WO2012023832A2 - 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치 - Google Patents

복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치 Download PDF

Info

Publication number
WO2012023832A2
WO2012023832A2 PCT/KR2011/006136 KR2011006136W WO2012023832A2 WO 2012023832 A2 WO2012023832 A2 WO 2012023832A2 KR 2011006136 W KR2011006136 W KR 2011006136W WO 2012023832 A2 WO2012023832 A2 WO 2012023832A2
Authority
WO
WIPO (PCT)
Prior art keywords
image display
display device
stereoscopic image
filter layer
optical filter
Prior art date
Application number
PCT/KR2011/006136
Other languages
English (en)
French (fr)
Other versions
WO2012023832A3 (ko
Inventor
김준형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201180040384.4A priority Critical patent/CN103154802B/zh
Priority to US13/814,034 priority patent/US8810743B2/en
Priority to EP11818432.4A priority patent/EP2607942B1/en
Priority to JP2013524802A priority patent/JP2013541029A/ja
Publication of WO2012023832A2 publication Critical patent/WO2012023832A2/ko
Publication of WO2012023832A3 publication Critical patent/WO2012023832A3/ko
Priority to US14/190,542 priority patent/US8964139B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing

Definitions

  • the present invention relates to an optical filter for a stereoscopic image display device and a stereoscopic image display device including the same. More specifically, the optical for a composite functional stereoscopic image display device capable of performing a color filter function and a 3D filter function as one filter
  • the present invention relates to a filter and a stereoscopic image display device including the same.
  • the stereoscopic image display device is a new concept image display device that improves the quality of visual information by several dimensions by providing a three-dimensional image similar to a real image that a person sees and feels unlike a conventional two-dimensional plane image.
  • the cause of the three-dimensional three-dimensional feeling of the human being is because the right eye and the left eye recognize objects with parallax. That is, since two human eyes are spaced apart at about 65 mm apart, they see images in slightly different directions, and the stereoscopic sense is recognized by the binocular parallax generated at this time. Therefore, a stereoscopic image may be implemented by inputting a parallax image to both eyes of an observer.
  • the conventional stereoscopic image display apparatus can be divided into a method of using polarized glasses and a method of not using polarized glasses, among which a stereoscopic image display device of a polarized glasses type has a left eye image and a right eye having different polarization characteristics.
  • the image is discharged, and a polarizing plate or the like is attached to the polarizing glasses so that only the left eye image is projected on the left eye lens, and the right eye image is projected on the right eye lens, thereby making a stereoscopic feeling.
  • This polarizing glasses method has the disadvantage of wearing glasses, but has a relatively low viewing angle constraints, and has the advantage of easy manufacturing.
  • a conventional stereoscopic image display device of polarizing glasses type generally includes an image generating unit including a left eye image unit generating a left eye image and a right eye image unit generating a right eye image, and a left eye image generated by the image display unit. It comprises a filter unit for changing the polarization state of the light and the image light for the right eye.
  • the image generating unit includes a display panel such as an LCD panel or a PDP panel.
  • the image display unit includes a TFT-array substrate on which a transistor and a pixel electrode are formed, a color filter substrate on which a transparent electrode and a color filter layer are formed, and the TFT. It is located between the array substrate and the color filter substrate, it may be made of a liquid crystal cell and the like arranged two-dimensionally in the horizontal direction or vertical direction.
  • the filter unit may include a polarizing film patterned to correspond to a left eye image display unit and a right eye image display unit, or a polarizing plate having a phase difference plate patterned to correspond to the left eye image display unit and a right eye image display unit, respectively. It is attached to the outside of the color filter substrate.
  • the conventional stereoscopic image display device has a problem that it is not easy to accurately match the pattern of the pixel and the optical filter of the image display unit.
  • the present invention has been made in view of the above-mentioned problems, and the optical filter for a stereoscopic image display device having a low crosstalk, and there is no problem of deterioration in image quality due to a mismatch between a pixel and an optical filter, and a stereoscopic image display device including the same. Its purpose is to provide.
  • the present invention includes a 3D filter layer patterned into a first region for adjusting the polarization state of the right eye image and a second region for adjusting the polarization state of the left eye image; And a color filter layer having an RGB pattern formed thereon, wherein the RGB filter of the color filter and the pattern of the 3D filter layer correspond to each other.
  • the optical filter may be attached to the outside of the display panel of the stereoscopic display device.
  • the optical filter may further include an adhesive layer in addition to the 3D filter layer and the color filter layer, and the adhesive layer may be disposed on the uppermost layer of the optical filter between the 3D filter layer and the color filter layer.
  • the color filter layer may be formed by a printing method or a photolithography method, and an inkjet printing method or a gravure printing method may be used as the printing method.
  • the present invention provides a stereoscopic image display device including the optical filter.
  • the three-dimensional image display device of the present invention for example, the upper substrate having a transparent electrode formed on one surface, the lower substrate is disposed spaced apart from the upper substrate, and the upper substrate and the lower substrate and the transparent substrate formed on one surface
  • the image generating unit including a liquid crystal cell interposed therebetween and a patterned into a first region disposed outside the upper substrate, the first region for adjusting the polarization state of the right eye image and the second region for adjusting the polarization state of the left eye image. It may include an optical filter including a 3D filter layer and a color filter layer formed with an RGB pattern.
  • the optical filter of the present invention can perform the color filter and the 3D filter function as one filter, when the optical filter of the present invention is used, it is not necessary to form the color filter on the substrate of the image generating unit.
  • the distance between the pixel and the 3D filter is short, so that crosstalk can be effectively reduced.
  • the present invention directly forms the RGB pattern of the color filter on the pattern of the 3D filter, the RGB pattern and the 3D filter pattern can be formed to correspond exactly, and as a result, a high quality 3D image can be realized.
  • the optical filter of the present invention can be configured to be detachable to the substrate of the image generating unit by being disposed outside the substrate of the image generating unit (display panel), so that in case of damage to the color filter layer or the 3D filter layer, the optical filter can be easily replaced. There is an advantage that it can.
  • 1 to 5 are views for showing various embodiments of the optical filter of the present invention.
  • FIG. 6 is a diagram illustrating an embodiment of a stereoscopic image display device according to the present invention.
  • 1 to 5 illustrate various embodiments of an optical filter for a composite functional stereoscopic image display device of the present invention.
  • the optical filter of the present invention includes (1) a 3D filter layer 100 and (2) a color filter layer 200.
  • the 3D filter layer 100 is for realizing a stereoscopic image by differently polarizing states of the right eye image light and the left eye image light.
  • the 3D filter layer 100 controls the polarization state of the right eye image light and the left eye image.
  • the second region 120 adjusts the polarization state of light.
  • the 3D filter layer 100 may be formed of a phase difference film or the like patterned such that the first region and the second region have different phase difference values. At this time, the pattern of the 3D filter layer is not limited thereto, but may be formed in a stripe shape or a checkerboard shape.
  • the 3D filter layer may be manufactured by, for example, forming a patterned liquid crystal alignment layer on a base film, coating the liquid crystal thereon, and curing the same with ultraviolet rays to fix the alignment of the liquid crystal to control the polarization state.
  • the liquid crystal alignment layer may be patterned in various ways. For example, different liquid crystal alignment layers may be alternately formed in portions corresponding to the first region and the second region, and the alignment layer may be formed over the entire surface of the substrate film.
  • a method of forming an alignment layer by overlapping only a portion corresponding to the second region on the alignment layer, or forming an alignment layer on the entire surface of the base film, and then using a photomask in different directions in the first region and the second region. It may be carried out by a method of irradiating polarized light of.
  • the color filter layer 200 is for realizing a color image and consists of an RGB pattern.
  • the RGB pattern of the color filter layer 200 is formed at a position corresponding to the pattern of the 3D filter layer.
  • the color filter layer 200 may be manufactured by, for example, a photolithography method or a printing method using a color photosensitive material.
  • a method such as an inkjet printing method or a gravure printing method may be used.
  • the 3D filter layer 100 and the color filter layer 200 may be laminated on the base film 300, wherein the stacking order is irrelevant. That is, as shown in FIG. 1, the color filter layer 200 may be first formed on the base film 300, and the 3D filter layer 100 may be formed thereon. As shown in FIG. 2, the 3D filter layer may be formed on the base film 300. You may form in order of 100 and the color filter layer 200. FIG. 1
  • the optical filter of the present invention in addition to the method of sequentially laminating the 3D filter layer 100 and the color filter layer 200 on one base film as described above, the base film 300 on the The 3D filter layer 100 may be formed on the substrate, the color filter layer 200 may be formed on the other base film 500, and then the two films may be laminated using the adhesive layer 400.
  • the base films 300 and 500 should just be films of the material excellent in the light transmittance, and are not specifically limited.
  • the base film (300, 500) is a trichloroacetate film, polyethylene terephthalate film, cycloolefin copolymer film, polyethylene naphthalate film, cellulose acetate film, cellulose butyrate film, cellulose propionate film, ethyl Cellulose films, acrylic films, polyvinyl alcohol films, polyethylene films and the like can be used.
  • the optical filter may further include an adhesive layer 400 in addition to the 3D filter layer 100 and the color filter layer 200. As illustrated in FIG. 3, the adhesive layer 400 may be disposed on an uppermost layer of the optical filter. As illustrated in FIG. 4, the adhesive layer 400 may be disposed between the 3D filter layer and the color filter layer.
  • the adhesive layer 400 is to attach the optical filter to the display device, and an acrylic adhesive, a rubber adhesive, a silicone adhesive, or the like may be used. Among these, an acrylic adhesive excellent in light transmittance is particularly preferable.
  • the release film 700 may be further attached on the adhesive layer to prevent adhesion of foreign matters. The release film may be removed and attached when attached to the display device.
  • the adhesive layer is formed in this way, the optical filter can be detached and attached to the surface of the display device. Thus, when damage occurs to the color filter layer or the 3D filter layer, the optical filter can be easily replaced.
  • the adhesive layer serves as an ink receiving layer, As a result, there is an advantage that the coloring power of the ink can be improved.
  • the thickness of the pressure-sensitive adhesive layer is preferably about 5 microns ( ⁇ m) to about 30 microns ( ⁇ m). If the thickness of the pressure-sensitive adhesive layer is less than 5 microns, precise coating is difficult. If the thickness of the pressure-sensitive adhesive layer exceeds 30 microns, the amount of the pressure-sensitive adhesive increases, which is not preferable.
  • the optical filter of the present invention since the distance between the RGB pixel of the color filter layer and the 3D filter is short, the crosstalk generation rate is significantly lowered.
  • the color filter and the 3D filter are integrally formed, the RGB pattern and the 3D filter pattern can be formed to correspond precisely, and as a result, a high quality 3D image can be realized.
  • the optical filter of the present invention is preferably attached to the outside of the display panel of the image display device.
  • the display panel serves to generate a stereoscopic image
  • the optical filter when the optical filter is disposed outside the display panel generating the stereoscopic image, the display panel undergoes a process of attaching the optical filter to the outside after the glass panel is manufactured. It is not necessary to go through the high temperature process above 200 °C used in LCD panel manufacturing process or the high temperature process above 500 °C used in PDP manufacturing process.
  • Phthalate film, cycloolefin copolymer film, polyethylene naphthalate film, cellulose acetate film, cellulose butyrate film, cellulose propionate film, ethyl cellulose film, acrylic film, polyvinyl alcohol film, polyethylene film and the like can be used. These films have advantages that are very advantageous over high heat resistant polyimide films in terms of transparency, coloration, and cost. Moreover, the material with low heat resistance can also be used for the colored layer used for the liquid crystal aligning layer and color filter layer used for a 3D filter layer.
  • the optical filter of the present invention can be configured to be detachable to the substrate of the stereoscopic display device, when a defect or damage occurs in the color filter layer or the 3D filter layer, there is an effect that can be easily reworked or replaced. It is very advantageous for the manufacturing process.
  • the present invention provides a stereoscopic image display device including the optical filter. More specifically, the stereoscopic image display apparatus of the present invention includes (1) an image generating unit for generating image light and (2) an optical filter.
  • the optical filter is the same as described above, and the image generating unit generates the left eye image light and the right eye image light, and may be a display panel generally used such as an LCD panel or a PDP panel.
  • the color filter is provided in the optical filter, it is not necessary to form the color filter on the substrate of the display panel.
  • FIG. 6 shows an example of the stereoscopic image display device of the present invention.
  • the liquid crystal cell 650 interposed between the upper substrate 610 and the lower substrate 620, and the upper substrate 610 and the lower substrate 620. And an optical filter 10 disposed outside the upper substrate 610 of the image generating unit 600.
  • the upper substrate 610 and the lower substrate 620 may be made of a material having excellent light transparency, for example, may be made of a glass or plastic substrate.
  • transparent electrodes 630 and 640 for applying power to the liquid crystal cell are formed on opposite surfaces of the upper substrate and the lower substrate.
  • the liquid crystal cell 650 serves to express the on-off state and the gray state of the pixel by controlling the transmittance of polarized light.
  • the liquid crystal cell 650 has the same structure as a general liquid crystal display device. Can be used.
  • the optical filter 10 is disposed outside the upper substrate 610, the first region 110 for adjusting the polarization state of the right eye image and the second region 120 for adjusting the polarization state of the left eye image.
  • the first alignment layer was cured by irradiating with + 45 ° polarization UV, and then the second alignment layer was applied in a line shape again on the first alignment layer, -45 Polarizing UV was irradiated to cure the second alignment layer. Then, the liquid crystal was coated and cured thereon to form a 3D filter layer formed in parallel lines.
  • An acrylic pressure-sensitive adhesive was uniformly applied to a thickness of 20 ⁇ m on the 3D filter layer to form an adhesive layer.
  • Color ink was applied on the adhesive layer to be orthogonally aligned with the lines of the 3D filter layer by an inkjet method, and dried to form a color filter layer, thereby preparing an optical filter.
  • a release film was attached to the optical filter to prevent foreign material adhesion.
  • Example 2 In the same manner as in Example 1, a 3D filter layer formed in a parallel line shape was formed on a trichloro acetate film, and then, using a gravure printing machine, color ink was applied and dried to be orthogonally aligned with the lines of the 3D filter layer to form a color filter layer. It was.
  • An acrylic pressure-sensitive adhesive was applied uniformly to a thickness of 20 ⁇ m on the color filter layer to form an adhesive layer, and a release film was attached thereon to prepare an optical filter.
  • a stereoscopic image display device was manufactured in the same manner as in Example 2, except that the photolithography method was used to form the color filter layer.
  • Example 2 In the same manner as in Example 1, a 3D filter layer formed in a parallel line shape on a trichloro acetate film was formed.
  • An acrylic pressure-sensitive adhesive was uniformly applied to a polyethylene terephthalate film with a thickness of 20 ⁇ m to form a pressure-sensitive adhesive layer, and color ink was applied on the pressure-sensitive adhesive layer so as to be orthogonally aligned with the lines of the 3D filter layer to form a color filter layer. .
  • a stereoscopic image display device was manufactured in the same manner as in Example 4, except that the color filter layer was formed on the cycloolefin copolymer film.
  • a 3D filter unit having no color filter integrated on the outside of a commercially available LCD panel having a color filter formed between an upper substrate and a transparent electrode was manufactured to manufacture a stereoscopic image display device.
  • the crosstalk rates of the stereoscopic image display apparatuses of Examples 1 to 5 and the stereoscopic image display apparatuses of the comparative examples were measured. Measurement conditions are as follows.
  • Multifunctional filter thickness 0.2 mm
  • crosstalk rate XT ((theta)) is defined like following formula (1).
  • XT L ((theta)) and XT R ((theta)) are respectively defined like following formula (2) and formula (3).
  • B L is the luminance when the left eye image light is observed at the viewing angle ⁇ through the left eye lens portion of the polarizing glasses when the pixels for implementing the right eye image light and the left eye image light are both in black mode.
  • L L is the luminance when the left eye image light is observed at the viewing angle ⁇ through the left eye lens portion of the polarizing glasses when the pixel implementing the right eye image light is in black mode and the pixel implementing the left eye image light is in white mode.
  • R L is the luminance when the left eye image light is observed at the viewing angle ⁇ through the left eye lens portion of the polarizing glasses when the pixel implementing the right eye image light is the white mode and the pixel implementing the left eye image light is the black mode.
  • B R is a luminance obtained by viewing the right eye image light at the viewing angle ⁇ through the right eye lens portion of the polarizing glasses when the pixels implementing the right eye image light and the left eye image light are in mode black mode,
  • L R is a luminance in which the right eye image light is observed at the viewing angle ⁇ through the right eye lens portion of the polarizing glasses when the pixel implementing the right eye image light is a black mode, and the pixel implementing the left eye image light is the white mode,
  • R R is a luminance in which the right eye image light is observed at the viewing angle ⁇ through the right eye lens portion of the polarizing glasses when the pixel implementing the right eye image light is in the white mode and the pixel implementing the left eye image light is in the black mode.
  • FIG. 7 A graph showing the measured crosstalk rate is shown in FIG. 7.
  • the measured values of Examples 1 to 5 were found to be the same level within the measurement error, and it can be seen from FIG. 7 that the crosstalk rate was significantly lower than that of the comparative example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Optical Filters (AREA)

Abstract

본 발명은 우안용 영상의 편광 상태를 조절하는 제1영역 및 좌안용 영상의 편광 상태를 조절하는 제2영역으로 패턴화된 3D 필터층; 및 RGB 패턴이 형성된 컬러 필터층을 포함하며, 상기 컬러 필터의 RGB 패턴과 상기 3D 필터층의 패턴이 서로 대응되도록 형성되는 복합 기능성 입체영상 표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치를 제공한다.

Description

복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치
본 발명은 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치에 관한 것으로, 보다 구체적으로는 컬러 필터 기능과 3D 필터 기능을 하나의 필터로 수행할 수 있는 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치에 관한 것이다.
입체영상표시장치는 기존의 2차원 평면 영상과는 달리 사람이 보고 느끼는 실제 영상과 유사한 3차원 영상을 제공함으로써, 시각 정보의 질적 수준을 몇 차원 향상시키는 새로운 개념의 영상표시장치이다. 일반적으로 인간이 3차원의 입체감을 느끼는 원인은 오른쪽 눈과 왼쪽 눈이 시차를 두고 사물을 인지하기 때문인 것으로 알려져 있다. 즉, 인간의 두 눈은 약 65mm의 간격을 두고 떨어져 위치하기 때문에, 서로 약간 다른 방향의 영상을 보게 되며, 이때 발생한 양안 시차에 의해 입체감을 인식하게 되는 것이다. 따라서, 관찰자의 양쪽 눈에 시차가 있는 영상을 입력시키는 방법으로 입체 영상을 구현할 수 있다.
종래의 입체 영상 표시 장치는 크게 편광 안경을 사용하는 방식과, 편광 안경을 사용하지 않는 방법으로 나눌 수 있는데, 이 중에서 편광 안경 방식의 입체 영상 표시 장치는 서로 다른 편광 특성을 갖는 좌안용 영상과 우안용 영상을 배출하고, 편광 안경에 편광판 등을 부착하여 좌안 렌즈에는 좌안용 영상만 투시되도록 하고, 우안용 렌즈에는 우안용 영상만 투시되도록 함으로써 입체감을 느끼게 하는 방식이다. 이러한 편광 안경 방식은 안경을 착용해야 한다는 단점이 있으나, 상대적으로 시야각 제약이 적고, 제작이 용이하다는 장점을 가지고 있다.
종래의 편광 안경 방식의 입체 영상 표시 장치는 일반적으로, 좌안용 영상을 생성하는 좌안용 영상부과 우안용 영상을 생성하는 우안용 영상부를 포함하는 영상 생성부와, 상기 영상 표시부에서 생성된 좌안용 영상광과 우안용 영상광의 편광 상태를 변화시키는 필터부를 포함하여 이루어진다.
이때 상기 영상 생성부는 LCD 패널이나 PDP 패널과 같은 표시패널로 이루어지며, 예를 들면, 상기 영상 표시부는 트랜지스터와 화소 전극이 형성된 TFT-어레이 기판과 투명전극 및 컬러 필터층이 형성된 컬러 필터 기판 및 상기 TFT-어레이 기판과 컬러 필터 기판 사이에 위치하며, 수평 방향 또는 수직 방향으로 이차원적으로 배치된 액정셀 등으로 이루어질 수 있다.
또한, 상기 필터부는 좌안용 영상 표시부와 우안용 영상 표시부에 대응되도록 패터닝된 편광 필름, 또는 좌안용 영상 표시부와 우안용 영상 표시부에 각각 대응되도록 패터닝된 위상차판이 부착된 편광판 등으로 이루어지며, 일반적으로 컬러 필터 기판의 외부에 부착된다.
그러나 이러한 종래의 입체영상표시장치의 경우, 광학 필터와 영상 표시부의 컬러 필터층 사이에 두꺼운 유리 기판이 존재하기 때문에, 영상 표시부에서 나온 우안용 영상광과 좌안용 영상광이 각각 반대편의 눈으로 혼입되는 크로스 토크가 발생하여 깨끗한 3차원 영상을 구현하기 어렵다는 문제점이 있었다.
또한, 입체영상장치에서는 영상 표시부의 화소와 광학 필터의 패턴의 위치가 정확하게 일치시키는 것이 중요한데, 영상 표시부의 화소와 광학 필터의 패턴이 일치하지 않을 경우, 우안용 영상광과 좌안용 영상광의 분리가 제대로 이루어지지 않아 3차원 영상이 제대로 구현되지 않기 때문이다. 그러나, 종래의 입체영상표시장치에서는 영상 표시부의 화소와 광학 필터의 패턴이 정확하게 일치하도록 하는 작업이 쉽지 않다는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 크로스 토크 발생이 적고, 화소와 광학 필터의 패턴 상의 불일치로 인한 화질 저하 문제가 없는 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치를 제공하는 것을 그 목적으로 한다.
이를 위해, 본 발명은 우안용 영상의 편광 상태를 조절하는 제1영역 및 좌안용 영상의 편광 상태를 조절하는 제2영역으로 패턴화된 3D 필터층; 및 RGB 패턴이 형성된 컬러 필터층을 포함하며, 상기 컬러 필터의 RGB 패턴과 상기 3D 필터층의 패턴이 서로 대응되도록 형성되는 복합 기능성 입체영상표시장치용 광학 필터를 제공한다.
한편, 상기 광학 필터는 입체용상표시장치의 표시패널 외측에 부착될 수 있다.
한편, 상기 광학 필터는 상기 3D 필터층과 상기 컬러 필터층 이외에 점착층을 더 포함할 수 있으며, 상기 점착층은 상기 3D 필터층과 상기 컬러 필터층 사이, 광학 필터의 최상층에 배치될 수 있다.
한편, 상기 컬러 필터층은 인쇄 방식이나 포토 리소그라피법에 의해 형성될 수 있으며, 상기 인쇄 방식으로는 잉크젯 프린팅법 또는 그라비아 인쇄법 등이 사용될 수 있다.
다른 측면에서 본 발명은, 상기 광학 필터를 포함하는 입체영상표시장치를 제공한다.
본 발명의 입체영상표시장치는 예를 들면, 일면에 투명 전극이 형성되어 있는 상부 기판, 상기 상부 기판과 이격되어 배치되며, 일면에 투명 전극이 형성되어 있는 하부 기판 및 상기 상부 기판과 상기 하부 기판 사이에 개재되는 액정셀을 포함하는 영상 생성부 및 상기 상부 기판의 외측에 배치되며, 우안용 영상의 편광 상태를 조절하는 제1영역 및 좌안용 영상의 편광 상태를 조절하는 제2영역으로 패턴화된 3D 필터층 및 RGB 패턴이 형성된 컬러 필터층을 포함하는 광학 필터를 포함할 수 있다.
본 발명의 광학 필터는 컬러 필터와 3D 필터 기능을 하나의 필터로 수행할 수 있기 때문에, 본 발명의 광학 필터를 사용할 경우, 영상 생성부의 기판에 컬러 필터를 형성하지 않아도 된다.
또한, 본 발명의 광학 필터의 경우, 컬러 필터와 3D 필터를 일체로 형성하기 때문에, 화소와 3D 필터 간의 거리가 짧아 크로스 토크를 효과적으로 저감할 수 있다.
또한, 본 발명은 3D 필터의 패턴 상에 컬러 필터의 RGB 패턴을 바로 형성하기 때문에, RGB 패턴과 3D 필터 패턴을 정확하게 대응되도록 형성할 수 있으며, 그 결과 고화질의 3D 영상을 구현할 수 있다.
또한, 본 발명의 광학 필터는 영상 생성부(표시패널)의 기판 외측에 배치됨으로써 영상 생성부의 기판에 탈 부착 가능하도록 구성할 수 있으므로, 컬러 필터층이나 3D 필터층에 손상이 발생하였을 경우, 손쉽게 교체할 수 있다는 장점이 있다.
도 1 내지 도 5는 본 발명의 광학 필터의 다양한 실시예를 보여주기 위한 도면이다.
도 6은 본 발명의 입체영상표시장치의 일 실시예를 보여주기 위한 도면이다.
도 7은 본 발명의 비교예 및 실시예 1 ~ 5의 크로스토크율을 보여주는 그래프이다.
[부호의 설명]
100 : 3D 필터층
110 : 제1영역
120 : 제2영역
200 : 컬러 필터층
300, 500: 기재 필름
400 : 점착층
610 : 상부 기판
620 : 하부 기판
630, 640 : 투명 전극
650 : 액정셀
700 : 이형 필름
이하, 도면을 참조하여 본 발명을 보다 구체적으로 설명한다. 다만 하기 도면은 본 발명을 보다 이해하기 쉽게 설명하기 위한 것으로, 본 발명의 일례에 불과하며, 본 발명이 하기 도면의 범위로 한정되는 것은 아니다. 또한, 하기 도면 상의 비율, 길이 등은 용이한 설명을 위해 과장되거나, 축소되어 표현될 수 있다.
도 1 내지 도 5에는 본 발명의 복합 기능성 입체영상표시장치용 광학 필터의 다양한 실시예들이 도시되어 있다.
도 1 내지 도 5에 도시된 바와 같이, 본 발명의 광학 필터는 (1) 3D 필터층(100)과 (2) 컬러 필터층(200)을 포함한다.
상기 3D 필터층(100)은 우안용 영상광과 좌안용 영상광의 편광 상태를 다르게 하여, 입체 영상을 구현하기 위한 것으로, 우안용 영상광의 편광 상태를 조절하는 제1영역(110)과, 좌안용 영상광의 편광 상태를 조절하는 제2영역(120)으로 이루어진다. 예를 들면, 상기 3D 필터층(100)은 상기 제1영역과 상기 제2영역이 서로 다른 위상차값을 갖도록 패터닝된 위상차 필름 등으로 이루어질 수 있다. 이때, 상기 3D 필터층의 패턴은, 이로써 제한되는 것은 아니나, 스트라이프형, 바둑판 형으로 형성될 수 있다.
상기 3D 필터층은 예를 들면, 기재 필름에 패턴화된 액정 배향막을 형성하고, 그 위에 액정을 코팅한 후 자외선 등으로 경화시켜 액정의 배향을 고정하여 편광 상태를 조절하는 방법으로 제조될 수 있다. 이때, 상기 액정 배향막의 패턴화는 다양한 방식으로 이루어질 수 있으며, 예를 들면, 서로 다른 액정 배향막을 제1영역과 제2영역에 해당되는 부분에 서로 교대로 형성하는 방법, 기재 필름 전면적에 배향막을 형성한 다음, 상기 배향막 위에 제2 영역에 해당하는 부분만 중첩하여 배향막을 형성하는 방법, 또는 기재 필름 전면에 배향막을 형성한 다음, 포토마스크를 사용하여 제1영역과 제2영역에 서로 다른 방향의 편광을 조사하는 방법 등으로 수행될 수 있다. 상기와 같은 방법들로 형성된 패턴화된 배향막 위에 액정을 배향시켜 배향 방향이 서로 다른 제1영역과 제2영역을 구현한다.
다음으로, 상기 컬러 필터층(200)은 컬러 영상을 구현하기 위한 것으로, RGB 패턴으로 이루어진다. 이때 상기 컬러 필터층(200)의 RGB 패턴은 상기 3D 필터층의 패턴과 대응되는 위치에 형성된다.
상기 컬러 필터층(200)은 예를 들면, 컬러 감광재를 이용한 포토리소그라피법이나 인쇄법 등에 의해 제조될 수 있으며, 인쇄법을 이용하는 경우에는 잉크젯 프린팅법이나 그라비아 인쇄 등의 방법을 이용할 수 있다.
한편, 본 발명에 있어서, 상기 3D 필터층(100)과 상기 컬러 필터층(200)은 기재 필름(300) 상에 적층 형성될 수 있으며, 이때 적층 순서는 무관하다. 즉, 도 1과 같이, 기재 필름(300) 상에 컬러 필터층(200)을 먼저 형성하고, 그 위에 3D 필터층(100)을 형성해도 되고, 도 2와 같이, 기재 필름(300) 상에 3D 필터층(100), 컬러 필터층(200) 순으로 형성하여도 된다.
또한, 본 발명의 광학 필터는, 상기와 같이 하나의 기재 필름 상에 3D 필터층(100)과 컬러 필터층(200)를 차례로 적층하는 방법 이외에, 도 5에 도시된 바와 같이, 기재 필름(300) 상에 3D 필터층(100)을 형성하고, 다른 기재 필름(500) 상에 컬러 필터층(200)을 형성한 다음, 두 필름을 점착층(400)을 이용하여 합지하는 방법으로 제조될 수도 있다.
상기 기재 필름(300, 500)은 광 투과성이 우수한 소재의 필름이면 되고, 특별히 한정되지는 않는다. 예를 들면, 상기 기재 필름(300, 500)으로는 트리클로로아세테이트 필름, 폴리에틸렌테레프탈레이트 필름, 시클로올레핀코폴리머 필름, 폴리에틸렌 나프탈레이트 필름, 셀룰로스 아세테이트 필름, 셀룰로스 부티레이트 필름, 셀룰로스 프로피오네이트 필름, 에틸 셀룰로스 필름, 아크릴 필름, 폴리비닐 알코올 필름, 폴리에틸렌 필름 등이 사용될 수 있다.
한편, 상기 광학 필터는 상기 3D 필터층(100)과 상기 컬러 필터층(200) 이외에 점착층(400)을 더 포함할 수 있다. 상기 점착층(400)은 도 3에 도시된 바와 같이, 광학 필터의 최상층에 배치될 수도 있고, 도 4에 도시된 바와 같이, 3D 필터층과 컬러 필터층 사이에 배치될 수도 있다.
상기 점착층(400)이 광학 필터의 최상층에 형성될 경우, 상기 점착층(400)은 광학 필터를 디스플레이 장치에 부착하도록 하기 위한 것으로, 아크릴계 점착제, 러버(Rubber)계 점착제, 실리콘계 점착제 등이 사용될 수 있으며, 이 중에서도 광 투과성이 우수한 아크릴계 점착제가 특히 바람직하다. 또한, 이 경우, 이물 등의 부착을 방지하기 위해 상기 점착층 위에 이형 필름(700)이 추가로 부착될 수 있다. 상기 이형 필름은 디스플레이 장치에 부착될 때 제거하고, 부착하면 된다. 이와 같이 점착층을 형성할 경우, 광학 필터를 표시장치 표면에 탈, 부착할 수 있기 때문에, 컬러 필터층이나 3D 필터층에 손상이 발생하였을 경우, 손쉽게 교체할 수 있다는 장점이 있다.
또한, 상기 컬러 필터층이 잉크젯 프린팅법에 의해 형성될 경우, 컬러 필터층 형성 전에 점착층을 형성한 후, 점착층 위에 컬러 필터 패턴을 인쇄하면, 상기 점착층이 잉크 수용층의 역할을 수행하게 되고, 그 결과 잉크의 착색력을 향상시킬 수 있다는 장점이 있다.
한편, 상기 점착층의 두께는 5 미크론(㎛) 내지 30 미크론(㎛) 정도인 것이 바람직하다. 점착층의 두께가 5 미크론 미만이면 정밀한 코팅이 어렵고, 30 미크론을 초과하면 점착제의 사용량이 많아져서 바람직하지 못하다.
상기와 같은 본 발명의 광학 필터를 사용할 경우, 컬러 필터층의 RGB 화소와 3D 필터 사이의 거리가 짧기 때문에, 크로스 토크 발생율이 크게 낮아진다. 또한, 본 발명의 광학 필터의 경우, 컬러 필터와 3D 필터를 일체로 형성하기 때문에, RGB 패턴과 3D 필터 패턴을 정확하게 대응되도록 형성할 수 있고, 그 결과 고화질의 3D 영상을 구현할 수 있다.
한편, 본 발명의 광학 필터는 영상표시장치의 표시패널의 외측에 부착되는 것이 바람직하다. 여기서, 표시패널은 입체영상을 생성하는 역할을 하며, 입체 영상을 생성하는 표시패널의 외측에 광학 필터를 배치시키는 경우, 유리 재질의 패널이 제작된 후 광학 필터를 외부에 부착하는 공정을 거치므로 현재 LCD 패널 제작공정에 사용되는 200℃ 이상의 고열 공정 혹은 PDP제작 공정에 사용되는 500℃ 이상의 고열 공정을 거치지 않아도 되어 200℃ 이상의 내열성이 요구되는 필름을 사용하지 않고 통상적인 트리클로로아세테이트 필름, 폴리에틸렌테레프탈레이트 필름, 시클로올레핀코폴리머 필름, 폴리에틸렌 나프탈레이트 필름, 셀룰로스 아세테이트 필름, 셀룰로스 부티레이트 필름, 셀룰로스 프로피오네이트 필름, 에틸 셀룰로스 필름, 아크릴 필름, 폴리비닐 알코올 필름, 폴리에틸렌 필름 등을 사용할 수 있다. 이들 필름은 투명도나 착색도, 비용 면에서 고내열성 폴리이미드 필름보다 매우 유리한 장점이 있다. 또한 3D 필터층에 사용하는 액정 배향층이나 컬러 필터층에 사용하는 착색층도 내열성이 낮은 재료를 사용할 수 있다. 또한, 본 발명의 광학 필터는 입체표시장치의 기판에 탈 부착 가능하도록 구성할 수도 있으므로, 컬러 필터층이나 3D 필터층에 불량이 발생하였거나 손상이 발생하였을 경우, 손쉽게 재작업 또는 교체할 수 있다는 효과가 있으므로 제조 공정에 매우 유리하다.
다른 측면에서 본 발명은, 상기 광학 필터를 포함하는 입체영상표시장치를 제공한다. 보다 구체적으로는, 본 발명의 입체영상표시장치는 (1) 영상광을 생성하는 영상 생성부와 (2) 광학 필터를 포함하여 이루어진다.
이때 상기 광학 필터는 상기에 설명한 바와 동일하며, 상기 영상 생성부는 좌안용 영상광과 우안용 영상광을 생성하기 위한 것으로, LCD 패널이나 PDP 패널 등과 같이 일반적으로 사용되는 디스플레이 패널일 수 있다. 다만, 본 발명의 경우, 광학 필터에 컬러 필터가 구비되어 있으므로, 디스플레이 패널의 기판에 컬러 필터를 형성할 필요가 없다.
도 6에는 본 발명의 입체영상표시장치의 일례가 도시되어 있다.
본 발명의 입체영상표시장치는, 도 6에 도시된 바와 같이, 상부 기판(610)과 하부 기판(620), 상기 상부 기판(610)과 하부 기판(620) 사이에 개재되는 액정 셀(650)로 이루어진 영상 생성부(600)와 상기 영상 생성부의 상부 기판(610)의 외측에 배치되는 광학 필터(10)를 포함한다.
이때 상기 상부 기판(610)과 하부 기판(620)은 광 투명성이 우수한 재질로 이루어질 수 있으며, 예를 들면, 유리나 플라스틱 기판 등으로 이루어질 수 있다. 또한, 상기 상부 기판과 하부 기판의 마주보는 면에는 액정 셀에 전원을 인가하기 위한 투명 전극(630, 640)이 형성된다.
상기 액정셀(650)은 편광된 빛의 투과율을 조절하여 화소의 온-오프(on-off) 상태와 그레이(grey) 상태를 표현하게 하는 역할을 하는 것으로, 일반적인 액정표시소자와 동일한 구조의 것이 사용될 수 있다.
한편, 상기 광학 필터(10)는 상부 기판(610)의 외측에 배치되며, 우안용 영상의 편광 상태를 조절하는 제1영역(110) 및 좌안용 영상의 편광 상태를 조절하는 제2영역(120)으로 패턴화된 3D 필터층(100) 및 RGB 패턴이 형성된 컬러 필터층(200)을 포함하여 이루어진다. 광학 필터(10)의 세부 사항은 상기한 바와 동일하므로, 구체적인 설명은 생략한다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명을 보다 구체적으로 설명한다.
실시예 1
트리클로로 아세테이트 필름에 제1 배향막을 전면적으로 도포한 후, +45°편광 UV를 조사하여 제 1 배향막을 경화시킨 다음, 상기 제1배향막 위에 다시 나란한 선 모양으로 제2 배향막을 도포하고, -45°편광 UV를 조사하여 제2 배향막을 경화시켰다. 그런 다음, 그 위에 액정을 코팅하고 경화시켜 나란한 선 모양으로 형성된 3D 필터층을 형성하였다.
상기 3D 필터층 위에 아크릴계 점착제를 20㎛ 두께로 균일하게 도포하여 점착층을 형성하였다.
상기 점착층 위에 잉크젯 방식으로 3D 필터층의 선에 직교 정렬되도록 컬러 잉크를 도포하고 건조시켜 컬러 필터층을 형성하여 광학 필터를 제조하였다. 상기 광학 필터에 이형 필름을 부착하여 이물 부착을 방지하였다.
상기 광학 필터로부터 이형 필름을 제거한 후, 액정 디스플레이 소자에 부착하여 입체영상표시장치를 제조하였다.
실시예 2
실시예 1과 동일한 방법으로, 트리클로로 아세테이트 필름에 나란한 선 모양으로 형성된 3D 필터층을 형성한 다음, 그라비아 인쇄기를 이용하여, 3D 필터층의 선에 직교 정렬되도록 컬러 잉크를 도포하고 건조시켜 컬러 필터층을 형성하였다.
상기 컬러 필터층 상에 아크릴계 점착제를 20㎛ 두께로 균일하게 도포하여 점착층을 형성하고, 그 위에 이형 필름을 부착하여 광학 필터를 제조하였다.
상기 광학 필터로부터 이형 필름을 제거한 후, 액정 디스플레이 소자에 부착하여 입체영상표시장치를 제조하였다.
실시예 3
컬러 필터층 형성 시에 포토리소그라피법을 이용한 점을 제외하고는, 실시예 2와 동일한 방법으로 입체영상표시장치를 제조하였다.
실시예 4
실시예 1과 동일한 방법으로, 트리클로로 아세테이트 필름에 나란한 선 모양으로 형성된 3D 필터층을 형성하였다.
폴리에틸렌테레프탈레이트 필름 상에 아크릴계 점착제를 20㎛ 두께로 균일하게 도포하여 점착층을 형성하고, 상기 점착층 위에 잉크젯 방식으로 3D 필터층의 선에 직교 정렬되도록 컬러 잉크를 도포하고 건조시켜 컬러 필터층을 형성하였다.
상기 3D 필터층이 형성된 트리클로로아세테이트 필름과 컬러 필터층이 형성된 폴리에틸렌테레프탈레이트 필름을 합지한 후, 폴리에틸렌테레프탈레이트 필름의 외측에 점착제를 코팅하고, 이형 필름을 부착하여 광학 필터를 제조하였다.
상기 광학 필터로부터 이형 필름을 제거한 후, 액정 디스플레이 소자에 부착하여 입체영상표시장치를 제조하였다.
실시예 5
컬러 필터층을 시클로올레핀코폴리머 필름 상에 형성한 점을 제외하고는, 실시예 4의 방법과 동일한 방법으로 입체영상표시장치를 제조하였다.
비교예
상부기판과 투명전극 사이에 컬러 필터가 형성되어 있는 시판되는 LCD 패널의 외부에 컬러 필터가 일체화되어 있지 않은 3D 필터 단품을 장착하여 입체영상표시장치를 제조하였다.
실시예 1~5의 입체영상표시장치와 비교예의 입체영상표시장치에서의 크로스토크율을 측정하였다. 측정 조건은 다음과 같다.
<측정 조건>
화소 피치 0.54 mm,
유리 두께 0.63 mm,
복합기능성 필터 두께 0.2 mm,
관찰 거리 1500 mm
한편, 크로스토크율 XT(θ)는 하기 식(1)과 같이 정의된다.
한편, 상기 식 (1)에서, XTL(θ) 및 XTR(θ)는 각각 하기 식(2) 및 식(3)과 같이 정의된다.
상기 식 (2) 및 (3)에서,
BL 는 우안용 영상광 및 좌안용 영상광을 구현하는 픽셀이 모두 블랙 모드인 경우에 좌안용 영상광을 편광 안경의 좌안 렌즈부를 통해 시야각 θ로 관찰하였을 때의 휘도,
LL 는 우안용 영상광을 구현하는 픽셀이 블랙 모드이고, 좌안용 영상광을 구현하는 픽셀이 화이트 모드인 경우에 좌안용 영상광을 편광 안경의 좌안 렌즈부를 통해 시야각 θ로 관찰하였을 때의 휘도,
RL 은 우안용 영상광을 구현하는 픽셀이 화이트 모드이고, 좌안용 영상광을 구현하는 픽셀이 블랙 모드인 경우에 좌안용 영상광을 편광 안경의 좌안 렌즈부를 통해 시야각 θ로 관찰하였을 때의 휘도,
BR 은 우안용 영상광 및 좌안용 영상광을 구현하는 픽셀들이 모드 블랙 모드인 경우에 우안용 영상광을 편광 안경의 우안 렌즈부를 통해 시야각 θ로 관찰한 휘도,
LR 은 우안용 영상광을 구현하는 픽셀이 블랙 모드이고, 좌안용 영상광을 구현하는 픽셀이 화이트 모드인 경우에 우안용 영상광을 편광 안경의 우안 렌즈부를 통해 시야각θ로 관찰한 휘도,
RR 은 우안용 영상광을 구현하는 픽셀이 화이트 모드이고, 좌안용 영상광을 구현하는 픽셀이 블랙 모드인 경우에, 우안용 영상광을 편광 안경의 우안 렌즈부를 통해 시야각 θ로 관찰한 휘도를 말한다.
측정된 크로스토크율을 보여주는 그래프를 도 7에 도시하였다. 실시예 1~5의 측정치는 측정 오차 내에서 동일 수준으로 나타났으며, 도 7을 통해, 비교예에 대비하여 현저히 낮은 크로스토크율을 보임을 알 수 있다.

Claims (9)

  1. 우안용 영상의 편광 상태를 조절하는 제1영역 및 좌안용 영상의 편광 상태를 조절하는 제2영역으로 패턴화된 3D 필터층; 및
    RGB 패턴이 형성된 컬러 필터층을 포함하며,
    상기 컬러 필터의 RGB 패턴과 상기 3D 필터층의 패턴이 서로 대응되도록 형성되는 복합 기능성 입체영상표시장치용 광학 필터.
  2. 제1항에 있어서,
    상기 광학 필터는 입체영상표시장치의 표시패널의 외측에 부착되는 것인 복합 기능성 입체영상표시장치용 광학 필터.
  3. 제1항에 있어서,
    상기 3D 필터층과 상기 컬러 필터층 사이에 점착층이 더 포함된 복합 기능성 입체영상표시장치용 광학 필터.
  4. 제1항에 있어서,
    상기 광학 필터의 최상층에 점착층이 더 포함된 복합 기능성 입체영상표시장치용 광학 필터.
  5. 제1항에 있어서,
    상기 컬러 필터층은 인쇄 방식으로 형성되는 복합 기능성 입체영상표시장치용 광학 필터.
  6. 제5항에 있어서,
    상기 컬러 필터층은 잉크젯 프린팅법 또는 그리비아 인쇄법에 의해 형성되는 복합 기능성 입체영상 표시장치용 광학 필터.
  7. 제1항에 있어서,
    상기 컬러 필터층은 포토리소그라피법에 의해 형성되는 복합 기능성 입체영상 표시장치용 광학 필터.
  8. 청구항 1 내지 7 중 어느 한 항의 복합 기능성 입체영상 표시장치용 광학 필터를 포함하는 입체영상표시장치.
  9. 일면에 투명 전극이 형성되어 있는 상부 기판, 상기 상부 기판과 이격되어 배치되며, 일면에 투명 전극이 형성되어 있는 하부 기판, 상기 상부 기판과 상기 하부 기판 사이에 개재되는 액정셀을 포함하는 영상 생성부; 및
    상기 상부 기판의 외측에 배치되며, 우안용 영상의 편광 상태를 조절하는 제1영역 및 좌안용 영상의 편광 상태를 조절하는 제2영역으로 패턴화된 3D 필터층 및 RGB 패턴이 형성된 컬러 필터층을 포함하는 광학 필터를 포함하는 입체영상표시장치.
PCT/KR2011/006136 2010-08-20 2011-08-19 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치 WO2012023832A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180040384.4A CN103154802B (zh) 2010-08-20 2011-08-19 立体图像显示器的多功能滤光片和包括其的立体图像显示装置
US13/814,034 US8810743B2 (en) 2010-08-20 2011-08-19 Multifunctional optical filter for stereoscopic display device and stereoscopic display device comprising the same
EP11818432.4A EP2607942B1 (en) 2010-08-20 2011-08-19 Stereoscopic image display device
JP2013524802A JP2013541029A (ja) 2010-08-20 2011-08-19 複合機能性立体映像表示装置用の光学フィルター及びこれを含む立体映像表示装置
US14/190,542 US8964139B2 (en) 2010-08-20 2014-02-26 Multifunctional optical filter for stereoscopic display device and stereoscopic display device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0081047 2010-08-20
KR20100081047 2010-08-20
KR10-2011-0082354 2011-08-18
KR1020110082354A KR101253206B1 (ko) 2010-08-20 2011-08-18 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/814,034 A-371-Of-International US8810743B2 (en) 2010-08-20 2011-08-19 Multifunctional optical filter for stereoscopic display device and stereoscopic display device comprising the same
US14/190,542 Continuation US8964139B2 (en) 2010-08-20 2014-02-26 Multifunctional optical filter for stereoscopic display device and stereoscopic display device comprising the same

Publications (2)

Publication Number Publication Date
WO2012023832A2 true WO2012023832A2 (ko) 2012-02-23
WO2012023832A3 WO2012023832A3 (ko) 2012-05-03

Family

ID=45839864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006136 WO2012023832A2 (ko) 2010-08-20 2011-08-19 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치

Country Status (7)

Country Link
US (2) US8810743B2 (ko)
EP (1) EP2607942B1 (ko)
JP (1) JP2013541029A (ko)
KR (1) KR101253206B1 (ko)
CN (1) CN103154802B (ko)
TW (1) TWI451133B (ko)
WO (1) WO2012023832A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228654A (ja) * 2012-03-28 2013-11-07 Dainippon Printing Co Ltd 液晶表示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407927B1 (ko) * 2012-11-13 2014-06-17 주식회사 엘지화학 상변화 잉크 조성물을 이용하여 형성된 차광패턴을 포함하는 입체영상표시장치
WO2014077579A1 (ko) * 2012-11-13 2014-05-22 주식회사 엘지화학 상변화 잉크 조성물을 이용하여 형성된 차광패턴을 포함하는 입체영상표시장치
US9406253B2 (en) * 2013-03-14 2016-08-02 Broadcom Corporation Vision corrective display
JP6375789B2 (ja) * 2013-09-02 2018-08-22 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及びその製造方法
KR102151608B1 (ko) * 2013-09-02 2020-09-03 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 표시 소자, 위상차 필름 및 그의 제조 방법, 중합체 그리고 화합물
KR102075783B1 (ko) * 2013-09-11 2020-02-10 엘지디스플레이 주식회사 3차원 영상 표시장치
JP2018200350A (ja) * 2017-05-25 2018-12-20 株式会社ジャパンディスプレイ 表示パネル及び表示パネルの製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634969A (ja) * 1992-07-21 1994-02-10 Nikon Corp 液晶テレビジョン装置
JP3315048B2 (ja) * 1996-01-23 2002-08-19 シャープ株式会社 立体画像表示装置
JP3533057B2 (ja) * 1996-11-22 2004-05-31 シャープ株式会社 液晶表示装置
US6084647A (en) * 1996-11-22 2000-07-04 Sharp Kabushiki Kaisha Liquid crystal display device
JP3463846B2 (ja) * 1997-02-14 2003-11-05 シャープ株式会社 偏光素子およびその製造方法、並びに映像表示装置
JPH10239641A (ja) * 1997-02-27 1998-09-11 Sharp Corp 偏光眼鏡および画像表示システム
JP3461680B2 (ja) * 1997-03-13 2003-10-27 シャープ株式会社 光学素子の製造方法および画像表示装置
GB2351866A (en) * 1999-07-07 2001-01-10 Sharp Kk Stereoscopic display
US6961177B2 (en) 2001-06-01 2005-11-01 Sony Corporation Stereoscopic image display apparatus, display apparatus, divided wave plate filter, plate-shared filter, and filter position adjusting mechanism attached to the display apparatus, aligning apparatus, filter position adjusting method, and filter aligning method
JP3901970B2 (ja) 2001-09-04 2007-04-04 ソニー株式会社 板状フィルター、表示装置、フィルターの位置合わせ方法、及びフィルターの位置合わせ装置
JPWO2003034133A1 (ja) 2001-10-12 2005-02-03 ローム株式会社 液晶表示装置、ミラー装置、および液晶表示装置を備えた電気機器
KR20070044479A (ko) * 2002-07-29 2007-04-27 샤프 가부시키가이샤 시차 배리어층을 갖는 기판의 제조 방법
JP4074986B2 (ja) * 2002-09-06 2008-04-16 ソニー株式会社 分割波長板フィルターの位置調整機構及び立体画像表示装置
JP2004170693A (ja) * 2002-11-20 2004-06-17 Arisawa Mfg Co Ltd 立体映像表示装置用位相差フィルタ
JP2004309868A (ja) * 2003-04-08 2004-11-04 Sony Corp 撮像装置及び立体映像生成装置
TWI256491B (en) * 2004-07-27 2006-06-11 Pavonine Inc Liquid crystal display device having thin polarizing film and thin phase retardation film
US7919795B2 (en) * 2006-12-21 2011-04-05 Samsung Electronics Co., Ltd. Wire structure, method for fabricating wire, thin film transistor substrate, and method for fabricating the thin film transistor substrate
JP4259579B2 (ja) * 2007-01-16 2009-04-30 セイコーエプソン株式会社 電気光学装置、電子機器、電気光学装置の駆動方法
JP4201054B2 (ja) * 2007-02-16 2008-12-24 凸版印刷株式会社 カラーフィルタ及びその製造方法及び液晶表示装置
US20080304151A1 (en) * 2007-06-08 2008-12-11 Arisawa Mfg. Co., Ltd. Stereoscopic image display
TW200907225A (en) 2007-08-15 2009-02-16 Aeon Lighting Technology Inc Light emitting diode (LED) road lamp
KR101311303B1 (ko) * 2007-09-11 2013-09-25 엘지디스플레이 주식회사 입체영상표시장치
JP5125666B2 (ja) * 2008-03-25 2013-01-23 セイコーエプソン株式会社 液体吐出装置
JP5314126B2 (ja) * 2008-04-18 2013-10-16 ダウ アグロサイエンシィズ エルエルシー 2−(置換フェニル)−6−ヒドロキシ又はアルコキシ−5−置換−4−ピリミジンカルボキシラート及び除草剤としてのそれらの使用
KR100939214B1 (ko) * 2008-06-12 2010-01-28 엘지디스플레이 주식회사 입체영상 표시장치의 정렬 시스템 및 방법
KR101277223B1 (ko) 2008-07-09 2013-06-24 엘지디스플레이 주식회사 입체영상표시장치
CN102119347A (zh) * 2008-08-13 2011-07-06 大日精化工业株式会社 滤色器的制造方法、滤色器基板及滤色器
JP5236506B2 (ja) * 2009-01-06 2013-07-17 日置電機株式会社 基板検査装置
JP5565411B2 (ja) 2009-06-25 2014-08-06 Jnc株式会社 光配向した液晶性ポリイミドによる位相差膜及び光学素子
JP2011075817A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 複屈折率制御インセルカラーフィルタ基板とその製造法及び、立体映像表示装置
JP5213843B2 (ja) * 2009-12-25 2013-06-19 日東電工株式会社 立体映像表示用位相差板、偏光素子およびそれらの製造方法、ならびに立体映像表示装置
WO2011090355A2 (ko) * 2010-01-22 2011-07-28 (주)Lg화학 광배향막 배향 처리용 점착 필름
JP2012022148A (ja) 2010-07-14 2012-02-02 Nitto Denko Corp 立体映像表示用位相差板、立体映像表示用偏光素子、および立体映像表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2607942A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228654A (ja) * 2012-03-28 2013-11-07 Dainippon Printing Co Ltd 液晶表示装置
JP2018116280A (ja) * 2012-03-28 2018-07-26 大日本印刷株式会社 液晶表示装置

Also Published As

Publication number Publication date
US8964139B2 (en) 2015-02-24
CN103154802A (zh) 2013-06-12
EP2607942A2 (en) 2013-06-26
US20130128164A1 (en) 2013-05-23
US8810743B2 (en) 2014-08-19
EP2607942B1 (en) 2020-02-12
US20140177048A1 (en) 2014-06-26
CN103154802B (zh) 2016-01-06
JP2013541029A (ja) 2013-11-07
TW201213866A (en) 2012-04-01
KR101253206B1 (ko) 2013-04-16
EP2607942A4 (en) 2017-05-31
KR20120018090A (ko) 2012-02-29
TWI451133B (zh) 2014-09-01
WO2012023832A3 (ko) 2012-05-03

Similar Documents

Publication Publication Date Title
WO2012023832A2 (ko) 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치
WO2011090355A2 (ko) 광배향막 배향 처리용 점착 필름
WO2017179940A1 (ko) 투과도 가변 필름
WO2020040483A1 (en) Display apparatus and manufacturing method thereof
WO2013012259A2 (en) Optical film, method of producing the same, stereoscopic glasses and stereoscopic display having the same
WO2012008750A2 (ko) 편광 안경
WO2019146977A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법
WO2012102550A2 (ko) 입체 영상 표시 장치
WO2023008820A1 (ko) 전기변색층 기반의 시력 보조 장치 및 이를 포함하는 시력 보조 안경
WO2014204228A1 (ko) 입체영상 표시장치용 2d/3d 스위칭 렌즈
EP3811414A1 (en) Display apparatus and manufacturing method thereof
WO2013174248A1 (zh) 立体显示装置
WO2012128573A2 (ko) 표시 장치
WO2017111276A1 (ko) 편광판 및 이의 제조방법 및 이를 포함하는 표시 장치
WO2012036417A2 (ko) 입체 화상용 디스플레이
WO2021100917A1 (ko) 헤드업 디스플레이 장치
WO2011142587A2 (en) Patterned retarder laminated composite polarizing plate and display apparatus using the same
WO2016052813A1 (ko) 광학 필름 및 그 제조방법
WO2011078471A2 (en) 3d glasses for stereoscopic display device and stereoscopic display device including the same
WO2016195296A1 (ko) 컬러 필터 및 이의 제조 방법
WO2024076077A1 (ko) 컬러필터, 이를 포함하는 디스플레이 장치 및 그 제조방법
WO2021091120A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2019245351A1 (ko) 편광판의 제조 방법
WO2021182758A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2022030929A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040384.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818432

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013524802

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011818432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13814034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE