JP2007197370A - 電解質組成物 - Google Patents

電解質組成物 Download PDF

Info

Publication number
JP2007197370A
JP2007197370A JP2006018240A JP2006018240A JP2007197370A JP 2007197370 A JP2007197370 A JP 2007197370A JP 2006018240 A JP2006018240 A JP 2006018240A JP 2006018240 A JP2006018240 A JP 2006018240A JP 2007197370 A JP2007197370 A JP 2007197370A
Authority
JP
Japan
Prior art keywords
group
electrolyte
acid
preferable
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018240A
Other languages
English (en)
Inventor
Keiichiro Mizuta
圭一郎 水田
Taisuke Kasahara
泰祐 笠原
Hironobu Hashimoto
浩伸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006018240A priority Critical patent/JP2007197370A/ja
Publication of JP2007197370A publication Critical patent/JP2007197370A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

【課題】イオン伝導度が向上し、優れた基本性能を有する電解質組成物及び該電解質組成物を含有する電解質材料を提供する。
【解決手段】下記一般式(1);
【化1】
Figure 2007197370

(式中、Rは、炭素数1〜12の炭化水素基、ハロゲン置換炭化水素基、アルコキシ基、チオエーテル基、アミノ基、アミド基及びアシル基からなる群より選ばれる一種類の基を表す。nは、1〜6の整数である。)で表されるアニオンを含有する電解質組成物、及び、上記電解質組成物とマトリックス材料とを含む電解質材料。
【選択図】なし

Description

本発明は、電解質組成物及び電解質材料に関する。より詳しくは、電気化学デバイスを構成するイオン伝導体である電解質に好適に用いられる電解質組成物及び電解質材料に関する。
電解質組成物は、イオン伝導による各種の電池等において広く用いられているものであり、例えば、一次電池、リチウム(イオン)二次電池や燃料電池等の充電及び放電機構を有する電池の他、電解コンデンサ、電気二重層キャパシタ、太陽電池・エレクトロクロミック表示素子等の電気化学デバイスに用いられている。これらでは、一般に一対の電極とその間を満たすイオン伝導体である電解液から電池が構成されることになる。このようなイオン伝導体としては、γ−ブチロラクトン、N,N−ジメチルホルムアミド、プロピレンカーボネート、テトラヒドロフラン等の有機溶媒に、過塩素酸リチウム、LiPF、LiBF、ホウフッ化テトラエチルアンモニウム、フタル酸テトラメチルアンモニウム等の電解質を溶解した電解液が使用されている。このようなイオン伝導体においては、電解質が溶解することにより、カチオンとアニオンとに解離して電解液中をイオン伝導することになる。
一般的なリチウム(イオン)二次電池の一形態の断面模式図を図1に示す。このようなリチウム(イオン)二次電池においては、活性物質から形成される正極と負極とを有し、LiPF等のリチウム塩を電解質として溶解した有機溶媒により構成される電解液により、正極と負極との間にイオン伝導体が形成されている。この場合、充電時には、負極においてCLi→6C+Li+eの反応が起こり、負極表面で発生した電子(e)は、電解液中をイオン伝導して正極表面に移動し、正極表面では、CoO+Li+e→LiCoOの反応が起こり、負極から正極へ電流が流れることになる。放電時には、充電時の逆反応が起こり、正極から負極へ電流が流れることになる。
このような電気化学テバイスを構成する電解質組成物としては、少なくとも1種のイオン性化合物を溶媒中溶液状で含むイオン性組成物であって、該化合物が組み合わせ物の電気中性度を確実にするのに充分な数の少なくとも1種のカチオン性部分Mm+と会合するアニオン性部分を含むイオン性組成物が開示されている(例えば、特許文献1参照。)。電解質としての用途が挙げられており、実施例においては、−SOCFの置換基有する4員環のLi塩が記載されている。また、γ−ブチロラクトンおよび/またはエチレングリコールとからなる溶媒に、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオンまたはその塩を5〜40wt%溶質として添加したことを特徴とするアルミニウム電解コンデンサの駆動用電解液が開示されていおり、ジヒドロキシタイプをコンデンサ電解液として使用することが記載されている。(例えば、特許文献2参照。)。
しかしながら、このような電解質又は電解液においては、優れたイオン伝導度を有する電解質組成物とし、電気化学デバイスを構成する材料等の種々の用途に好適に用いることができ、優れた基本性能を発揮する電解質材料を構成するアニオン及びカチオンとする工夫の余地があった。また、電解質を含む電解液においては、有機溶媒が揮発しやすく引火点が低いという問題点や、低温で電解液が凝固してしまい、電解液としての性能を発揮できないという問題点があることから、これらの問題点を改善することができる材料が求められていた。
特表2002−500678号公報(第2頁) 特開平11−340097号公報(第1−2頁)
本発明は、上記現状に鑑みてなされたものであり、イオン伝導度が向上し、優れた基本性能を有する電解質組成物及び該電解質組成物を含有する電解質材料を提供することを目的とするものである。
本発明者等は、電解質を構成する材料について種々検討した結果、塩の形態とすることにより揮発性が低減されて安全に取り扱うことができることから、溶融塩に電解質を溶解した液体状態のイオン伝導体が有用であることに着目し、特定構造のアニオンを必須とすると、イオン伝導度に優れることから、イオン伝導体を構成する材料に好適であることを見いだした。また、このような材料がフッ素原子を有さない場合においては、これに起因して電極等への腐食性を抑制し、経時的に安定に機能することができるものであり、電解質を構成する液体材料として機能し、電気化学デバイスに好適なものとなりうることを見いだし、上記課題をみごとに解決することができることに想到した。更に、特定構造のカチオンを有する形態とすることにより、常温で溶融した状態を安定に保つ常温溶融塩となり、高温中での外部への揮発を抑制することができ、長期間に耐える電気化学デバイスの電解質を構成する材料として更に好適なものとなることも見いだし、本発明に到達したものである。なお、特許文献1においては、その他の置換基に関しては合成の例示は文献等にあるが、塩タイプ及び電解質への応用は記載されていない。
すなわち本発明は、下記一般式(1);
Figure 2007197370
(式中、Rは、炭素数1〜12の炭化水素基、ハロゲン置換炭化水素基、アルコキシ基、チオエーテル基、アミノ基、アミド基及びアシル基からなる群より選ばれる一種類の基を表す。nは、1〜6の整数である。)で表されるアニオンを含有する電解質組成物である。
以下に本発明を詳述する。
本発明の電解質組成物は、上記一般式(1)で表されるアニオンを含有するものである。
上記アニオンは、環構造を持った環状オキソカーボンアニオンであって、該環構造は、環を構成する基として1個以上のカルボニル基と1個の不飽和結合とを有するものである。すなわち、カルボニル基がn個の場合、n+2員環の環状オキソカーボンアニオンとなる。
本発明の電解質組成物は、このようなアニオン(環状オキソカーボンアニオン)を有することで、既知物質であるジヒドロキシタイプに比べ、イオン伝導性に優れたものとなる。
上記式において、Rは、炭素数1〜12の炭化水素基、ハロゲン置換炭化水素基、アルコキシ基、チオエーテル基、アミノ基、アミド基及びアシル基からなる群より選ばれる一種類の基を表す。
上記炭素数1〜12の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、へキシル基等のアルキル基、ビニル基、アリル基等の不飽和二重結合を有する炭化水素基、シクロへキシル基等の環状アルキル基、フェニル基、アルキルフェニル基等の環状不飽和基が好ましい。
上記ハロゲン置換炭化水素基としては、炭素数1〜12ハロゲン置換炭化水素基であることが好ましい。このようなハロゲン置換炭化水素基としては、フッ素置換フェニル基、フッ素置換アルキル基が好ましい。より好ましくは、フッ素置換フェニル基である。
上記アルコキシ基としては、炭素数1〜12アルコキシ基であることが好ましい。このようなアルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、エトキシメチル基、エトキシエチル基、エトキシブチル基等等が好適である。
上記チオエーテル基としては、炭素数1〜12チオエーテル基であることが好ましい。このようなチオエーテル基としては、メチルチオエーテル基、エチルチオエーテル基、ブチルチオエーテル基等等が好適である。
上記アミド基としては、無置換アミド、N−メチルアミド、N−エチルアミド、N−プロピルアミド、N,N−ジメチルアミド、N,N−エチルメチルアミド、N,N−ジエチルアミド等等が好適である。
上記アシル基としては、炭素数1〜12アシル基であることが好ましい。このようなアシル基としては、アセチル基、ベンゾイル基、トリフルオロアセチル基等が好適である。
上記Rとしては、上述のものが好適であるが、中でも、フッ素置換フェニル基が好ましい。このように、上記一般式(1)におけるRは、フッ素置換フェニル基である電解質組成物もまた、本発明の好ましい形態の一つである。
上記式において、nは、1〜6の整数である。好ましくは、1〜4であり、より好ましくは、2〜3であり、更に好ましくは、2である。nが2の場合、上記一般式(1)で表されるアニオンは、下記式(2)で表されるように、4員環となり、酸性度が高くなり、高イオン導電度等の物性が期待できる。また、nが3の場合、上記アニオンは、下記式(3)で表されるように、5員環となり、他化合物との良相溶性が期待できる。
なお、式中、R及びRは、それぞれ、Rと同様であることが好ましい。
Figure 2007197370
上記一般式(1)で表されるアニオンとしては、4−メチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、4−エチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、4−フェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、4−ペンタフルオロフェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、4−トリフルオロメチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、4−ペンタフルオロエチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、4−トリフルオロアセチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン、5−メチル−4−ヒドロキシ−4−シクロペンテン−1,2,3−ジオン、5−エチル−4−ヒドロキシ−4−シクロペンテン−1,2,3−ジオン、5−フェニル−4−ヒドロキシ−4−シクロペンテン1,2,3−ジオン、5−ペンタフルオロフェニル−4−ヒドロキシ−4−シクロペンテン1,2,3−ジオン、5−トリフルオロアセチル−4−ヒドロキシ−4−シクロペンテン−1,2,3−ジオン等が好適である。
本発明の電解質組成物は、上記一般式(1)で表されるシアノ基を有するアニオンを必須とするものである。このようなアニオンは、本発明の電解質組成物を構成するアニオンであってもよく、それ以外の化合物を構成するアニオンであってもよい。このような形態とすることにより、イオン伝導度に優れ、イオン伝導体を構成する材料に好適なものとすることができることになる。また、電解質組成物においては、電解質とした場合に好適に作用するものであれば、その他のアニオンを含有していてもよく、例えば、ビストリフルオロメタンスルホニルイミドアニオン(TFSI)、テトラフルオロホウ酸アニオン、酢酸や安息香酸等のモノカルボン酸、フタル酸、マレイン酸、コハク酸アニオン等のジカルボン酸アニオン、メチル硫酸、エチル硫酸等の硫酸エステルアニオン等を含有していてもよい。また、含フッ素無機イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、ヘキサフルオロニオブ酸イオン、ヘキサフルオロタンタル酸イオン等の含フッ素無機イオン;フタル酸水素イオン、マレイン酸水素イオン、サリチル酸イオン、安息香酸イオン、アジピン酸イオン等のカルボン酸イオン;ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、パーフルオロブタンスルホン酸等のスルホン酸イオン;ホウ酸イオン、リン酸イオン等の無機オキソ酸イオン;ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、トリス(トリフルオロメタンスルホニル)メチドイオン、パーフルオロアルキルフルオロボレートイオン、パーフルオロアルキルフルオロホスフェートイオン、ボロジカテコレート、ボロジグリコレート、ボロジサリチレート、ボロテトラキス(トリフルオロアセテート)、ビス(オキサラト)ボレート等の四配位ホウ酸イオン等の1種又は2種以上を含有していてもよい。
上記一般式(1)で表されるアニオンとその他のアニオンとの割合としては、一般式(1)で表されるアニオン)/(その他のアニオン)が、20/1であることが好ましい。より好ましくは、10/1であり、更に好ましくは、5/1である。
本発明の電解質組成物中におけるアニオンの存在量について、電解質組成物100質量%に対して、アニオンの由来となる化合物の含有量の下限値が、1質量%であることが好ましい。より好ましくは、5質量%であり、更に好ましくは、10質量%である。上限値としては、99.5質量%が好ましい。より好ましくは、95質量%であり、更に好ましくは、90質量%である。
上記アニオンを必須としてなる電解質組成物としては、上記アニオン及びプロトンから形成される化合物;上記アニオンの有機塩;上記アニオンの無機塩が好適である。これらの中でも、上記アニオンの有機塩であることが好適であり、上記アニオンの有機塩としては、オニウムカチオンを必須としてなるものであることが好ましい。より好ましくは、下記一般式(4);
Figure 2007197370
(式中、Lは、C、Si、N、P、S又はOを表す。Rは、同一又は異なって、有機基であり、互いに結合していてもよい。sは、3、4又は5の整数であり、元素Lの価数によって決まる。)で表されるカチオンを必須としてなるものであり、1種又は2種以上を使用することができる。このように、上記電解質組成物が、上記一般式(4)で表されるカチオンを必須としてなる形態もまた、本発明の好適な形態の1つである。なお、オニウムカチオンとは、O、N、S、P等の非金属原子又は半金属原子のカチオンを有する有機基を意味する。
上記一般式(4)で表されるカチオンとしては、下記一般式;
Figure 2007197370
(式中、Rは、一般式(4)と同様である。)で表されるものが好ましい。中でも、下記(I)〜(IV)のオニウムカチオンがより好ましい。
(I)下記一般式;
Figure 2007197370
で表される10種類の複素環オニウムカチオン。
(II)下記一般式;
Figure 2007197370
で表される5種類の不飽和オニウムカチオン。
(III)下記一般式;
Figure 2007197370
で表される9種類の飽和環オニウムカチオン。
上記一般式中、R〜R15は、同一若しくは異なって、有機基であり、互いに結合していてもよい。
(IV)RがC〜Cのアルキル基である鎖状オニウムカチオン。
このようなオニウムカチオンの中でも、より好ましくは、一般式(4)におけるLが窒素原子であるものであり、更に好ましくは、下記一般式;
Figure 2007197370
(式中、R〜R15は、上記と同様である。)で表される6種類のオニウムカチオンや、トリエチルメチルアンモニウム、ジメチルエチルプロピルアンモニウム、ジエチルメチルメトキシエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルブチルアンモニウム、トリメチルヘキシルアンモニウム等の鎖状オニウムカチオン等である。
上記R〜R15の有機基としては、水素原子、フッ素原子、アミノ基、イミノ基、アミド基、エーテル基、エステル基、ヒドロキシル基、カルボキシル基、カルバモイル基、シアノ基、スルホン基、スルフィド基、ビニル基、炭素数1〜18の炭化水素基、炭素数1〜18炭化フッ素基等が好ましい。上記炭素数1〜18の炭化水素基、炭素数1〜18炭化フッ素基は、直鎖、分岐鎖又は環状であってもよく、窒素原子、酸素原子、硫黄原子を含んでいてもよい。また、これらの炭素数としては、1〜18であることが好ましく、1〜8であることがより好ましい。炭素数1〜8の炭化水素基、炭化フッ素基である。
上記有機基としてより好ましくは、水素原子、フッ素原子、シアノ基、スルホン基、炭素数1〜8の炭化水素基、酸素元素を含有する炭素数1〜8の炭化水素基、炭素数1〜8の炭化フッ素基であり、更に好ましくは、水素元素である。
これらのようなオニウムカチオンと上述のようなアニオンとから構成される化合物は、常温で溶融した状態を安定に保つ常温溶融塩となり、このような溶融塩を含む本発明のイオン性組成物は、長期間に耐える電気化学デバイスのイオン伝導体の材料として好適なものとなる。なお、溶融塩とは、室温から80℃の温度範囲において液体状態を安定に保つことができるものである。
本発明の電解質組成物においては、共役二重結合を有する窒素複素環カチオンを必須としてなることが好ましい。このような共役二重結合を有する窒素複素環カチオンとしては、上記(I)一般式で表される10種類の複素環オニウムカチオンや上記(II)一般式で表される5種類の不飽和オニウムカチオン等のうち、共役二重結合を有し、上記一般式(4)におけるLが窒素原子であるもの等が好適である。
本発明の電解質組成物としてはまた、上記一般式(1)で表される化合物以外のアニオン、上述したカチオン以外のアニオンやカチオンを含むものであってもよい。
上記電解質組成物としては更に、上述したオニウムカチオンを必須としてなるアニオンの有機塩以外の、オニウムカチオンを有する有機化合物を含んでもよい。このようなオニウムカチオンを有する有機化合物としては、例えば、ハロゲンアニオン(フルオロアニオン、クロロアニオン、ブロモアニオン、ヨードアニオン)、4フッ化ホウ酸アニオン、6フッ化リン酸アニオン、4フッ化アルミン酸アニオン、6フッ化ヒ酸アニオン、下記一般式(5)で表されるスルホニルイミドアニオン、下記一般式(6)で表されるスルホニルメチドアニオン、有機カルボン酸(酢酸、トリフルオロ酢酸、フタル酸、マレイン酸、安息香酸等のアニオン)の他、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、ヘキサフルオロニオブ酸イオン、ヘキサフルオロタンタル酸イオン等の含フッ素無機イオン;フタル酸水素イオン、マレイン酸水素イオン、サリチル酸イオン、安息香酸イオン、アジピン酸イオン等のカルボン酸イオン;ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、パーフルオロブタンスルホン酸等のスルホン酸イオン;ホウ酸イオン、リン酸イオン等の無機オキソ酸イオン;ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、トリス(トリフルオロメタンスルホニル)メチドイオン、パーフルオロアルキルフルオロボレートイオン、パーフルオロアルキルフルオロホスフェートイオン、ボロジカテコレート、ボロジグリコレート、ボロジサリチレート、ボロテトラキス(トリフルオロアセテート)、ビス(オキサラト)ボレート等の四配位ホウ酸イオン等のアニオンと、オニウムカチオンとを有する有機化合物が好適である。
Figure 2007197370
上記一般式中、R16、R17及びR18は、同一若しくは異なって、エーテル基を1個又は2個有してもよい炭素数1〜4のパーフルオロアルキル基を表す。
本発明の電解質組成物において、上記オニウムカチオンの存在量としては、上記アニオン1モルに対して、下限値が0.5モルであることが好ましい。より好ましくは、0.8モルである。また、上限値は2.0モルであることが好ましい。より好ましくは、1.2モルである。
本発明の電解質組成物としてはまた、アルカリ金属塩及び/又はアルカリ土類金属塩を含んでなるものであることが好ましい。このようなアルカリ金属塩及び/又はアルカリ土類金属塩を含んでなる本発明のイオン性組成物は、電解質を含有するものとなり、電気化学デバイスのイオン伝導体の材料としてより好適なものとなる。アルカリ金属塩としては、リチウム塩、ナトリウム塩、カリウム塩が好適であり、アルカリ土類金属塩としては、カルシウム塩、マグネシウム塩が好適である。より好ましくは、リチウム塩である。
上記アルカリ金属塩及び/又はアルカリ土類金属塩としては、上述のようなアニオンを必須とするイオン性物質であってもよく、それ以外の化合物であってもよい。
上記アニオンを必須とするイオン性物質の場合には、上記一般式(1)で表されるアニオンのアルカリ金属塩及び/又はアルカリ土類金属塩であることが好ましく、リチウム塩であることがより好ましい。このようなリチウム塩としては、上述した好ましいアニオンのリチウム塩の他にも、LiC(CN)、LiSi(CN)、LiB(CN)、LiAl(CN)、LiP(CN)、LiP(CN)、LiAs(CN)、LiOCN、LiSCN等が好適である。
上記イオン性物質以外の化合物である場合には、電解液中や高分子固体電解質中での解離定数が大きい電解質塩であることが好ましく、例えば、LiCFSO、NaCFSO、KCFSO等のトリフロロメタンスルホン酸のアルカリ金属塩やアルカリ土類金属塩;LiN(CFSO、LiN(CFCFSO等のパーフロロアルカンスルホン酸イミドのアルカリ金属塩やアルカリ土類金属塩;LiPF、NaPF、KPF等のヘキサフロロリン酸のアルカリ金属塩やアルカリ土類金属塩;LiClO、NaClO等の過塩素酸アルカリ金属塩やアルカリ土類金属塩;LiBF、NaBF等のテトラフロロ硼酸塩;LiAsF、LiI、NaI、NaAsF、KI等のアルカリ金属塩が好適である。これらの中でも、溶解性やイオン伝導度の点から、LiPF、LiBF、LiAsF、パーフロロアルカンスルホン酸イミドのアルカリ金属塩やアルカリ土類金属塩が好ましい。
上記電解質組成物としては、その他の電解質塩を含有していてもよく、過塩素酸テトラエチルアンモニウム等の過塩素酸の四級アンモニウム塩;(CNBF等のテトラフロロ硼酸の四級アンモニウム塩、(CNPF等の四級アンモニウム塩;(CHP・BF、(CP・BF等の四級ホスホニウム塩等が好適であり、溶解性やイオン伝導度の点から、四級アンモニウム塩がより好適である。
上記電解質塩の存在量としては、イオン性組成物100質量%に対して、下限値が0.1質量%、上限値が50質量%であることが好適である。0.1質量%未満であると、イオンの絶対量が充分なものとはならず、イオン伝導度が小さくなるおそれがあり、50質量%を超えると、イオンの移動が大きく阻害されるおそれがある。より好ましい上限値は30質量%である。
上記電解質組成物としてはまた、プロトンを含むことにより、水素電池を構成するイオン伝導体の材料として好適に用いることができるものとなる。本発明においては、解離してプロトンを発生することができる化合物を含ませることにより、本発明による電解質組成物中にプロトンが存在することになる。
上記プロトンの存在量としては、電解質組成物に対して、下限値が0.01mol/L、上限値が10mol/Lであることが好ましい。0.01mol/L未満であると、プロトンの絶対量が充分なものとはならず、プロトン伝導度が小さくなるおそれがあり、10mol/Lを超えると、プロトンの移動が大きく阻害されるおそれがある。より好ましい上限値は5mol/L以下である。
上記電解質組成物としてはまた、重合体を含むことにより、固体化して高分子固体電解質として好適に用いることができるものとなる。また、溶媒を含むことにより、イオン伝導度がより向上することになる。
上記重合体としては、例えば、ポリアクリロニトリル、ポリ(メタ)アクリル酸エステル類、ポリ塩化ビニル、ポリフッ化ビニリデン等のポリビニル系重合体;ポリオキシメチレン:ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテル系重合体;ナイロン6、ナイロン66等のポリアミド系重合体;ポリエチレンテレフタレート等のポリエステル系重合体;ポリスチレン、ポリフォスファゼン類、ポリシロキサン、ポリシラン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリカーボネート系重合体、アイオネン系重合体の1種又は2種以上が好適である。
上記電解質組成物を高分子固体電解質とする場合、重合体の存在量としては、電解質組成物100質量%に対して、下限値が0.1質量%、上限値が5000質量%であることが好ましい。0.1質量%未満であると、固体化の効果を充分に得られないおそれがあり、5000質量%を超えると、イオン伝導度が低下するおそれがある。より好ましい下限値は1質量%、上限値は1000質量%である。
上記溶媒としては、イオン伝導度を向上することが可能なものであればよく、例えば、水や有機溶媒等が好適である。上記有機溶媒としては、本発明の電解質組成物における構成要素との相溶性が良好であって、誘電率が大きく、電解質塩の溶解性が高いうえに、沸点が60℃以上であり、電気化学的安定範囲が広い化合物が好適である。より好ましくは、含有水分量が低い有機溶媒(非水系溶媒)である。このような有機溶媒としては、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、クラウンエーテル、トリエチレングリコールメチルエーテル、テトラエチレングリコールジメチルエ−テル、ジオキサン等のエーテル類;エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;炭酸エチレン、炭酸プロプレン、2,3−ジメチル炭酸エチレン、炭酸ブチレン、炭酸ビニレン、2−ビニル炭酸エチレン等の環状炭酸エステル類;蟻酸メチル、酢酸メチル、プロピオン酸、プロピオン酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル等の脂肪族カルボン酸エステル類;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル類;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のカルボン酸エステル類;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル類;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2−メチルグルタロニトリル等のニトリル類;N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノン、N−メチルピロリドン、N−ビニルピロリドン等のアミド類;ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3−メチルスルホラン、2,4ジメチルスルホラン等の硫黄化合物類:エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のアルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、2,6−ジメチルテトラヒドロフラン、テトラヒドロピラン等のエーテル類;ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等のスルホキシド類;ベンゾニトリル、トルニトリル等の芳香族ニトリル類;ニトロメタン、1,3−ジメチル−2イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン、3−メチル−2−オキサゾリジノン等を挙げることができ、これらの1種又は2種以上が好適である。これらの中でも、炭酸エステル類、脂肪族エステル類、エーテル類がより好ましく、エチレンカーボネート、プロピレンカーボネート等のカーボネート類が更に好ましく、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類が最も好ましい。
上記溶媒の含有量としては、イオン性組成物100質量%中、1〜99質量%であることが好ましい。1質量%未満であると、イオン伝導度が充分には向上しないこととなり、99質量%を超えると、溶媒の揮発等で安定性が充分には向上しないこととなる。下限値としては、好ましくは、1.5質量%であり、より好ましくは、20質量%であり、更に好ましくは、50質量%である。上限値としては、好ましくは、85質量%であり、より好ましくは、75質量%であり、更に好ましくは、65質量%である。範囲としては、溶媒量50〜85質量%が好ましい。
本発明のイオン性組成物は、揮発分が低減されものであり、かつ、例えば−55℃の低温においても凍ることがなく、イオン伝導度に優れるものであり、電解液とした場合に優れた基本性能を発揮することができる。
上記電解質組成物は、本発明の作用効果を奏する限り、上記以外の構成要素を1種又は2種以上含んでいてもよい。例えば、各種無機酸化物微粒子を含むことにより、複合電解質としても使用でき、これにより、強度、膜厚均一性が改善するばかりでなく、無機酸化物と上述した重合体間に微細な空孔が生じることになり、特に溶媒を添加した場合には空孔内にフリーの電解液が複合電解質内に分散することになり、強度改善効果を損ねることなく、逆にイオン伝導度、移動度を増加させることもできる。
上記無機酸化物微粒子としては、非電子伝導性、電気化学的に安定なものが好適であり、また、イオン伝導性を有するものがより好ましい。このような微粒子としては、α、β、γ−アルミナ、シリカ、チタニア、ジルコニア、マグネシア、チタン酸バリウム、酸化チタン、ハイドロタルサイト等のイオン伝導性又は非電導性セラミックス微粒子が好適である。
上記無機酸化物微粒子の比表面積としては、高分子固体電解質中の電解質含有液の保有量を多くし、イオン伝導性や移動度を増加させるという点から、できるだけ大きいことが好ましく、例えば、BET法で5m/g以上であることが好適であり、50m/g以上がより好ましい。このような無機酸化物微粒子の結晶粒子径としては、上記イオン性組成物における他の構成要素と混合できるものであればよいが、例えば、大きさ(平均結晶粒径)としては、下限値が0.01μm、上限値が20μmであることが好ましい。より好ましい下限値は0.01μm、上限値は2μmである。
上記無機酸化物微粒子の形状としては、球形、卵形、立方体状、直方体状、円筒、棒状等の種々の形状を有するものを用いることができる。
上記無機酸化物微粒子の添加量としては、高分子固体電解質100質量%に対して、上限値が50質量%であることが好ましい。50質量%を超えると、逆に高分子固体電解質の強度やイオン伝導性を低下させたり、成膜しづらくなったりするおそれがある。より好ましくは30質量%である。また、下限値は0.1質量%であることが好適である。
本発明の電解質組成物にはまた、上述した塩や溶媒の他にも種々の添加剤を含有させてもよい。添加剤を加える目的は多岐にわたり、電気伝導率の向上、熱安定性の向上、水和や溶解による電極劣化の抑制、ガス発生の抑制、耐電圧の向上、濡れ性の改善等を挙げることができる。このような添加剤としては、例えば、p−ニトロフェノール、m−ニトロアセトフェノン、p−ニトロ安息香酸等のニトロ化合物、リン酸ジブチル、リン酸モノブチル、リン酸ジオクチル、オクチルホスホン酸モノオクチル、リン酸等のリン化合物、ホウ酸又はホウ酸と多価アルコール(エチレングリコール、グリセリン、マンニトール、ポリビニルアルコール等)や多糖類との錯化合物等のホウ素化合物、ニトロソ化合物、尿素化合物、ヒ素化合物、チタン化合物、ケイ酸化合物、アルミン酸化合物、硝酸及び亜硝酸化合物、2−ヒドロキシ−N−メチル安息香酸、ジ(トリ)ヒドロキシ安息香酸等の安息香酸類、グルコン酸、重クロム酸、ソルビン酸、ジカルボン酸、EDTA、フルオロカルボン酸、ピクリン酸、スベリン酸、アジピン酸、セバシン酸、ヘテロポリ酸(タングステン酸、モリブデン酸)、ゲンチシン酸、ボロジゲンチシン酸、サリチル酸、N−アミノサリチル酸、ボロジプロトカクテ酸、ボロジピロカテコール、バモン酸、ボン酸、ボロジレゾルシル酸、レゾルシル酸、ボロジプロトカクエル酸、グルタル酸、ジチオカルバミン酸等の酸類、そのエステル、そのアミド及びその塩、シリカ、アミノシリケート等のケイ素化合物、トリエチルアミン、ヘキサメチレンテトラミン等のアミン化合物、L−アミノ酸類、ベンゾール、多価フェノール、8−オキシキノリン、ハイドロキノン、N−メチルピロカテコール、キノリンおよびチオアニソール、チオクレゾール、チオ安息香酸等の硫黄化合物、ソルビトール、L−ヒスチジン等の1種又は2種以上を使用することができる。
上記添加剤の含有量は特に限定されないが、例えば、イオン性組成物100質量%に対して、0.1〜20質量%の範囲であることが好ましい。より好ましくは、0.5〜10質量%の範囲である。
本発明の電解質組成物としては、0℃におけるイオン伝導度が0.5mS/cm以上であることが好ましい。0.5mS/cm未満であると、本発明の電解質組成物を用いてなるイオン伝導体が、優れたイオン伝導度を保って経時的に安定に機能することが充分にはできなくなるおそれがある。より好ましくは、2.0mS/cm以上である。−55℃においては、1×10−7S/cm以上であることが好ましい。1×10−7S/cm未満であると、本発明の電解質組成物を用いてなる電解液が、優れたイオン伝導度を保って経時的に安定に機能することが充分にはできなくなるおそれがある。より好ましくは、1×10−6S/cm以上であり、更に好ましくは、5×10−5S/cm以上であり、特に好ましくは、1×10−4S/cm以上である。
上記イオン伝導度の測定方法としては、SUS電極を用いたインピーダンスアナライザーHP4294A(商品名、東陽テクニカ社製)やインピーダンスアナライザーSI1260(商品名、ソーラトロン社製)を用いて行う複素インピーダンス法により測定する方法が好適である。
上記電解質組成物はまた、25℃における粘度が、300mPa・s以下であることが好ましい。300mPa・sを超えると、イオン伝導度が充分に向上されたものとはならないおそれがある。より好ましくは、200mPa・s以下であり、更に好ましくは、100mPa・s以下であり、最も好ましくは、50mPa・s以下である。
上記粘度の測定方法としては、特に限定はないが、25℃において、TV−20形粘度計 コーンプレートタイプ(トキメック社製)を用いて測定する方法が好適である。
上記電解質組成物において、不純物含有量としては、電解質組成物100質量%中、0.1質量%(1000ppm)以下であることが好ましい。0.1質量%を超えると、充分な電気化学安定性を得ることができないおそれがある。より好ましくは、0.05質量%以下であり、更に好ましくは、0.01質量%以下である。
なお、上記不純物とは、水を含まないものであり、例えば、電解質組成物を製造する際に混入するものが挙げられる。具体的には、上述の一般式(1)で表されるアニオンを必須とする電解質組成物を製造する場合を例にすると、例えば、ハロゲン化合物を用いて該電解質組成物を誘導して得たときには、ハロゲン化合物が不純物として混入する可能性があり、また、銀塩を用いて該イオン性物質を誘導して得たときには、銀塩が不純物として混入する可能性がある。また、製造原料や副生物等が不純物として混入する可能性もある。
本発明においては、電解質組成物における不純物含量を上記のように設定することにより、例えば、ハロゲン化合物が電気化学デバイスにおける電極を被毒して性能を低下させることを充分に抑制したり、銀イオン等がイオン伝導性に影響して性能を低下させることを充分に抑制したりすることが可能となる。なお、不純物含有量の測定は、下記の測定方法により行うことが好ましい。
(不純物の測定方法)
(1)ICP(銀イオン、鉄イオン等陽イオン類測定)
機器:ICP発光分光分析装置SPS4000(セイコー電子工業社製)
方法:サンプル0.3gをイオン交換水で10倍に希釈し、その溶液を測定
(2)イオンクロマト(硝酸イオン、臭素イオン、塩素イオン等陰イオン類測定)
機器:イオンクロマトグラフシステムDX−500(日本ダイオネクス社製)
分離モード:イオン交換
検出器:電気伝導度検出器CD−20
カラム:AS4A−SC
方法:サンプル0.3gをイオン交換水で100倍に希釈し、その溶液を測定
上記電解質組成物において、水分含有量としては、イオン性物質100質量%中、0.05〜10質量%であることが好ましい。0.05質量%未満であると、水分管理が困難となり、コストアップに繋がるおそれがある。また、10質量%を超えると、電気安定性を充分に発揮できないおそれがある。好ましい下限は、0.1質量%、上限は5質量%であり、より好ましい下限は0.5質量%、上限は3質量%である。
なお、水分含有量の測定は、下記の測定方法により行うことが好ましい。
(水分測定方法)
サンプル調整においては、露点−80℃以下のグローボックス中で測定サンプル0.25g、脱水アセトニトリル0.75gを混合し、グローボックス中で充分乾燥したテルモシリンジ(商品名、2.5ml)で混合溶液0.5gを採取することにより行う。その後、カールフィッシャー水分計AQ−7(商品名、平沼産業社製)にて水分測定を行う。
本発明の電解質組成物の製造方法としては特に限定されないが、上記一般式(1)で表されるアニオンを有する化合物からイオン性物質を誘導する工程を含んでなる製造方法が好適である。これにより、イオン性物質を溶融塩や固体電解質を構成する塩として好適な形態とすることが可能となる。このような製造方法としては、ハロゲン化物、炭酸化物を用いて上記一般式(1)で表されるアニオン構造を有する化合物からイオン性物質を誘導する工程を含んでなることが好ましく、例えば、上記一般式(1)で表されるアニオンを有する化合物と、ハロゲン化物又は炭酸化合物とを反応させる工程を含んでなり、該ハロゲン化物又は炭酸化合物は、オニウムカチオン、又は、アルカリ金属原子、アルカリ土類金属原子、遷移金属原子及び希土類金属原子から選ばれる少なくとも1種の金属原子を必須とするカチオンを有するものであることが好適である。これらの製造原料は、それぞれ1種又は2種以上を用いることができる。
なお、本発明において、上記製造方法としては、アニオン交換樹脂を用いることが好ましい。
上記製造方法としては、上記一般式(1)で表されるアニオンを有する化合物からイオン性物質を誘導する工程において用いられる一般式(1)で表されるアニオンを有する化合物を製造する工程を含んでもよく、この場合には、上述したような一般式(1)で表されるアニオンを有する化合物とハロゲン化物又は炭酸化物とを反応させることにより、一般式(1)で表されるアニオンを有する化合物を製造することが好ましい。これにより、イオン性物質における一般式(1)で表されるアニオンの構造を電解質組成物に要求される性能等に応じて適宜設定することが可能となり、この場合には、一般式(1)で表されるアニオンを有する化合物を製造する工程における製造原料である該アニオンを有する化合物がもつアニオンと、イオン性物質における一般式(1)で表されるアニオンとは同一のものではないこととなる。
上記工程において、一般式(1)で表されるアニオンを有する化合物のモル数をaとし、ハロゲン化物のモル数をbとすると、反応におけるモル比(a/b)としては、100/1〜0.1/1であることが好ましい。アニオンを有する化合物が0.1未満であると、ハロゲン化物が過剰となりすぎて効率的に生成物を得られないおそれがあり、また、電解質組成物中にハロゲンが混入し、電極等を被毒させるおそれがある。100を超えると、アニオンを有する化合物が過剰となりすぎて更に収率の向上は期待できないおそれがあり、また、金属イオンがイオン性組成物中に混入して電気化学デバイスの性能を低下させるおそれがある。より好ましくは、10/1〜0.5/1である。
上記工程の反応条件としては、製造原料や他の反応条件等により適宜設定することができるが、反応温度としては、−20〜200℃が好ましく、0〜100℃がより好ましく、10〜60℃が更に好ましい。反応圧力としては、1×10〜1×10Paが好ましく、1×10〜1×10Paがより好ましく、1×10〜1×10Paが更に好ましい。反応時間としては、48時間以下が好ましく、24時間以下がより好ましく、12時間以下が更に好ましい。
上記工程においては、通常では反応溶媒を用いることとなるが、反応溶媒としては、(1)ヘキサン、オクタンなど脂肪族炭化水素系;(2)シクロヘキサンなど脂環式飽和炭化水素系;(3)シクロヘキセンなど脂環式不飽和炭化水素系;(4)ベンゼン、トルエン、キシレンなど芳香族炭化水素系;(5)アセトン、メチエチルケトンなどケトン類;(6)酢酸メチル、酢酸エチル、酢酸ブチル、γ−ブチロラクトンなどエステル類;(7)ジクロロエタン、クロロホルム、四塩化炭素などハロゲン化炭化水素類;(8)ジエチルエーテル、ジオキサン、ジオキソランなどエーテル類、(9)プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテートなどアルキレングリコールのエーテル類;(10)メチルアルコール、エチルアルコール、ブチルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコールモノメチルエーテルなどアルコール類;(11)ジメチルホルムアミド、N−メチルピロリドンなどアミド類;(12)ジメチルスルホキシドなどスルホン酸エステル類;(13)ジメチルカーボネート、ジエチルカーボネートなど炭酸エステル類;(14)エチレンカーボネート、プロピレンカーボネートなど脂環式炭酸エステル類;(15)アセトニトリル等のニトリル類;(16)水等が好適である。これらは1種又は2種以上を用いることができる。この中でも、(5)、(6)、(10)、(11)、(12)、(13)、(14)、(15)、(16)が好適である。より好ましくは、(5)、(10)、(15)、(16)である。
上記電解質組成物の製造方法においては、上記工程の後に、沈殿物等のろ過、溶媒の除去、脱水、減圧乾燥等の処理を行ってもよく、例えば、生成した沈殿物をろ過し、イオン性物質を含んだ溶媒から真空等の条件下で溶媒を除去した後、ジクロロメタン等の溶剤に溶解することで洗浄し、MgSO等の脱水効果を有する物質を添加して脱水し、溶媒除去後に減圧乾燥することでイオン性物質を必須とするイオン性組成物を得てもよい。溶剤による洗浄処理の回数としては、適宜設定すればよく、溶剤としては、ジクロロメタン以外に、クロロホルム、テトラヒドロフラン、アセトン等のケトン類、エチレングリコールジメチルエーテル等のエーテル類、アセトニトリル、水等が好適である。また、脱水効果を有する物質としては、MgSO以外に、モレキュラーシーブ、CaCl、CaO、CaSO、KCO、活性アルミナ、シリカゲル等が好適であり、添加量は、生成物や溶剤の種類等により適宜設定すればよい。
本発明の電解質組成物は、上述したような特性を発揮することができるため、様々な用途に好適に適用することが可能であり、中でも、一次電池、リチウム(イオン)二次電池や燃料電池等の充電/放電機構を有する電池、電解コンデンサ用電解液、電解コンデンサ、電気二重層キャパシタ、太陽電池・エレクトロクロミック表示素子等の電気化学デバイスを構成する電解質の材料として特に好適なものである。このような本発明の電解質組成物を用いてなるリチウム二次電池、電解コンデンサ用電解液、電解コンデンサ又は電気二重層キャパシタもまた、本発明の好ましい形態の一つである。なお、上記電解質組成物としては、電解質材料として用いることが好ましいが、電解質以外の材料に用いることも可能である。
上記電解質材料としては、電解質組成物を含むものであればよく、好ましくは、電解質組成物とマトリックス材料とを含むものである。このように、上記電解質組成物とマトリックス材料とを含む電解質材料もまた、本発明の1つである。
上記電解質材料としては、上述の電解質組成物を含むものであればよいが、例えば、上記一般式(1)において、nが2及び3である形態がより好ましい。すなわち、上記電解質材料は、上記一般式(1)において、nが2である電解質材料もまた、本発明の好ましい形態の一つである。
上記電解質材料は、電解液用材料又は電解質用材料の意味であって、(1)電解液を構成する溶媒及び/又は(2)電解質の材料(イオン伝導体用材料)として、また、(3)固体電解質の材料(電解質用材料)として電気化学デバイスのイオン伝導体に好適に用いることができるものである。例えば、(1)の場合は、本発明の電解質材料とともに、溶媒中でイオン伝導性を示す物質を含有させることによって、電解液(又は固体電解質)を構成することになる。(2)の場合は、本発明の電解質材料を溶媒中に含有させることによって、電解質の材料を構成することになる。(3)の場合は、本発明の電解質材料をそのまま又は他の成分を含有させて固体電解質とすることになる。
上記マトリックス材料は、有機溶媒を必須とするものである電解質であることが好ましい。このような有機溶媒としては、上述の有機溶媒と同様のものが好適である。
本発明の電解質材料を用いて電気化学デバイスを構成する場合、電気化学デバイスの好ましい形態としては、基本構成要素として、イオン伝導体、負極、正極、集電体、セパレータ及び容器を有するものである。
上記イオン伝導体としては、電解質組成物と有機溶媒又は重合体との混合物が好適である。有機溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、重合体を用いれば、高分子固体電解質と呼ばれるものとなる。高分子固体電解質には可塑剤として有機溶媒を含有するものも含まれる。本発明の電解質材料は、このようなイオン伝導体において、電解液における電解質や有機溶媒の代替として、また、高分子固体電解質として好適に適用することができ、本発明の電解質材料をイオン伝導体の材料として用いてなる電気化学デバイスでは、これらのうちの少なくとも1つが、本発明の電解質材料により構成されることになる。これらの中でも、電解液における有機溶媒の代替、又は、高分子固体電解質として用いることが好ましい。
上記有機溶媒としては、本発明のイオン伝導性材料を溶解できる非プロトン性の溶媒であればよく、上述した有機溶媒と同様のものが好適である。ただし、2種類以上の混合溶媒にする場合、電解質がLiイオンを含むものである場合は、これらの有機溶媒のうち誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒に溶解することにより電解液を調製することが好ましい。特にリチウム塩を用いる場合には、ジエチルエーテル、ジメチルカーボネート等の誘電率が10以下の非プロトン性溶媒に対する溶解度が低く単独では充分なイオン伝導度が得られず、また、逆に誘電率20以上の非プロトン性溶媒単独では溶解度は高いもののその粘度も高いため、イオンが移動しにくくなりやはり充分なイオン伝導度が得られないことになる。これらを混合すれば、適当な溶解度と移動度を確保することができ充分なイオン伝導度を得ることができる。
上記電解質を溶解する重合体としては、上述した重合体1種又は2種以上を好適に用いることができる。これらの中でも、ポリエチレンオキシドを主鎖又は側鎖にもつ重合体又は共重合体、ポリビニリデンフロライドの単独重合体又は共重合体、メタクリル酸エステル重合体、ポリアクリロニトリルが好適である。これらの重合体に可塑剤を加える場合は、上記の非プロトン性有機溶媒を用いることができる。
上記イオン伝導体中における電解質濃度としては、0.01mol/dm以上が好ましく、また、飽和濃度以下が好ましい。0.01mol/dm未満であると、イオン伝導度が低いため好ましくない。より好ましくは、0.1mol/dm以上、また、1.5mol/dm以下である。
上記負極材料としては、リチウム電池の場合、リチウム金属やリチウムと他の金属との合金が好適である。また、リチウムイオン電池の場合、重合体、有機物、ピッチ等を焼成して得られたカーボンや天然黒鉛、金属酸化物等のインターカレーションと呼ばれる現象を利用した材料が好適である。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性重合体が好適である。
上記正極材料としては、リチウム電池及びリチウムイオン電池の場合、LiCoO、LiNiO、LiMnO、LiMn等のリチウム含有酸化物;TiO、V、MoO等の酸化物;TiS、FeS等の硫化物;ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール等の導電性高分子が好適である。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性重合体が好適である。
以下に本発明のイオン伝導性材料を用いてなる(1)リチウム二次電池、(2)電解コンデンサ、及び、(3)電気二重層キャパシタについてより詳しく説明する。
(1)リチウム二次電池
リチウム二次電池は、正極、負極、正極と負極との間に介在するセパレータ及び本発明のイオン伝導性材料を用いてなるイオン伝導体を基本構成要素として構成されるものである。この場合、本発明のイオン伝導性材料には電解質としてリチウム塩が含有されていることになる。このようなリチウム二次電池としては、水電解質以外のリチウム二次電池である非水電解質リチウム二次電池であることが好ましい。リチウム二次電池の一形態の断面模式図を図1に示す。このリチウム二次電池は、後述する負極活物質としてコークスを用い、正極活物質としてCoを含有する化合物を用いたものであるが、このようなリチウム二次電池おいて、充電時には、負極においてCLi→6C+Li+eの反応が起こり、負極表面で発生した電子(e)は、電解液中をイオン伝導して正極表面に移動し、正極表面では、CoO+Li+e→LiCoOの反応が起こり、負極から正極へ電流が流れることになる。放電時には、充電時の逆反応が起こり、正極から負極へ電流が流れることになる。このように、イオンによる化学反応により電気を蓄えたり、供給したりすることとなる。
上記負極としては、負極活物質、負極用導電剤、負極用結着剤等を含む負極合剤を負極用集電体の表面に塗着して作製されるものであることが好ましい。負極合剤は、導電剤や結着剤の他にも各種添加剤を含有してもよい。
上記負極活物質としては、金属リチウム、リチウムイオンを吸蔵・放出することが可能な材料等が好適である。上記リチウムイオンを吸蔵・放出することが可能な材料としては、金属リチウム;熱分解炭素;ピッチコークス、ニードルコークス、石油コークス等のコークス;グラファイト;ガラス状炭素;フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したものである有機高分子化合物焼成体;炭素繊維;活性炭素等の炭素材料;ポリアセチレン、ポリピロール、ポリアセン等のポリマー;Li4/3Ti5/3、TiS等のリチウム含有遷移金属酸化物又は遷移金属硫化物;アルカリ金属と合金化するAl、Pb、Sn、Bi、Si等の金属;アルカリ金属を格子間に挿入することのできる、AlSb、MgSi、NiSi等の立方晶系の金属間化合物や、Li3−fN(G:遷移金属)等のリチウム窒素化合物等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、アルカリ金属イオンを吸蔵・放出できる金属リチウムや炭素材料がより好ましい。
上記負極用導電剤は、電子伝導性材料であればよく、鱗片状黒鉛等の天然黒鉛、人造黒鉛等のグラファイト;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック;炭素繊維、金属繊維等の導電性繊維;フッ化カーボン、銅、ニッケル等の金属粉末;ポリフェニレン誘導体等の有機導電性材料等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、人造黒鉛、アセチレンブラック、炭素繊維がより好ましい。負極用導電剤の使用量としては、負極活物質100重量部に対して、1〜50重量部が好ましく、より好ましくは、1〜30重量部である。また、負極活物質は電子伝導性を有するため、負極用導電剤を用いなくてもよい。
上記負極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよく、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体、ポリアミド、ポリウレタン、ポリイミド、ポリビニルピロリドン及びその共重合体等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体、ポリアミド、ポリウレタン、ポリイミド、ポリビニルピロリドン及びその共重合体がより好ましい。
上記負極用集電体としては、電池の内部において化学変化を起こさない電子伝導体であればよく、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂、銅やステンレス鋼の表面に炭素、ニッケル、チタン等を付着又は被膜させたもの等が好適である。これらの中でも、銅や銅を含む合金がより好ましい。これらは1種又は2種以上を用いることができる。また、これらの負極用集電体の表面を酸化して用いることもできる。更に、集電体表面に凹凸を付けることが望ましい。負極用集電体の形状としては、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体等が好適である。集電体の厚さとしては、1〜500μmが好適である。
上記正極としては、正極活物質、正極用導電剤、正極用結着剤等を含む正極合剤を正極用集電体の表面に塗着して作製されるものであることが好ましい。正極合剤は、導電剤や結着剤の他にも各種添加剤を含有してもよい。
上記正極活物質としては、金属Li、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMn、LiMn2−y;MnO、V、Cr(g及びhは、1以上の整数)等のリチウムを含まない酸化物等が好適である。これらは1種又は2種以上を用いることができる。
上記Jは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBから選ばれた少なくとも1種の元素を表す。また、xは、0≦x≦1.2であり、yは、0≦y≦0.9であり、zは、2.0≦z≦2.3であり、xは、電池の充放電により増減することとなる。また、正極活物質としては、遷移金属カルコゲン化物、リチウムを含んでいてもよいバナジウム酸化物やニオブ酸化物、共役系ポリマーからなる有機導電性物質、シェブレル相化合物等を用いてもよい。正極活物質粒子の平均粒径としては、1〜30μmであることが好ましい。
上記正極用導電剤としては、用いる正極活物質の充放電電位において、化学変化を起こさない電子伝導性材料であればよく、上述した負極用導電剤と同様のもの;アルミニウム、銀等の金属粉末;酸化亜鉛、チタン酸カリウム等の導電性ウィスカー;酸化チタン等の導電性金属酸化物等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、人造黒鉛、アセチレンブラック、ニッケル粉末がより好ましい。正極用導電剤の使用量としては、正極活物質100重量部に対して、1〜50重量部が好ましく、より好ましくは、1〜30重量部である。カーボンブラックやグラファイトを用いる場合には、正極活物質100重量部に対して2〜15重量部とすることが好ましい。
上記正極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよく、上述した負極用結着剤におけるスチレンブタジエンゴム以外のものや、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、ポリフッ化ビニリデン、ポリテトラフルオロエチレンがより好ましい。
上記正極用集電体としては、用いる正極活物質の充放電電位において化学変化を起こさない電子伝導体であればよく、ステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂、アルミニウムやステンレス鋼の表面に炭素、チタン等を付着又は被膜させたもの等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、アルミニウム又はアルミニウムを含む合金が好ましい。また、これらの正極用集電体の表面を酸化して用いることもできる。更に、集電体表面に凹凸を付けることが望ましい。正極用集電体の形状及び厚さとしては、上述した負極集電体と同様である。
上記セパレータとしては、イオン伝導体として電解液を用いた場合においては、大きなイオン透過度と、所定の機械的強度を有する絶縁性の微多孔性薄膜であることが好ましく、一定温度以上で孔を閉塞し、抵抗をあげる機能を有するものであることが好ましい。材質としては、耐有機溶剤性と疎水性の点から、ポリエチレン、ポリプロピレン等ポリオレフィン系ポリマーの多孔性合成樹脂フィルム、ポリプロピレン、フッ素化ポリオレフィン等の有機材料からなる織布もしくは不織布、ガラス繊維、無機材料からなる織布もしくは不織布等が好適である。セパレータが有する細孔の孔径としては、電極から脱離した正極活物質や負極活物質、結着剤、導電剤が透過しない範囲であることが好ましく、0.01〜1μmであることが好ましい。セパレータの厚さとしては、10〜300μmであることが好ましい。また、空隙率としては、30〜80%であることが好ましい。
またセパレータの表面は、予めコロナ放電処理、プラズマ放電処理、その他界面活性剤を用いた湿式処理により、その疎水性が低減するように改質しておくことが好ましい。これによりセパレータの表面及び空孔内部の濡れ性が向上し、電池の内部抵抗の増加を極力抑制することが可能となる。
上記リチウム二次電池としては、ポリマー材料に、電解液を保持させたゲルを正極合剤又は負極合剤に含ませたり、電解液を保持するポリマー材料からなる多孔性のセパレータを正極又は負極と一体化することで構成されるものであってもよい。上記ポリマー材料としては、電解液を保持できるものであればよく、フッ化ビニリデンとヘキサフルオロプロピレンの共重合体等が好ましい。
上記リチウム二次電池の形状としては、コイン形、ボタン形、シート形、積層形、円筒形、偏平形、角形、電気自動車等に用いる大形等が挙げられる。
(2)電解コンデンサ
電解コンデンサは、陽極箔、陰極箔、陽極箔と陰極箔との間に挟まれたセパレータである電解紙及びリード線より構成されるコンデンサ素子と、本発明のイオン伝導性材料を用いてなるイオン伝導体と、有底筒状の外装ケースと、外装ケースを密封する封口体とを基本構成要素として構成されているものである。コンデンサ素子の一形態の斜視図を図2(a)に示す。本発明における電解コンデンサは、コンデンサ素子に本発明のイオン性組成物を用いてなるイオン伝導体である電解液を含浸し、該コンデンサ素子を有底筒状の外装ケースに収納し、外装ケースの開口部に封口体を装着するとともに、外装ケースの端部に絞り加工を施して外装ケースを密封することにより得ることができるものである。このような電解コンデンサとしては、アルミ電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサが好適である。アルミ電解コンデンサの一形態の断面模式図を図2(b)に示す。このようなアルミ電解コンデンサとしては、電解エッチングで細かな凹凸を作って粗面化したアルミ箔の表面に電解陽極酸化によって形成した薄い酸化被膜(酸化アルミニウム)を誘電体とするものが好適である。
上記陽極箔としては、純度99%以上のアルミニウム箔を酸性溶液中で化学的又は電気化学的にエッチングして拡面処理した後、ホウ酸アンモニウム、リン酸アンモニウム又はアジピン酸アンモニウム等の水溶液中で化成処理を行い、その表面に陽極酸化皮膜層を形成したものを用いることができる。
上記陰極箔としては、表面の一部又は全部に、窒化チタン、窒化ジルコニウム、窒化タンタル及び窒化ニオブから選ばれる1種以上の金属窒化物、及び/又は、チタン、ジルコニウム、タンタル及びニオブから選ばれる1種以上の金属より構成される皮膜を形成したアルミニウム箔を用いることができる。
上記皮膜の形成方法としては、蒸着法、メッキ法、塗布法等を挙げることができ、皮膜を形成する部分としては、陰極箔の全面に被覆してもよいし、必要に応じて陰極箔の一部、例えば陰極箔の一面のみに金属窒化物又は金属を被覆してもよい。
上記リード線は、陽極箔及び陰極箔に接する接続部、丸棒部及び外部接続部より構成されるものであることが好適である。このリード線は、接続部においてそれぞれステッチや超音波溶接等の手段により陽極箔及び陰極箔に電気的に接続されている。また、リード線における接続部及び丸棒部は、高純度のアルミニウムよりなるものが好適であり、外部接続部は、はんだメッキを施した銅メッキ鉄鋼線よりなるものが好適である。また、陰極箔との接続部及び丸棒部の表面の一部又は全部に、ホウ酸アンモニウム水溶液、リン酸アンモニウム水溶液又はアジピン酸アンモニウム水溶液等による陽極酸化処理によって形成した酸化アルミニウム層を形成したり、Al、SiO、ZrO等より構成されるセラミックスコーティング層等の絶縁層を形成することができる。
上記外装ケースは、アルミニウムより構成されるものであることが好適である。
上記封口体は、リード線をそれぞれ導出する貫通孔を備え、例えば、ブチルゴム等の弾性ゴムより構成されるものであることが好適であり、ブチルゴムとしては、例えば、イソブチレンとイソプレンとの共重合体からなる生ゴムに補強剤(カーボンブラック等)、増量剤(クレイ、タルク、炭酸カルシウム等)、加工助剤(ステアリン酸、酸化亜鉛等)、加硫剤等を添加して混練した後、圧延、成型したゴム弾性体を用いることができる。加硫剤としては、アルキルフェノールホルマリン樹脂;過酸化物(ジクミルペルオキシド、1,1−ジ−(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジ−(t−ブチルペルオキシ)ヘキサン等);キノイド(p−キノンジオキシム、p,p′−ジベンゾイルキノンジオキシム等);イオウ等を用いることができる。なお、封口体の表面をテフロン(登録商標)等の樹脂でコーティングしたり、ベークライト等の板を貼り付けたりすると、溶媒蒸気の透過性が低減するので更に好ましい。
上記セパレータとしては、通常マニラ紙やクラフト紙等の紙が用いられるが、ガラス繊維、ポリプロピレン、ポリエチレン等の不織布を用いることもできる。
上記電解コンデンサとしてはまた、ハーメチックシール構造や樹脂ケースに密閉した構造(例えば、特開平8−148384号公報に記載)のものであってもよい。ゴム封止構造のアルミニウム電解コンデンサの場合、ある程度ゴムを通して気体が透過するため、高温環境下においてはコンデンサ内部から大気中へ溶媒が揮発し、また、高温高湿環境下においては大気中からコンデンサ内部へ水分が混入するおそれがあり、これらの過酷な環境の下では、コンデンサは静電容量の減少等の好ましくない特性変化を起こすおそれがある。一方、ハーメチックシール構造や樹脂ケースに密閉した構造のコンデンサにおいては、気体の透過量が極めて小さいため、このような過酷な環境下においても安定した特性を示すこととなる。
(3)電気二重層キャパシタ
電気二重層キャパシタは、負極、正極及び本発明のイオン伝導性材料を用いてなるイオン伝導体を基本構成要素として構成されているものであり、好ましい形態としては、対向配置した正極及び負極からなる電極素子に、イオン伝導体である電解液を含ませたものである。このような電気二重層キャパシタの一形態の断面模式図及び電極表面の拡大模式図を図3に示す。
上記正極及び負極は、分極性電極であり、電極活物質として活性炭繊維、活性炭粒子の成形体、活性炭粒子等の活性炭と、導電剤と、バインダー物質とから構成され、薄い塗布膜、シート状又は板状の成形体として使用することが好適である。このような構成を有する電気二重層キャパシタにおいては、図3の拡大図に示されるように、イオンの物理的な吸・脱着により分極性電極と電解液との界面に生成する電気二重層に電荷が蓄えられることとなる。
上記活性炭としては、平均細孔径が2.5nm以下であるものが好ましい。この活性炭の平均細孔径は、窒素吸着によるBET法によって測定されることが好ましい。活性炭の比表面積としては、炭素質種による単位面積あたりの静電容量(F/m)、高比表面積化に伴う嵩密度の低下等により異なるが、窒素吸着によるBET法により求めた比表面積としては、500〜2500m/gが好ましく、1000〜2000m/gがより好ましい。
上記活性炭の製造方法としては、植物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石炭、石油重質油、又は、それらを熱分解した石炭及び石油系ピッチ、石油コークス、カーボンアエロゲル、メソフェーズカーボン、タールピッチを紡糸した繊維、合成高分子、フェノール樹脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリイミド樹脂、ポリアミド樹脂、イオン交換樹脂、液晶高分子、プラスチック廃棄物、廃タイヤ等の原料を炭化した後、賦活して製造する賦活法を用いることが好ましい。
上記賦活法としては、(1)炭化された原料を高温で水蒸気、炭酸ガス、酸素、その他の酸化ガス等と接触反応させるガス賦活法、(2)炭化された原料に、塩化亜鉛、リン酸、リン酸ナトリウム、塩化カルシウム、硫化カリウム、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、硫酸ナトリウム、硫酸カリウム、炭酸カルシウム、ホウ酸、硝酸等を均等に含浸させて、不活性ガス雰囲気中で加熱し、薬品の脱水及び酸化反応により活性炭を得る薬品賦活法が挙げられ、いずれを用いてもよい。
上記賦活法により得られた活性炭は、窒素、アルゴン、ヘリウム、キセノン等の不活性ガス雰囲気下で、好ましくは500〜2500℃、より好ましくは700〜1500℃で熱処理することが好ましく、不要な表面官能基を除去したり、炭素の結晶性を発達させて電子伝導性を増加させてもよい。活性炭の形状としては、破砕、造粒、顆粒、繊維、フェルト、織物、シート状等が挙げられる。粒状の場合においては、電極の嵩密度の向上、内部抵抗の低減という点で、平均粒子径は30μm以下であることが好ましい。
上記電極活物質としては、活性炭以外にも上述の高比表面積を有する炭素材料を用いてもよく、例えば、カーボンナノチューブやプラズマCVDにより作製したダイヤモンド等を用いてもよい。
上記導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウム、ニッケル等の金属ファイバー等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、少量で効果的に導電性が向上する点で、アセチレンブラック及びケッチェンブラックがより好ましい。導電剤の配合量としては、活性炭の嵩密度等によっても異なるが、活性炭を100質量%とすると、5〜50質量%が好ましく、10〜30質量%がより好ましい。
上記バインダー物質としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシルメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリアクリル酸、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等が好適である。これらは1種又は2種以上を用いることができる。バインダー物質の配合量としては、活性炭の種類と形状等によっても異なるが、活性炭を100質量%とすると、0.5〜30質量%が好ましく、2〜30質量%がより好ましい。
上記正極及び負極の成形方法としては、(1)活性炭とアセチレンブラックの混合物に、ポリテトラフルオロエチレンを添加混合した後、プレス成形して得る方法、(2)活性炭とピッチ、タール、フェノール樹脂等のバインダー物質を混合、成型した後、不活性雰囲気下で熱処理して焼結体を得る方法、(3)活性炭とバインダー物質又は活性炭のみを焼結して電極とする方法等が好適である。炭素繊維布を賦活処理して得られる活性炭繊維布を用いる場合は、バインダー物質を使用せずにそのまま電極として使用してもよい。
上記電気二重層キャパシタには、セパレータを分極性電極に挟み込む方法や、保持手段を用いることにより分極性電極を、間隔を隔てて対向させる方法等により、分極性電極が接触や短絡することを防ぐことが好ましい。セパレータとしては、使用温度域において溶融塩等と化学反応を起こさない多孔性の薄膜を用いることが好適である。セパレータの材質としては、紙、ポリプロピレン、ポリエチレン、ガラス繊維等が好適である。
上記電気二重層キャパシタの形状としては、コイン型、巻回型、角型、アルミラミネート型等が挙げられ、いずれの形状としてもよい。
本発明によるイオン伝導性材料を用いてなるリチウム二次電池、電解コンデンサ、電気二重層キャパシタ等の電気化学デバイスは、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等の各種用途に好適に用いることができるものである。
本発明の電解質組成物は、上述の構成よりなり、イオン伝導度が向上し、経時的に安定であることから、イオン伝導体を構成する電解質材料として好適であり、また、電極等への腐食性がなく、高電位においても電解質塩が分解することが抑制され、電気化学的にも安定なものであることから、一次電池、リチウム(イオン)二次電池や燃料電池等の充電及び放電機構を有する電池の他、電解コンデンサ、電気二重層キャパシタ、太陽電池・エレクトロクロミック表示素子等の電気化学デバイスに好適に適用することができる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
実施例1
4−メチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩
温度計、窒素ガス導入管、還流冷却管、攪拌装置、及び、滴下漏斗を備えたフラスコに、3,4−ジエトキシ−3−シクロブテン−1,2−ジオン5.0g(29mmol)、テトラヒドロフラン(以下THFと記す。)75mlを窒素気流下室温で加え、−78℃に保った状態で1mol/lメチルリチウム(ジエチルエーテル溶液)34ml(35mmol)を2時間かけて滴下した。滴下終了後さらに1時間攪拌した後、トリフルオロ酢酸無水物8.0g(38mmol)を加え、10分攪拌した。室温まで上昇させ1時間攪拌した後、飽和塩化アンモニア水溶液100mlを加え反応を終了させた。酢酸エチル(40ml)を加え2回抽出し、濃縮することで黄色液体の4−メチル−3−エトキシ−3−シクロブテン−1,2−ジオン 3.3gを得た。
得られた4−メチル−3−エトキシ−3−シクロブテン−1,2−ジオン 3.3g(24mmol)と水50mlを3つ口フラスコに仕込み、室温でイオン交換樹脂(アンバーリスト15ドライ、オルガノ社製)15gを加え、40℃、24時間攪拌した。溶液をろ過し、濃縮し、得られた固体をジエチルエーテル40mlで3回洗浄をしたところ、黄色固体の4−メチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン 2.0gが得られた。
得られた4−メチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン 2.0g(17.8mmol)とメタノール20mlとをフラスコに入れ、攪拌しながらトリエチルアミン2.7g(26mmol)を30分かけて滴下した。溶液を濃縮し、褐色液体の4−メチル−2−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩 3.6gを得た。(収率:58%)
H−NMR
溶媒:d6−DMSO
δ8.8−9.0(m,1H)δ3.0−3.2(m,6H)δ1.85(s,3H)δ1.17(t,ΔJ=8.6Hz,9H)
プロピレンカーボネート(以下、PCと略す。)2mol/kgの25℃でのイオン伝導度は、1.0×10−3S/cmであった。
実施例2
4−フェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩
温度計、窒素ガス導入管、還流冷却管、攪拌装置、及び、滴下漏斗を備えたフラスコに、3,4−ジエトキシ−3−シクロブテン−1,2−ジオン5.0g(29mmol)、テトラヒドロフラン(以下THFと記す。)75mlを窒素気流下室温で加え、−78℃に保った状態で1mol/lフェニルリチウム(シクロヘキサン溶液)34ml(35mmol)を2時間かけて滴下した。滴下終了後さらに1時間攪拌した後、トリフルオロ酢酸無水物8.0g(38mmol)を加え、10分攪拌した。室温まで上昇させ1時間攪拌した後、飽和塩化アンモニア水溶液100mlを加え反応を終了させた。酢酸エチル(40ml)を加え2回抽出し、濃縮することで黄色液体の4−フェニル−3−エトキシ−3−シクロブテン−1,2−ジオン 4.0gを得た。
得られた4−フェニル−3−エトキシ−3−シクロブテン−1,2−ジオン 4.0g(20mmol)をフラスコに仕込み、3mol/l塩酸水溶液20ml、THF20ml加え、室温で3時間攪拌した。溶液を濃縮し、得られた固体をジエチルエーテル40mlで3回洗浄することで黄色固体の4−フェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン 2.3gを得た。
得られた4−フェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン 2.3g(14mmol)とメタノール20mlとをフラスコに入れ、攪拌しながらトリエチルアミン2.2g(21mmol)を30分かけて滴下した。溶液を濃縮し、黒褐色固体の4−フェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩 3gを得た。(収率:41%)
H−NHR
溶媒:CDOD
δ7.4−8.2(m,5H)δ4.6−4.8(m,1H)δ3.2−3.6(m,6H)δ1.3−1.4(m,9H)
プロピレンカーボネート(以下、PCと略す。)2mol/kgの25℃でのイオン伝導度は、6.0×10−4S/cmであった。
実施例3
4−ペンタフルオロフェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・リチウム塩
温度計、窒素ガス導入管、還流冷却管、攪拌装置、及び、滴下漏斗を備えたフラスコに、3,4−ジエトキシ−3−シクロブテン−1,2−ジオン5.0g(29mmol)、テトラヒドロフラン(以下THFと記す。)75mlを窒素気流下室温で加え、−78℃に保った状態で1mol/lペンタフルオロフェニルマグネシウムブロミド(ジエチルエーテル溶液)34ml(35mmol)を2時間かけて滴下した。滴下終了後さらに1時間攪拌した後、室温まで上昇させ1時間攪拌し、飽和塩化アンモニア水溶液100mlを加え反応を終了させた。酢酸エチル(40ml)を加え2回抽出し、濃縮することで黄色液体の4−ペンタフルオロフェニル−3−エトキシ−3−シクロブテン−1,2−ジオン 6.0gを得た。
次いで得られた4−ペンタフルオロフェニル−3−エトキシ−3−シクロブテン−1,2−ジオン 4.0g(21mmol)をフラスコに仕込み、3mol/l塩酸水溶液20ml、THF20ml加え、室温で3時間攪拌した。溶液を濃縮し、得られた固体をジエチルエーテル40mlで3回洗浄することで黄色固体の4−ペンタフルオロフェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン 4.0gを得た。
次いで得られた4−ペンタフルオロフェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン 40g(15mmol)とメタノール20mlとをフラスコに入れ、攪拌しながら炭酸リチウム1.1g(15mmol)を加えた。30分攪拌後、溶液を濃縮し黄色固体の4−ペンタフルオロフェニル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・リチウム塩 3.5gを得た。(収率:45%)
溶媒:CDOD(重水素化メタノール)
19F−NMR:δ−161.1(m,1F)δ−160.2(m,1F)δ−154〜−150(m,1F)δ−136.9(m,1F)δ−133.4(m,1F)
13C−NMR:δ102.9(1C)δ133.6(1C)δ135−140(2C)δ142−145(2C)δ164.2(1C)δ195.8(1C)δ207−208(2C)
実施例4
実施例1におけるメチルリチウムをブチルリチウムに変更する以外同様の操作を行い、4−ブチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩を得た。
実施例5
実施例1におけるメチルリチウムをヘキシルリチウムに変更する以外同様の操作を行い、4−ヘキシル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩を得た。
実施例6
実施例3におけるペンタフルオロフェニルマグネシウムブロミドをペンタフルオロエチルマグネシウムブロミドに変更する以外同様の操作を行い、4−ペンタフルオロエチル−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・リチウム塩を得た。
実施例7
実施例1におけるメチルリチウムをジエチルアミドリチウムに変更する以外同様の操作を行い、4−ジエチルアミノ−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩を得た。
実施例8
実施例1におけるメチルリチウムをエトキシリチウムに変更する以外同様の操作を行い、4−エトキシ−3−ヒドロキシ−3−シクロブテン−1,2−ジオン・トリエチルアミン塩を得た。
リチウム二次電池の一形態を示す断面模式図である。 (a)は、電解コンデンサの一形態を示す斜視図であり、(b)は、アルミ電解コンデンサの一形態を示す断面模式図である。 電気二重層キャパシタの一形態を示す断面模式図及び電極表面の拡大模式図である。

Claims (4)

  1. 下記一般式(1);
    Figure 2007197370
    (式中、Rは、炭素数1〜12の炭化水素基、ハロゲン置換炭化水素基、アルコキシ基、チオエーテル基、アミノ基、アミド基及びアシル基からなる群より選ばれる一種類の基を表す。nは、1〜6の整数である。)で表されるアニオンを含有することを特徴とする電解質組成物。
  2. 前記一般式(1)におけるRは、フッ素置換フェニル基であることを特徴とする請求項1記載の電解質組成物。
  3. 請求項1又は2記載の電解質組成物とマトリックス材料とを含むことを特徴とする電解質材料。
  4. 前記電解質材料は、前記一般式(1)において、nが2であることを特徴とする請求項3記載の電解質材料。
JP2006018240A 2006-01-26 2006-01-26 電解質組成物 Pending JP2007197370A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018240A JP2007197370A (ja) 2006-01-26 2006-01-26 電解質組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018240A JP2007197370A (ja) 2006-01-26 2006-01-26 電解質組成物

Publications (1)

Publication Number Publication Date
JP2007197370A true JP2007197370A (ja) 2007-08-09

Family

ID=38452331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018240A Pending JP2007197370A (ja) 2006-01-26 2006-01-26 電解質組成物

Country Status (1)

Country Link
JP (1) JP2007197370A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018795A (ja) * 2008-06-10 2010-01-28 Sumitomo Chemical Co Ltd オキソカーボン基を有する高分子
JP2012109089A (ja) * 2010-11-16 2012-06-07 Toyota Motor Corp 非水電解質およびその利用
JP2012142196A (ja) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd 多価イオン伝導性材料、多価イオン伝導性電解質、多価イオン伝導性電解質−電極接合体、及び多価イオン電池
JP2013229321A (ja) * 2012-03-28 2013-11-07 Sumitomo Chemical Co Ltd ナトリウム二次電池用活物質、ナトリウム二次電池用電極、ナトリウム二次電池
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
US9214257B2 (en) 2012-07-10 2015-12-15 Samsung Electronics Co., Ltd. Organic electrolyte for magnesium batteries and magnesium battery using the organic electrolyte
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
WO2016017362A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
US9653756B2 (en) 2012-12-21 2017-05-16 Samsung Electronics Co., Ltd. Magnesium compound, electrolyte solution for magnesium battery, and magnesium battery including the electrolyte solution
US9899604B2 (en) 2013-02-13 2018-02-20 Samsung Electronics Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
JP2021021321A (ja) * 2011-07-27 2021-02-18 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation ダウンホール機器のための電源
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11482384B2 (en) 2011-07-08 2022-10-25 Fastcap Systems Corporation High temperature energy storage device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018795A (ja) * 2008-06-10 2010-01-28 Sumitomo Chemical Co Ltd オキソカーボン基を有する高分子
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
JP2012109089A (ja) * 2010-11-16 2012-06-07 Toyota Motor Corp 非水電解質およびその利用
JP2012142196A (ja) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd 多価イオン伝導性材料、多価イオン伝導性電解質、多価イオン伝導性電解質−電極接合体、及び多価イオン電池
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11482384B2 (en) 2011-07-08 2022-10-25 Fastcap Systems Corporation High temperature energy storage device
US11776765B2 (en) 2011-07-08 2023-10-03 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11901123B2 (en) 2011-07-08 2024-02-13 Fastcap Systems Corporation High temperature energy storage device
JP2021021321A (ja) * 2011-07-27 2021-02-18 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation ダウンホール機器のための電源
JP2013229321A (ja) * 2012-03-28 2013-11-07 Sumitomo Chemical Co Ltd ナトリウム二次電池用活物質、ナトリウム二次電池用電極、ナトリウム二次電池
US9214257B2 (en) 2012-07-10 2015-12-15 Samsung Electronics Co., Ltd. Organic electrolyte for magnesium batteries and magnesium battery using the organic electrolyte
US9653756B2 (en) 2012-12-21 2017-05-16 Samsung Electronics Co., Ltd. Magnesium compound, electrolyte solution for magnesium battery, and magnesium battery including the electrolyte solution
US9899604B2 (en) 2013-02-13 2018-02-20 Samsung Electronics Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
WO2016017362A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
JPWO2016017362A1 (ja) * 2014-07-31 2017-07-06 日本電気株式会社 シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
US10374258B2 (en) 2014-07-31 2019-08-06 Nec Corporation Cyclobutenedione derivative, nonaqueous electrolytic solution, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5066334B2 (ja) イオン性化合物
JP2007197370A (ja) 電解質組成物
JP4940285B2 (ja) 電解液材料
KR100714135B1 (ko) 전해액용 재료 및 이의 용도
JP5366460B2 (ja) イオン性化合物
US20080138704A1 (en) Material for Electrolytic Solution, Ionic Material-Containing Composition and Use Thereof
TWI441804B (zh) Ionic compounds
JP5025092B2 (ja) 電解液材料
JP4187113B2 (ja) イオン性化合物
JP4439797B2 (ja) イオン伝導体用材料
JP2006202646A (ja) イオン性液体組成物、イオン伝導性材料及び電解液材料
JP2007157584A (ja) 電解質材料
JP4467247B2 (ja) 新規溶融塩を用いたイオン伝導体
WO2007055392A1 (en) Ionic compound
JP4883903B2 (ja) 電解液材料
JP2006173014A (ja) イオン性物質含有組成物、イオン伝導性材料及びその用途
JP4271971B2 (ja) イオン性化合物
JP4732764B2 (ja) イオン性化合物の製造方法
JP4249495B2 (ja) イオン伝導性材料
JP2004123653A (ja) イオン性物質の製造方法
JP2004281223A (ja) イオン伝導性材料及びイオン性物質
JP2007134184A (ja) イオン性組成物
JP2004123652A (ja) イオン性物質の製造方法
JP2004227909A (ja) イオン性物質の製造方法
KR101583525B1 (ko) 슈퍼캐패시터용 전해액 및 이를 함유한 슈퍼캐패시터