WO2012026466A1 - 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法 - Google Patents

電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法 Download PDF

Info

Publication number
WO2012026466A1
WO2012026466A1 PCT/JP2011/068976 JP2011068976W WO2012026466A1 WO 2012026466 A1 WO2012026466 A1 WO 2012026466A1 JP 2011068976 W JP2011068976 W JP 2011068976W WO 2012026466 A1 WO2012026466 A1 WO 2012026466A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling agent
metal powder
heat conductive
electromagnetic wave
absorbing heat
Prior art date
Application number
PCT/JP2011/068976
Other languages
English (en)
French (fr)
Inventor
久村 達雄
佑介 久保
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to KR1020187003115A priority Critical patent/KR101914424B1/ko
Priority to CN201180040848.1A priority patent/CN103053230B/zh
Priority to KR1020137007004A priority patent/KR101827591B1/ko
Publication of WO2012026466A1 publication Critical patent/WO2012026466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/023Silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Definitions

  • the present invention relates to an electromagnetic wave absorptive heat conductive sheet having good thermal conductivity and electromagnetic wave suppression characteristics and a method for producing an electromagnetic wave absorptive heat conductive sheet.
  • a heat sink, a heat pipe, a heat sink, or the like made of a metal material having a high thermal conductivity such as copper or aluminum is widely used.
  • These heat dissipating parts having excellent thermal conductivity are arranged so as to be close to an electronic part such as a semiconductor package, which is a heat generating part in the electronic device, in order to achieve a heat dissipation effect or temperature relaxation in the device. Further, these heat dissipating parts having excellent thermal conductivity are arranged from the electronic part as the heat generating part to a low temperature place.
  • the heat generating part in the electronic device is an electronic component such as a semiconductor element having a high current density.
  • a high current density means a large electric field strength or magnetic field strength that can be a component of unwanted radiation.
  • a heat dissipating component made of metal is disposed in the vicinity of the electronic component, a harmonic component of an electric signal flowing through the electronic component may be picked up along with heat.
  • the heat dissipating part is made of a metal material, the heat dissipating part itself functions as an antenna for harmonic components or as a transmission path for harmonic noise components.
  • thermal conductive sheets contain a magnetic material in order to suppress the heat radiation component from acting as an antenna, that is, to cut off the coupling of the magnetic field.
  • a magnetic material having a high magnetic permeability such as ferrite in a polymer material such as silicone or acrylic, so that both heat conduction characteristics and electromagnetic wave suppression characteristics are obtained. The function is realized.
  • the thermal conductivity and electromagnetic wave suppression property (magnetic field decoupling effect) of the electromagnetic wave absorbing heat conductive sheet is also a factor of the material physical property value of each target powder. It is important to increase the filling amount of the target powder contained.
  • Patent Documents 1 to 4 a method of adding a powder surface treatment agent generally called a coupling agent is known.
  • Patent Document 1 describes a technique in which a silicone rubber is subjected to a surface treatment with a non-functional silane compound in order to improve soft ferrite filling properties and to have flexibility.
  • Patent Document 2 describes a technique for surface treatment with a titanate-based or aluminum-based coupling agent for a combination of silicone rubber and magnetic metal powder.
  • Patent Document 3 describes that a silane coupling agent having a specific configuration is effective by a combination of silicone rubber and oxide powder.
  • Patent Document 4 describes a technique in which 0.2 to 10% by weight of the silane coupling agent having 4 carbon atoms in the alkyl group directly bonded to the silicone element is described with respect to the oxide filler. Yes.
  • the present invention has been proposed in view of such a conventional situation, and an object of the present invention is to provide an electromagnetic wave-absorbing heat conductive sheet having good sheet flexibility and a method for producing the electromagnetic wave-absorbing heat conductive sheet.
  • the electromagnetic wave absorbing heat conductive sheet according to the present invention contains a silicone rubber, a coupling agent, and a magnetic metal powder surface-treated with the coupling agent, and the volume ratio of the magnetic metal powder is 50 to 80 vol%.
  • the coupling agent has a long-chain alkyl group having 10 to 18 carbon atoms as an organic functional group, and an amount of 0 necessary to form a monomolecular layer of the coupling agent on the surface of the magnetic metal powder. Contains 5 to 5 times the weight.
  • the electromagnetic wave absorbing heat conductive sheet according to the present invention contains silicone rubber, a coupling agent, and amorphous metal powder surface-treated with the coupling agent, and the volume ratio of the amorphous metal powder is 50 to 80 vol%.
  • the coupling agent has a methacryloxy group as an organic functional group and contains 0.5 to 5 times the weight necessary to form a monolayer of the coupling agent on the surface of the amorphous metal powder. Has been.
  • the method for producing an electromagnetic wave absorbing heat conductive sheet according to the present invention comprises mixing silicone rubber, a coupling agent having a long-chain alkyl group having 10 to 18 carbon atoms as an organic functional group, and magnetic metal powder and stirring. And a curing step in which the mixture stirred in the stirring step is molded into a sheet shape and cured, and in the stirring step, the magnetic metal powder has a volume ratio of 50 to 80 vol%. And 0.5 to 5 times the weight of the coupling agent necessary to form a monolayer of the coupling agent on the surface of the magnetic metal powder.
  • the method for producing an electromagnetic wave absorbing heat conductive sheet according to the present invention comprises mixing a silicone rubber, a coupling agent having a methacryloxy group as an organic functional group, and an amorphous metal powder, and stirring the mixed mixture.
  • a curing step in which the mixture stirred in the stirring step is molded into a sheet shape and cured, and in the stirring step, the amorphous metal powder is contained so that the volume ratio of the amorphous metal powder is 50 to 80 vol%,
  • a coupling agent having a weight 0.5 to 5 times the amount necessary for forming a monolayer of the coupling agent on the surface of the amorphous metal powder is contained.
  • the magnetic metal powder can be highly filled, the flexibility of the sheet can be improved.
  • FIG. 1 is a view showing an SEM image of an amorphous metal powder used in the electromagnetic wave absorbing heat conductive sheet according to the present embodiment.
  • FIG. 2 is a diagram showing an SEM image of the crystalline metal powder used in the electromagnetic wave absorbing heat conductive sheet according to the present embodiment.
  • the electromagnetic wave absorbing heat conductive sheet contains magnetic metal powder, a coupling agent, a heat conductive filler, and silicone rubber.
  • Magnetic metal powder As the magnetic metal powder, an electromagnetic wave absorbing material for absorbing electromagnetic waves emitted from the electronic component is used. As such a magnetic metal powder, an amorphous metal powder or a crystalline metal powder can be used. Examples of the amorphous metal powder include Fe—Si—B—Cr, Fe—Si—B, Co—Si—B, Co—Zr, Co—Nb, and Co—Ta. It is done. Examples of the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe -Ni-Si-Al-based materials can be used.
  • the crystalline metal powder is a microcrystalline metal powder obtained by adding a small amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder. May be used.
  • N nitrogen
  • C carbon
  • O oxygen
  • B boron
  • the magnetic metal powder a mixture of two or more kinds of different materials or different average particle diameters may be used.
  • the magnetic metal powder preferably has a spherical shape with a particle size of several ⁇ m to several tens of ⁇ m from the viewpoint of increasing the filling property.
  • a magnetic metal powder can be produced, for example, by an atomizing method.
  • the atomization method has the advantage that a spherical powder can be easily produced. It is a method of making a powder.
  • the cooling rate is preferably about 10 ⁇ 6 (K / s) in order to prevent the molten metal from crystallizing.
  • the surface of the amorphous metal powder can be made smooth as shown in FIG.
  • amorphous metal powder having a small surface irregularity and a small specific surface area is used as magnetic metal powder, and by using an optimal coupling agent as described in detail later, even a very small amount of coupling agent can be used with silicone rubber.
  • the affinity can be improved and the flexibility of the silicone molded product, that is, the sheet can be improved. Further, by using such an amorphous metal powder, it is possible to prevent the flexibility of the sheet from deteriorating when the sheet is stored for a long time without using an excessive coupling agent.
  • an Fe—Si alloy powder which is an example of a crystalline metal
  • the Fe—Si alloy powder is formed on the surface while exhibiting a spherical shape as shown in FIG. 2, for example. Minute irregularities are produced, and the specific surface area is increased.
  • seat can be improved similarly to when amorphous metal powder is used as magnetic metal powder.
  • the magnetic metal powder has a volume ratio of 50 to 50 with respect to the total amount of the silicone rubber composition containing the silicone rubber, the coupling agent, the magnetic metal powder, and the heat conductive filler (hereinafter simply referred to as “the total amount of the composition”). It is preferable that it is 80 vol%.
  • the volume ratio of the magnetic metal powder is 50 vol% or more with respect to the total amount of the composition, the heat conduction characteristics and the electromagnetic wave suppression characteristics can be improved.
  • seat can be made favorable by the volume ratio of magnetic metal powder being 80 vol% or less with respect to the composition whole quantity.
  • the coupling agent is used for the purpose of improving the wettability between the magnetic metal powder and the silicone rubber, improving the filling property of the magnetic metal powder, and improving the flexibility of the sheet.
  • a silane coupling agent represented by the general formula X—Si—ME n (OR) 3-n (n 0, 1), or a general formula X—R—Si— (OR)
  • X represents an organic functional group
  • ME represents a methyl group
  • OR represents a hydrolyzable group
  • R represents an alkyl group.
  • the wettability between the magnetic metal powder and the silicone rubber is increased by setting the long-chain alkyl group to 10 or more carbon atoms. And the flexibility of the sheet can be improved. Moreover, by making the carbon number of the long chain alkyl group 18 or less, the boiling point of the long chain alkyl group becomes too high, the structure of the silane coupling agent becomes unstable, and the wettability between the magnetic metal powder and the silicone rubber is improved. It can be prevented from becoming worse.
  • Examples of the silane coupling agent having a long-chain alkyl group having 10 to 18 carbon atoms as an organic functional group include a long-chain alkyl group having 10 to 18 carbon atoms as an organic functional group and hydrolyzing a methoxy group or an ethoxy group. What has as a decomposition group is preferable.
  • n- decyl trimethoxysilane n-C 10 H 21 Si (OCH 3) 3
  • n- decyl methyl dimethoxy silane n-C 10 H 21 SiCH 3 (OCH 3) 2
  • octadecyl tri And ethoxysilane CH 3 (CH 2 ) 17 Si (OCH 2 CH 3 ) 3
  • octadecylmethyldimethoxysilane CH 3 (CH 2 ) 17 SiCH 3 (OCH 3 ) 2
  • examples of the silane coupling agent having a methacryloxy group as an organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and the like.
  • the amount of the silane coupling agent used is preferably changed according to the specific surface area of the magnetic metal powder and the molecular weight of the silane coupling agent. In order to form a monomolecular layer of the silane coupling agent on the surface of the magnetic metal powder.
  • the weight is preferably 0.5 to 5 times the necessary amount added (hereinafter referred to as “monomolecular layer formation necessary amount”).
  • the hardness of the sheet refers to a value measured according to JISK6301A, for example.
  • the amount of monolayer formation necessary for the silane coupling agent is obtained, for example, by the following equation (1).
  • Monolayer formation required amount (g) weight of target filler (g) ⁇ specific surface area of target filler (m 2 / g) / minimum coating area of silane coupling agent (m 2 / g) (1)
  • a target filler shows the magnetic metal powder mentioned above or a heat conductive filler.
  • an amorphous metal powder having a small surface irregularity and a small specific surface area is used as a magnetic metal powder as shown in FIG. 1, a very small amount of silane coupling can be achieved by using an optimal silane coupling agent.
  • the agent can also improve the affinity with the silicone rubber and improve the flexibility of the sheet that is a silicone molded product.
  • a silane coupling agent having a methacloxy group is used as the magnetic metal powder.
  • the amount of the Fe—Si alloy powder is decreased, and the amount of the silane coupling agent is adjusted to correspond to the increase in the specific surface area. Is preferably increased. Thereby, the softness
  • the electromagnetic wave absorbing heat conductive sheet according to the present embodiment may contain a heat conductive filler in order to further improve the heat conductivity of the sheet.
  • a heat conductive filler heat conductive particles having higher heat conductivity than the magnetic metal particles, for example, high heat conductive ceramics, powder in which an insulator is coated on copper, aluminum, or the like can be used.
  • the high thermal conductive ceramic include alumina, boron nitride, silicon nitride, aluminum nitride, and silicon carbide.
  • the heat conductive filler may have the same particle size as the magnetic metal powder, but the particle size is smaller than that of the magnetic metal powder from the viewpoint of further improving the filling rate of the magnetic metal powder in the sheet. Those are preferred. For example, it is preferable to use a thermally conductive filler having an average particle size of about 1/3 to 1/30 of the magnetic metal powder.
  • the heat conductive filler preferably has a volume ratio of 30 vol% or less with respect to the total amount of the composition. Thereby, the thermal conductivity of the sheet can be improved without impairing the flexibility of the sheet.
  • the heat conductive filler is not limited to those described above, and any material having a higher thermal conductivity than the magnetic metal powder may be used, and in particular, if the average particle size is smaller than that of the magnetic metal powder. , High filling can be realized.
  • the silicone rubber is not particularly limited, and for example, a two-component or one-component liquid type silicone gel, silicone rubber, heat vulcanization type silicone rubber, or the like can be used.
  • the electromagnetic wave absorbing heat conductive sheet according to the present embodiment includes, for example, a silicone rubber, a silane coupling agent, a magnetic metal powder, and a heat conductive filler, and the mixture is stirred to obtain a silane coupling agent. And a stirring step of surface-treating the magnetic metal powder, and a curing step of curing the stirred mixture into a sheet shape.
  • the magnetic metal powder is contained so that the volume ratio of the magnetic metal powder is 50 to 80 vol% with respect to the total amount of the composition, and the silane coupling agent monomolecule is formed on the surface of the magnetic metal powder. It is preferable to contain a silane coupling agent having a weight 0.5 to 5 times the amount necessary for forming the layer.
  • the stirring step it is preferable to stir the mixture of the silicone rubber, the silane coupling agent, the magnetic metal powder, and the heat conductive filler in a vacuum state using, for example, a vacuum dryer.
  • a direct treatment method or an integral blend method is used as a coupling treatment method to the magnetic metal powder or the heat conductive filler.
  • the direct treatment method include a dry treatment method and a wet treatment method.
  • the dry treatment method is a method in which a silane coupling agent is diluted with water or an aqueous alcohol solution, and is dropped or sprayed onto a target powder and stirred.
  • the wet processing method is a method in which a silane coupling agent stock solution is added to a slurry obtained by adding water or an aqueous alcohol solution to a slurry and the mixture is stirred.
  • the integral blend method is a method in which a silane coupling agent, silicone rubber, and a target powder are added and processed at a time.
  • the stirring step particularly when the silane coupling agent and the magnetic metal powder or the heat conductive filler are familiar, a method of directly dropping the stock solution of the silane coupling agent onto the target powder, It is preferable that the coupling agent treatment is performed in advance and other materials are added sequentially or the integral blend method is used.
  • the optimum silane coupling agent and the coupling treatment method differ depending on the type and particle size of the magnetic metal powder and the thermally conductive filler, so the silane coupling agent and the coupling treatment method are combined. It is preferable.
  • the mixture stirred in the stirring step is molded into a sheet shape and cured.
  • the electromagnetic wave-absorbing heat conductive sheet can be produced by molding the mixture stirred in the stirring step into a sheet shape of a predetermined size and curing it in an environment of 100 ° C. for 30 minutes. it can.
  • each silane coupling agent preferably has a long-chain alkyl group having an average carbon number of 10 to 18 as an organic functional group.
  • the coupling treatment is performed on the thermally conductive filler, but the present invention is not limited to this example, and the coupling treatment on the thermally conductive filler may be omitted.
  • silane coupling agent used for the magnetic metal powder and the heat conductive filler has been described.
  • the present invention is not limited to this example.
  • a silane coupling agent different from the silane coupling agent used may be used.
  • the electromagnetic wave absorbing heat conductive sheet is manufactured using the magnetic metal powder, the heat conductive filler, the silane coupling agent, and the silicone rubber.
  • a flame retardant, a colorant, and the like for suppressing combustion may be further included within the range.
  • Example 1 In Example 1, less than 1% of an organopolysiloxane containing an alkenyl group only at both ends of a molecular chain, a methylhydrogen polysiloxane having a hydrogen atom directly bonded to a silicon atom only in a side chain, and a platinum group addition reaction catalyst The contained silicone mixture, magnetic metal powder, and silane coupling agent were mixed and stirred in a vacuum dryer.
  • the spherical amorphous metal powder was blended so that the volume ratio was 70 vol% with respect to the total amount of the composition.
  • As the magnetic metal powder an Fe—Si—B-based spherical amorphous metal powder having an average particle size of 25 ⁇ m was used.
  • As the silane coupling agent 0.06 wt% of 3-methacryloxypropyltrimethoxysilane was used with respect to the weight of the spherical amorphous metal powder.
  • stirred mixture was molded into a 2 mm sheet shape and cured in an environment of 100 ° C. for 30 minutes to prepare an electromagnetic wave absorbing heat conductive sheet.
  • Example 2 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that 3-methacryloxypropyltriethoxysilane was used as the silane coupling agent.
  • Example 3 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that n-decyltrimethoxysilane was used as the silane coupling agent.
  • Example 4 an electromagnetic wave absorbing heat conductive sheet was used under the same conditions as in Example 1 except that an equivalent blend of n-decyltrimethoxysilane and dimethoxymethyloctadecylsilane was used as the silane coupling agent. Was made.
  • Example 5 As a magnetic metal powder, an Fe—Si alloy powder having an average particle size of 35 ⁇ m was blended so that the volume ratio was 60 vol% with respect to the total amount of the composition. An electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that 0.08 wt% of n-decyltrimethoxysilane was used as a silane coupling agent.
  • Example 6 In Example 6, the amorphous metal powder was mixed as the magnetic metal powder so that the volume ratio was 60 vol% with respect to the total amount of the composition, and the silane coupling agent was 0.09 wt% with respect to the weight of the amorphous metal powder. Electromagnetic wave absorptivity under the same conditions as in Example 1 except that n-decyltrimethoxysilane was used and that alumina powder having an average particle size of 5 ⁇ m was blended as a heat conductive filler in an amount of 6 vol% based on the total amount of the composition. A heat conductive sheet was produced.
  • Example 7 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 3 except that a spherical amorphous magnetic powder having an average particle diameter of 25 ⁇ m was used as the magnetic metal powder.
  • Example 8 is the same as Example 1 except that a spherical amorphous magnetic powder having an average particle diameter of 25 ⁇ m is used as the magnetic metal powder, and n-decylmethyldimethoxysilane is used as the silane coupling agent.
  • An electromagnetic wave absorbing heat conductive sheet was produced under the conditions described above.
  • Example 9 is the same as Example 1 except that a spherical amorphous magnetic powder having an average particle size of 25 ⁇ m is used as the magnetic metal powder, and n-octadecylmethyldimethoxysilane is used as the silane coupling agent.
  • An electromagnetic wave absorbing heat conductive sheet was produced under the conditions described above.
  • Example 10 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 5.
  • Example 11 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 5 except that n-decylmethyldimethoxysilane was used as the silane coupling agent.
  • Example 12 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 5 except that n-octaldecylmethyldimethoxysilane was used as the silane coupling agent.
  • Comparative Example 1 An electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that n-octyltriethoxysilane was used as the silane coupling agent.
  • Comparative Example 2 An electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that vinyltriethoxysilane was used as the silane coupling agent.
  • Comparative Example 3 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that vinyltrimethoxysilane was used as the silane coupling agent.
  • Comparative Example 4 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that alkylalkoxysiloxane was used as the silane coupling agent.
  • Comparative Example 5 (Comparative Example 5)
  • n-octyltriethoxysilane was used as the silane coupling agent
  • the Fe—Si alloy powder having an average particle size of 35 ⁇ m as the magnetic metal powder was 60 vol% with respect to the total amount of the composition.
  • An electromagnetic wave absorptive heat conductive sheet was produced under the same conditions as in Example 1 except that it was blended as described above.
  • Comparative Example 6 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that no silane coupling agent was used.
  • Comparative Example 7 (Comparative Example 7) In Comparative Example 7, a silane coupling agent was not used, and a Fe—Si alloy powder having an average particle size of 35 ⁇ m as a magnetic metal powder was blended so that the volume ratio was 60 vol% with respect to the total amount of the composition. An electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1.
  • Comparative Example 8 alumina powder having an average particle size of 3 ⁇ m as a heat conductive filler was blended so that the volume ratio was 6 vol% with respect to the total amount of the composition, and the weight of the spherical amorphous metal powder was 0.00.
  • An electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that 1 wt% of n-octyltriethoxysilane was used as a silane coupling agent.
  • Comparative Example 9 In Comparative Example 9, electromagnetic wave absorption was performed under the same conditions as in Comparative Example 8 except that 0.27 wt% of n-octyltriethoxysilane was used as the silane coupling agent with respect to the weight of the spherical amorphous metal powder. A heat conductive sheet was produced.
  • Comparative Example 10 In Comparative Example 10, electromagnetic wave absorption was performed under the same conditions as in Comparative Example 8 except that 0.5 wt% of n-octyltriethoxysilane was used as the silane coupling agent with respect to the weight of the spherical amorphous metal powder. A heat conductive sheet was produced.
  • Comparative Example 11 In Comparative Example 11, the electromagnetic wave absorptivity was the same as in Comparative Example 8 except that 0.9 wt% of n-octyltriethoxysilane was used as the silane coupling agent with respect to the weight of the spherical amorphous metal powder. A heat conductive sheet was produced.
  • Comparative Example 12 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 8 except that no silane coupling agent was used.
  • Comparative Example 13 In Comparative Example 13, instead of the magnetic metal powder, spherical alumina powder having an average particle diameter of 5 ⁇ m was blended so that the volume ratio was 65 vol% with respect to the total amount of the composition, with respect to the weight of the spherical alumina powder.
  • An electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Example 1 except that 0.09 wt% vinyltriethoxysilane was used as the silane coupling agent.
  • Comparative Example 14 the electromagnetic wave absorptivity was the same as Comparative Example 13 except that 0.09 wt% of 3-methacryloxypropyltrimethoxysilane was used as the silane coupling agent with respect to the weight of the spherical alumina powder. A heat conductive sheet was produced.
  • Comparative Example 15 In Comparative Example 15, the electromagnetic wave absorptivity was the same as in Comparative Example 13 except that 0.09 wt% of 3-methacryloxypropyltriethoxysilane was used as a silane coupling agent with respect to the weight of the spherical alumina powder. A heat conductive sheet was produced.
  • Comparative Example 16 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 13 except that 0.09 wt% alkylalkoxysiloxane was used as the silane coupling agent with respect to the weight of the spherical alumina powder. did.
  • Comparative Example 17 electromagnetic wave absorbing heat conduction was performed under the same conditions as Comparative Example 13, except that 0.09 wt% of n-decyltrimethoxysilane was used as a silane coupling agent with respect to the weight of the spherical alumina powder. A sheet was produced.
  • Comparative Example 18 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as Comparative Example 13 except that no silane coupling agent was used.
  • Comparative Example 19 an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 1 except that a spherical amorphous magnetic powder having an average particle diameter of 25 ⁇ m was used as the magnetic metal powder.
  • Comparative Example 20 In Comparative Example 20, an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 6.
  • Comparative Example 21 In Comparative Example 21, an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 5.
  • Comparative Example 22 In Comparative Example 22, an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 7.
  • Comparative Example 23 In Comparative Example 23, an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 18.
  • Comparative Example 24 electromagnetic wave absorbing heat conduction was performed under the same conditions as Comparative Example 13, except that 0.09 wt% of n-octyltriethoxysilane was used as the silane coupling agent with respect to the weight of the spherical alumina powder. A sheet was produced.
  • Comparative Example 25 In Comparative Example 25, an electromagnetic wave absorbing heat conductive sheet was produced under the same conditions as in Comparative Example 17.
  • Comparative Example 26 electromagnetic wave absorbing heat conduction was performed under the same conditions as in Comparative Example 13, except that 0.09 wt% of n-decylmethyldimethoxysilane was used as a silane coupling agent with respect to the weight of the spherical alumina powder. A sheet was produced.
  • Comparative Example 27 electromagnetic wave absorbing heat conduction was performed under the same conditions as Comparative Example 13, except that 0.09 wt% of n-octadecylmethyldimethoxysilane was used as a silane coupling agent with respect to the weight of the spherical alumina powder. A sheet was produced.
  • Example 1 to 12 and Comparative Examples 1 to 27 are summarized in Tables 1 to 5.
  • the samples of each electromagnetic wave absorbing heat conductive sheet were subjected to aging treatment at 125 ° C. for 300 hours.
  • the hardness of the sheet was obtained using an ASKER rubber hardness meter C type and a constant pressure loader manufactured by ASKER, and the sheet was measured by overlapping the sheets into a shape of 30 ⁇ 50 ⁇ 10 mm.
  • the magnetic metal powder satisfies the volume ratio of 50 to 80 vol% with respect to the total amount of the composition.
  • the silane coupling agent has a long-chain alkyl group having 10 to 18 carbon atoms or an average carbon number, or a methacryloxy group as an organic functional group. Further, the silane coupling agent contains 0.5 to 5 times the weight necessary for forming a monomolecular layer of the silane coupling agent on the surface of the magnetic metal powder. Therefore, the electromagnetic wave absorbing heat conductive sheets obtained in Examples 1 to 6 were more flexible than the electromagnetic wave absorbing heat conductive sheets obtained in Comparative Examples 6 and 7.
  • the electromagnetic wave-absorbing heat conductive sheet obtained in Example 6 had good sheet flexibility before the aging test, and after the aging test, the increase in sheet hardness was suppressed, and the flexibility was good. It was.
  • the sheet In the electromagnetic wave absorbing heat conductive sheets obtained in Comparative Examples 1 to 5, since the silane coupling agent does not have a long-chain alkyl group having 10 to 18 carbon atoms as an organic functional group, the sheet has flexibility. It was not good. Moreover, since the electromagnetic wave absorptive heat conductive sheet obtained in Comparative Example 6 and Comparative Example 7 did not contain a silane coupling agent, the flexibility of the sheet was not good.
  • Comparative Examples 8 to 11 since a silane coupling agent having a long-chain alkyl group having 10 to 18 carbon atoms as an organic functional group is not used for the spherical amorphous metal powder, sheet flexibility is improved and long-term storage is achieved. It is not possible to maintain the flexibility at the same time, and no improvement in characteristics is observed as compared with Comparative Example 12 in which no coupling agent is used.
  • the electromagnetic wave absorbing heat conductive sheets obtained in Comparative Examples 13 to 17 contain 0.5 to 5 times the weight of the silane coupling agent as required for monomolecular layer formation, but do not contain magnetic metal powder. Therefore, the flexibility of the sheet was not good.
  • the amorphous metal powder or Fe—Si alloy powder that is a magnetic metal powder satisfies a volume ratio of 50 to 80 vol% with respect to the total amount of the composition.
  • the silane coupling agent has a long-chain alkyl group having 10 to 18 carbon atoms or an average carbon number as an organic functional group. Further, the silane coupling agent contains 0.5 to 5 times the weight necessary for forming a monomolecular layer of the silane coupling agent on the surface of the magnetic metal powder. Therefore, the electromagnetic wave absorbing heat conductive sheets obtained in Examples 7 to 12 were more flexible than the electromagnetic wave absorbing heat conductive sheets obtained in Comparative Example 20 or Comparative Example 22.
  • the electromagnetic wave-absorbing heat conductive sheets obtained in Comparative Examples 24 to 27 contain 0.5 to 5 times the weight of the silane coupling agent as required for monomolecular layer formation, but do not contain magnetic metal powder. Therefore, the flexibility of the sheet was not good.

Abstract

 シートの柔軟性が良好である電磁波吸収性熱伝導シートを提供する。シリコーンゴムと、カップリング剤と、カップリング剤で表面処理された磁性金属粉末とを含有し、磁性金属粉末の体積率が50~80vol%であり、カップリング剤は、炭素数が10~18の長鎖アルキル基を有機官能基として有し、かつ、磁性金属粉末の表面にカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている。

Description

電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法
 本発明は、熱伝導性や電磁波抑制特性が良好な電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法に関する。
 本出願は、日本国において2010年8月23日に出願された日本特許出願番号2010-185890を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年、電子機器は、小型化の傾向をたどる一方、アプリケーションの多様性のために電力消費量をそれほど変化させることができないため、機器内における放熱対策がより一層重要視されている。
 上述した電子機器における放熱対策として、銅やアルミなどといった熱伝導率の高い金属材料で作製された放熱板やヒートパイプ、あるいはヒートシンクなどが広く利用されている。これらの熱伝導性に優れた放熱部品は、放熱効果又は機器内の温度緩和を図るため、電子機器内における発熱部である半導体パッケージなどの電子部品に近接するようにして配置される。また、これらの熱伝導性に優れた放熱部品は、発熱部である電子部品から低温場所へ亘って配置される。
 電子機器内における発熱部は、電流密度が高い半導体素子などの電子部品である。電流密度が高いということは、不要輻射の成分となりうる電界強度又は磁界強度が大きい。このため、金属で作製された放熱部品を電子部品の近辺に配置すると、熱とともに電子部品内を流れる電気信号の高調波成分をも拾ってしまうことがある。具体的には、放熱部品は、金属材料で作製されているため、それ自体が高調波成分のアンテナとして働いてしまったり、高調波ノイズ成分の伝達経路として働いてしまう。
 このような背景により、熱伝導性シートは、放熱部品がアンテナとして働いてしまうのを抑制するため、すなわち、磁界のカップリングを断ち切るために、磁性材料を含有するものがある。このような電磁波吸収性熱伝導シートは、例えば、フェライトなどの高透磁率を有する磁性材料を、シリコーン系やアクリル系などの高分子材に含有させることにより、熱伝導特性と電磁波抑制特性の両者の機能を実現している。
 ところで、電磁波吸収性熱伝導シートの熱伝導性及び電磁波抑制特性(磁界のデカップリング効果)は、それぞれの目的粉末の材料物性値も因子の一つであるが、母材となる高分子材に含まれる目的粉末の充填量を大きくすることが重要となる。
 ここで、目的粉末と高分子材との濡れ性が悪いと目的粉末を高充填できず、成型品の柔軟性も悪化してしまう。そこで、母材と粉末との濡れ性を改善するために、一般にカップリング剤と称する粉末の表面処理剤を加える方法が知られている(特許文献1~特許文献4)。
 特許文献1には、シリコーンゴムに対して、ソフトフェライトの充填性を改善して柔軟性を持たせるために、無官能基のシラン化合物で表面処理をする技術が記載されている。また、特許文献2には、シリコーンゴムと、磁性金属粉末との組み合わせには、チタネート系又はアルミニウム系のカップリング剤で表面処理する技術が記載されている。さらに、特許文献3には、シリコーンゴムと酸化物粉末との組み合わせで、特定構成のシランカップリング剤が効果的であることが記載されている。さらにまた、特許文献4には、酸化物フィラーに対して、シリコーン元素に直接結合するアルキル基の炭素数が4個のシランカップリング剤を0.2~10重量%とする技術が記載されている。
 しかしながら、粉末の表面改質を目的としたカップリング剤は、必要以上に添加すると、時間の経過に伴って未反応部分で反応が緩やかに進行し、長時間経過後にシリコーン成型品であるシートの柔軟性が悪化してしまう。
特開2005-286190号公報 特許第3719382 特許第3290127 特許第3535805
 本発明は、このような従来の実情に鑑みて提案されたものであり、シートの柔軟性が良好である電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法を提供することを目的とする。
 本発明に係る電磁波吸収性熱伝導シートは、シリコーンゴムと、カップリング剤と、カップリング剤で表面処理された磁性金属粉末とを含有し、磁性金属粉末の体積率が50~80vol%であり、カップリング剤は、炭素数が10~18の長鎖アルキル基を有機官能基として有し、かつ、磁性金属粉末の表面にカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている。
 本発明に係る電磁波吸収性熱伝導シートは、シリコーンゴムと、カップリング剤と、カップリング剤で表面処理されたアモルファス金属粉末とを含有し、アモルファス金属粉末の体積率が50~80vol%であり、カップリング剤は、メタクリロキシ基を有機官能基として有し、かつ、アモルファス金属粉末の表面にカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている。
 本発明に係る電磁波吸収性熱伝導シートの製造方法は、シリコーンゴムと、炭素数が10~18の長鎖アルキル基を有機官能基として有するカップリング剤と、磁性金属粉末とを混合して攪拌する攪拌工程と、攪拌工程で攪拌された混合物をシート形状に成型して硬化させる硬化工程とを有し、攪拌工程では、磁性金属粉末の体積率が50~80vol%となるように磁性金属粉末を含有させるとともに、磁性金属粉末の表面にカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量のカップリング剤を含有させる。
 本発明に係る電磁波吸収性熱伝導シートの製造方法は、シリコーンゴムと、メタクリロキシ基を有機官能基として有するカップリング剤と、アモルファス金属粉末とを混合し、混合した混合物を攪拌する攪拌工程と、攪拌工程で攪拌された混合物をシート形状に成型して硬化させる硬化工程とを有し、攪拌工程では、アモルファス金属粉末の体積率が50~80vol%となるようにアモルファス金属粉末を含有させるとともに、アモルファス金属粉末の表面にカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量のカップリング剤を含有させる。
 本発明によれば、磁性金属粉末を高充填することができるため、シートの柔軟性を良好にすることができる。
図1は、本実施の形態に係る電磁波吸収性熱伝導シートに用いられるアモルファス金属粉末のSEM画像を示す図である。 図2は、本実施の形態に係る電磁波吸収性熱伝導シートに用いられる結晶質の金属粉末のSEM画像を示す図である。
 以下、本発明を適用した電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法の具体的な実施の形態の一例について、以下の順序で説明する。
1.電磁波吸収性熱伝導シート
1-1.磁性金属粉末
1-2.カップリング剤
1-3.熱伝導性充填剤
1-4.シリコーンゴム
2.電磁波吸収性熱伝導シートの製造方法
3.他の実施の形態
4.実施例
 (1.電磁波吸収性熱伝導シート)
 本実施の形態に係る電磁波吸収性熱伝導シートは、磁性金属粉末と、カップリング剤と、熱伝導性充填剤と、シリコーンゴムとを含有する。
 (1-1.磁性金属粉末)
 磁性金属粉末としては、電子部品から放出される電磁波を吸収するための電磁波吸収材料が用いられる。このような磁性金属粉末としては、アモルファス金属粉末や、結晶質の金属粉末を用いることができる。アモルファス金属粉末としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられる。結晶質の金属粉末としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。また、結晶質の金属粉末としては、結晶質の金属粉末に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉末を用いてもよい。また、磁性金属粉末としては、材料が異なるものや、平均粒径が異なるものを2種以上混合したものを用いてもよい。
 磁性金属粉末としては、充填性を高くする観点から、粒径が数μm~数十μmであって、球状であるものが好ましい。このような磁性金属粉末は、例えばアトマイズ法により製造することができる。アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。アトマイズ法により磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を10―6(K/s)程度にすることが好ましい。
 上述したアトマイズ法により、アモルファス金属粉末を製造した場合には、例えば図1に示すように、アモルファス金属粉末の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス金属粉末を磁性金属粉末として用いるとともに、後に詳述するように最適なカップリング剤を用いることにより、ごく少量のカップリング剤でもシリコーンゴムとの親和性を改善し、シリコーン成型品、すなわち、シートの柔軟性を向上させることができる。また、このようなアモルファス金属粉末を用いることにより、過度にカップリング剤を用いることなく、シートを長期保存した場合において、シートの柔軟性が劣化してしまうのを防止することができる。
 また、上述したアトマイズ法により、結晶質の金属の一例であるFe-Si合金粉末を製造した場合には、Fe-Si合金粉末は、例えば図2に示すように、球状を呈しながらも表面に微小な凹凸を生じ、比表面積が大きくなる。このようなFe-Si合金粉末を磁性金属粉末として用いる場合には、Fe-Si合金粉末の充填量を減らし、比表面積の増加に対応するようにカップリング剤の量を増やすことが好ましい。これにより、アモルファス金属粉末を磁性金属粉末として用いたときと同様に、シートの柔軟性を向上させることができる。
 磁性金属粉末は、シリコーンゴムとカップリング剤と磁性金属粉末と熱伝導性充填剤とを含有するシリコーンゴム組成物全量(以下、単に「組成物全量」という)に対して、体積率が50~80vol%であることが好ましい。磁性金属粉末の体積率を組成物全量に対して50vol%以上とすることにより、熱伝導特性と電磁波抑制特性とを良好にすることができる。また、磁性金属粉末の体積率を組成物全量に対して80vol%以下とすることにより、シートの柔軟性を良好にすることができる。
 (1-2.カップリング剤)
 カップリング剤は、磁性金属粉末とシリコーンゴムとの濡れ性を良好にして磁性金属粉末の充填性を良好とし、シートの柔軟性を良好にする目的で用いられる。カップリング剤としては、例えば、一般式X-Si-ME(OR)3-n(n=0、1)で表されるシランカップリング剤や、一般式X-R-Si-(OR)3-n(n=0、1)で表されるシランカップリング剤を用いることができる。これらの一般式において、「X」は有機官能基を示し、「ME」はメチル基を示し、「OR」は加水分解基を示し、「R」はアルキル基を示している。上記一般式X-Si-ME(OR)3-nにおいて、n=1のときの加水分解基としては、例えばトリメトキシ基やトリエトキシ基が挙げられ、n=2のときの加水分解基としては、例えばメチルジメトキシ基やメチルジエトキシ基が挙げられる。
 一般式X-Si-ME(OR)3-n(n=0、1)で表されるシランカップリング剤としては、炭素数10~18の長鎖アルキル基を有機官能基として有するものが好ましい。また、一般式X-R-Si-(OR)3-n(n=0、1)で表されるシランカップリング剤としては、メタクロキシ基を有機官能基として有するものが好ましい。このようなシランカップリング剤を用いることにより、磁性金属粉末とシリコーンゴムとの濡れ性を良好にして磁性金属粉末の充填性を良好とし、シートの柔軟性を良好にすることができる。ここで、炭素数10~18の長鎖アルキル基を有機官能基として有するシランカップリング剤において、長鎖アルキル基の炭素数を10以上とすることにより、磁性金属粉末とシリコーンゴムとの濡れ性を良好にしてシートの柔軟性を向上させることができる。また、長鎖アルキル基の炭素数を18以下とすることにより、長鎖アルキル基の沸点が高くなりすぎてシランカップリング剤の構造が不安定となり、磁性金属粉末とシリコーンゴムとの濡れ性が悪くなることを防止することができる。
 炭素数10~18の長鎖アルキル基を有機官能基として有するシランカップリング剤としては、例えば、炭素数10~18の長鎖アルキル基を有機官能基として有するとともに、メトキシ基やエトキシ基を加水分解基として有するものが好ましい。具体的には、n-デシルトリメトキシシラン(n-C1021Si(OCH)、n-デシルメチルジメトキシシラン(n-C1021SiCH(OCH)、オクタデシルトリエトキシシラン(CH(CH17Si(OCHCH)、オクタデシルメチルジメトキシシラン(CH(CH17SiCH(OCH)等が挙げられる。
 また、メタクロキシ基を有機官能基として有するシランカップリング剤としては、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等が挙げられる。
 シランカップリング剤の使用量は、磁性金属粉末の比表面積と、シランカップリング剤の分子量とによって変化させることが好ましく、磁性金属粉末の表面にシランカップリング剤の単分子層を形成するのに必要な添加量(以下、「単分子層形成必要量」という)の0.5~5倍の重量とすることが好ましい。シランカップリング剤の量を単分子層形成必要量の0.5倍以上とすることにより、シランカップリング剤による表面処理効果、すなわち、磁性金属粉末とシリコーンゴムとの濡れ性の効果が薄れるのを防止することができる。また、シランカップリング剤の量を単分子層形成必要量の5倍以下とすることにより、シートを長期保存した場合に、シランカップリング剤の未反応部での反応が進行して、シートの硬度が増加してしまうことを防止することができる。すなわち、シートの柔軟性を長期に亘って良好に維持することができる。ここで、シートの硬度とは、例えば、JISK6301Aに準拠して測定した値をいう。
 シランカップリング剤の単分子層形成必要量は、例えば、下記(1)式により求められる。
単分子層形成必要量(g)=対象フィラーの重量(g)×対象フィラーの比表面積(m/g)/シランカップリング剤の最小被覆面積(m/g)(1)
 上記(1)式において、対象フィラーとは、上述した磁性金属粉末又は熱伝導性充填剤のことを示す。また、(1)式において、シランカップリング剤の最小被覆面積は、次の(2)式により求めることができる。
最小被覆面積(m/g)=6.02×1023×13×10-20/シランカップリング剤の分子量    (2)
 上述の如く、図1に示すように表面凹凸が少なく、比表面積が小さいアモルファス金属粉末を磁性金属粉末として用いた場合には、最適なシランカップリング剤を用いることにより、ごく少量のシランカップリング剤でもシリコーンゴムとの親和性を改善し、シリコーン成型品であるシートの柔軟性を向上させることができる。例えば、比表面積が小さいアモルファス金属粉末を磁性金属粉末として用いた場合には、メタクロキシ基を有機官能基として有するシランカップリング剤を用いることが好ましい。
 また、図2に示すようにFe-Si合金粉末を磁性金属粉末として用いた場合には、Fe-Si合金粉末の充填量を減らし、比表面積の増加に対応するようにシランカップリング剤の量を増やすことが好ましい。これにより、アモルファス金属粉末を磁性金属粉末として用いたときと同様に、シートの柔軟性を向上させることができる。
 (1-3.熱伝導性充填剤)
 本実施の形態に係る電磁波吸収性熱伝導シートは、シートの熱伝導率をより向上させるために、熱伝導性充填剤を含有してもよい。熱伝導性充填剤としては、磁性金属粒子よりも熱伝導率が高い熱伝導性粒子、例えば、高熱伝導性セラミックスや、銅やアルミニウムなどに絶縁体をコーティングした粉末等を用いることができる。高熱伝導性セラミックスとしては、アルミナ、窒化ホウ素、窒化珪素、窒化アルミニウム、炭化珪素等が挙げられる。
 熱伝導性充填剤は、磁性金属粉末と粒径が同程度のものを用いてもよいが、シート中における磁性金属粉末の充填率をさらに向上させる観点から、磁性金属粉末よりも粒径が小さいものが好ましい。例えば、熱伝導性充填剤は、平均粒径が、磁性金属粉末に対して1/3~1/30程度のものを用いることが好ましい。
 また、熱伝導性充填剤は、体積率が組成物全量に対して30vol%以下であることが好ましい。これにより、シートの柔軟性を損なわずに、シートの熱伝導率を向上させることができる。
 また、熱伝導性充填剤は、上述したものに限定されず、磁性金属粉末よりも熱伝導率が高い材料であればよく、特に、平均粒径が磁性金属粉末に比べて小さいものであれば、高充填化を実現することができる。
 (1-4.シリコーンゴム)
 シリコーンゴムとしては、特に限定されず、例えば二液型や一液型の液状タイプのシリコーンゲルやシリコーンゴム、熱加硫型のシリコーンゴム等を使用することができる。
 (2.電磁波吸収性熱伝導シートの製造方法)
 本実施の形態に係る電磁波吸収性熱伝導シートは、例えば、シリコーンゴムと、シランカップリング剤と、磁性金属粉末と、熱伝導性充填物とを混合し、混合物を攪拌させ、シランカップリング剤で磁性金属粉末を表面処理する攪拌工程と、攪拌された混合物をシート形状に成型して硬化させる硬化工程とを有する。
 攪拌工程において、上述の如く、磁性金属粉末の体積率が組成物全量に対して50~80vol%となるように磁性金属粉末を含有させるとともに、磁性金属粉末の表面にシランカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量のシランカップリング剤を含有させることが好ましい。
 また、攪拌工程において、シリコーンゴムと、シランカップリング剤と、磁性金属粉末と、熱伝導性充填物との混合物の攪拌は、例えば、真空乾燥機を用いて真空状態で行うことが好ましい。
 攪拌工程において、磁性金属粉末や熱伝導性充填物へのカップリング処理方法としては、例えば、直接処理法やインテグラルブレンド法が用いられる。直接処理法としては、例えば、乾式処理法や湿式処理法が挙げられる。乾式処理法とは、シランカップリング剤を水又はアルコール水溶液で希釈した状態で、対象粉末に滴下やスプレー噴霧して攪拌する方法である。湿式処理法とは、対象粉末を水又はアルコール水溶液を加えてスラリー状にしたものに、シランカップリング剤原液を添加して攪拌する方法である。インテグラルブレンド法とは、シランカップリング剤と、シリコーンゴムと、対象粉末とを加えて一度に処理する方法である。
 攪拌工程において、特に、シランカップリング剤と磁性金属粉末や熱伝導性充填物との馴染みがよい場合には、シランカップリング剤の原液を対象粉末に直接滴下する方法や、磁性金属粉末にシランカップリング剤処理を予め施して、順次他の材料を加えていく方法や、インテグラルブレンド法で処理することが好ましい。
 また、攪拌工程において、磁性金属粉末や熱伝導性充填物の種類及び粒径によって、最適なシランカップリング剤やカップリング処理の方法が異なるため、シランカップリング剤やカップリング処理方法を組みわせることが好ましい。
 硬化工程では、攪拌工程で攪拌された混合物をシート形状に成型して硬化させる。例えば、硬化工程では、攪拌工程で攪拌された混合物を所定の大きさのシート形状に成型し、100℃、30分の環境下で硬化させることにより、電磁波吸収性熱伝導シートを製造することができる。
 (3.他の実施の形態)
 上述した説明では、1種類のシランカップリング剤を用いた場合について説明したが、2種類以上のシランカップリング剤を混合してもよい。このように、複数のシランカップリング剤を混合して用いる場合には、各シランカップリング剤において、平均炭素数が10~18の長鎖アルキル基を有機官能基として有することが好ましい。
 上述した説明では、熱伝導性充填物に対してカップリング処理を行うものとして説明したが、この例に限定されず、熱伝導性充填物に対するカップリング処理を省略してもよい。
 また、上述した説明では、磁性金属粉末及び熱伝導性充填物に対して同じシランカップリング剤を用いる場合について説明したが、この例に限定されず、熱伝導性充填物に磁性金属粉末に対して用いるシランカップリング剤とは異なるシランカップリング剤を用いてもよい。
 また、上述した説明では、磁性金属粉末と、熱伝導性充填物と、シランカップリング剤と、シリコーンゴムとを用いて電磁波吸収性熱伝導シートを製造するものとしたが、特性に支障をきたさない範囲で、燃焼を抑えるための難燃材、着色材等をさらに含有させてもよい。
 以下、本発明の具体的な実施例について説明する。なお、下記の実施例に本発明の範囲が限定されるものではない。
(実施例1)
 実施例1では、分子鎖両末端にのみアルケニル基を含有するオルガノポリシロキサン、側鎖にのみケイ素原子に直接結合した水素原子をもつメチルハイドロジェンポリシロキサン及び白金族系付加反応触媒を1%未満含んだシリコーン混合物と、磁性金属粉末と、シランカップリング剤とを混合して、真空乾燥機にて攪拌した。
 球状のアモルファス金属粉末は、組成物全量に対して体積率が70vol%となるように配合した。磁性金属粉末としては、平均粒径25μmであるFe-Si-B系の球状のアモルファス金属粉末を用いた。シランカップリング剤としては、球状のアモルファス金属粉末の重量に対して0.06wt%の3-メタクリロキシプロピルトリメトキシシランを用いた。
 続いて、攪拌した混合物を、2mmのシート形状に成型し、100℃、30分の環境下で硬化させることにより電磁波吸収性熱伝導シートを作製した。
(実施例2)
 実施例2では、シランカップリング剤として、3-メタクリロキシプロピルトリエトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例3)
 実施例3では、シランカップリング剤として、n-デシルトリメトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例4)
 実施例4では、シランカップリング剤として、n-デシルトリメトキシシランと、ジメトキシメチルオクタデシルシランとを当量配合したものを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例5)
 実施例5では、磁性金属粉末として平均粒径35μmであるFe-Si合金粉末を組成物全量に対して体積率が60vol%となるように配合した点、Fe-Si合金粉末の重量に対して0.08wt%のn-デシルトリメトキシシランをシランカップリング剤として用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例6)
 実施例6では、磁性金属粉末としてアモルファス金属粉末を体積率が組成物全量に対して60vol%となるように配合した点、シランカップリング剤としてアモルファス金属粉末の重量に対して0.09wt%のn-デシルトリメトキシシランを用いた点、熱伝導性充填剤として平均粒径5μmのアルミナ粉を組成物全量に対して6vol%配合した点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例7)
 実施例7では、磁性金属粉末として、平均粒径25μmである球状のアモルファス磁性粉末を用いた点以外は、実施例3と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例8)
 実施例8では、磁性金属粉末として、平均粒径25μmである球状のアモルファス磁性粉末を用いた点、シランカップリング剤として、n-デシルメチルジメトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例9)
 実施例9では、磁性金属粉末として、平均粒径25μmである球状のアモルファス磁性粉末を用いた点、シランカップリング剤として、n-オクタデシルメチルジメトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例10)
 実施例10では、実施例5と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例11)
 実施例11では、シランカップリング剤として、n-デシルメチルジメトキシシランを用いた点以外は、実施例5と同一の条件で電磁波吸収性熱伝導シートを作製した。
(実施例12)
 実施例12では、シランカップリング剤として、n-オクタルデシルメチルジメトキシシランを用いた点以外は、実施例5と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例1)
 比較例1では、シランカップリング剤として、n-オクチルトリエトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例2)
 比較例2では、シランカップリング剤として、ビニルトリエトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例3)
 比較例3では、シランカップリング剤として、ビニルトリメトキシシランを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例4)
 比較例4では、シランカップリング剤として、アルキルアルコキシシロキサンを用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例5)
 比較例5では、シランカップリング剤として、n-オクチルトリエトキシシランを用いた点、磁性金属粉末として平均粒径35μmであるFe-Si合金粉末を組成物全量に対して体積率が60vol%となるように配合した点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例6)
 比較例6では、シランカップリング剤を用いない点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例7)
 比較例7では、シランカップリング剤を用いない点、磁性金属粉末として平均粒径35μmであるFe-Si合金粉末を組成物全量に対して体積率が60vol%となるように配合した点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例8)
 比較例8では、熱伝導性充填剤として平均粒径3μmのアルミナ粉を組成物全量に対して体積率が6vol%となるように配合した点、球状のアモルファス金属粉末の重量に対して0.1wt%のn-オクチルトリエトキシシランをシランカップリング剤として用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例9)
 比較例9では、シランカップリング剤として、球状のアモルファス金属粉末の重量に対して0.27wt%のn-オクチルトリエトキシシランを用いた点以外は、比較例8と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例10)
 比較例10では、シランカップリング剤として、球状のアモルファス金属粉末の重量に対して0.5wt%のn-オクチルトリエトキシシランを用いた点以外は、比較例8と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例11)
 比較例11では、シランカップリング剤として、球状のアモルファス金属粉末の重量に対して0.9wt%のn-オクチルトリエトキシシランを用いた点以外は、比較例8と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例12)
 比較例12では、シランカップリング剤を用いない点以外は、比較例8と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例13)
 比較例13では、磁性金属粉末に代えて、平均粒径5μmである球状のアルミナ粉末を組成物全量に対して体積率が65vol%となるように配合した点、球状のアルミナ粉末の重量に対して0.09wt%のビニルトリエトキシシランをシランカップリング剤として用いた点以外は、実施例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例14)
 比較例14では、球状のアルミナ粉末の重量に対して0.09wt%の3-メタクリロキシプロピルトリメトキシシランをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例15)
 比較例15では、球状のアルミナ粉末の重量に対して0.09wt%の3-メタクリロキシプロピルトリエトキシシランをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例16)
 比較例16では、球状のアルミナ粉末の重量に対して0.09wt%のアルキルアルコキシシロキサンをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例17)
 比較例17では、球状のアルミナ粉末の重量に対して0.09wt%のn-デシルトリメトキシシランをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例18)
 比較例18では、シランカップリング剤を用いない点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例19)
 比較例19では、磁性金属粉末として、平均粒径25μmである球状のアモルファス磁性粉末を用いた点以外は、比較例1と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例20)
 比較例20では、比較例6と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例21)
 比較例21では、比較例5と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例22)
 比較例22では、比較例7と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例23)
 比較例23では、比較例18と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例24)
 比較例24では、球状のアルミナ粉末の重量に対して0.09wt%のn-オクチルトリエトキシシランをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例25)
 比較例25では、比較例17と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例26)
 比較例26では、球状のアルミナ粉末の重量に対して0.09wt%のn-デシルメチルジメトキシシランをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
(比較例27)
 比較例27では、球状のアルミナ粉末の重量に対して0.09wt%のn-オクタデシルメチルジメトキシシランをシランカップリング剤として用いた点以外は、比較例13と同一の条件で電磁波吸収性熱伝導シートを作製した。
 以上の実施例1~実施例12及び比較例1~比較例27の結果を、表1~表5にまとめる。実施例6、比較例8~比較例12のエージング試験では、125℃の条件で300時間、各電磁波吸収性熱伝導シートのサンプルに対してエージング処理を行った。各実施例及び比較例において、シートの硬度はASKER社のアスカーゴム硬度計C型と定圧荷重器を使って求めており、シートを重ねて30×50×10mmの形状にして測定した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例6で得られた電磁波吸収性熱伝導シートにおいて、磁性金属粉末は、体積率が組成物全量に対して50~80vol%を満たしている。また、シランカップリング剤は、炭素数又は平均炭素数が10~18の長鎖アルキル基、又はメタクリロキシ基を有機官能基として有する。さらに、シランカップリング剤は、磁性金属粉末の表面にシランカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている。そのため、実施例1~実施例6で得られた電磁波吸収性熱伝導シートは、比較例6、7で得られた電磁波吸収性熱伝導シートよりも柔軟性が良好であった。
 また、実施例4で得られた電磁波吸収性熱伝導シートの結果から、2種類のシランカップリング剤を含有し、平均炭素数が14の長鎖アルキル基を有機官能基として用いた場合にも、シートの柔軟性が良好であることが分かる。
 さらに、実施例6で得られた電磁波吸収性熱伝導シートは、エージング試験前においてシートの柔軟性が良好であり、エージング試験後においてもシートの硬度の増加が抑えられ、柔軟性が良好であった。
 比較例1~5で得られた電磁波吸収性熱伝導シートは、シランカップリング剤が、炭素数が10~18の長鎖アルキル基を有機官能基として有していないため、シートの柔軟性が良好ではなかった。また、比較例6及び比較例7で得られた電磁波吸収性熱伝導シートは、シランカップリング剤を含有させていないため、シートの柔軟性が良好ではなかった。
Figure JPOXMLDOC01-appb-T000002
 比較例8~比較例12のサンプルについてエージング前後のシートの硬度を調べた。その結果を表2に示す。カップリング剤が0.1wt%と少ないときは硬度がカップリング剤無しのものとほぼ同じで、カップリング剤の添加による硬化改善が見られない。カップリング剤の量を増やした場合は、硬度が低くなっていくが、高温保持試験後に硬くなっている。これらのサンプルに用いた球状アモルファス金属粉末の比表面積と、カップリング剤の分子量から計算した、アモルファス金属粉末の表面にその単分子層を形成するのに必要なカップリング剤の最低量は0.035wt%なので、理論最低添加量に比べ1桁大きい量のカップリング剤を加えないと柔軟性を改善できず、また、その場合、カップリング剤が過剰に含有されるため未反応部分が時間経過に対し緩やかに反応していくことにより、高温エージング後にシートの硬度が増した。
 比較例8~11では、球状アモルファス金属粉末に対して炭素数が10~18の長鎖アルキル基を有機官能基として有するシランカップリング剤を用いていないため、シートの柔軟性改善と、長期保存での柔軟性の保持を両立することができず、カップリング剤を用いない比較例12と比べて特性の改善がみられない。
Figure JPOXMLDOC01-appb-T000003
 比較例13~比較例17で得られた電磁波吸収性熱伝導シートは、単分子層形成必要量の0.5~5倍の重量のシランカップリング剤を含有するものの、磁性金属粉末を含有しないため、シートの柔軟性が良好ではなかった。
Figure JPOXMLDOC01-appb-T000004
 実施例7~実施例12で得られた電磁波吸収性熱伝導シートにおいて、磁性金属粉末であるアモルファス金属粉末又はFe-Si合金粉末は、体積率が組成物全量に対して50~80vol%を満たしている。また、シランカップリング剤は、炭素数又は平均炭素数が10~18の長鎖アルキル基を有機官能基として有する。さらに、シランカップリング剤は、磁性金属粉末の表面にシランカップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている。そのため、実施例7~実施例12で得られた電磁波吸収性熱伝導シートは、比較例20又は比較例22で得られた電磁波吸収性熱伝導シートよりも柔軟性が良好であった。
 比較例19、比較例21で得られた電磁波吸収性熱伝導シートは、炭素数が10~18の長鎖アルキル基を有機官能基として有するシランカップリング剤を用いていないため、比較例20又は比較例22で得られた電磁波吸収性熱伝導シートと比較して、硬度の改善が見られなかった。
Figure JPOXMLDOC01-appb-T000005
 比較例24~比較例27で得られた電磁波吸収性熱伝導シートは、単分子層形成必要量の0.5~5倍の重量のシランカップリング剤を含有するものの、磁性金属粉末を含有しないため、シートの柔軟性が良好ではなかった。

Claims (12)

  1.  シリコーンゴムと、カップリング剤と、該カップリング剤で表面処理された磁性金属粉末とを含有し、
     上記磁性金属粉末の体積率が50~80vol%であり、
     上記カップリング剤は、炭素数が10~18の長鎖アルキル基を有機官能基として有し、かつ、上記磁性金属粉末の表面に該カップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている電磁波吸収性熱伝導シート。
  2.  上記磁性金属粉末は、アモルファス金属粉末である請求項1記載の電磁波吸収性熱伝導シート。
  3.  上記カップリング剤は、複数のカップリング剤を混合したものであり、有機官能基の平均炭素数が10~18である請求項1又は2記載の電磁波吸収性熱伝導シート。
  4.  上記カップリング剤は、メトキシ基又はエトキシ基を加水分解基として有する請求項1乃至3のうちいずれか1項に記載の電磁波吸収性熱伝導シート。
  5.  上記カップリング剤は、ジメトキシ基又はジエトキシ基を加水分解基として有する請求項1乃至3のうちいずれか1項に記載の電磁波吸収性熱伝導シート。
  6.  上記磁性金属粉末は、結晶質の金属粉末である請求項1記載の電磁波吸収性熱伝導シート。
  7.  熱伝導性充填剤をさらに含有する請求項1乃至6のうちいずれか1項に記載の電磁波吸収性熱伝導シート。
  8.  シリコーンゴムと、カップリング剤と、該カップリング剤で表面処理されたアモルファス金属粉末とを含有し、
     上記アモルファス金属粉末の体積率が50~80vol%であり、
     上記カップリング剤は、メタクリロキシ基を有機官能基として有し、かつ、上記アモルファス金属粉末の表面に該カップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量が含有されている電磁波吸収性熱伝導シート。
  9.  上記カップリング剤は、メトキシ基又はエトキシ基を加水分解基として有する請求項8記載の電磁波吸収性熱伝導シート。
  10.  熱伝導性充填剤をさらに含有する請求項8又は9記載の電磁波吸収性熱伝導シート。
  11.  シリコーンゴムと、炭素数が10~18の長鎖アルキル基を有機官能基として有するカップリング剤と、磁性金属粉末とを混合して攪拌する攪拌工程と、
     上記攪拌工程で攪拌された混合物をシート形状に成型して硬化させる硬化工程とを有し、
     上記攪拌工程では、上記磁性金属粉末の体積率が50~80vol%となるように該磁性金属粉末を含有させるとともに、該磁性金属粉末の表面に該カップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量の該カップリング剤を含有させる電磁波吸収性熱伝導シートの製造方法。
  12.  シリコーンゴムと、メタクリロキシ基を有機官能基として有するカップリング剤と、アモルファス金属粉末とを混合し、混合した混合物を攪拌する攪拌工程と、
     上記攪拌工程で攪拌された混合物をシート形状に成型して硬化させる硬化工程とを有し、
     上記攪拌工程では、上記アモルファス金属粉末の体積率が50~80vol%となるように該アモルファス金属粉末を含有させるとともに、該アモルファス金属粉末の表面に該カップリング剤の単分子層を形成するのに必要な量の0.5~5倍の重量の該カップリング剤を含有させる電磁波吸収性熱伝導シートの製造方法。
PCT/JP2011/068976 2010-08-23 2011-08-23 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法 WO2012026466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187003115A KR101914424B1 (ko) 2010-08-23 2011-08-23 전자파 흡수성 열전도 시트 및 전자파 흡수성 열전도 시트의 제조 방법
CN201180040848.1A CN103053230B (zh) 2010-08-23 2011-08-23 电磁波吸收性导热片材和电磁波吸收性导热片材的制造方法
KR1020137007004A KR101827591B1 (ko) 2010-08-23 2011-08-23 전자파 흡수성 열전도 시트 및 전자파 흡수성 열전도 시트의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010185890A JP2012044084A (ja) 2010-08-23 2010-08-23 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法
JP2010-185890 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012026466A1 true WO2012026466A1 (ja) 2012-03-01

Family

ID=45723460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068976 WO2012026466A1 (ja) 2010-08-23 2011-08-23 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法

Country Status (5)

Country Link
JP (1) JP2012044084A (ja)
KR (2) KR101827591B1 (ja)
CN (1) CN103053230B (ja)
TW (1) TW201223431A (ja)
WO (1) WO2012026466A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961439A (zh) * 2020-08-17 2020-11-20 苏州超弦新材料有限公司 一种高性能吸波粉体表面处理工艺
CN113840881A (zh) * 2019-04-23 2021-12-24 霍尼韦尔国际公司 具有低预固化粘度和后固化弹性性能的凝胶型热界面材料
US11229147B2 (en) 2015-02-06 2022-01-18 Laird Technologies, Inc. Thermally-conductive electromagnetic interference (EMI) absorbers with silicon carbide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118313A (ja) * 2011-12-05 2013-06-13 Dexerials Corp 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法
CN104494241B (zh) * 2014-12-08 2016-09-21 国家电网公司 一种电磁屏蔽复合橡胶材料及其制备方法
JP6872313B2 (ja) * 2015-10-13 2021-05-19 リンテック株式会社 半導体装置および複合シート
JP6113351B1 (ja) 2016-03-25 2017-04-12 富士高分子工業株式会社 磁気粘弾性エラストマー組成物、その製造方法及びこれを組み込んだ振動吸収装置
JP6366627B2 (ja) * 2016-03-25 2018-08-01 デクセリアルズ株式会社 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置
US11411263B2 (en) * 2019-03-06 2022-08-09 Laird Technologies, Inc. Thermal management and/or EMI mitigation materials including coated fillers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308584A (ja) * 2000-04-27 2001-11-02 Polymatech Co Ltd 電波吸収体
JP2002129019A (ja) * 2000-10-25 2002-05-09 Shin Etsu Chem Co Ltd 電磁波吸収性シリコーンゴム組成物
JP2003327831A (ja) * 2002-05-14 2003-11-19 Dow Corning Toray Silicone Co Ltd 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体
JP2005310952A (ja) * 2004-04-20 2005-11-04 Nec Tokin Corp 電磁干渉抑制体
WO2008087688A1 (ja) * 2007-01-18 2008-07-24 Toda Kogyo Corporation 導電・磁性フィラー、それを含む樹脂組成物、それを用いた電磁波干渉抑制用シート及び用途及び電磁波干渉抑制シートの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641796B2 (ja) * 1999-10-18 2005-04-27 Necトーキン株式会社 電磁干渉抑制体
JP2002363411A (ja) 2001-06-08 2002-12-18 Ge Toshiba Silicones Co Ltd 金属粉含有シリコーンゴム組成物
US6850182B2 (en) * 2002-08-19 2005-02-01 Sumitomo Electric Industries, Ltd. Electromagnetic wave absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308584A (ja) * 2000-04-27 2001-11-02 Polymatech Co Ltd 電波吸収体
JP2002129019A (ja) * 2000-10-25 2002-05-09 Shin Etsu Chem Co Ltd 電磁波吸収性シリコーンゴム組成物
JP2003327831A (ja) * 2002-05-14 2003-11-19 Dow Corning Toray Silicone Co Ltd 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体
JP2005310952A (ja) * 2004-04-20 2005-11-04 Nec Tokin Corp 電磁干渉抑制体
WO2008087688A1 (ja) * 2007-01-18 2008-07-24 Toda Kogyo Corporation 導電・磁性フィラー、それを含む樹脂組成物、それを用いた電磁波干渉抑制用シート及び用途及び電磁波干渉抑制シートの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229147B2 (en) 2015-02-06 2022-01-18 Laird Technologies, Inc. Thermally-conductive electromagnetic interference (EMI) absorbers with silicon carbide
US11678470B2 (en) 2015-02-06 2023-06-13 Laird Technologies, Inc. Thermally-conductive electromagnetic interference (EMI) absorbers with silicon carbide
CN113840881A (zh) * 2019-04-23 2021-12-24 霍尼韦尔国际公司 具有低预固化粘度和后固化弹性性能的凝胶型热界面材料
CN113840881B (zh) * 2019-04-23 2023-08-01 霍尼韦尔国际公司 具有低预固化粘度和后固化弹性性能的凝胶型热界面材料
CN111961439A (zh) * 2020-08-17 2020-11-20 苏州超弦新材料有限公司 一种高性能吸波粉体表面处理工艺

Also Published As

Publication number Publication date
KR101914424B1 (ko) 2018-11-01
KR20130099066A (ko) 2013-09-05
CN103053230A (zh) 2013-04-17
TW201223431A (en) 2012-06-01
TWI561155B (ja) 2016-12-01
CN103053230B (zh) 2016-07-06
KR101827591B1 (ko) 2018-03-22
JP2012044084A (ja) 2012-03-01
KR20180014876A (ko) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2012026466A1 (ja) 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法
WO2013084920A1 (ja) 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法
JP5490242B2 (ja) コアシェルタイプのフィラー粒子を含む複合シート用組成物、これを含む複合シート、および複合シートの製造方法
JP4623244B2 (ja) 電磁波吸収性熱伝導性シリコーンゴム組成物
US6716904B2 (en) Heat-radiating electromagnetic wave absorber
TWI736699B (zh) 熱傳導性矽氧組合物、半導體裝置及半導體裝置的製造方法
JP3719382B2 (ja) 電磁波吸収性シリコーンゴム組成物
TWI668261B (zh) 具有混合縱橫比之粒子分散物的熱介面材料
EP2483338B1 (en) Adhesive compositions and methods for their use and preparation
TW200539795A (en) Electromagnetic waves absorber
JP2009021403A (ja) 電磁波抑制シート
CN109155184A (zh) 线圈部件
TW201943034A (zh) 半導體裝置
US20180376628A1 (en) Composites for high frequency electromagnetic interference (emi) applications
WO2021166370A1 (ja) 熱伝導性シート及びその製造方法
US8465663B2 (en) Composition for electromagnetic wave suppression and heat radiation and method for manufacturing composition for electromagnetic wave suppression and heat radiation
US20210225777A1 (en) Semiconductor device and method of producing the same
JP7456572B2 (ja) シリコーン組成物および硬化型グリス
JP2002371138A (ja) 放熱性電波吸収体
KR102445111B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
TW202108674A (zh) 電磁波吸收性導熱性組成物及其片
JP7348847B2 (ja) 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP4311655B2 (ja) 広帯域周波数特性の電磁波吸収体
JP6884456B1 (ja) 熱伝導性シート及びその製造方法
JP2021134121A (ja) 複合窒化アルミニウム粉末及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040848.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007004

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11819929

Country of ref document: EP

Kind code of ref document: A1