WO2012029654A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2012029654A1 WO2012029654A1 PCT/JP2011/069303 JP2011069303W WO2012029654A1 WO 2012029654 A1 WO2012029654 A1 WO 2012029654A1 JP 2011069303 W JP2011069303 W JP 2011069303W WO 2012029654 A1 WO2012029654 A1 WO 2012029654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- secondary battery
- metal
- battery according
- active material
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 64
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 64
- 239000007773 negative electrode material Substances 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 60
- -1 phosphazene compound Chemical class 0.000 claims abstract description 52
- 239000011883 electrode binding agent Substances 0.000 claims abstract description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 16
- 239000004642 Polyimide Substances 0.000 claims abstract description 9
- 229920001721 polyimide Polymers 0.000 claims abstract description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 8
- 239000003575 carbonaceous material Substances 0.000 claims description 28
- 239000008151 electrolyte solution Substances 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000005001 laminate film Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 5
- 125000004104 aryloxy group Chemical group 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims 1
- 150000003949 imides Chemical class 0.000 claims 1
- 229920002647 polyamide Polymers 0.000 claims 1
- 229920002312 polyamide-imide Polymers 0.000 abstract description 10
- 239000004962 Polyamide-imide Substances 0.000 abstract description 8
- 239000003792 electrolyte Substances 0.000 abstract description 8
- 239000002245 particle Substances 0.000 description 47
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 229910052814 silicon oxide Inorganic materials 0.000 description 12
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 239000007774 positive electrode material Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000003701 mechanical milling Methods 0.000 description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000002040 relaxant effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920006369 KF polymer Polymers 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910011456 LiNi0.80Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical class CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- FOWDZVNRQHPXDO-UHFFFAOYSA-N propyl hydrogen carbonate Chemical compound CCCOC(O)=O FOWDZVNRQHPXDO-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
- H01M2300/0042—Four or more solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- Embodiments according to the present invention relate to a secondary battery, and more particularly to a lithium ion secondary battery.
- Examples of means for obtaining a high energy density secondary battery include a method using a negative electrode material having a large capacity, a method using a non-aqueous electrolyte having excellent stability, and the like.
- Patent Document 1 discloses that silicon oxide or silicate is used as a negative electrode active material of a secondary battery.
- Patent Document 2 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is disclosed.
- Patent Document 3 discloses a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
- Patent Document 4 and Patent Document 5 describe using polyimide as a binder for a negative electrode when the negative electrode active material contains silicon.
- Patent Document 6 describes that when the negative electrode active material contains silicon, the nonaqueous electrolytic solution contains a phosphazene derivative.
- the negative electrode material for secondary batteries described in Patent Document 3 also has an effect of reducing the volume change as the whole negative electrode.
- Patent Document 3 there are many points that have not been sufficiently studied about binders, electrolytes, electrode element structures, and exterior bodies that are indispensable for forming lithium ion secondary batteries.
- a lithium ion secondary battery using silicon or silicon oxide as a negative electrode active material has a high capacity.
- the secondary battery swells and the capacity maintenance rate decreases. Deterioration of characteristics has become a problem, and development of a technology that can solve the problem has been desired.
- an object of the embodiment according to the present invention is to provide a secondary battery having a high capacity and good high-temperature cycle characteristics.
- An embodiment according to the present invention is a secondary battery having an electrode element in which a positive electrode and a negative electrode are arranged to face each other, an electrolytic solution, and an outer package containing the electrode element and the electrolytic solution,
- a negative electrode active material containing at least one of a metal that can be alloyed with lithium (a) and a metal oxide (b) capable of occluding and releasing lithium ions is collected by a polyimide or polyamideimide as a negative electrode binder. It is a secondary battery characterized in that it is bound to an electric body and the electrolyte contains a phosphazene compound.
- FIG. 3 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery.
- an electrode element in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are included in an outer package.
- the shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable.
- a laminated laminate type secondary battery will be described.
- FIG. 1 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery.
- This electrode element is formed by alternately stacking a plurality of positive electrodes c and a plurality of negative electrodes a with a separator b interposed therebetween.
- the positive electrode current collector e of each positive electrode c is welded and electrically connected to each other at an end portion not covered with the positive electrode active material.
- the positive electrode terminal f is welded to the welding location.
- the negative electrode current collector d included in each negative electrode a is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material.
- the negative electrode terminal g is welded to the welding location.
- the electrode element having such a planar laminated structure does not have a portion with a small R (a region close to the winding core of the wound structure), the electrode element associated with charge / discharge is compared with an electrode element having a wound structure.
- an electrode element having a wound structure since the electrode is curved, the structure is easily distorted when a volume change occurs.
- a negative electrode active material having a large volume change due to charge / discharge such as silicon oxide
- a secondary battery using an electrode element having a wound structure has a large capacity reduction due to charge / discharge.
- the electrode element having a planar laminated structure has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because, in the case of an electrode element having a wound structure, the distance between the electrodes is difficult to widen because tension is applied to the electrodes, whereas in the case of an electrode element having a laminated structure, the distance between the electrodes is widened. This is because it is easy. This problem is particularly noticeable when the outer package is an aluminum laminate film.
- the above-described problems can be solved, and a long-life driving is possible even in a laminated laminate type lithium ion secondary battery using a high energy type negative electrode.
- Negative electrode The negative electrode is formed by binding a negative electrode active material so as to cover a negative electrode current collector with a negative electrode binder.
- the negative electrode active material includes at least one of a metal (a) that can be alloyed with lithium and a metal oxide (b) that can occlude and release lithium ions. That is, the negative electrode active material may contain only one of the metal (a) and the metal oxide (b), but preferably contains the metal (a) and the metal oxide (b).
- the negative electrode active material may further contain a carbon material (c) that can occlude and release lithium ions, and more preferably contains a metal (a), a metal oxide (b), and a carbon material (c).
- the metal (a) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy of two or more thereof can be used. .
- silicon (Si) is included as the metal (a).
- the content of the metal (a) in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass to 95% by mass, and is preferably 10% by mass to 90% by mass. More preferably, it is more preferably 20% by mass or more and 50% by mass or less.
- silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used as the metal oxide (b).
- silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
- one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
- the content of the metal oxide (b) in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass or more and 90% by mass or less, and 40% by mass or more and 80% by mass or less. It is more preferable to set it as 50 mass% or more and 70 mass% or less.
- the metal oxide (b) preferably has an amorphous structure in whole or in part.
- the metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), which are other negative electrode active materials, and decomposes the electrolytic solution containing a phosphate ester compound. Can also be suppressed. Although this mechanism is not clear, it is presumed that the metal oxide (b) has some influence on the formation of a film on the interface between the carbon material (c) and the electrolytic solution due to the amorphous structure.
- the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
- the metal oxide (b) has an amorphous structure. Specifically, when the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. In the case of having a structure, the intrinsic peak is observed broad in the metal oxide (b).
- the negative electrode active material contains a metal (a) and a metal oxide (b)
- the metal (a) is entirely or partially dispersed in the metal oxide (b).
- volume expansion as the whole negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
- all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
- the cross section of the sample containing the metal particles (a) is observed, the oxygen concentration of the metal particles (a) dispersed in the metal oxide (b) is measured, and the metal particles (a) are configured. It can be confirmed that the metal being used is not an oxide.
- the metal oxide (b) is preferably an oxide of a metal constituting the metal (a).
- a metal (a), a metal oxide (b), and a carbon material (c) are included, and all or part of the metal oxide (b) has an amorphous structure, and all or part of the metal (a) is metal oxidized.
- the negative electrode active material dispersed in the product (b) can be produced by a method disclosed in Patent Document 3, for example. That is, by performing a CVD process on the metal oxide (b) in an atmosphere containing an organic gas such as methane gas, the metal (a) in the metal oxide (b) is nanoclustered and the surface is a carbon material (c ) Can be obtained.
- the said negative electrode active material is producible also by mixing a metal (a), a metal oxide (b), and a carbon material (c) by mechanical milling.
- the ratio of the metal (a) and the metal oxide (b) is not particularly limited.
- the metal (a) is preferably 5% by mass or more and 90% by mass or less, and more preferably 30% by mass or more and 60% by mass or less with respect to the total of the metal (a) and the metal oxide (b).
- the metal oxide (b) is preferably 10% by mass or more and 95% by mass or less, and preferably 40% by mass or more and 70% by mass or less with respect to the total of the metal (a) and the metal oxide (b). More preferred.
- the carbon material (c) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
- graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
- amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
- the content of the carbon material (c) in the negative electrode active material may be 0% by mass, but is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less. preferable.
- the ratio of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited.
- the metal (a) is preferably 5% by mass or more and 90% by mass or less, and 20% by mass or more and 50% by mass or less with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). More preferably.
- the metal oxide (b) is preferably 5% by mass or more and 90% by mass or less, and 40% by mass or more and 70% by mass with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). % Or less is more preferable.
- the carbon material (c) is preferably 2% by mass or more and 50% by mass or less, preferably 2% by mass or more and 30% by mass or less with respect to the total of the metal (a), the metal oxide (b) and the carbon material (c). More preferably, it is as follows.
- the metal (a), the metal oxide (b) and the carbon material (c) are not particularly limited, but particulate materials can be used.
- the average particle diameter of the metal (a) may be smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b). In this way, the metal (a) having a small volume change during charging and discharging has a relatively small particle size, and the metal oxide (b) and the carbon material (c) having a large volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
- the average particle diameter of the metal (a) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
- the average particle diameter of a metal oxide (b) is 1/2 or less of the average particle diameter of a carbon material (c), and the average particle diameter of a metal (a) is an average of a metal oxide (b). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (b) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (c), and the average particle diameter of the metal (a) is the average particle diameter of the metal oxide (b). It is more preferable that it is 1/2 or less.
- the average particle diameter of silicon oxide (b) is set to be 1 ⁇ 2 or less of the average particle diameter of graphite (c), and the average particle diameter of silicon (a) is equal to the average particle diameter of silicon oxide (b). It is preferable to make it 1/2 or less. More specifically, the average particle diameter of silicon (a) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
- binder for the negative electrode generally, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene Polypropylene, polyethylene, polyimide, polyamideimide and the like are used. However, in this embodiment, as will be described later, polyimide or polyamideimide is used as a negative electrode binder in order to improve high-temperature cycle characteristics by combination with a phosphazene compound.
- the content of the negative electrode binder in the negative electrode is the sum of the negative electrode active material and the negative electrode binder from the viewpoints of “sufficient binding force” and “higher energy” that are in a trade-off relationship. On the other hand, 5 to 20% by mass is preferable, and 8 to 15% by mass is more preferable.
- the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
- Examples of the shape include foil, flat plate, and mesh.
- the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
- Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
- a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
- the positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
- lithium manganate having a layered structure such as LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a transition metal thereof Lithium transition metal oxides in which a specific transition metal such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 does not exceed half the lithium transition metal oxides; In which Li is made excessive in comparison with the stoichiometric composition.
- a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
- the positive electrode binder the same as the negative electrode binder can be used.
- polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
- the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
- the positive electrode current collector the same as the negative electrode current collector can be used.
- a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
- the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
- Electrolytic Solution used in the present embodiment includes a phosphazene compound.
- the phosphazene compound has the following structure:
- the compound represented by these is said.
- the phosphazene compound may be linear or cyclic, but a cyclic phosphazene compound is preferred.
- a phosphazene compound can be used individually by 1 type or in combination of 2 or more types.
- High temperature cycle characteristics are remarkably improved by using polyimide or polyamideimide as the binder for the negative electrode and the electrolyte containing the phosphazene compound. That is, in this case, the phosphazene compound reacts with the negative electrode surface to form a stable film, thereby effectively suppressing the generation of gas in the negative electrode and suppressing the deterioration of battery characteristics in a high temperature environment. it is conceivable that. This is presumably because the N atom of the polyimide or polyamideimide used as the binder for the negative electrode and the N atom of the phosphazene compound have some interaction, and are effective in forming a film on the negative electrode surface.
- the cyclic phosphazene compound has the following formula (I):
- X is independently selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted cycloalkyloxy group, a substituted or unsubstituted aryloxy group, a nitro group, and an amino group. Is done.
- halogen atom examples include fluorine, chlorine, bromine and iodine.
- substituent examples include a halogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, an aryl group, a heterocyclic group, a nitro group, and a cyano group, and unsubstituted or fluorine-substituted is preferable.
- the substituted or unsubstituted alkoxy group preferably has 1 to 30 carbon atoms.
- the substituted or unsubstituted cycloalkyloxy group preferably has 4 to 30 carbon atoms.
- the substituted or unsubstituted aryloxy group preferably has 6 to 30 carbon atoms.
- X is independently selected from a halogen atom, a fluorine-substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a fluorine-substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, and an amino group. Is more preferably selected from a halogen atom, a fluorine-substituted or unsubstituted alkoxy group having 1 to 3 carbon atoms, and more preferably selected from —Cl, —F and —OCH 2 CF 2 CF 3. .
- cyclic phosphazene compounds include the following structural formula:
- the electrolyte used in this embodiment usually includes a nonaqueous electrolyte that is stable at the operating potential of the battery.
- the non-aqueous electrolyte include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC) Aprotic organic solvents such as chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); propylene carbonate derivatives; aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; Is mentioned.
- Non-aqueous electrolytes include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), Cyclic or chain carbonates such as propyl carbonate (DPC) are preferred.
- EC ethylene carbonate
- PC propylene carbonate
- BC butylene carbonate
- VVC vinylene carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- MEC ethyl methyl carbonate
- Cyclic or chain carbonates such as propyl carbonate (DPC) are preferred.
- a non-aqueous electrolyte can be used individually by 1 type or in combination of 2 or more types.
- the content of the phosphazene compound is preferably 1 to 50% by mass with respect to the total of the phosphazene compound and the non-aqueous electrolyte, from the viewpoint of effectively forming a film on the negative electrode surface. More preferably, the content is 5 to 10% by mass.
- the electrolytic solution used in the present embodiment is obtained by adding a supporting salt to a mixed solution of a phosphazene compound and a nonaqueous electrolytic solution.
- the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and the like.
- a supporting salt can be used individually by 1 type or in combination of 2 or more types.
- the high temperature cycle characteristics are further improved. This is presumably because the P atom of LiPF 6 as the supporting salt and the P atom of the phosphazene compound have some interaction to exert an effect on the film formation on the negative electrode surface.
- separator a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, what laminated
- Exterior Body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
- a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
- an aluminum laminate film from the viewpoint of suppressing volume expansion.
- the distortion of the electrode element becomes very large when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It tends to lead to battery volume changes and electrode element deformation.
- the secondary battery according to the present embodiment can overcome the above problem. As a result, it is possible to provide a laminate-type lithium ion secondary battery that is inexpensive and has excellent flexibility in designing the cell capacity by changing the number of layers.
- Example 1 Silicon having an average particle diameter of 5 ⁇ m as the metal (a) and graphite having an average particle diameter of 30 ⁇ m as the carbon material (c) were weighed at a mass ratio of 90:10. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
- the negative electrode slurry was applied to a copper foil having a thickness of 10 ⁇ m, dried, and further subjected to a heat treatment in a nitrogen atmosphere at 300 ° C. to produce a negative electrode.
- 3 layers of the obtained positive electrode and 4 layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator.
- the ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded.
- the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location. Thereby, an electrode element having a planar laminated structure was obtained.
- the electrode element was wrapped with an aluminum laminate film as an exterior body, and an electrolytic solution was injected inside. Thereafter, the inside of the exterior body was sealed while reducing the pressure to 0.1 atm, thereby producing a secondary battery.
- Example 2 The same procedure as in Example 1 was performed except that polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Viromax (registered trademark)) was used as the binder for the negative electrode.
- PAI polyamideimide
- Viromax registered trademark
- Example 3 The same operation as in Example 1 was performed except that the negative electrode active material and the negative electrode binder were weighed at a mass ratio of 95: 5.
- Example 4 The same operation as in Example 1 was performed except that the negative electrode active material and the negative electrode binder were weighed at a mass ratio of 85:15.
- Example 5 The same operation as in Example 1 was performed except that the negative electrode active material and the negative electrode binder were weighed at a mass ratio of 80:20.
- Example 6 The same operation as in Example 1 was performed except that LiBF 4 was used as a supporting salt.
- Example 7 It implemented like Example 1 except having set the content rate of the phosphazene compound to 30 mass%.
- Example 8 It implemented like Example 1 except having set the content rate of the phosphazene compound to 2 mass%.
- Example 9 It implemented like Example 1 except having set the content rate of the phosphazene compound to 1 mass%.
- Example 10 It implemented like Example 1 except having set the content rate of the phosphazene compound to 35 mass%.
- Example 11 It implemented like Example 1 except having set the content rate of the phosphazene compound to 50 mass%.
- Example 13 A mass ratio of 32:68 of silicon having an average particle size of 5 ⁇ m as metal (a) and amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle size of 13 ⁇ m as metal oxide (b) Weighed with. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
- Example 14 Silicon having an average particle size of 5 ⁇ m as the metal (a), crystalline silicon oxide (SiO 2 ) having an average particle size of 13 ⁇ m as the metal oxide (b), and graphite having an average particle size of 30 ⁇ m as the carbon material (c) Were weighed at a mass ratio of 29:61:10. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
- Example 15 Silicon having an average particle size of 6 ⁇ m as the metal (a), amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle size of 13 ⁇ m as the metal oxide (b), and carbon material (c) And graphite having an average particle size of 30 ⁇ m were weighed at a mass ratio of 29:61:10.
- the mixed powder was not subjected to any special treatment and used as a negative electrode active material.
- silicon that is metal (a) is not dispersed in silicon oxide (SiO x , 0 ⁇ x ⁇ 2) that is metal oxide (b). And it implemented similarly to Example 1 except having used this negative electrode active material.
- Example 16 Silicon having an average particle diameter of 5 ⁇ m as the metal (a), amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle diameter of 13 ⁇ m as the metal oxide (b), and carbon material (c) And graphite having an average particle size of 30 ⁇ m were weighed at a mass ratio of 29:61:10. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
- Example 17 In accordance with the method described in Patent Document 3, a negative electrode active material containing silicon, amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2), and carbon in a mass ratio of 29:61:10 was obtained.
- silicon that is metal (a) is dispersed in amorphous silicon oxide that is metal oxide (b).
- it implemented similarly to Example 1 except having used this negative electrode active material.
- Example 18 The same operation as in Example 16 was performed except that polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Viromax (registered trademark)) was used as the binder for the negative electrode.
- PAI polyamideimide
- Viromax registered trademark
- Example 19 The same operation as in Example 16 was performed except that the compound represented by the following formula (2) was used as the phosphazene compound.
- Example 20 The same operation as in Example 16 was performed except that a compound represented by the following formula (3) was used as the phosphazene compound.
- Example 21 The same operation as in Example 16 was carried out except that the compound represented by the following formula (4) was used as the phosphazene compound.
- Example 22 The same operation as in Example 16 was performed except that a compound represented by the following formula (5) was used as the phosphazene compound.
- Example 23 The same operation as in Example 16 was performed except that the compound represented by the following formula (6) was used as the phosphazene compound.
- Example 24 The same operation as in Example 16 was performed except that the compound represented by the following formula (7) was used as the phosphazene compound.
- Example 25 The same operation as in Example 16 was performed except that the compound represented by the following formula (8) was used as the phosphazene compound.
- Example 26 The same operation as in Example 16 was performed except that the compound represented by the following formula (9) was used as the phosphazene compound.
- Example 27 The same operation as in Example 16 was performed except that a compound represented by the following formula (10) was used as the phosphazene compound.
- Example 1 The same procedure as in Example 1 was performed except that the phosphazene compound was not added.
- Example 2 The same procedure as in Example 1 was carried out except that no phosphazene compound was added and polyvinylidene fluoride (PVDF, manufactured by Kureha Co., Ltd., trade name: KF polymer # 1300) was used as the binder for the negative electrode.
- PVDF polyvinylidene fluoride
- Example 3 The same operation as in Example 1 was performed except that polyvinylidene fluoride (PVDF, manufactured by Kureha Co., Ltd., trade name: KF polymer # 1300) was used as the binder for the negative electrode.
- PVDF polyvinylidene fluoride
- Example 4 The same operation as in Example 1 was performed except that only graphite having an average particle diameter of 30 ⁇ m as the carbon material (c) was used as the negative electrode active material.
- the volume energy density in the initial state of the secondary batteries produced in Examples 1-27 and Comparative Examples 1-4 was measured.
- the value of the volume energy density was calculated from the volume (L) of the secondary battery and the first discharge energy amount (Wh) performed in the voltage range of 2.5V to 4.1V.
- the volume of the secondary battery was determined by the Archimedes method. That is, the secondary battery was suspended and submerged in deionized water, and the volume was determined from the difference in mass between the air and water. Further, the high temperature cycle characteristics of the secondary batteries produced in Examples 1 to 27 and Comparative Examples 1 to 4 were measured.
- the secondary battery was subjected to a test in which charging / discharging was repeated 50 times in a voltage range of 2.5 V to 4.1 V in a thermostat kept at 60 ° C. Then, (discharge capacity at 50th cycle) / (discharge capacity at 5th cycle) (unit:%) was calculated as a maintenance rate. Further, (battery volume at the 50th cycle) / (battery volume before the cycle) (unit:%) was calculated as the swelling rate. The results are shown in Table 1.
- 230 Wh / L or more was determined to be "A”
- less than 230 Wh / L was determined to be “B”.
- the maintenance rate was determined as “A” at 70% or more, “B” at 50% or more and less than 70%, “C” at 30% or more and less than 50%, and “D” at less than 30%.
- the swelling rate was determined as “A” at 5% or less, “B” at 10% or less above 5%, “C” at 15% or less above 10%, and “D” at 15% or less.
- This embodiment can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy.
- power supplies for mobile devices such as mobile phones and notebook computers
- power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
- a backup power source such as a UPS
- a power storage facility for storing power generated by solar power generation, wind power generation, etc .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
負極は、負極活物質が負極用結着剤によって負極集電体を覆うように結着されてなる。そして、本実施形態では、負極活物質として、リチウムと合金可能な金属(a)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも一方を含む。すなわち、負極活物質は、金属(a)および金属酸化物(b)のいずれか一方のみを含んでいればよいが、金属(a)と金属酸化物(b)とを含むことが好ましい。負極活物質は、さらにリチウムイオンを吸蔵、放出し得る炭素材料(c)を含んでもよく、金属(a)と金属酸化物(b)と炭素材料(c)とを含むことがより好ましい。
正極は、例えば、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。
本実施形態で用いる電解液は、ホスファゼン化合物を含む。ホスファゼン化合物とは、下記構造:
セパレータとしては、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。
外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
金属(a)としての平均粒径5μmのシリコンと、炭素材料(c)としての平均粒径30μmの黒鉛とを、90:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。この負極活物質(平均粒径D50=5μm)と、負極用結着剤としてのポリイミド(PI、宇部興産株式会社製、商品名:UワニスA)とを、92:8の質量比で計量した。それらをn-メチルピロリドンと混合して、負極スラリーとした。負極スラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに窒素雰囲気300℃の熱処理を行うことで、負極を作製した。
負極用結着剤としてポリアミドイミド(PAI、東洋紡績株式会社製、商品名:バイロマックス(登録商標))を用いたこと以外は、実施例1と同様に実施した。
負極活物質と負極用結着剤を95:5の質量比で計量したこと以外は、実施例1と同様に実施した。
負極活物質と負極用結着剤を85:15の質量比で計量したこと以外は、実施例1と同様に実施した。
負極活物質と負極用結着剤を80:20の質量比で計量したこと以外は、実施例1と同様に実施した。
支持塩としてLiBF4を用いたこと以外は、実施例1と同様に実施した。
ホスファゼン化合物の含有率を30質量%としたこと以外は、実施例1と同様に実施した。
ホスファゼン化合物の含有率を2質量%としたこと以外は、実施例1と同様に実施した。
ホスファゼン化合物の含有率を1質量%としたこと以外は、実施例1と同様に実施した。
ホスファゼン化合物の含有率を35質量%としたこと以外は、実施例1と同様に実施した。
ホスファゼン化合物の含有率を50質量%としたこと以外は、実施例1と同様に実施した。
金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiOx、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、90:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiOx、0<x≦2)とを32:68の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiOx、0<x≦2)中に分散している。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの結晶性酸化シリコン(SiO2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である結晶性酸化シリコン中に分散している。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
金属(a)としての平均粒径6μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiOx、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量した。その混合粉に、特に特別な処理を行わず、負極活物質とした。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiOx、0<x≦2)中に分散していない。そして、この負極活物質を用いたこと以外は、実施例1と同様に実施した。
金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiOx、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiOx、0<x≦2)中に分散している。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
特許文献3に記載された方法に準じて、シリコンと非晶質酸化シリコン(SiOx、0<x≦2)とカーボンとを29:61:10の質量比で含む負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である非晶質酸化シリコン中に分散している。そして、この負極活物質を用いたこと以外は、実施例1と同様に実施した。
負極用結着剤としてポリアミドイミド(PAI、東洋紡績株式会社製、商品名:バイロマックス(登録商標))を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(2)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(3)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(4)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(5)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(6)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(7)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(8)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(9)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物として、下記式(10)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
ホスファゼン化合物を添加しなかったこと以外は、実施例1と同様に実施した。
ホスファゼン化合物を添加せず、負極用結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製、商品名:KFポリマー#1300)を用いたこと以外は、実施例1と同様に実施した。
負極用結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製、商品名:KFポリマー#1300)を用いたこと以外は、実施例1と同様に実施した。
炭素材料(c)としての平均粒径30μmの黒鉛のみを負極活物質として用いたこと以外は、実施例1と同様に実施した。
実施例1~27および比較例1~4で作製した二次電池の初期状態における体積エネルギー密度を測定した。なお、体積エネルギー密度の値は、二次電池の体積(L)と2.5Vから4.1Vの電圧範囲で行った1回目の放電エネルギー量(Wh)から算出した。二次電池の体積は、アルキメデス法で求めた。すなわち、二次電池を吊るし、脱イオン水に沈め、空中と水中の質量差から体積を求めた。また、実施例1~27および比較例1~4で作製した二次電池の高温サイクル特性を測定した。具体的には、二次電池に対し、60℃に保った恒温槽中で2.5Vから4.1Vの電圧範囲で50回充放電を繰り返す試験を行った。そして、(50サイクル目の放電容量)/(5サイクル目の放電容量)(単位:%)を維持率として算出した。また、(50サイクル目の電池体積)/(サイクル前の電池体積)(単位:%)を膨れ率として算出した。その結果を表1に示す。
b セパレータ
c 正極
d 負極集電体
e 正極集電体
f 正極端子
g 負極端子
Claims (14)
- 正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体とを有する二次電池であって、
前記負極は、リチウムと合金可能な金属(a)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも1つを含む負極活物質が、負極用結着剤としてのポリイミドまたはポリアミドイミドによって負極集電体と結着されてなり、
前記電解液が、ホスファゼン化合物を含むことを特徴とする二次電池。 - 前記ホスファゼン化合物が、環状ホスファゼン化合物であることを特徴とする請求項1に記載の二次電池。
- 前記電解液が、前記ホスファゼン化合物と非水電解液とを含有し、前記電解液中の前記ホスファゼン化合物の含有率が、前記ホスファゼン化合物と前記非水電解液の合計に対して1~50質量%であることを特徴とする請求項1乃至3のいずれかに記載の二次電池。
- 前記負極中の前記負極用結着剤の含有率が、前記負極活物質と前記負極用結着剤の合計に対して5~20質量%であることを特徴とする請求項1乃至4のいずれかに記載の二次電池。
- 前記電解液が、支持塩としてLiPF6を含むことを特徴とする請求項1乃至5のいずれかに記載の二次電池。
- 前記負極活物質が、さらに、リチウムイオンを吸蔵、放出し得る炭素材料(c)を含むことを特徴とする請求項1乃至6のいずれかに記載の二次電池。
- 前記負極活物質が、前記金属(a)と前記金属酸化物(b)とを含むことを特徴とする請求項1乃至7のいずれかに記載の二次電池。
- 前記金属酸化物(b)が、前記金属(a)を構成する金属の酸化物であることを特徴とする請求項8に記載の二次電池。
- 前記金属(a)の全部または一部が、前記金属酸化物(b)中に分散していることを特徴とする請求項8または9に記載の二次電池。
- 前記金属酸化物(b)の全部または一部が、アモルファス構造を有することを特徴とする請求項1乃至10のいずれかに記載の二次電池。
- 前記金属(a)が、シリコンであることを特徴とする請求項1乃至11のいずれかに記載の二次電池。
- 前記電極素子が、平面的な積層構造を有していることを特徴とする請求項1乃至12のいずれかに記載の二次電池。
- 前記外装体が、アルミニウムラミネートフィルムであることを特徴とする請求項1乃至13のいずれかに記載の二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/820,300 US9219274B2 (en) | 2010-09-02 | 2011-08-26 | Secondary battery |
JP2012531839A JP5920217B2 (ja) | 2010-09-02 | 2011-08-26 | 二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196619 | 2010-09-02 | ||
JP2010-196619 | 2010-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012029654A1 true WO2012029654A1 (ja) | 2012-03-08 |
Family
ID=45772744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069303 WO2012029654A1 (ja) | 2010-09-02 | 2011-08-26 | 二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9219274B2 (ja) |
JP (1) | JP5920217B2 (ja) |
WO (1) | WO2012029654A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183525A1 (ja) * | 2012-06-04 | 2013-12-12 | 日本電気株式会社 | リチウムイオン二次電池 |
JP2014029847A (ja) * | 2012-06-29 | 2014-02-13 | Semiconductor Energy Lab Co Ltd | 二次電池 |
US20150214529A1 (en) * | 2012-10-11 | 2015-07-30 | Fujifilm Corporation | Non-aqueous electrolytic solution secondary battery |
US20150221987A1 (en) * | 2012-10-11 | 2015-08-06 | Fujifilm Corporation | Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery |
JPWO2017029945A1 (ja) * | 2015-08-20 | 2018-06-07 | 日本電気硝子株式会社 | 蓄電デバイス用負極活物質 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140065768A (ko) * | 2012-11-21 | 2014-05-30 | 삼성에스디아이 주식회사 | 리튬 이차 전지 및 리튬 이차 전지용 음극 |
WO2016160703A1 (en) | 2015-03-27 | 2016-10-06 | Harrup Mason K | All-inorganic solvents for electrolytes |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004055208A (ja) * | 2002-07-17 | 2004-02-19 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
WO2005036690A1 (ja) * | 2003-10-07 | 2005-04-21 | Gs Yuasa Corporation | 非水電解質二次電池 |
JP2006261093A (ja) * | 2005-02-10 | 2006-09-28 | Maxell Hokuriku Seiki Kk | 非水二次電池 |
JP2009289585A (ja) * | 2008-05-29 | 2009-12-10 | Sony Corp | 負極および二次電池 |
JP2010165471A (ja) * | 2009-01-13 | 2010-07-29 | Sanyo Electric Co Ltd | リチウム二次電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2997741B2 (ja) | 1992-07-29 | 2000-01-11 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
JP3347555B2 (ja) * | 1994-12-01 | 2002-11-20 | キヤノン株式会社 | リチウム二次電池の負極の作製方法 |
TW431004B (en) * | 1998-10-29 | 2001-04-21 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP4503807B2 (ja) | 2000-10-11 | 2010-07-14 | 東洋炭素株式会社 | リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極の製造方法 |
JP3982230B2 (ja) | 2001-10-18 | 2007-09-26 | 日本電気株式会社 | 二次電池用負極およびそれを用いた二次電池 |
JP3952180B2 (ja) | 2002-05-17 | 2007-08-01 | 信越化学工業株式会社 | 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材 |
JP2007197370A (ja) | 2006-01-26 | 2007-08-09 | Nippon Shokubai Co Ltd | 電解質組成物 |
JP5219339B2 (ja) | 2006-02-28 | 2013-06-26 | 三洋電機株式会社 | リチウム二次電池 |
JP4883323B2 (ja) | 2008-08-26 | 2012-02-22 | 信越化学工業株式会社 | 非水電解質二次電池負極材及びSi−O−Al複合体の製造方法、ならびに非水電解質二次電池負極及び非水電解質二次電池 |
KR20110094106A (ko) * | 2009-09-02 | 2011-08-19 | 파나소닉 주식회사 | 비수 용매, 및 그것을 이용한 비수 전해액 및 비수계 2차 전지 |
-
2011
- 2011-08-26 US US13/820,300 patent/US9219274B2/en active Active
- 2011-08-26 JP JP2012531839A patent/JP5920217B2/ja active Active
- 2011-08-26 WO PCT/JP2011/069303 patent/WO2012029654A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004055208A (ja) * | 2002-07-17 | 2004-02-19 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
WO2005036690A1 (ja) * | 2003-10-07 | 2005-04-21 | Gs Yuasa Corporation | 非水電解質二次電池 |
JP2006261093A (ja) * | 2005-02-10 | 2006-09-28 | Maxell Hokuriku Seiki Kk | 非水二次電池 |
JP2009289585A (ja) * | 2008-05-29 | 2009-12-10 | Sony Corp | 負極および二次電池 |
JP2010165471A (ja) * | 2009-01-13 | 2010-07-29 | Sanyo Electric Co Ltd | リチウム二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183525A1 (ja) * | 2012-06-04 | 2013-12-12 | 日本電気株式会社 | リチウムイオン二次電池 |
JP2014029847A (ja) * | 2012-06-29 | 2014-02-13 | Semiconductor Energy Lab Co Ltd | 二次電池 |
US20150214529A1 (en) * | 2012-10-11 | 2015-07-30 | Fujifilm Corporation | Non-aqueous electrolytic solution secondary battery |
US20150221987A1 (en) * | 2012-10-11 | 2015-08-06 | Fujifilm Corporation | Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery |
JPWO2017029945A1 (ja) * | 2015-08-20 | 2018-06-07 | 日本電気硝子株式会社 | 蓄電デバイス用負極活物質 |
Also Published As
Publication number | Publication date |
---|---|
US9219274B2 (en) | 2015-12-22 |
US20130266846A1 (en) | 2013-10-10 |
JP5920217B2 (ja) | 2016-05-18 |
JPWO2012029654A1 (ja) | 2013-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5748193B2 (ja) | 二次電池 | |
JP6070540B2 (ja) | 二次電池および電解液 | |
JP6191454B2 (ja) | 二次電池および電解液 | |
JP5704633B2 (ja) | 二次電池 | |
JP6024457B2 (ja) | 二次電池およびそれに用いる二次電池用電解液 | |
WO2012056765A1 (ja) | 二次電池及びその製造方法 | |
JP5867395B2 (ja) | 二次電池 | |
WO2013183522A1 (ja) | リチウムイオン二次電池 | |
JP5920217B2 (ja) | 二次電池 | |
JP5867399B2 (ja) | 二次電池 | |
JP5867396B2 (ja) | 二次電池 | |
US20120321940A1 (en) | Nonaqueous electrolyte secondary battery | |
JP5811093B2 (ja) | 二次電池 | |
JP5867397B2 (ja) | 二次電池 | |
JP5867398B2 (ja) | 二次電池 | |
WO2012049889A1 (ja) | 二次電池およびそれに用いる二次電池用電解液 | |
WO2012029645A1 (ja) | 二次電池およびそれに用いる二次電池用電解液 | |
JP2012033346A (ja) | 非プロトン性電解液二次電池 | |
WO2013183525A1 (ja) | リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11821671 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012531839 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13820300 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11821671 Country of ref document: EP Kind code of ref document: A1 |