WO2012029524A1 - 電気機器用光変流器 - Google Patents

電気機器用光変流器 Download PDF

Info

Publication number
WO2012029524A1
WO2012029524A1 PCT/JP2011/068337 JP2011068337W WO2012029524A1 WO 2012029524 A1 WO2012029524 A1 WO 2012029524A1 JP 2011068337 W JP2011068337 W JP 2011068337W WO 2012029524 A1 WO2012029524 A1 WO 2012029524A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
current transformer
conductor
optical fiber
current
Prior art date
Application number
PCT/JP2011/068337
Other languages
English (en)
French (fr)
Inventor
英昭 内山
偉 張
達史 山口
大五郎 塩澤
Original Assignee
株式会社日本Aeパワーシステムズ
東光電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本Aeパワーシステムズ, 東光電気株式会社 filed Critical 株式会社日本Aeパワーシステムズ
Priority to CN201180038831.2A priority Critical patent/CN103109195B/zh
Priority to KR1020137003308A priority patent/KR101366259B1/ko
Publication of WO2012029524A1 publication Critical patent/WO2012029524A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices

Definitions

  • the present invention relates to an optical current transformer for electrical equipment, and more particularly to an optical current transformer for electrical equipment that can improve current measurement accuracy.
  • an optical current transformer in order to measure a current flowing through a current-carrying conductor arranged in a container to be sealed.
  • an optical current transformer uses a well-known lead glass optical fiber as a current sensor.
  • a current-carrying conductor 1 through which a current flows is placed inside a container (not shown) of an electric device formed in a cylindrical shape as shown in FIGS. 9 (a) and 9 (b).
  • the optical fiber 2 When arranging, the optical fiber 2 is wound around the energizing conductor 1 so that the energizing conductor 1 and the optical fiber 2 are orthogonal (intersect).
  • An optical member 3 having a permanent magnet is disposed at one end of the optical fiber 2, and a reflecting member 4 is disposed at the other end.
  • the optical member 3 and the reflecting member 4 are wound around the optical fiber 2. It arrange
  • an annular frame having a circumferential groove on an axial end face is used to arrange an optical fiber wound around a current-carrying conductor.
  • Patent Document 1 Japanese Patent Publication No. 2000-314751 (Patent Document 1).
  • the optical fiber is housed and fixed in the circular groove of the annular frame and intersects with the current-carrying conductor, and extends in the circular direction at both ends of the optical fiber in the circular groove.
  • a polarizer part and an analyzer are arranged.
  • the optical members and the like are on a winding circle of an optical fiber that is orthogonal (crossed) to the axial direction of the conducting conductor 1.
  • the optical member 3 and the reflecting member 4 are disposed on the winding extension line of the optical fiber that intersects the axial direction of the conducting conductor 1, and the direction of the magnetic field H generated by the current I is the same.
  • the magnetic field created by the current flowing through the current-carrying conductor has a large effect on the permanent magnet in the optical member, causing measurement errors. In other words, this is for the following reason.
  • the permanent magnet in the optical member is used as an optical signal by saturating the angle of the linearly polarized wave by the effect of the magnetic field.
  • a magnetic field is generated.
  • the magnetic field direction of the permanent magnet in the optical member matches the direction of the magnetic field due to the current flowing through the current-carrying conductor, even if a magnetic field is applied from the outside, linearly polarized light is already It is not affected because it is saturated.
  • An object of the present invention is to provide an optical current transformer for electrical equipment that can reduce the influence of a magnetic field with a simple structure and improve the measurement accuracy of a current flowing through a conducting conductor.
  • An optical current transformer for electrical equipment includes a current-carrying conductor disposed in a container of the electrical equipment, an optical fiber wound and disposed perpendicular to the axial direction of the current-carrying conductor, and one end of the optical fiber.
  • the optical member is provided with at least a reflecting member provided at the other end, at least the optical member is located in an arbitrary virtual plane in which the magnetic field axis of the permanent magnet passes through the central axis of the conducting conductor. It is characterized by the arrangement.
  • both the optical member and the reflecting member are arranged on the same axis.
  • both the optical member and the reflecting member are juxtaposed close to each other.
  • the electrical current transformer for electrical equipment includes an energizing conductor disposed in a container of the electrical apparatus, an optical fiber wound and disposed so as to be orthogonal to the axial direction of the energizing conductor, and the optical fiber.
  • At least two frame units are combined with a flange formed on the outer surface of the container, and a groove and a storage seat
  • the optical frame is disposed in the groove of the annular frame, and the optical member and the reflecting member are placed close to each other in the storage seat of the annular frame,
  • the optical member is arranged such that the magnetic field axis of the permanent magnet is positioned in an arbitrary virtual plane passing through the central axis of the conducting conductor.
  • the storage seat of the annular frame is formed to be inclined with respect to the axial direction of the conducting conductor.
  • an optical current transformer for electrical equipment when configured as an optical current transformer for electrical equipment according to the present invention, when an optical fiber is wound around a current-carrying conductor, a magnetic field axis is attached to a permanent magnet in an optical member disposed at the end of the optical fiber. Is arranged in a virtual plane created by the axis of the conducting conductor, so that the magnetic field of the permanent magnet is significantly less affected by the magnetic field created by the current flowing through the conducting conductor. For this reason, the optical current transformer for electric equipment of the present invention can further improve the current measurement accuracy compared with the conventional optical current transformer with a simple configuration.
  • FIG.1 (a) is a schematic perspective view of the optical current transformer for electrical devices which is one Example of this invention
  • FIG.1 (b) is a top view of (a).
  • FIG. 2 (a) is a schematic perspective view of an optical current transformer for electric equipment which is another embodiment of the present invention
  • FIG. 2 (b) is a schematic plan view of (a).
  • FIG. 3A is a schematic longitudinal sectional view of an optical member used in the electrical current transformer for electric equipment of FIGS. 1 and 2
  • FIG. 3B is an electrical current transformer for electrical equipment of FIGS. It is a schematic longitudinal cross-sectional view of the reflection member to be used.
  • FIG. 4 is a schematic configuration diagram of a gas circuit breaker to which the optical current transformer for electrical equipment of the present invention is applied.
  • FIG. 4 is a schematic configuration diagram of a gas circuit breaker to which the optical current transformer for electrical equipment of the present invention is applied.
  • FIG. 5A is a front view showing a partial cross section of an optical current transformer for electrical equipment to which the present invention is applied
  • FIG. 5B is a plan view of FIG. c) is a right side view of FIG.
  • FIG. 6 is a perspective view showing the optical current transformer for electric equipment of FIG.
  • FIG. 7 (a) is a front view showing a partial cross section of another optical current transformer for electrical equipment to which the present invention is applied
  • FIG. 7 (b) is a plan view of (a) showing a partial cross section
  • FIG. 7C is a right side view of FIG.
  • FIG. 8 is a perspective view showing the optical current transformer for electric equipment of FIG.
  • Fig.9 (a) is a schematic perspective view which shows the conventional optical current transformer for electric equipments
  • FIG.9 (b) is a top view of (a).
  • An optical current transformer for electrical equipment has a current-carrying conductor arranged in a container of an electric equipment, and an optical fiber is wound and arranged so as to be orthogonal to the axial direction of the current-carrying conductor.
  • An optical member having a permanent magnet is provided at one end, and a reflecting member is provided at the other end. The optical member is arranged so that the magnetic field axis of the permanent magnet is located in an arbitrary virtual plane passing through the central axis of the conducting conductor.
  • a conducting conductor 1 through which a current flows is disposed inside a container (not shown) of an electric device formed in a cylindrical shape, and is used by sealing an insulating gas.
  • An optical fiber 2 is wound around the current-carrying conductor 1 for at least one turn so as to surround it. Both ends of the wound optical fiber 2 are bent in the same direction as the length direction (axial direction) of the current-carrying conductor 1, and one end of the optical fiber 2 on which linearly polarized light enters as in the conventional case.
  • An optical member 3 is provided, and a reflecting member 4 is provided at the other end of the optical fiber 2.
  • the optical member 3 is connected to an external light source and a measuring unit that measures current.
  • both the optical member 3 and the reflecting member 4 are arranged on the same axis shown by a one-dot chain line in FIG. 1A so as to be in the same direction as the axial direction of the conducting conductor 1.
  • the optical member 3 provided at one end of the optical fiber 2 is configured to have a permanent magnet 3A and a birefringent element 3B that generate a magnetic field H and is used in a saturated state as shown in FIG. It is used by being disposed on the end face of the optical fiber 2 on the incident side.
  • the reflecting member 4 provided at the other end of the optical fiber 2 is configured to have a mirror surface 4A as shown in FIG. 3B, and is arranged so as to reflect linearly polarized light and return inside the optical fiber 2. used.
  • the optical member 3 and the reflecting member 4 are arranged in an arbitrary virtual plane that passes through the central axis of the conducting conductor 1.
  • the magnetic field axis of the permanent magnet 3 ⁇ / b> A included in the optical member 3 is positioned in an arbitrary virtual plane passing through the central axis of the conducting conductor 1.
  • an arbitrary virtual plane passing through the central axis of the conductive conductor 1 is a plurality of planes when it is assumed that a plane is formed on the side of the entire outer peripheral surface of the conductive conductor 1 through the central axis of the conductive conductor 1. It means one plane inside.
  • the magnetic field H generated by the current I flowing through the conducting conductor 1 is added to the linearly polarized light passing through the optical fiber 2, and the Faraday rotation angle is increased according to the strength of the magnetic field H.
  • the optical member 3 at the end of the optical fiber 2 has the magnetic field axis of the permanent magnet 3A positioned in an arbitrary virtual plane passing through the central axis of the conducting conductor 1, the optical member 3 can be configured with a simple configuration.
  • the reflecting member 4 is less affected by the magnetic field H generated by the current I flowing through the conducting conductor 1. For this reason, the measurement accuracy of the current measured by the measurement unit can be further improved as compared with the conventional one.
  • the optical fiber 2 is wound so as to surround the current-carrying conductor 1 in the same manner as the above-described embodiment.
  • the both ends are bent in the same direction as the axial direction of the conducting conductor 1.
  • the optical member 3 provided at one end of the optical fiber 2 and the reflecting member 4 provided at the other end are arranged so as to be in close contact with each other, and the optical member 3 and the reflecting member 4 are
  • the magnetic field axis of the permanent magnet 3A included in the optical member 3 is positioned in an arbitrary virtual plane passing through the central axis of the conductive conductor 1.
  • FIG. 4 shows an example in which the above-described optical current transformers for electric appliances are applied to the gas circuit breaker 10 in which an operation device for opening and closing an internal circuit breaker (not shown) is provided on the side. ing.
  • the conducting conductor through which the current I flows in series with the breaker of the gas circuit breaker 10 is disposed in the cylindrical containers 12A and 12B drawn upward.
  • the gas circuit breaker 10 is an electric circuit in which the optical member 2 and the reflecting member 4 shown in FIGS. 1A and 1B are arranged on the same axis by winding the optical fiber 2 around the outer surface of the container 12A.
  • An optical current transformer for equipment is configured, and the optical fiber 2 is wound around the outer surface of the containers 12A and 12B, and the optical member 3 and the reflecting member 4 shown in FIGS.
  • the optical current transformer for electric equipment arranged is configured.
  • a specific structure to which the above-described optical current transformer for electrical equipment shown in FIGS. 2 (a) and (b) is applied is shown in FIGS.
  • the container 20 of the electrical equipment in which the current-carrying conductor 1 is disposed has flanges 20A on the outer surface, and the mounting frame 24 is fixed to a plurality of locations of the flange 20A with fixing means such as bolts 25, and the annular frame 21 is formed. Removably attached.
  • frame units 21A and 21B formed into at least two divided arcs are combined and integrated by a coupling means such as a connecting bolt 21C.
  • a groove 22 that goes around the container 20 and a flat storage seat 23 that is substantially parallel to the axial direction of the conducting conductor are formed in a part of the groove 22.
  • An optical fiber 2 wound around the current-carrying conductor 1 is disposed in a groove 22 provided in the annular frame 21 so that the optical fiber 2 is pulled out to the outside where the measuring unit is provided.
  • the member 3 and the reflecting member 4 are arranged close to each other, and the protective cover 26 is attached.
  • the protective cover 26 is made of, for example, a non-magnetic material capable of shielding the magnetic field H
  • the optical member 3 and the reflecting member 4 are more effective in preventing the influence of the magnetic field H generated by the current I flowing through the conducting conductor 1. is there.
  • a closing plate can be attached to the groove 22 of the annular frame 21 so that the optical fiber 2, the optical member 3, and the reflecting member 4 are covered with the closing plate.
  • the optical fiber 2, the optical member 3, and the reflecting member 4 are arranged by utilizing the groove 22 and the storage seat 23 provided in the annular frame 21, it can be easily arranged at a desired position.
  • the magnetic field axis of the permanent magnet 3 ⁇ / b> A in the optical member 3 is positioned in an arbitrary virtual plane that passes through the central axis of the conducting conductor 1.
  • the housing seat 23 provided in a part of the groove 22 of the annular frame 21 is provided to be inclined with respect to the axis of the conducting conductor 1 as shown in FIGS. 7 (a), (b), (c) and FIG. You can also The optical member 3 and the reflecting member 4 are juxtaposed in this inclined storage seat 23 portion, and the other portions are the same as in the examples of FIGS.
  • the optical member 3 and the reflecting member 4 are arranged so as to be inclined at a constant angle with respect to the axis of the current-carrying conductor 1, and the magnetic field axis of the permanent magnet in the optical member is arbitrarily passed through the central axis of the current-carrying conductor 1. Since the optical current transformer for electrical equipment is configured in the virtual plane, the same effect can be achieved.
  • the inclination angle of the storage seat 23 of the annular frame 21 can be determined as appropriate. However, when the inclination angle of the storage seat 23 is increased, the radial dimension of the groove 22 is increased due to the arrangement of the optical member 3 and the reflection member 4.
  • the entire annular frame 21 becomes large.
  • the storage seat 23 is formed at an inclination angle of, for example, about ⁇ 5 degrees with respect to the axis of the conducting conductor 1, the optical member 3 and the reflecting member 4 can be easily arranged, and parallel to the axial direction of the conducting conductor 1.
  • the optical member 3 and the reflecting member 4 are both disposed at the same position.
  • only the optical member 3 of the current-carrying conductor 1 is used.
  • the magnetic field axis of the permanent magnet 3 ⁇ / b> A that is disposed in an arbitrary plane passing through the central axis and is in the optical member 3 can be used.
  • the optical current transformer for electrical equipment according to the present invention is suitable because it can be widely applied to gas-insulated electrical equipment such as a gas circuit breaker and a gas-insulated switchgear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

 簡単な構造で磁界の影響を少なくし、通電導体に流れる電流の測定精度を向上できる電気機器用光 変流器を提供する。 電気機器の容器内に通電導体1配置し、この通電導体1の軸方向に対して直交するように光ファイバ2を巻回配置し、この光ファイバ2の一端に設ける光学部材3及び他端に設ける反射部材4とを備えている。そして、少なくとも光学部材3は、この永久磁石3Aの磁界軸が通電導体1の中心軸を通る任意の平面内に位置するように配置している。

Description

電気機器用光変流器
 本発明は電気機器用光変流器に係り、特に電流の測定精度を向上できる電気機器用光変流器に関する。
 通常、ガス絶縁開閉装置やガス遮断器やガス絶縁母線等の電気機器は、送配電設備として使用されている。これらの電気機器では、密封する容器内に配置された通電導体を流れる電流を計測するため、光変流器を用いことが提案されている。
 一般に、光変流器は、周知の鉛ガラス製の光ファイバを電流センサとして使用している。そして、反射形の光変流器の場合は、図9(a)、(b)に示す如く円筒状に形成した電気機器の容器(図示せず)の内部に、電流が流れる通電導体1を配置するとき、通電導体1を取り囲むように光ファイバ2を巻回配置し、通電導体1と光ファイバ2が直交(交差)するようにしている。
 この光ファイバ2の一方の端部に永久磁石を有する光学部材3を、また他方の端部に反射部材4を配置しており、これら光学部材3及び反射部材4は、光ファイバ2の巻回円上に配置、つまり通電導体1の軸線に対して直交(交差)するように巻回する光ファイバ2の巻回延長線上に配置している。これによって、例えば図9(a)、(b)に示すように通電導体1の下方から上方に向けて電流Iが流れたとき、電流Iによって直角方向に生ずる磁界Hが、光ファイバ2に加わる構成にしている。
 この反射形の光変流器では、発光部(図示せず)から直線偏光を、光ファイバ2の一端側の光学部材3を介して内部に入射させ、光ファイバ2の他端側の反射部材4で反射して戻り、外部に設けた計測部(図示せず)に至るようにしている。入射した直線偏光は、光ファイバのファラデー効果により回転した出射光となるから、この出射光の回転角を計測部で検出し、通電電流を計測している。
 光変流器を電気機器に組み込んで使用する場合、通電導体に巻回する光ファイバを配置するため、軸方向端面に周回溝を有する環状枠体を用いることが日本の特許公開公報2000−314751号(特許文献1)で提案されている。
 特許文献1に記載の光変流器は、光ファイバを環状枠体の周回溝内に収納固定して通電導体と交差させており、周回溝内の光ファイバの両端部に、周回方向に延びる偏光子部と検光子とを配置している。この光変流器の構造とすることで、環状枠体の外周面に光ファイバを巻回するものに比較して、全長を短くして光伝送損失の少なくできる。
 また、通電導体に巻回する光ファイバを正の整数ターン周回させ、光ファイバの周回径が小さくても、通電導体に流れる電流による磁界の影響を無くし、計測誤差が生じない高精度の光変流器が日本の特許公開公報2000−121676号(特許文献2)で提案されている。
 特許文献2に記載の光変流器では、光ファイバの巻回端部を外方向に折り曲げ、偏光子を配置する入力端及び検光子を配置する出力端を引き出すとき、周回させた位置から入力端及び出力端までを磁気シールドで覆うことにより、磁界の影響を防止して計測誤差のない高精度にすることができる。
 上記した図9に示す従来の光変流器や特許文献1に記載の光変流器では、光学部材等は通電導体1の軸方向に対して直交(交差)させる光ファイバの巻回円上に配置、即ち通電導体1の軸方向と交差する光ファイバの巻回延長線上に光学部材3や反射部材4を配置し、電流Iによって生ずる磁界Hの方向と同一方向としている。
 このような光変流器では、通電導体を流れる電流が作る磁界で、光学部材内の永久磁石に与える影響が大きくなり、測定誤差の原因となる。つまり、これは以下のような理由である。光学部材内の永久磁石は、その磁界の効果で直線偏波の角度を飽和させて、光信号として使用している。通電導体に電流が流れると磁界が発生するが、光学部材内の永久磁石の磁界と通電導体に流れる電流による磁界方向が一致する場合は、更に外部から磁界が加わっても、直線偏波光は既に飽和しているので影響を受けない。ところが、永久磁石の磁界方向と通電導体1を流れる電流iによる磁界Hの方向が反対の場合は、(永久磁石による磁界)−(通電導体を流れる電流が作る磁界)<(垂直偏波光飽和磁界)となると、直線偏波は飽和できなくなり、光学部材3内の永久磁石の磁界が飽和していることを前提に電流値を算出している測定器の誤差の原因となる。
 また、特許文献2の如き光変流器のように、光ファイバの巻回端部の偏光子を配置する入力端及び検光子を配置する出力端を、磁気シールドで覆い磁界による影響をなくすようにする場合は、光ファイバの巻回端部の構造が複雑になって製作し難くなる。
 本発明の目的は、簡単な構造で磁界の影響を少なくし、通電導体に流れる電流の測定精度を向上できる電気機器用光変流器を提供することにある。
 本発明の電気機器用光変流器は、電気機器の容器内に配置する通電導体と、前記通電導体の軸方向に対して直交するように巻回配置する光ファイバと、前記光ファイバの一端に設ける光学部材及び他端に設ける反射部材とを少なくとも備えて構成する際に、少なくとも前記光学部材は、この永久磁石の磁界軸が前記通電導体の中心軸を通る任意の仮想平面内に位置するように配置したことを特徴としている。
 好ましくは、前記光学部材と前記反射部材の双方は、同一軸線上に配置したことを特徴としている。また好ましくは、前記光学部材と前記反射部材の双方は、相互に近接させて並置したことを特徴としている。
 また本発明の電気機器用光変流器は、電気機器の容器内に配置する通電導体と、前記通電導体の軸方向に対して直交するように巻回配置する光ファイバと、前記光ファイバの一端に設ける永久磁石を有する光学部材及び他端に設ける反射部材とを少なくとも備えて構成する際に、前記容器の外面に形成したフランジに少なくとも二つの枠体単位が組み合わされ、かつ溝と収納座を有する環状枠体を着脱可能に固定し、前記環状枠体の溝内に前記光ファイバを配置すると共に、前記環状枠体の収納座に前記光学部材及び反射部材を近接させて並置し、前記光学部材は、この永久磁石の磁界軸が前記通電導体の中心軸を通る任意の仮想平面内に位置するように配置したことを特徴としている。
 好ましくは、前記環状枠体の収納座は、前記通電導体の軸方向に対して傾斜させて形成したことを特徴としている。
 発明の効果
 本発明の電気機器用光変流器の如く構成すれば、通電導体の周囲に光ファイバを巻回配置するとき、光ファイバの端部に配置する光学部材内の永久磁石に磁界軸は、通電導体の軸が作る仮想平面内に配置したので、永久磁石の磁界が通電導体に流れる電流の作る磁界の影響を受けることが著しく少なくなる。このため、本発明の電気機器用光変流器は簡単な構成で電流の測定精度を従来の光変流器に比べて一層向上させることができる。
 図1(a)は、本発明の一実施例である電気機器用光変流器の概略斜視図、図1(b)は(a)の平面図である。
 図2(a)は、本発明の他の実施例である電気機器用光変流器の概略斜視図、図2(b)は(a)の概略平面図である。
 図3(a)は、図1及び図2の電気機器用光変流器に用いる光学部材の概略縦断面図、図3(b)は図1及び図2の電気機器用光変流器に用いる反射部材の概略縦断面図である。
 図4は、本発明の電気機器用光変流器を適用したガス遮断器の概略構成図である。
 図5(a)は本発明を適用した電気機器用光変流器を一部断面して示す正面図、図5(b)は一部断面して示す(a)の平面図、図5(c)は一部断面して示す(b)の右側面図である。
 図6は、図5の電気機器用光変流器を示す斜視図である。
 図7(a)は、本発明を適用した別の電気機器用光変流器を一部断面して示す正面図、図7(b)は一部断面して示す(a)の平面図、図7(c)は一部断面して示す(b)の右側面図である。
 図8は、図7の電気機器用光変流器を示す斜視図である。
 図9(a)は、従来の電気機器用光変流器を示す概略斜視図、図9(b)は(a)の平面図である。
 本発明の電気機器用光変流器は、電気機器の容器内に通電導体を配置し、この通電導体の軸方向に対して直交するように光ファイバを巻回配置するものであり、光ファイバの一端には永久磁石を有する光学部材を設けと共に他端には反射部材を設けている。光学部材は、この永久磁石の磁界軸が前記通電導体の中心軸を通る任意の仮想平面内に位置するように配置している。
 以下、本発明の電気機器用光変流器について、従来と同一部分を同符号で示す図1から図8を用いて順に説明する。図1(a)及び(b)に示す如く電流が流れる通電導体1は、円筒状に形成した電気機器の容器(図示せず)の内部に配置し、絶縁ガスを封入して使用される。この通電導体1には、これを取り囲むように光ファイバ2を少なくとも1ターン巻回配置している。
 巻回配置した光ファイバ2の両端は、通電導体1の長さ方向(軸方向)と同じとなる同一方向に折り曲げており、従来と同様に直線偏光が入射する光ファイバ2の一方の端部に光学部材3を設け、また光ファイバ2の他方の端部に反射部材4を設けている。光学部材3には、外部に配置する光源や電流を測定する計測部が連なっている。しかも、これら光学部材3及び反射部材4の双方は、図1(a)に一点鎖線で示す同一軸線上に配置して、通電導体1の軸方向と同一方向となるようにしている。
 光ファイバ2の一端に設ける光学部材3は、図3(a)に示すように磁界Hを発生させて飽和状態で使用する永久磁石3Aと複屈折素子3Bを有して構成され、直線偏光が入射する側の光ファイバ2の端面に配置して使用される。また、光ファイバ2の他端に設ける反射部材4は、図3(b)に示すように鏡面4Aを有して構成され、直線偏光を反射させて光ファイバ2内を戻すように配置して使用される。
 そして、本発明により光学部材3及び反射部材4は、通電導体1の中心軸を通る任意の仮想平面内に配置している。これにより、光学部材3に有する永久磁石3Aの磁界軸を、通電導体1の中心軸を通る任意の仮想平面内に位置させている。言い換えると、図1(a)の電気機器用光変流器では、電流Iが流れて磁界Hを生ずる通電導体1の軸方向と、光学部材3及び反射部材4とは平行に配置され、これらは光ファイバ2の巻回円の部分とは交差する状態になっている。
 なお、通電導体1の中心軸を通る任意の仮想平面とは、通電導体1の中心軸を通り、通電導体1の全外周面の側方に平面を形成したと仮定したとき、これら複数の平面中の一つの平面を意味している。
 この結果、本発明の電気機器用光変流器は、通電導体1に流れる電流Iによって生ずる磁界Hが、光ファイバ2内を通る直線偏光に加わり、磁界Hの強度に応じてファラデー回転角大きさを変えられる。しかし、光ファイバ2の端部の光学部材3は、この永久磁石3Aの磁界軸を、通電導体1の中心軸を通る任意の仮想平面内に位置させているから、簡単な構成で光学部材3及び反射部材4が通電導体1に流れる電流Iで生ずる磁界Hによる影響を受けにくくなる。このため、計測部で測定する電流の計測精度を従来のものに比較して、より一層向上させることができる。
 本発明の別の実施例である図2(a)及び(b)に示す電気機器用光変流器においても、光ファイバ2は上記した実施例と同様に通電導体1を取り囲むように巻回配置し、この両端を通電導体1の軸方向と同じとなる同一方向に折り曲げている。
 そして、光ファイバ2の一方の端部に設ける光学部材3と、他方の端部に設ける反射部材4との双方は、近接して接触するように配置し、しかも光学部材3及び反射部材4は、通電導体1の中心軸を通る任意の仮想平面内に配置し、光学部材3に有する永久磁石3Aの磁界軸を、通電導体1の中心軸を通る任意の仮想平面内に位置させている。言い換えると、通電導体1の軸方向と光学部材3及び反射部材4の軸方向とは平行に配置され、光学部材3と反射部材4は光ファイバ2の巻回円とは交差する状態になる。
 上記のように光学部材3及び反射部材4を配置した電気機器用光変流器であっても、通電導体1に流れる電流Iで生ずる磁界Hによる影響を受けにくくなるから、上記した例と同様な効果を達成することができる。
 図4には、内部の遮断部(図示せず)を開閉操作する操作器を側方に設けているガス遮断器10に、上記した各電気機器用光変流器をそれぞれ適用した例を示している。ガス遮断器10の遮断部に連なって電流I流れる通電導体は、上方に引き出される円筒状の容器12A、12B内に配置されている。
 このガス遮断器10は、容器12Aの外面部分に光ファイバ2を巻回配置することにより、図1(a)、(b)に示す光学部材3及び反射部材4を同一軸線上に配置した電気機器用光変流器を構成し、また容器12A、12Bの外面部分に光ファイバ2を巻回配置し、図2(a)、(b)に示す光学部材3及び反射部材4を近接して配置した電気機器用光変流器を構成したものである。
 上記した図2(a)及び(b)に示す電気機器用光変流器を適用した具体的な構造を、図5(a),(b)、(c)及び図6に示している。通電導体1を内部に配置している電気機器の容器20は、外面にフランジ20Aを設けてあり、このフランジ20Aの複数箇所に取付金具24をボルト25等の固定手段で、環状枠体21を着脱可能に取り付けている。
 環状枠体21は、この製作や取り付けを容易にするため、例えば少なくとも二分割して円弧状に形成した枠体単位21A、21Bを組み合わせ、連結ボルト21C等の結合手段によって一体にしたものである。この環状枠体21には、容器20を一周する溝22と、溝22内の一部に通電導体の軸方向とほぼ平行となる平坦な収納座23を形成している。
 環状枠体21に備える溝22内に、通電導体1に巻回する光ファイバ2を配置して計測部のある外部に引き出すようにし、また収納座23内に光ファイバ2の各端に設ける光学部材3及び反射部材4を近接させて配置し、保護カバー26を取り付けている。保護カバー26は、磁界Hを遮蔽できる例えば非磁性体の材料で製作して用いると、光学部材3及び反射部材4は通電導体1に流れる電流Iで生ずる磁界Hによる影響を防ぐのにより効果がある。なお、環状枠体21の溝22には、閉鎖板を取り付けることができ、閉鎖板で光ファイバー2や光学部材3と反射部材4を覆うようにする。
 このように、環状枠体21に備える溝22と収納座23を活用して光ファイバ2や光学部材3及び反射部材4を配置すれば、簡単に所望の位置に容易に配置することができるし、光学部材3内の永久磁石3Aの磁界軸を、通電導体1の中心軸を通る任意の仮想平面内に位置させている。
 環状枠体21の溝22内の一部に設ける収納座23は、図7(a),(b)、(c)及び図8に示すように通電導体1の軸線に対して傾斜させて設けることもできる。この傾斜した収納座23部分に、光学部材3と反射部材4を近接させて並置したものであり、他の部分は図5(a),(b)、(c)及び図6の例と同様な構造である。これにより、通電導体1の軸線に対して光学部材3と反射部材4が一定の角度に傾斜させて配置し、光学部材内の永久磁石の磁界軸は、通電導体1の中心軸を通る任意の仮想平面内に位置させて電気機器用光変流器を構成したので、同様な効果を達成することができる。
 環状枠体21の収納座23の傾斜角度は、適宜定めることができるが、収納座23の傾斜角度を大きくすると、光学部材3と反射部材4の配置のため溝22の径方向寸法を大きくせねばならず、環状枠体21の全体が大形になる不都合がある。このため、収納座23は通電導体1の軸線に対して例えば±5度程度の傾斜角度に形成し、光学部材3及び反射部材4の配置も容易に行え、通電導体1の軸方向と平行な成分を大きくした配置にして使用する。
 なお、上記した各実施例の電気機器用光変流器では、いずれも光学部材3及び反射部材4の双方を、同一位置に配置した例で説明したが、光学部材3のみを通電導体1の中心軸を通る任意の平面内に配置し、光学部材3内に有する永久磁石3Aの磁界軸が位置させて使用することができる。
 本発明の電気機器用光変流器は、ガス遮断器やガス絶縁開閉装置等のガス絶縁する電気機器に広く適用することができるため好適である。

Claims (5)

  1. 電気機器の容器内に配置する通電導体と、前記通電導体の軸方向に対して直交するように巻回配置する光ファイバと、前記光ファイバの一端に設ける永久磁石を有する光学部材及び他端に設ける反射部材とを備える電気機器用光変流器において、少なくとも前記光学部材は、この永久磁石の磁界軸が前記通電導体の中心軸を通る任意の仮想平面内に位置するように配置したことを特徴とする電気機器用光変流器。
  2. 請求項1において、前記光学部材と前記反射部材の双方は、同一軸線上に配置したことを特徴とする電気機器用光変流器。
  3. 請求項1において、前記光学部材と前記反射部材の双方は、相互に近接させて並置したことを特徴とする電気機器用光変流器。
  4. 電気機器の容器内に配置する通電導体と、前記通電導体の軸方向に対して直交するように巻回配置する光ファイバと、前記光ファイバの一端に設ける永久磁石を有する光学部材及び他端に設ける反射部材とを少なくとも備える電気機器用光変流器において、前記容器の外面に形成したフランジに少なくとも二つの枠体単位が組み合わされ、かつ溝と収納座を有する環状枠体を着脱可能に固定し、前記環状枠体の溝内に前記光ファイバを配置すると共に、前記環状枠体の収納座に前記光学部材及び反射部材を近接させて並置し、前記光学部材は、この永久磁石の磁界軸が前記通電導体の中心軸を通る任意の仮想平面内に位置するように配置したことを特徴とする電気機器用光変流器。
  5. 請求項4において、前記環状枠体の収納座は、前記通電導体の軸方向に対して傾斜させて形成したことを特徴とする電気機器用光変流器。
PCT/JP2011/068337 2010-08-31 2011-08-04 電気機器用光変流器 WO2012029524A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180038831.2A CN103109195B (zh) 2010-08-31 2011-08-04 电气设备用光变流器
KR1020137003308A KR101366259B1 (ko) 2010-08-31 2011-08-04 전기기기용 광변류기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-193653 2010-08-31
JP2010193653A JP5461347B2 (ja) 2010-08-31 2010-08-31 電気機器用光変流器

Publications (1)

Publication Number Publication Date
WO2012029524A1 true WO2012029524A1 (ja) 2012-03-08

Family

ID=45772629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068337 WO2012029524A1 (ja) 2010-08-31 2011-08-04 電気機器用光変流器

Country Status (5)

Country Link
JP (1) JP5461347B2 (ja)
KR (1) KR101366259B1 (ja)
CN (1) CN103109195B (ja)
TW (1) TWI432739B (ja)
WO (1) WO2012029524A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618567A (ja) * 1992-04-07 1994-01-25 Nissin Electric Co Ltd 光ファイバ電流センサ
JPH0634669A (ja) * 1992-07-14 1994-02-10 Mazda Motor Corp 電流センサ
JP2000314751A (ja) * 1999-03-04 2000-11-14 Mitsubishi Electric Corp 光変成器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219951B2 (ja) * 1994-12-21 2001-10-15 東京電力株式会社 電流測定装置
JP3488565B2 (ja) * 1996-01-22 2004-01-19 株式会社東芝 光応用測定装置とその製造方法
JPH09215135A (ja) * 1996-02-07 1997-08-15 Hitachi Ltd ガス絶縁機器及び絶縁スペーサ
JPH10142265A (ja) * 1996-11-13 1998-05-29 Mitsubishi Electric Corp 光変流器
JPH1175693A (ja) * 1997-09-04 1999-03-23 Duskin Co Ltd 冷温コーヒー飲料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618567A (ja) * 1992-04-07 1994-01-25 Nissin Electric Co Ltd 光ファイバ電流センサ
JPH0634669A (ja) * 1992-07-14 1994-02-10 Mazda Motor Corp 電流センサ
JP2000314751A (ja) * 1999-03-04 2000-11-14 Mitsubishi Electric Corp 光変成器

Also Published As

Publication number Publication date
JP5461347B2 (ja) 2014-04-02
KR101366259B1 (ko) 2014-02-20
JP2012052837A (ja) 2012-03-15
CN103109195B (zh) 2015-06-10
CN103109195A (zh) 2013-05-15
TWI432739B (zh) 2014-04-01
TW201209421A (en) 2012-03-01
KR20130029812A (ko) 2013-03-25

Similar Documents

Publication Publication Date Title
JP3488576B2 (ja) 光変流器
RU2677990C2 (ru) Оптический датчик с двулучепреломляющим измерительным spun-волокном
JPH10185961A (ja) 光変流器
US20130214765A1 (en) Multifunctional measuring device
ITMI981859A1 (it) Dispositivo ottico integrato per la misura di corrente
JP5461347B2 (ja) 電気機器用光変流器
SI9011362A (sl) Naprava z optičnim vlakonom za merjenje električnega toka
US8847084B2 (en) Insulating spacer with built-in optical fiber
WO2011078096A1 (ja) 単相用光変流器
ATE154443T1 (de) Strommessanordnung für eine kabelstrecke
JPH01270679A (ja) 配電線モニタリング装置
JP2000111586A (ja) 電流計測装置
KR102019187B1 (ko) 광섬유 기반 전력 계량용 광변성기 및 이의 동작 방법
JP5136896B2 (ja) センサファイバの巻き回し方向表示方法
JPH10142265A (ja) 光変流器
JPS60207071A (ja) ガス絶縁変流器
JPH01270678A (ja) 配電線モニタリング装置
JP2018179570A (ja) 電流センサ
JPS6246276A (ja) 磁界、電流測定装置
JPH10300796A (ja) 光電流センサ
JPS60207067A (ja) ガス絶縁3相変流器
JPH0546161B2 (ja)
JPH0650994A (ja) 電気機器の零相電流検出装置
JPS6396566A (ja) ガス絶縁変流器
JPH03225282A (ja) 光電流センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038831.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003308

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821542

Country of ref document: EP

Kind code of ref document: A1