WO2012029654A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2012029654A1
WO2012029654A1 PCT/JP2011/069303 JP2011069303W WO2012029654A1 WO 2012029654 A1 WO2012029654 A1 WO 2012029654A1 JP 2011069303 W JP2011069303 W JP 2011069303W WO 2012029654 A1 WO2012029654 A1 WO 2012029654A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
metal
battery according
active material
Prior art date
Application number
PCT/JP2011/069303
Other languages
English (en)
French (fr)
Inventor
川崎 大輔
須黒 雅博
緑 志村
和明 松本
洋子 橋詰
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/820,300 priority Critical patent/US9219274B2/en
Priority to JP2012531839A priority patent/JP5920217B2/ja
Publication of WO2012029654A1 publication Critical patent/WO2012029654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments according to the present invention relate to a secondary battery, and more particularly to a lithium ion secondary battery.
  • Examples of means for obtaining a high energy density secondary battery include a method using a negative electrode material having a large capacity, a method using a non-aqueous electrolyte having excellent stability, and the like.
  • Patent Document 1 discloses that silicon oxide or silicate is used as a negative electrode active material of a secondary battery.
  • Patent Document 2 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is disclosed.
  • Patent Document 3 discloses a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
  • Patent Document 4 and Patent Document 5 describe using polyimide as a binder for a negative electrode when the negative electrode active material contains silicon.
  • Patent Document 6 describes that when the negative electrode active material contains silicon, the nonaqueous electrolytic solution contains a phosphazene derivative.
  • the negative electrode material for secondary batteries described in Patent Document 3 also has an effect of reducing the volume change as the whole negative electrode.
  • Patent Document 3 there are many points that have not been sufficiently studied about binders, electrolytes, electrode element structures, and exterior bodies that are indispensable for forming lithium ion secondary batteries.
  • a lithium ion secondary battery using silicon or silicon oxide as a negative electrode active material has a high capacity.
  • the secondary battery swells and the capacity maintenance rate decreases. Deterioration of characteristics has become a problem, and development of a technology that can solve the problem has been desired.
  • an object of the embodiment according to the present invention is to provide a secondary battery having a high capacity and good high-temperature cycle characteristics.
  • An embodiment according to the present invention is a secondary battery having an electrode element in which a positive electrode and a negative electrode are arranged to face each other, an electrolytic solution, and an outer package containing the electrode element and the electrolytic solution,
  • a negative electrode active material containing at least one of a metal that can be alloyed with lithium (a) and a metal oxide (b) capable of occluding and releasing lithium ions is collected by a polyimide or polyamideimide as a negative electrode binder. It is a secondary battery characterized in that it is bound to an electric body and the electrolyte contains a phosphazene compound.
  • FIG. 3 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery.
  • an electrode element in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are included in an outer package.
  • the shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable.
  • a laminated laminate type secondary battery will be described.
  • FIG. 1 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery.
  • This electrode element is formed by alternately stacking a plurality of positive electrodes c and a plurality of negative electrodes a with a separator b interposed therebetween.
  • the positive electrode current collector e of each positive electrode c is welded and electrically connected to each other at an end portion not covered with the positive electrode active material.
  • the positive electrode terminal f is welded to the welding location.
  • the negative electrode current collector d included in each negative electrode a is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material.
  • the negative electrode terminal g is welded to the welding location.
  • the electrode element having such a planar laminated structure does not have a portion with a small R (a region close to the winding core of the wound structure), the electrode element associated with charge / discharge is compared with an electrode element having a wound structure.
  • an electrode element having a wound structure since the electrode is curved, the structure is easily distorted when a volume change occurs.
  • a negative electrode active material having a large volume change due to charge / discharge such as silicon oxide
  • a secondary battery using an electrode element having a wound structure has a large capacity reduction due to charge / discharge.
  • the electrode element having a planar laminated structure has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because, in the case of an electrode element having a wound structure, the distance between the electrodes is difficult to widen because tension is applied to the electrodes, whereas in the case of an electrode element having a laminated structure, the distance between the electrodes is widened. This is because it is easy. This problem is particularly noticeable when the outer package is an aluminum laminate film.
  • the above-described problems can be solved, and a long-life driving is possible even in a laminated laminate type lithium ion secondary battery using a high energy type negative electrode.
  • Negative electrode The negative electrode is formed by binding a negative electrode active material so as to cover a negative electrode current collector with a negative electrode binder.
  • the negative electrode active material includes at least one of a metal (a) that can be alloyed with lithium and a metal oxide (b) that can occlude and release lithium ions. That is, the negative electrode active material may contain only one of the metal (a) and the metal oxide (b), but preferably contains the metal (a) and the metal oxide (b).
  • the negative electrode active material may further contain a carbon material (c) that can occlude and release lithium ions, and more preferably contains a metal (a), a metal oxide (b), and a carbon material (c).
  • the metal (a) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy of two or more thereof can be used. .
  • silicon (Si) is included as the metal (a).
  • the content of the metal (a) in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass to 95% by mass, and is preferably 10% by mass to 90% by mass. More preferably, it is more preferably 20% by mass or more and 50% by mass or less.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used as the metal oxide (b).
  • silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
  • the content of the metal oxide (b) in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass or more and 90% by mass or less, and 40% by mass or more and 80% by mass or less. It is more preferable to set it as 50 mass% or more and 70 mass% or less.
  • the metal oxide (b) preferably has an amorphous structure in whole or in part.
  • the metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), which are other negative electrode active materials, and decomposes the electrolytic solution containing a phosphate ester compound. Can also be suppressed. Although this mechanism is not clear, it is presumed that the metal oxide (b) has some influence on the formation of a film on the interface between the carbon material (c) and the electrolytic solution due to the amorphous structure.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide (b) has an amorphous structure. Specifically, when the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. In the case of having a structure, the intrinsic peak is observed broad in the metal oxide (b).
  • the negative electrode active material contains a metal (a) and a metal oxide (b)
  • the metal (a) is entirely or partially dispersed in the metal oxide (b).
  • volume expansion as the whole negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal particles (a) is observed, the oxygen concentration of the metal particles (a) dispersed in the metal oxide (b) is measured, and the metal particles (a) are configured. It can be confirmed that the metal being used is not an oxide.
  • the metal oxide (b) is preferably an oxide of a metal constituting the metal (a).
  • a metal (a), a metal oxide (b), and a carbon material (c) are included, and all or part of the metal oxide (b) has an amorphous structure, and all or part of the metal (a) is metal oxidized.
  • the negative electrode active material dispersed in the product (b) can be produced by a method disclosed in Patent Document 3, for example. That is, by performing a CVD process on the metal oxide (b) in an atmosphere containing an organic gas such as methane gas, the metal (a) in the metal oxide (b) is nanoclustered and the surface is a carbon material (c ) Can be obtained.
  • the said negative electrode active material is producible also by mixing a metal (a), a metal oxide (b), and a carbon material (c) by mechanical milling.
  • the ratio of the metal (a) and the metal oxide (b) is not particularly limited.
  • the metal (a) is preferably 5% by mass or more and 90% by mass or less, and more preferably 30% by mass or more and 60% by mass or less with respect to the total of the metal (a) and the metal oxide (b).
  • the metal oxide (b) is preferably 10% by mass or more and 95% by mass or less, and preferably 40% by mass or more and 70% by mass or less with respect to the total of the metal (a) and the metal oxide (b). More preferred.
  • the carbon material (c) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the content of the carbon material (c) in the negative electrode active material may be 0% by mass, but is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less. preferable.
  • the ratio of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited.
  • the metal (a) is preferably 5% by mass or more and 90% by mass or less, and 20% by mass or more and 50% by mass or less with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). More preferably.
  • the metal oxide (b) is preferably 5% by mass or more and 90% by mass or less, and 40% by mass or more and 70% by mass with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). % Or less is more preferable.
  • the carbon material (c) is preferably 2% by mass or more and 50% by mass or less, preferably 2% by mass or more and 30% by mass or less with respect to the total of the metal (a), the metal oxide (b) and the carbon material (c). More preferably, it is as follows.
  • the metal (a), the metal oxide (b) and the carbon material (c) are not particularly limited, but particulate materials can be used.
  • the average particle diameter of the metal (a) may be smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b). In this way, the metal (a) having a small volume change during charging and discharging has a relatively small particle size, and the metal oxide (b) and the carbon material (c) having a large volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
  • the average particle diameter of the metal (a) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the average particle diameter of a metal oxide (b) is 1/2 or less of the average particle diameter of a carbon material (c), and the average particle diameter of a metal (a) is an average of a metal oxide (b). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (b) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (c), and the average particle diameter of the metal (a) is the average particle diameter of the metal oxide (b). It is more preferable that it is 1/2 or less.
  • the average particle diameter of silicon oxide (b) is set to be 1 ⁇ 2 or less of the average particle diameter of graphite (c), and the average particle diameter of silicon (a) is equal to the average particle diameter of silicon oxide (b). It is preferable to make it 1/2 or less. More specifically, the average particle diameter of silicon (a) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • binder for the negative electrode generally, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene Polypropylene, polyethylene, polyimide, polyamideimide and the like are used. However, in this embodiment, as will be described later, polyimide or polyamideimide is used as a negative electrode binder in order to improve high-temperature cycle characteristics by combination with a phosphazene compound.
  • the content of the negative electrode binder in the negative electrode is the sum of the negative electrode active material and the negative electrode binder from the viewpoints of “sufficient binding force” and “higher energy” that are in a trade-off relationship. On the other hand, 5 to 20% by mass is preferable, and 8 to 15% by mass is more preferable.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
  • lithium manganate having a layered structure such as LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a transition metal thereof Lithium transition metal oxides in which a specific transition metal such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 does not exceed half the lithium transition metal oxides; In which Li is made excessive in comparison with the stoichiometric composition.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • Electrolytic Solution used in the present embodiment includes a phosphazene compound.
  • the phosphazene compound has the following structure:
  • the compound represented by these is said.
  • the phosphazene compound may be linear or cyclic, but a cyclic phosphazene compound is preferred.
  • a phosphazene compound can be used individually by 1 type or in combination of 2 or more types.
  • High temperature cycle characteristics are remarkably improved by using polyimide or polyamideimide as the binder for the negative electrode and the electrolyte containing the phosphazene compound. That is, in this case, the phosphazene compound reacts with the negative electrode surface to form a stable film, thereby effectively suppressing the generation of gas in the negative electrode and suppressing the deterioration of battery characteristics in a high temperature environment. it is conceivable that. This is presumably because the N atom of the polyimide or polyamideimide used as the binder for the negative electrode and the N atom of the phosphazene compound have some interaction, and are effective in forming a film on the negative electrode surface.
  • the cyclic phosphazene compound has the following formula (I):
  • X is independently selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted cycloalkyloxy group, a substituted or unsubstituted aryloxy group, a nitro group, and an amino group. Is done.
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • substituent examples include a halogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, an aryl group, a heterocyclic group, a nitro group, and a cyano group, and unsubstituted or fluorine-substituted is preferable.
  • the substituted or unsubstituted alkoxy group preferably has 1 to 30 carbon atoms.
  • the substituted or unsubstituted cycloalkyloxy group preferably has 4 to 30 carbon atoms.
  • the substituted or unsubstituted aryloxy group preferably has 6 to 30 carbon atoms.
  • X is independently selected from a halogen atom, a fluorine-substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a fluorine-substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, and an amino group. Is more preferably selected from a halogen atom, a fluorine-substituted or unsubstituted alkoxy group having 1 to 3 carbon atoms, and more preferably selected from —Cl, —F and —OCH 2 CF 2 CF 3. .
  • cyclic phosphazene compounds include the following structural formula:
  • the electrolyte used in this embodiment usually includes a nonaqueous electrolyte that is stable at the operating potential of the battery.
  • the non-aqueous electrolyte include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC) Aprotic organic solvents such as chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); propylene carbonate derivatives; aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; Is mentioned.
  • Non-aqueous electrolytes include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), Cyclic or chain carbonates such as propyl carbonate (DPC) are preferred.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • MEC ethyl methyl carbonate
  • Cyclic or chain carbonates such as propyl carbonate (DPC) are preferred.
  • a non-aqueous electrolyte can be used individually by 1 type or in combination of 2 or more types.
  • the content of the phosphazene compound is preferably 1 to 50% by mass with respect to the total of the phosphazene compound and the non-aqueous electrolyte, from the viewpoint of effectively forming a film on the negative electrode surface. More preferably, the content is 5 to 10% by mass.
  • the electrolytic solution used in the present embodiment is obtained by adding a supporting salt to a mixed solution of a phosphazene compound and a nonaqueous electrolytic solution.
  • the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and the like.
  • a supporting salt can be used individually by 1 type or in combination of 2 or more types.
  • the high temperature cycle characteristics are further improved. This is presumably because the P atom of LiPF 6 as the supporting salt and the P atom of the phosphazene compound have some interaction to exert an effect on the film formation on the negative electrode surface.
  • separator a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, what laminated
  • Exterior Body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
  • an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • the distortion of the electrode element becomes very large when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It tends to lead to battery volume changes and electrode element deformation.
  • the secondary battery according to the present embodiment can overcome the above problem. As a result, it is possible to provide a laminate-type lithium ion secondary battery that is inexpensive and has excellent flexibility in designing the cell capacity by changing the number of layers.
  • Example 1 Silicon having an average particle diameter of 5 ⁇ m as the metal (a) and graphite having an average particle diameter of 30 ⁇ m as the carbon material (c) were weighed at a mass ratio of 90:10. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
  • the negative electrode slurry was applied to a copper foil having a thickness of 10 ⁇ m, dried, and further subjected to a heat treatment in a nitrogen atmosphere at 300 ° C. to produce a negative electrode.
  • 3 layers of the obtained positive electrode and 4 layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator.
  • the ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded.
  • the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location. Thereby, an electrode element having a planar laminated structure was obtained.
  • the electrode element was wrapped with an aluminum laminate film as an exterior body, and an electrolytic solution was injected inside. Thereafter, the inside of the exterior body was sealed while reducing the pressure to 0.1 atm, thereby producing a secondary battery.
  • Example 2 The same procedure as in Example 1 was performed except that polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Viromax (registered trademark)) was used as the binder for the negative electrode.
  • PAI polyamideimide
  • Viromax registered trademark
  • Example 3 The same operation as in Example 1 was performed except that the negative electrode active material and the negative electrode binder were weighed at a mass ratio of 95: 5.
  • Example 4 The same operation as in Example 1 was performed except that the negative electrode active material and the negative electrode binder were weighed at a mass ratio of 85:15.
  • Example 5 The same operation as in Example 1 was performed except that the negative electrode active material and the negative electrode binder were weighed at a mass ratio of 80:20.
  • Example 6 The same operation as in Example 1 was performed except that LiBF 4 was used as a supporting salt.
  • Example 7 It implemented like Example 1 except having set the content rate of the phosphazene compound to 30 mass%.
  • Example 8 It implemented like Example 1 except having set the content rate of the phosphazene compound to 2 mass%.
  • Example 9 It implemented like Example 1 except having set the content rate of the phosphazene compound to 1 mass%.
  • Example 10 It implemented like Example 1 except having set the content rate of the phosphazene compound to 35 mass%.
  • Example 11 It implemented like Example 1 except having set the content rate of the phosphazene compound to 50 mass%.
  • Example 13 A mass ratio of 32:68 of silicon having an average particle size of 5 ⁇ m as metal (a) and amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle size of 13 ⁇ m as metal oxide (b) Weighed with. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
  • Example 14 Silicon having an average particle size of 5 ⁇ m as the metal (a), crystalline silicon oxide (SiO 2 ) having an average particle size of 13 ⁇ m as the metal oxide (b), and graphite having an average particle size of 30 ⁇ m as the carbon material (c) Were weighed at a mass ratio of 29:61:10. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
  • Example 15 Silicon having an average particle size of 6 ⁇ m as the metal (a), amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle size of 13 ⁇ m as the metal oxide (b), and carbon material (c) And graphite having an average particle size of 30 ⁇ m were weighed at a mass ratio of 29:61:10.
  • the mixed powder was not subjected to any special treatment and used as a negative electrode active material.
  • silicon that is metal (a) is not dispersed in silicon oxide (SiO x , 0 ⁇ x ⁇ 2) that is metal oxide (b). And it implemented similarly to Example 1 except having used this negative electrode active material.
  • Example 16 Silicon having an average particle diameter of 5 ⁇ m as the metal (a), amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle diameter of 13 ⁇ m as the metal oxide (b), and carbon material (c) And graphite having an average particle size of 30 ⁇ m were weighed at a mass ratio of 29:61:10. These were mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material.
  • Example 17 In accordance with the method described in Patent Document 3, a negative electrode active material containing silicon, amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2), and carbon in a mass ratio of 29:61:10 was obtained.
  • silicon that is metal (a) is dispersed in amorphous silicon oxide that is metal oxide (b).
  • it implemented similarly to Example 1 except having used this negative electrode active material.
  • Example 18 The same operation as in Example 16 was performed except that polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Viromax (registered trademark)) was used as the binder for the negative electrode.
  • PAI polyamideimide
  • Viromax registered trademark
  • Example 19 The same operation as in Example 16 was performed except that the compound represented by the following formula (2) was used as the phosphazene compound.
  • Example 20 The same operation as in Example 16 was performed except that a compound represented by the following formula (3) was used as the phosphazene compound.
  • Example 21 The same operation as in Example 16 was carried out except that the compound represented by the following formula (4) was used as the phosphazene compound.
  • Example 22 The same operation as in Example 16 was performed except that a compound represented by the following formula (5) was used as the phosphazene compound.
  • Example 23 The same operation as in Example 16 was performed except that the compound represented by the following formula (6) was used as the phosphazene compound.
  • Example 24 The same operation as in Example 16 was performed except that the compound represented by the following formula (7) was used as the phosphazene compound.
  • Example 25 The same operation as in Example 16 was performed except that the compound represented by the following formula (8) was used as the phosphazene compound.
  • Example 26 The same operation as in Example 16 was performed except that the compound represented by the following formula (9) was used as the phosphazene compound.
  • Example 27 The same operation as in Example 16 was performed except that a compound represented by the following formula (10) was used as the phosphazene compound.
  • Example 1 The same procedure as in Example 1 was performed except that the phosphazene compound was not added.
  • Example 2 The same procedure as in Example 1 was carried out except that no phosphazene compound was added and polyvinylidene fluoride (PVDF, manufactured by Kureha Co., Ltd., trade name: KF polymer # 1300) was used as the binder for the negative electrode.
  • PVDF polyvinylidene fluoride
  • Example 3 The same operation as in Example 1 was performed except that polyvinylidene fluoride (PVDF, manufactured by Kureha Co., Ltd., trade name: KF polymer # 1300) was used as the binder for the negative electrode.
  • PVDF polyvinylidene fluoride
  • Example 4 The same operation as in Example 1 was performed except that only graphite having an average particle diameter of 30 ⁇ m as the carbon material (c) was used as the negative electrode active material.
  • the volume energy density in the initial state of the secondary batteries produced in Examples 1-27 and Comparative Examples 1-4 was measured.
  • the value of the volume energy density was calculated from the volume (L) of the secondary battery and the first discharge energy amount (Wh) performed in the voltage range of 2.5V to 4.1V.
  • the volume of the secondary battery was determined by the Archimedes method. That is, the secondary battery was suspended and submerged in deionized water, and the volume was determined from the difference in mass between the air and water. Further, the high temperature cycle characteristics of the secondary batteries produced in Examples 1 to 27 and Comparative Examples 1 to 4 were measured.
  • the secondary battery was subjected to a test in which charging / discharging was repeated 50 times in a voltage range of 2.5 V to 4.1 V in a thermostat kept at 60 ° C. Then, (discharge capacity at 50th cycle) / (discharge capacity at 5th cycle) (unit:%) was calculated as a maintenance rate. Further, (battery volume at the 50th cycle) / (battery volume before the cycle) (unit:%) was calculated as the swelling rate. The results are shown in Table 1.
  • 230 Wh / L or more was determined to be "A”
  • less than 230 Wh / L was determined to be “B”.
  • the maintenance rate was determined as “A” at 70% or more, “B” at 50% or more and less than 70%, “C” at 30% or more and less than 50%, and “D” at less than 30%.
  • the swelling rate was determined as “A” at 5% or less, “B” at 10% or less above 5%, “C” at 15% or less above 10%, and “D” at 15% or less.
  • This embodiment can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and notebook computers
  • power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • a backup power source such as a UPS
  • a power storage facility for storing power generated by solar power generation, wind power generation, etc .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 高容量で、かつ高温サイクル特性が良好な二次電池を提供する。本実施形態に係る二次電池は、正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体とを有する二次電池であって、前記負極は、リチウムと合金可能な金属(a)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも1つを含む負極活物質が、負極用結着剤としてのポリイミドまたはポリアミドイミドによって負極集電体と結着されてなり、前記電解液が、ホスファゼン化合物を含むことを特徴とする。

Description

二次電池
 本発明に係る実施形態は、二次電池に関し、特にリチウムイオン二次電池に関する。
 ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、高エネルギー密度の二次電池が求められている。高エネルギー密度の二次電池を得る手段として、容量の大きな負極材料を用いる方法や、安定性に優れた非水電解液を使用する方法などが挙げられる。
 特許文献1には、ケイ素の酸化物またはケイ酸塩を二次電池の負極活物質に利用することが開示されている。特許文献2には、リチウムイオンを吸蔵、放出し得る炭素材料粒子、リチウムと合金可能な金属粒子、リチウムイオンを吸蔵、放出し得る酸化物粒子を含む活物質層を備えた二次電池用負極が開示されている。特許文献3には、ケイ素の微結晶がケイ素化合物に分散した構造を有する粒子の表面を炭素でコーティングした二次電池用負極材料が開示されている。
 特許文献4および特許文献5には、負極活物質がケイ素を含む場合に、負極用結着剤としてポリイミドを用いることが記載されている。特許文献6には、負極活物質がケイ素を含む場合に、非水電解液がホスファゼン誘導体を含むことが記載されている。
特開平6-325765号公報 特開2003-123740号公報 特開2004-47404号公報 特開2004-22433号公報 特開2007-95670号公報 国際公開第2005/036690号
 しかしながら、特許文献1に記載されたケイ素の酸化物を負極活物質に利用した二次電池を45℃以上で充放電させると、充放電サイクルに伴う容量低下が著しく大きいという問題点があった。特許文献2に記載された二次電池用負極は、3種の成分の充放電電位の違いにより、リチウムを吸蔵、放出する際、負極全体としての体積変化を緩和させる効果がある。しかしながら、特許文献2では3種の成分の共存状態における関係や、リチウムイオン二次電池を形成する上で不可欠な結着剤、電解液、電極素子構造、および外装体について、十分に検討されていない点が多く見られた。特許文献3に記載された二次電池用負極材料も、負極全体として体積変化を緩和させる効果がある。しかしながら、特許文献3では、リチウムイオン二次電池を形成する上で不可欠な結着剤、電解液、電極素子構造、および外装体について、十分に検討されていない点が多く見られた。
 特許文献4および特許文献5では、負極活物質の状態に関する検討が不十分であることに加え、リチウムイオン二次電池を形成する上で不可欠な電解液、電極素子構造、および外装体について、十分に検討されていない点が多く見られた。特許文献6では、リチウムイオン二次電池を形成する上で不可欠な結着剤、電解液、電極素子構造、および外装体について、十分に検討されていない点が多く見られた。
 特に、シリコンやシリコン酸化物を負極活物質として用いたリチウムイオン二次電池は、高容量であるが、高温環境下で充放電させると二次電池が膨れ、容量維持率が低下する等のサイクル特性の低下が問題となっており、それを解決できる技術の開発が望まれていた。
 そこで、本発明に係る実施形態は、高容量で、かつ高温サイクル特性が良好な二次電池を提供することを目的とする。
 本発明に係る実施形態は、正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体とを有する二次電池であって、前記負極は、リチウムと合金可能な金属(a)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも1つを含む負極活物質が、負極用結着剤としてのポリイミドまたはポリアミドイミドによって負極集電体と結着されてなり、前記電解液が、ホスファゼン化合物を含むことを特徴とする二次電池である。
 本発明に係る実施形態によれば、高容量で、かつ高温サイクル特性が良好な二次電池を提供できる。
積層ラミネート型の二次電池が有する電極素子の構造を示す模式的断面図である。
 以下、本実施形態について、詳細に説明する。
 本実施形態に係る二次電池は、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている。二次電池の形状は、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型および積層ラミネート型のいずれでもよいが、積層ラミネート型が好ましい。以下、積層ラミネート型の二次電池について説明する。
 図1は、積層ラミネート型の二次電池が有する電極素子の構造を示す模式的断面図である。この電極素子は、正極cの複数および負極aの複数が、セパレータbを挟みつつ交互に積み重ねられて形成されている。各正極cが有する正極集電体eは、正極活物質に覆われていない端部で互いに溶接されて電気的に接続されている。さらにその溶接箇所に正極端子fが溶接されている。各負極aが有する負極集電体dは、負極活物質に覆われていない端部で互いに溶接されて電気的に接続されている。さらにその溶接箇所に負極端子gが溶接されている。
 このような平面的な積層構造を有する電極素子は、Rの小さい部分(捲回構造の巻き芯に近い領域)がないため、捲回構造を持つ電極素子に比べて、充放電に伴う電極の体積変化に対する影響を受けにくいという利点がある。すなわち、体積膨張を起こしやすい活物質を用いた電極素子として有効である。一方で、捲回構造を持つ電極素子では電極が湾曲しているため、体積変化が生じた場合にその構造が歪みやすい。特に、ケイ素酸化物のように充放電に伴う体積変化が大きい負極活物質を用いた場合、捲回構造を持つ電極素子を用いた二次電池では、充放電に伴う容量低下が大きい。
 ところが、平面的な積層構造を持つ電極素子には、電極間にガスが発生した際に、その発生したガスが電極間に滞留しやすい問題点がある。これは、捲回構造を持つ電極素子の場合には電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層構造を持つ電極素子の場合には電極間の間隔が広がりやすいためである。外装体がアルミラミネートフィルムであった場合、この問題は特に顕著となる。
 本実施形態では、上記の問題を解決することができ、高エネルギー型の負極を用いた積層ラミネート型のリチウムイオン二次電池においても、長寿命駆動が可能となる。
 [1]負極
 負極は、負極活物質が負極用結着剤によって負極集電体を覆うように結着されてなる。そして、本実施形態では、負極活物質として、リチウムと合金可能な金属(a)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも一方を含む。すなわち、負極活物質は、金属(a)および金属酸化物(b)のいずれか一方のみを含んでいればよいが、金属(a)と金属酸化物(b)とを含むことが好ましい。負極活物質は、さらにリチウムイオンを吸蔵、放出し得る炭素材料(c)を含んでもよく、金属(a)と金属酸化物(b)と炭素材料(c)とを含むことがより好ましい。
 金属(a)としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金を用いることができる。特に、金属(a)としてシリコン(Si)を含むことが好ましい。負極活物質中の金属(a)の含有率は、0質量%でも100質量%でも構わないが、5質量%以上95質量%以下とすることが好ましく、10質量%以上90質量%以下とすることがより好ましく、20質量%以上50質量%以下とすることがさらに好ましい。
 金属酸化物(b)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、金属酸化物(b)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(b)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(b)の電気伝導性を向上させることができる。負極活物質中の金属酸化物(b)の含有率は、0質量%でも100質量%でも構わないが、5質量%以上90質量%以下とすることが好ましく、40質量%以上80質量%以下とすることがより好ましく、50質量%以上70質量%以下とすることがさらに好ましい。
 金属酸化物(b)は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(b)は、他の負極活物質である炭素材料(c)や金属(a)の体積膨張を抑制することができ、リン酸エステル化合物を含むような電解液の分解を抑制することもできる。このメカニズムは明確ではないが、金属酸化物(b)がアモルファス構造であることにより、炭素材料(c)と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(b)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(b)がアモルファス構造を有しない場合には、金属酸化物(b)に固有のピークが観測されるが、金属酸化物(b)の全部または一部がアモルファス構造を有する場合が、金属酸化物(b)に固有ピークがブロードとなって観測される。
 また、負極活物質が金属(a)および金属酸化物(b)を含む場合、金属(a)は、その全部または一部が金属酸化物(b)中に分散していることが好ましい。金属(a)の少なくとも一部を金属酸化物(b)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(a)の全部または一部が金属酸化物(b)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属粒子(a)を含むサンプルの断面を観察し、金属酸化物(b)中に分散している金属粒子(a)の酸素濃度を測定し、金属粒子(a)を構成している金属が酸化物となっていないことを確認することができる。
 さらに、負極活物質が金属(a)および金属酸化物(b)を含む場合、金属酸化物(b)は、金属(a)を構成する金属の酸化物であることが好ましい。
 金属(a)と金属酸化物(b)と炭素材料(c)とを含み、金属酸化物(b)の全部または一部がアモルファス構造であり、金属(a)の全部または一部が金属酸化物(b)中に分散しているような負極活物質は、例えば、特許文献3で開示されているような方法で作製することができる。すなわち、金属酸化物(b)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(b)中の金属(a)がナノクラスター化し、かつ表面が炭素材料(c)で被覆された複合体を得ることができる。また、金属(a)と金属酸化物(b)と炭素材料(c)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。
 負極活物質が金属(a)と金属酸化物(b)とを含む場合、金属(a)および金属酸化物(b)の割合に特に制限はない。金属(a)は、金属(a)および金属酸化物(b)の合計に対し、5質量%以上90質量%以下とすることが好ましく、30質量%以上60質量%以下とすることがより好ましい。金属酸化物(b)は、金属(a)および金属酸化物(b)の合計に対し、10質量%以上95質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。
 炭素材料(c)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。負極活物質中の炭素材料(c)の含有率は、0質量%でも構わないが、2質量%以上50質量%以下とすることが好ましく、2質量%以上30質量%以下とすることがより好ましい。
 負極活物質が金属(a)と金属酸化物(b)と炭素材料(c)とを含む場合、金属(a)、金属酸化物(b)および炭素材料(c)の割合に特に制限はない。金属(a)は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、5質量%以上90質量%以下とすることが好ましく、20質量%以上50質量%以下とすることがより好ましい。金属酸化物(b)は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、5質量%以上90質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。炭素材料(c)は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、2質量%以上50質量%以下とすることが好ましく、2質量%以上30質量%以下とすることがより好ましい。
 また、金属(a)、金属酸化物(b)および炭素材料(c)は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。例えば、金属(a)の平均粒子径は、炭素材料(c)の平均粒子径および金属酸化物(b)の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時に伴う体積変化の小さい金属(a)が相対的に小粒径となり、体積変化の大きい金属酸化物(b)や炭素材料(c)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 また、金属酸化物(b)の平均粒子径が炭素材料(c)の平均粒子径の1/2以下であることが好ましく、金属(a)の平均粒子径が金属酸化物(b)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(b)の平均粒子径が炭素材料(c)の平均粒子径の1/2以下であり、かつ金属(a)の平均粒子径が金属酸化物(b)の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果がより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、酸化シリコン(b)の平均粒子径を黒鉛(c)の平均粒子径の1/2以下とし、シリコン(a)の平均粒子径を酸化シリコン(b)の平均粒子径の1/2以下とすることが好ましい。またより具体的には、シリコン(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 負極用結着剤としては、一般的には、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が用いられている。しかし、本実施形態では、後述するように、ホスファゼン化合物との組み合わせによる高温サイクル特性の改善を図るべく、負極用結着剤としてポリイミドまたはポリアミドイミドを用いる。前記負極中の負極用結着剤の含有率は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、前記負極活物質と前記負極用結着剤の合計に対して5~20質量%が好ましく、8~15質量%がより好ましい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 [2]正極
 正極は、例えば、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。
 正極活物質としては、LiMnO、LiMn(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの等が挙げられる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極集電体としては、負極集電体と同様のものを用いることができる。
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 [3]電解液
 本実施形態で用いる電解液は、ホスファゼン化合物を含む。ホスファゼン化合物とは、下記構造:
Figure JPOXMLDOC01-appb-C000002
で表される化合物を言う。ホスファゼン化合物は、鎖状でも環状でも構わないが、環状ホスファゼン化合物が好ましい。ホスファゼン化合物は、一種を単独で、または二種以上を組み合わせて使用することができる。
 負極用結着剤としてポリイミドまたはポリアミドイミドを用い、かつ電解液がホスファゼン化合物を含むことで、高温サイクル特性が格段に向上する。すなわち、この場合に、ホスファゼン化合物が負極表面と反応して安定な皮膜を形成することで、負極におけるガスの発生が有効に抑制され、高温環境下での電池特性の劣化を抑制しているものと考えられる。これは、負極用結着剤として用いるポリイミドまたはポリアミドイミドのN原子と、ホスファゼン化合物のN原子が何らかの相互作用をして、負極表面への皮膜形成に効果を発揮しているためと考えられる。
 環状ホスファゼン化合物は、下記式(I):
Figure JPOXMLDOC01-appb-C000003
で表される化合物であることが好ましい。なお、Xは、それぞれ独立して、水素原子、ハロゲン原子、置換または無置換のアルコキシ基、置換または無置換のシクロアルキルオキシ基、置換または無置換のアリールオキシ基、ニトロ基およびアミノ基から選択される。
 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。置換基としては、ハロゲン原子、アルキル基、アルコキシ基、シクロアルキル基、アリール基、複素環基、ニトロ基、シアノ基が挙げられるが、無置換またはフッ素置換が好ましい。置換または無置換のアルコキシ基の炭素数は、1~30が好ましい。置換または無置換のシクロアルキルオキシ基の炭素数は、4~30が好ましい。置換または無置換のアリールオキシ基の炭素数は、炭素数6~30が好ましい。Xは、それぞれ独立して、ハロゲン原子、炭素数1~30のフッ素置換または無置換のアルコキシ基、炭素数6~30のフッ素置換または無置換のアリールオキシ基、およびアミノ基から選択されることが好ましく、ハロゲン原子、炭素数1~3のフッ素置換または無置換のアルコキシ基から選択されることがより好ましく、-Cl、-Fおよび-OCHCFCFから選択されることがさらに好ましい。
 環状ホスファゼン化合物の具体例としては、下記構造式:
Figure JPOXMLDOC01-appb-C000004
のいずれかで表される化合物が挙げられる。
 本実施形態で用いる電解液は、通常は、電池の動作電位において安定な非水電解液を含む。非水電解液の具体例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;などの非プロトン性有機溶媒が挙げられる。非水電解液は、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類が好ましい。非水電解液は、一種を単独で、または二種以上を組み合わせて使用することができる。
 ホスファゼン化合物の含有率は、負極表面に効果的に被膜を形成する観点から、ホスファゼン化合物と非水電解液の合計に対して1~50質量%とすることが好ましく、2~30質量%とすることがより好ましく、5~10質量%とすることがさらに好ましい。
 本実施形態で用いる電解液は、ホスファゼン化合物および非水電解液の混合液に支持塩が添加されてなる。支持塩の具体例としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。特に、本実施形態では、支持塩としてLiPFを用いることが好ましい。この場合、高温サイクル特性がさらに向上する。これは、支持塩としてLiPFのP原子と、ホスファゼン化合物のP原子が何らかの相互作用をして、負極表面への皮膜形成に効果を発揮しているためと考えられる。
 [4]セパレータ
 セパレータとしては、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。
 [5]外装体
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
 外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、ガスが発生すると電極素子の歪みが非常に大きくなる。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くするため、内部に余分な空間がなく、ガスが発生した場合にそれが直ちに電池の体積変化や電極素子の変形につながりやすい。
 ところが、本実施形態に係る二次電池は、上記問題を克服することができる。それにより、安価かつ積層数の変更によるセル容量の設計の自由度に優れた、積層ラミネート型のリチウムイオン二次電池を提供することができる。
 以下、本実施形態を実施例により具体的に説明する。
 (実施例1)
 金属(a)としての平均粒径5μmのシリコンと、炭素材料(c)としての平均粒径30μmの黒鉛とを、90:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。この負極活物質(平均粒径D50=5μm)と、負極用結着剤としてのポリイミド(PI、宇部興産株式会社製、商品名:UワニスA)とを、92:8の質量比で計量した。それらをn-メチルピロリドンと混合して、負極スラリーとした。負極スラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに窒素雰囲気300℃の熱処理を行うことで、負極を作製した。
 正極活物質としてのニッケル酸リチウム(LiNi0.80Co0.15Al0.05)と、導電補助材としてのカーボンブラックと、正極用結着剤としてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。それらをn-メチルピロリドンと混合して、正極スラリーとした。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
 得られた正極の3層と負極の4層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらにその溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接した。これにより、平面的な積層構造を有する電極素子を得た。
 一方、EC/PC/DMC/EMC/DEC=20/20/20/20/20(体積比)からなるカーボネート系非水電解液を95質量部と、ホスファゼン化合物として下記式(1)で表される化合物を5質量部(ホスファゼン化合物の含有率:5質量%)とを混合した。さらに、これに支持塩としてのLiPFを1モル/lの濃度で溶解して、電解液を得た。
Figure JPOXMLDOC01-appb-C000005
 上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した。その後、外装体内部を0.1気圧まで減圧しつつ封止することで、二次電池を作製した。
 (実施例2)
 負極用結着剤としてポリアミドイミド(PAI、東洋紡績株式会社製、商品名:バイロマックス(登録商標))を用いたこと以外は、実施例1と同様に実施した。
 (実施例3)
 負極活物質と負極用結着剤を95:5の質量比で計量したこと以外は、実施例1と同様に実施した。
 (実施例4)
 負極活物質と負極用結着剤を85:15の質量比で計量したこと以外は、実施例1と同様に実施した。
 (実施例5)
 負極活物質と負極用結着剤を80:20の質量比で計量したこと以外は、実施例1と同様に実施した。
 (実施例6)
 支持塩としてLiBFを用いたこと以外は、実施例1と同様に実施した。
 (実施例7)
 ホスファゼン化合物の含有率を30質量%としたこと以外は、実施例1と同様に実施した。
 (実施例8)
 ホスファゼン化合物の含有率を2質量%としたこと以外は、実施例1と同様に実施した。
 (実施例9)
 ホスファゼン化合物の含有率を1質量%としたこと以外は、実施例1と同様に実施した。
 (実施例10)
 ホスファゼン化合物の含有率を35質量%としたこと以外は、実施例1と同様に実施した。
 (実施例11)
 ホスファゼン化合物の含有率を50質量%としたこと以外は、実施例1と同様に実施した。
 (実施例12)
 金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiO、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、90:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
 (実施例13)
 金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiO、0<x≦2)とを32:68の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiO、0<x≦2)中に分散している。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
 (実施例14)
 金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの結晶性酸化シリコン(SiO)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である結晶性酸化シリコン中に分散している。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
 (実施例15)
 金属(a)としての平均粒径6μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiO、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量した。その混合粉に、特に特別な処理を行わず、負極活物質とした。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiO、0<x≦2)中に分散していない。そして、この負極活物質を用いたこと以外は、実施例1と同様に実施した。
 (実施例16)
 金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiO、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量した。これらをいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiO、0<x≦2)中に分散している。そして、この負極活物質(平均粒径D50=5μm)を用いたこと以外は、実施例1と同様に実施した。
 (実施例17)
 特許文献3に記載された方法に準じて、シリコンと非晶質酸化シリコン(SiO、0<x≦2)とカーボンとを29:61:10の質量比で含む負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である非晶質酸化シリコン中に分散している。そして、この負極活物質を用いたこと以外は、実施例1と同様に実施した。
 (実施例18)
 負極用結着剤としてポリアミドイミド(PAI、東洋紡績株式会社製、商品名:バイロマックス(登録商標))を用いたこと以外は、実施例16と同様に実施した。
 (実施例19)
 ホスファゼン化合物として、下記式(2)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000006
 (実施例20)
 ホスファゼン化合物として、下記式(3)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000007
 (実施例21)
 ホスファゼン化合物として、下記式(4)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000008
 (実施例22)
 ホスファゼン化合物として、下記式(5)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000009
 (実施例23)
 ホスファゼン化合物として、下記式(6)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000010
 (実施例24)
 ホスファゼン化合物として、下記式(7)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000011
 (実施例25)
 ホスファゼン化合物として、下記式(8)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000012
 (実施例26)
 ホスファゼン化合物として、下記式(9)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000013
 (実施例27)
 ホスファゼン化合物として、下記式(10)で表される化合物を用いたこと以外は、実施例16と同様に実施した。
Figure JPOXMLDOC01-appb-C000014
 (比較例1)
 ホスファゼン化合物を添加しなかったこと以外は、実施例1と同様に実施した。
 (比較例2)
 ホスファゼン化合物を添加せず、負極用結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製、商品名:KFポリマー#1300)を用いたこと以外は、実施例1と同様に実施した。
 (比較例3)
 負極用結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製、商品名:KFポリマー#1300)を用いたこと以外は、実施例1と同様に実施した。
 (比較例4)
 炭素材料(c)としての平均粒径30μmの黒鉛のみを負極活物質として用いたこと以外は、実施例1と同様に実施した。
 <評価>
 実施例1~27および比較例1~4で作製した二次電池の初期状態における体積エネルギー密度を測定した。なお、体積エネルギー密度の値は、二次電池の体積(L)と2.5Vから4.1Vの電圧範囲で行った1回目の放電エネルギー量(Wh)から算出した。二次電池の体積は、アルキメデス法で求めた。すなわち、二次電池を吊るし、脱イオン水に沈め、空中と水中の質量差から体積を求めた。また、実施例1~27および比較例1~4で作製した二次電池の高温サイクル特性を測定した。具体的には、二次電池に対し、60℃に保った恒温槽中で2.5Vから4.1Vの電圧範囲で50回充放電を繰り返す試験を行った。そして、(50サイクル目の放電容量)/(5サイクル目の放電容量)(単位:%)を維持率として算出した。また、(50サイクル目の電池体積)/(サイクル前の電池体積)(単位:%)を膨れ率として算出した。その結果を表1に示す。
 なお、体積エネルギー密度については、230Wh/L以上を「A」、230Wh/L未満を「B」と判定した。維持率については、70%以上で「A」、50%以上70%未満で「B」、30%以上50%未満で「C」、30%未満で「D」と判定した。膨れ率については、5%以下で「A」、5%超10%以下で「B」、10%超15%以下で「C」、15%超で「D」と判定した。
Figure JPOXMLDOC01-appb-T000015
 
 表1に示すように、実施例1~27で作製した二次電池の60℃におけるサイクル特性は、比較例1~3で作製した二次電池のサイクル特性より良好であった。この結果から、本実施形態により、高温環境下でのサイクル特性の低下を抑制できることが明らかとなった。なお、比較例4でも60℃におけるサイクル特性は良好であったが、負極活物質として炭素のみを用いているため、初期状態における体積エネルギー密度が低かった。
 この出願は、2010年9月2日に出願された日本出願特願2010-196619を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本実施形態は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。
a  負極
b  セパレータ
c  正極
d  負極集電体
e  正極集電体
f  正極端子
g  負極端子

Claims (14)

  1.  正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体とを有する二次電池であって、
    前記負極は、リチウムと合金可能な金属(a)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも1つを含む負極活物質が、負極用結着剤としてのポリイミドまたはポリアミドイミドによって負極集電体と結着されてなり、
    前記電解液が、ホスファゼン化合物を含むことを特徴とする二次電池。
  2.  前記ホスファゼン化合物が、環状ホスファゼン化合物であることを特徴とする請求項1に記載の二次電池。
  3.  前記環状ホスファゼン化合物が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [Xは、それぞれ独立して、水素原子、ハロゲン原子、置換または無置換のアルコキシ基、置換または無置換のシクロアルキルオキシ基、置換または無置換のアリールオキシ基、ニトロ基およびアミノ基から選択される。]
    で表される化合物であることを特徴とする請求項2に記載の二次電池。
  4.  前記電解液が、前記ホスファゼン化合物と非水電解液とを含有し、前記電解液中の前記ホスファゼン化合物の含有率が、前記ホスファゼン化合物と前記非水電解液の合計に対して1~50質量%であることを特徴とする請求項1乃至3のいずれかに記載の二次電池。
  5.  前記負極中の前記負極用結着剤の含有率が、前記負極活物質と前記負極用結着剤の合計に対して5~20質量%であることを特徴とする請求項1乃至4のいずれかに記載の二次電池。
  6.  前記電解液が、支持塩としてLiPFを含むことを特徴とする請求項1乃至5のいずれかに記載の二次電池。
  7.  前記負極活物質が、さらに、リチウムイオンを吸蔵、放出し得る炭素材料(c)を含むことを特徴とする請求項1乃至6のいずれかに記載の二次電池。
  8.  前記負極活物質が、前記金属(a)と前記金属酸化物(b)とを含むことを特徴とする請求項1乃至7のいずれかに記載の二次電池。
  9.  前記金属酸化物(b)が、前記金属(a)を構成する金属の酸化物であることを特徴とする請求項8に記載の二次電池。
  10.  前記金属(a)の全部または一部が、前記金属酸化物(b)中に分散していることを特徴とする請求項8または9に記載の二次電池。
  11.  前記金属酸化物(b)の全部または一部が、アモルファス構造を有することを特徴とする請求項1乃至10のいずれかに記載の二次電池。
  12.  前記金属(a)が、シリコンであることを特徴とする請求項1乃至11のいずれかに記載の二次電池。
  13.  前記電極素子が、平面的な積層構造を有していることを特徴とする請求項1乃至12のいずれかに記載の二次電池。
  14.  前記外装体が、アルミニウムラミネートフィルムであることを特徴とする請求項1乃至13のいずれかに記載の二次電池。
PCT/JP2011/069303 2010-09-02 2011-08-26 二次電池 WO2012029654A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/820,300 US9219274B2 (en) 2010-09-02 2011-08-26 Secondary battery
JP2012531839A JP5920217B2 (ja) 2010-09-02 2011-08-26 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196619 2010-09-02
JP2010-196619 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029654A1 true WO2012029654A1 (ja) 2012-03-08

Family

ID=45772744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069303 WO2012029654A1 (ja) 2010-09-02 2011-08-26 二次電池

Country Status (3)

Country Link
US (1) US9219274B2 (ja)
JP (1) JP5920217B2 (ja)
WO (1) WO2012029654A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183525A1 (ja) * 2012-06-04 2013-12-12 日本電気株式会社 リチウムイオン二次電池
JP2014029847A (ja) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd 二次電池
US20150214529A1 (en) * 2012-10-11 2015-07-30 Fujifilm Corporation Non-aqueous electrolytic solution secondary battery
US20150221987A1 (en) * 2012-10-11 2015-08-06 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery
JPWO2017029945A1 (ja) * 2015-08-20 2018-06-07 日本電気硝子株式会社 蓄電デバイス用負極活物質

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065768A (ko) * 2012-11-21 2014-05-30 삼성에스디아이 주식회사 리튬 이차 전지 및 리튬 이차 전지용 음극
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055208A (ja) * 2002-07-17 2004-02-19 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2005036690A1 (ja) * 2003-10-07 2005-04-21 Gs Yuasa Corporation 非水電解質二次電池
JP2006261093A (ja) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk 非水二次電池
JP2009289585A (ja) * 2008-05-29 2009-12-10 Sony Corp 負極および二次電池
JP2010165471A (ja) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd リチウム二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP3347555B2 (ja) * 1994-12-01 2002-11-20 キヤノン株式会社 リチウム二次電池の負極の作製方法
TW431004B (en) * 1998-10-29 2001-04-21 Toshiba Corp Nonaqueous electrolyte secondary battery
JP4503807B2 (ja) 2000-10-11 2010-07-14 東洋炭素株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極の製造方法
JP3982230B2 (ja) 2001-10-18 2007-09-26 日本電気株式会社 二次電池用負極およびそれを用いた二次電池
JP3952180B2 (ja) 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2007197370A (ja) 2006-01-26 2007-08-09 Nippon Shokubai Co Ltd 電解質組成物
JP5219339B2 (ja) 2006-02-28 2013-06-26 三洋電機株式会社 リチウム二次電池
JP4883323B2 (ja) 2008-08-26 2012-02-22 信越化学工業株式会社 非水電解質二次電池負極材及びSi−O−Al複合体の製造方法、ならびに非水電解質二次電池負極及び非水電解質二次電池
KR20110094106A (ko) * 2009-09-02 2011-08-19 파나소닉 주식회사 비수 용매, 및 그것을 이용한 비수 전해액 및 비수계 2차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055208A (ja) * 2002-07-17 2004-02-19 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2005036690A1 (ja) * 2003-10-07 2005-04-21 Gs Yuasa Corporation 非水電解質二次電池
JP2006261093A (ja) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk 非水二次電池
JP2009289585A (ja) * 2008-05-29 2009-12-10 Sony Corp 負極および二次電池
JP2010165471A (ja) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd リチウム二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183525A1 (ja) * 2012-06-04 2013-12-12 日本電気株式会社 リチウムイオン二次電池
JP2014029847A (ja) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd 二次電池
US20150214529A1 (en) * 2012-10-11 2015-07-30 Fujifilm Corporation Non-aqueous electrolytic solution secondary battery
US20150221987A1 (en) * 2012-10-11 2015-08-06 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery
JPWO2017029945A1 (ja) * 2015-08-20 2018-06-07 日本電気硝子株式会社 蓄電デバイス用負極活物質

Also Published As

Publication number Publication date
US9219274B2 (en) 2015-12-22
US20130266846A1 (en) 2013-10-10
JP5920217B2 (ja) 2016-05-18
JPWO2012029654A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5748193B2 (ja) 二次電池
JP6070540B2 (ja) 二次電池および電解液
JP6191454B2 (ja) 二次電池および電解液
JP5704633B2 (ja) 二次電池
JP6024457B2 (ja) 二次電池およびそれに用いる二次電池用電解液
WO2012056765A1 (ja) 二次電池及びその製造方法
JP5867395B2 (ja) 二次電池
WO2013183522A1 (ja) リチウムイオン二次電池
JP5920217B2 (ja) 二次電池
JP5867399B2 (ja) 二次電池
JP5867396B2 (ja) 二次電池
US20120321940A1 (en) Nonaqueous electrolyte secondary battery
JP5811093B2 (ja) 二次電池
JP5867397B2 (ja) 二次電池
JP5867398B2 (ja) 二次電池
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
WO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP2012033346A (ja) 非プロトン性電解液二次電池
WO2013183525A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13820300

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11821671

Country of ref document: EP

Kind code of ref document: A1