷的调节方法
CN201010278052.7 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012031417A1 true WO2012031417A1 (fr) 2012-03-15

Family

ID=45810079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077860 WO2012031417A1 (fr) 2010-09-08 2010-10-19 Procédé de maîtrise des défauts dans un barreau de silicium monocristallin obtenu par la méthode de czochralski

Country Status (2)

Country Link
CN (1) CN102400210A (fr)
WO (1) WO2012031417A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319619A (zh) * 2016-11-02 2017-01-11 中国电子科技集团公司第四十六研究所 一种6英寸直拉重掺硅单晶无位错生长工艺及其热场系统
CN106498494A (zh) * 2016-11-02 2017-03-15 中国电子科技集团公司第四十六研究所 一种mems器件制作用硅单晶材料的热场和制备方法
CN107391789A (zh) * 2017-06-12 2017-11-24 西安理工大学 基于自由液面温度测量值和特征函数插值的硅熔体温度场重构方法
CN113981524A (zh) * 2021-10-28 2022-01-28 双良硅材料(包头)有限公司 一种水冷屏、单晶硅生长装置及单晶硅生长方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345158A (zh) * 2011-08-14 2012-02-08 上海合晶硅材料有限公司 改善cop的单晶晶棒拉制方法
CN104711674B (zh) * 2013-12-09 2017-06-06 有研半导体材料有限公司 一种减少直拉单晶硅内部微气孔密度的方法
CN105525342A (zh) * 2015-12-22 2016-04-27 英利集团有限公司 一种直拉法制备大尺寸单晶硅棒的方法及单晶炉
CN106087037A (zh) * 2016-08-30 2016-11-09 成都晶九科技有限公司 晶体提拉生长炉温场结构及其提拉生长工艺
CN113138195A (zh) * 2021-04-16 2021-07-20 上海新昇半导体科技有限公司 晶体缺陷的监控方法及晶棒生长方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340490A (ja) * 1993-05-31 1994-12-13 Sumitomo Sitix Corp シリコン単結晶製造装置
US5707447A (en) * 1995-09-26 1998-01-13 Balzers Und Leybold Deutschland Holding Ag Crystal pulling apparatus
US6071337A (en) * 1996-02-14 2000-06-06 Shin-Etsu Handotai Co., Ltd Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
JP2000327489A (ja) * 1999-05-21 2000-11-28 Toshiba Ceramics Co Ltd 単結晶引上装置
CN201162060Y (zh) * 2008-03-03 2008-12-10 西安隆基硅材料有限公司 一种直拉硅单晶生长的热场结构
CN201485535U (zh) * 2009-08-13 2010-05-26 合肥景坤新能源有限公司 双加热系统硅单晶生长装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340490A (ja) * 1993-05-31 1994-12-13 Sumitomo Sitix Corp シリコン単結晶製造装置
US5707447A (en) * 1995-09-26 1998-01-13 Balzers Und Leybold Deutschland Holding Ag Crystal pulling apparatus
US6071337A (en) * 1996-02-14 2000-06-06 Shin-Etsu Handotai Co., Ltd Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
JP2000327489A (ja) * 1999-05-21 2000-11-28 Toshiba Ceramics Co Ltd 単結晶引上装置
CN201162060Y (zh) * 2008-03-03 2008-12-10 西安隆基硅材料有限公司 一种直拉硅单晶生长的热场结构
CN201485535U (zh) * 2009-08-13 2010-05-26 合肥景坤新能源有限公司 双加热系统硅单晶生长装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319619A (zh) * 2016-11-02 2017-01-11 中国电子科技集团公司第四十六研究所 一种6英寸直拉重掺硅单晶无位错生长工艺及其热场系统
CN106498494A (zh) * 2016-11-02 2017-03-15 中国电子科技集团公司第四十六研究所 一种mems器件制作用硅单晶材料的热场和制备方法
CN107391789A (zh) * 2017-06-12 2017-11-24 西安理工大学 基于自由液面温度测量值和特征函数插值的硅熔体温度场重构方法
CN107391789B (zh) * 2017-06-12 2020-03-27 西安理工大学 一种基于自由液面温度测量值和特征函数插值的硅熔体温度场重构方法
CN113981524A (zh) * 2021-10-28 2022-01-28 双良硅材料(包头)有限公司 一种水冷屏、单晶硅生长装置及单晶硅生长方法

Also Published As

Publication number Publication date
CN102400210A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2012031417A1 (fr) Procédé de maîtrise des défauts dans un barreau de silicium monocristallin obtenu par la méthode de czochralski
TW522456B (en) Silicon single crystal wafer and method for manufacturing the same
US6702892B2 (en) Production device for high-quality silicon single crystals
JP5269384B2 (ja) チョクラルスキー法を用いた半導体単結晶製造方法
CN104278321A (zh) 单晶硅及其制造方法
TWI266815B (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
TWI241364B (en) Method for producing low defect silicon single crystal doped with nitrogen
TWI324643B (fr)
JP6927150B2 (ja) シリコン単結晶の製造方法
TW573087B (en) Silicon wafer and method for producing silicon single crystal
JP2007182373A (ja) 高品質シリコン単結晶の製造方法及びこれを用いて製造されたシリコン単結晶ウェーハ
TW202221547A (zh) 一種用於計算晶體生長過程中固液界面形狀的方法
JP4193610B2 (ja) 単結晶の製造方法
WO1999010570A1 (fr) Cristal unique de silicium de grande qualite et procede de fabrication
JP6897497B2 (ja) シリコンブロックの品質判定方法、シリコンブロックの品質判定プログラム、およびシリコン単結晶の製造方法
JP4193558B2 (ja) 単結晶の製造方法
TWI568897B (zh) Cultivation method of silicon single crystal
JP4151474B2 (ja) 単結晶の製造方法及び単結晶
JP6263999B2 (ja) シリコン単結晶の育成方法
TW200408734A (en) Method for producing silicon wafer
JP3719088B2 (ja) 単結晶育成方法
JP2004224577A (ja) Pドープシリコン単結晶の製造方法及びpドープn型シリコン単結晶ウェーハ
JP5282762B2 (ja) シリコン単結晶の製造方法
JP2011105526A (ja) シリコン単結晶の育成方法
JP3900816B2 (ja) シリコンウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856879

Country of ref document: EP

Kind code of ref document: A1