WO2017179940A1 - 투과도 가변 필름 - Google Patents

투과도 가변 필름 Download PDF

Info

Publication number
WO2017179940A1
WO2017179940A1 PCT/KR2017/004060 KR2017004060W WO2017179940A1 WO 2017179940 A1 WO2017179940 A1 WO 2017179940A1 KR 2017004060 W KR2017004060 W KR 2017004060W WO 2017179940 A1 WO2017179940 A1 WO 2017179940A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
degrees
transmittance
crystal cell
Prior art date
Application number
PCT/KR2017/004060
Other languages
English (en)
French (fr)
Inventor
오동현
유정선
임은정
문인주
홍경기
서금석
이효진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780016201.2A priority Critical patent/CN108700702B9/zh
Priority to EP17782695.5A priority patent/EP3444646B1/en
Priority to JP2018543088A priority patent/JP6641586B2/ja
Priority to US16/080,158 priority patent/US10656480B2/en
Publication of WO2017179940A1 publication Critical patent/WO2017179940A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13475Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which at least one liquid crystal cell or layer is doped with a pleochroic dye, e.g. GH-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Definitions

  • the present application relates to a variable transmittance film.
  • a transmittance variable device using a so-called GH cell (Guest host cell) to which a mixture of a host material and a dichroic dye guest is applied is known, in which a liquid crystal compound is mainly used.
  • variable transmittance device is applied to various applications including eyewear such as sunglasses or glasses, outer walls of buildings, or sunroofs of vehicles.
  • eyewear such as sunglasses or glasses, outer walls of buildings, or sunroofs of vehicles.
  • AR Augmented Reality
  • the present application aims to provide a variable transmittance film.
  • variable transmittance film means a film designed to switch between a relatively high transmittance state (hereinafter, a transmissive state or a clear state) and a relatively low transmittance state (hereinafter, a blocked state or a dark state). can do.
  • the transmittance variable film may have a transmittance of about 30% or more, about 35% or more, about 40% or more, about 45% or more, or about 50% or more in the transmission state.
  • the transmittance variable film, the transmittance in the blocking state may be about 20% or less, about 15% or less or about 10% or less.
  • the upper limit of the transmittance in the transmission state may be about 100, about 95%, about 90%, about 85%, about 80%, about 75%, about 70%, about 65%, or about 60%.
  • the lower limit of transmittance in the blocking state is about 0%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9% or about May be 10%.
  • the transmittance may be a linear light transmittance.
  • the term linear light transmittance may be a ratio of light (direct light) transmitted through the variable transmittance film in the same direction as the incident direction to light incident on the variable transmittance film in a predetermined direction.
  • the transmittance is a result (normal light transmittance) measured with respect to light incident in a direction parallel to the surface normal of the variable transmittance film, or an angle exceeding 0 degrees with the surface normal and within 20 degrees. It may be a result (inclined light transmittance) measured with respect to the light incident in the direction forming.
  • the angle of the incident light to the surface normal for measuring the tilted light transmittance is about 0.5 degrees or more, about 1 degree or more, or about 1.5 degrees or more, about 19.5 degrees or less, about 19 degrees or less, about 18.5 degrees or less, about 18 degrees or less, about 17.5 degrees or less, about 17 degrees or less, about 16.5 degrees or less, about 16 degrees or less, about 15.5 degrees or less, about 15 degrees or less, about 14.5 degrees or less, about 14 degrees or less, about 13.5 degrees or less, about 13 degrees or less, about 12.5 degrees or less, about 12 degrees or less, about 11.5 degrees or less, about 11 degrees or less, about 10.5 degrees or less, about 10 degrees or less, about 9.5 degrees or less, about 9 degrees or less, about 8.5 degrees or less, about 8 degrees or less, about 7.5 degrees or less, about 7 degrees or less, about 6.5 degrees or less, about 6 degrees or less, about 5.5 degrees or less, about 5 degrees or less, about 4.5 degrees or less, about 4 degrees or less, about 3.5 degrees or
  • the inclined light transmittance may be higher than the normal light transmittance in the transmittance of the transmittance variable film. This state can be adjusted by controlling the pretilt angle or the like as described below. As described above, the transmittance variable film having a high inclination light transmittance relative to the normal light transmittance may be particularly suitably applied for eyewear.
  • GHLC layers guest host liquid crystal layers
  • switching between the transmission and blocking states is enabled by controlling the orientation of the dichroic dyes in each of the GHLC layers. Can be.
  • An exemplary transmittance variable film of the present application may include a first liquid crystal cell and a second liquid crystal cell.
  • the first liquid crystal cell may include a first GHLC layer.
  • the second liquid crystal cell may include a second GHLC layer.
  • the first and second liquid crystal cells may overlap each other. Accordingly, the light transmitted through the first liquid crystal cell may be incident to the second liquid crystal cell, and the light transmitted through the second liquid crystal cell may also be incident to the first liquid crystal cell.
  • FIG. 1 is a figure which shows typically the state of the 1st liquid crystal cell 10 and the 2nd liquid crystal cell 20 which overlap with each other as mentioned above.
  • Such a structure may be referred to herein as a double cell structure.
  • the first and second liquid crystal cells may switch between vertical alignment and horizontal alignment states, respectively.
  • the switching between the vertical alignment and horizontal alignment states may be performed by applying a voltage to the liquid crystal cell.
  • a voltage may be applied to a liquid crystal cell in a vertical alignment state in a non-voltage state to switch to a horizontal alignment state, or conversely, a voltage may be applied to a liquid crystal cell in a horizontal alignment state to switch to a vertical alignment state.
  • the vertical alignment state may mean a state in which the directors of the liquid crystal molecules are vertically arranged with respect to the plane of the liquid crystal layer, for example, about 85 to 95 degrees or about 90 degrees.
  • the horizontal alignment state may refer to a state in which the directors of the liquid crystal molecules are arranged in parallel with respect to the plane of the liquid crystal layer, for example, an arrangement state of about ⁇ 5 degrees to 5 degrees or about 0 degrees.
  • the director of the liquid crystal molecules may mean an optical axis or a slow axis of the liquid crystal layer.
  • the direction of the liquid crystal molecules may mean a long axis direction when the liquid crystal molecules are rod-shaped, and may mean an axis in the normal direction of the disc plane when the liquid crystal molecules are discotic.
  • the optical axes of the first liquid crystal cell and the second liquid crystal cell may form an angle within a range of about 85 degrees to 95 degrees or may be orthogonal.
  • any one of the first and second liquid crystal cells 10 and 20 in the horizontal alignment state for example, the first liquid crystal cell 10 may be a horizontal axis of the liquid crystal cell.
  • the optical axis OA is in a range of 40 degrees to 50 degrees in the clockwise direction with respect to WA, and the other, for example, the second liquid crystal cell 20 is a clock based on the horizontal axis WA of the liquid crystal cell.
  • Direction may have an optical axis OA within a range of 130 degrees to 140 degrees.
  • the optical axis of the liquid crystal cell as described above is usually determined according to the alignment direction of the alignment film described later, and the liquid crystal cell can be measured in the following manner.
  • the absorption type linear polarizer may be disposed on one surface of the liquid crystal cell in a state in which the first or second liquid crystal cell is horizontally aligned, and the transmittance may be measured and confirmed by rotating the polarizer 360 degrees. That is, the optical axis direction can be confirmed by measuring luminance (transmittance) at the other side while irradiating light to the liquid crystal cell or the absorption type linear polarizer side in the above state. For example, when the transmittance becomes minimum in the process of rotating the polarizer 360 degrees, an angle perpendicular to the absorption axis of the polarizer or a horizontal angle may be defined as the direction of the optical axis.
  • the horizontal axis WA of the liquid crystal cell refers to an observer wearing the eyewear or an observer who observes the display device when applied to a display device such as an eyewear or a TV in a direction parallel to the long axis direction of the liquid crystal cell. It may mean a direction parallel to the line connecting both eyes.
  • the first GHLC layer and the second GHLC layer may each include a liquid crystal and an anisotropic dye.
  • the content may be commonly applied to the liquid crystals and the anisotropic dyes of the first GHLC layer and the second GHLC layer unless otherwise specified.
  • GHLC layer refers to a functional layer in which anisotropic dyes are arranged together according to an arrangement of liquid crystals, and exhibit anisotropic light absorption characteristics with respect to the alignment direction of the anisotropic dye and the vertical direction of the alignment direction, respectively.
  • anisotropic dye is a material whose light absorption rate varies depending on the polarization direction. When the absorption rate of light polarized in the long axis direction is large, it is called p-type dye. When the absorption rate of light polarized in the axial direction is large, it is called n-type dye. can do.
  • the polarized light vibrating in the long axis direction of the dye is absorbed and the polarized light vibrating in the short axis direction of the dye is less absorbed and thus can be transmitted.
  • the anisotropic dye is assumed to be a p-type dye.
  • the liquid crystal cell including the GHLC layer may function as an active polarizer.
  • active polarizer may refer to a functional device capable of adjusting anisotropic light absorption according to application of external action.
  • the GHLC layer may control anisotropic light absorption for polarization in a direction parallel to the alignment direction of the anisotropic dye and polarization in a vertical direction by adjusting the arrangement of the liquid crystal and the anisotropic dye. Since the arrangement of the liquid crystal and the anisotropic dye can be controlled by the application of an external action such as a magnetic field or an electric field, the GHLC layer can adjust the anisotropic light absorption according to the application of the external action.
  • the thickness of the first GHLC layer and the second GHLC layer may be appropriately selected in consideration of the purpose of the present application, respectively.
  • the thickness of the first or second GHLC layer or the liquid crystal cell including the layer is about 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 1.5 ⁇ m or more, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, 3.5 ⁇ m or more, 4 ⁇ m or more, 4.5 ⁇ m or more, 5 ⁇ m or more, 5.5 ⁇ m or more, 6 ⁇ m or more, 6.5 ⁇ m or more, 7 ⁇ m or more, 7.5 ⁇ m or more, 8 ⁇ m or more, 8.5 ⁇ m or more, 9 ⁇ m or more, or 9.5 may be at least ⁇ m.
  • the thickness is not particularly limited as the thickness can be implemented with a high contrast ratio, the thickness may generally be about 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the liquid crystal included in each of the first GHLC layer and the second GHLC layer a liquid crystal capable of switching an arrangement state according to voltage application may be appropriately selected and used.
  • a liquid crystal capable of switching an arrangement state according to voltage application may be appropriately selected and used.
  • a nematic liquid crystal can be used, for example.
  • the nematic liquid crystal may refer to a liquid crystal in which rod-shaped liquid crystal molecules have no regularity of position but are arranged in parallel in the long axis direction of the liquid crystal molecules.
  • the first GHLC layer and the second GHLC layer may each include a liquid crystal having negative dielectric anisotropy.
  • the absolute value of the dielectric anisotropy of the liquid crystal may be appropriately selected in consideration of the purpose of the present application.
  • the term "dielectric anisotropy ( ⁇ )" may mean the difference ( ⁇ / /- ⁇ ⁇ ) of the horizontal dielectric constant ( ⁇ / /) and the vertical dielectric constant ( ⁇ ⁇ ,) of the liquid crystal.
  • horizontal dielectric constant ( ⁇ //) refers to a dielectric constant value measured along the direction of the electric field in a state where a voltage is applied such that the direction of the electric field due to the director of the liquid crystal molecules and the applied voltage is substantially horizontal.
  • vertical dielectric constant ( ⁇ ⁇ ) means a dielectric constant value measured along the direction of the electric field in the state where a voltage is applied so that the direction of the electric field by the director of the liquid crystal molecules and the applied voltage is substantially perpendicular.
  • the term “dye” may mean a material capable of intensively absorbing and / or modifying light in at least part or the entire range within the visible light region, for example, in the 400 nm to 700 nm wavelength range
  • the term “anisotropic dye” may refer to a material capable of anisotropic absorption of light in at least part or the entire range of the visible light region.
  • anisotropic dye for example, a known dye known to have a property that can be aligned according to the alignment state of the liquid crystal can be selected and used.
  • anisotropic dye for example, a black dye can be used.
  • Such dyes are known, for example, but not limited to azo dyes, anthraquinone dyes, and the like.
  • the dichroic ratio of the anisotropic dye may be appropriately selected in consideration of the purpose of the present application.
  • the anisotropic dye may have a dichroic ratio of 5 to 20 or less.
  • the term “dichroic ratio”, for example, in the case of a p-type dye, may mean a value obtained by dividing the absorption of polarized light parallel to the long axis direction of the dye by the absorption of polarized light parallel to the direction perpendicular to the long axis direction. Can be.
  • Anisotropic dyes may have the dichroic ratio at least at one or some wavelengths within a wavelength range of the visible light region, for example, within a wavelength range of about 380 nm to 700 nm or about 400 nm to 700 nm.
  • the content of the anisotropic dye of the first GHLC layer and the second GHLC layer may be appropriately selected in consideration of the purpose of the present application.
  • the content of the anisotropic dye of the first GHLC layer and the second GHLC layer may be 0.1 wt% or more and 10 wt% or less, respectively.
  • the ratio of the anisotropic dye can be changed in consideration of the desired transmittance.
  • Each of the first and / or second GHLC layers or the first and / or second liquid crystal cell including the first and / or second GHLC layers may have anisotropy (R) of about 0.5 or more.
  • the anisotropy (R) is the absorbance (E (p)) of the light polarized in parallel to the alignment direction of the liquid crystal host and the absorbance (E (s)) of the light polarized perpendicular to the alignment direction of the liquid crystal host It is measured according to the following equation.
  • the criterion used above is another identical device that does not contain dye in the GHLC layer.
  • the anisotropy (R) is determined from the value (E (p)) of the absorbance of the liquid crystal cell in which the dye molecules are horizontally oriented and from the value (E (s)) of the absorbance of the same liquid crystal cell in which the dye molecules are vertically aligned. Can be measured.
  • the absorbance is measured by comparison with a liquid crystal cell containing no dye but otherwise having the same constitution. This measurement is carried out using polarized light rays which oscillate in one direction in the direction parallel to the orientation direction (E (p)) and in subsequent measurements in the direction perpendicular to the orientation direction (E (s)). Can be.
  • the liquid crystal cell is not switched or rotated during the measurement, so that the measurement of E (p) and E (s) can be performed by rotating the oscillating plane of polarized incident light.
  • E (p) and E (s) are recorded using a Perkin Elmer Lambda 1050 UV spectrometer.
  • the spectrometer is equipped with a Glan-Thompson polariser for a wavelength range of 250 nm to 2500 nm in both the measuring beam and the reference beam.
  • the two polarizers are controlled by a stepping motor and are oriented in the same direction.
  • a change in the polarizer direction of the polarizer for example a transition of 0 degrees to 90 degrees, is always performed synchronously and in the same direction with respect to the measuring beam and the reference beam.
  • the orientation of the individual polarizers is the tee of the University of Wurzburg. It can be measured using the method described in T. Karstens's 1973 dissertation.
  • the polarizer is rotated in steps of 5 degrees for the oriented dichroic sample, and the absorbance is preferably recorded at a fixed wavelength in the maximum absorption region.
  • a new baseline zero line is implemented for each polarizer position.
  • E (p) and E (s) an antiparallel-rubbed test cell coated with polyimide AL-1054 from JSR was placed in both the measuring beam and the reference beam.
  • the two test cells can be selected with the same layer thickness.
  • the test cell containing the pure host (liquid crystal) is placed in the reference beam.
  • a test cell containing a solution of dye in the liquid crystal is placed in the measuring beam.
  • Two test cells for the measuring beam and the reference beam are installed in the sound path in the same orientation direction.
  • E (p) may necessarily be within its maximum absorption wavelength range, for example a wavelength range of 0.5 to 1.5. This corresponds to a transmission of 30% to 5%. This is set by correspondingly adjusting the layer thickness and / or dye concentration.
  • the anisotropy R may be about 0.55 or more, 0.6 or more, or 0.65 or more.
  • the anisotropy (R) may be, for example, about 0.9 or less, about 0.85 or less, about 0.8 or less, about 0.75 or less, or about 0.7 or less.
  • Such anisotropic degree (R) can be achieved by controlling the kind of liquid crystal cell, for example, the kind of liquid crystal compound (host), the kind and ratio of anisotropic dye, the thickness of a liquid crystal cell, etc.
  • the first liquid crystal cell and the second liquid crystal cell may further include two alignment layers disposed on both sides of the first GHLC layer and the second GHLC layer, respectively.
  • the first liquid crystal cell may sequentially include a first vertical alignment layer, a first GHLC layer, and a second vertical alignment layer
  • the second liquid crystal cell may include a third vertical alignment layer, a second GHLC layer
  • the fourth vertical alignment layer may be sequentially included.
  • variable transmittance film of the present application may control the transmittance by adjusting the orientation direction when voltage is not applied and / or voltage is applied between the first GHLC layer and the second GHLC layer.
  • the orientation direction may be adjusted by adjusting the pretilt angle and the pretilt direction of the first to fourth vertical alignment layers.
  • the pretilt may have an angle and a direction.
  • the pretilt angle may be referred to as a polar angle, and the pretilt direction may be referred to as an azimuthal angle.
  • the pretilt angle may refer to an angle formed by the director of the liquid crystal molecules with respect to the plane parallel to the alignment layer or an angle formed by the surface normal direction of the liquid crystal cell.
  • the pretilt angle of the vertical alignment layer may induce a vertical alignment state when no voltage is applied to the liquid crystal cell.
  • the first to fourth vertical alignment layer may have a pretilt angle within a range of 70 degrees to 89 degrees.
  • the pretilt angle may be about 71 degrees or more, 72 degrees or more, about 73 degrees or more, or about 74 degrees or more, and about 88.5 degrees or less or about 88 degrees or less in one example.
  • the pretilt angle of the first vertical alignment layer is an angle measured in a clockwise or counterclockwise direction with respect to the plane parallel to the alignment layer, and the pretilt angle of the second vertical alignment layer is opposite to that of the first vertical alignment layer.
  • the pretilt angle of the first vertical alignment layer is measured in the clockwise direction
  • the counterclockwise direction or the pretilt angle of the first vertical alignment layer may be measured in the clockwise direction.
  • the pretilt angle of the third vertical alignment layer is an angle measured in a clockwise or counterclockwise direction with respect to the plane parallel to the alignment layer, and the pretilt angle of the fourth vertical alignment layer is opposite to that of the third vertical alignment layer.
  • the pretilt angle of the vertical alignment layer is measured in the clockwise direction
  • the counterclockwise direction or the pretilt angle of the third vertical alignment layer may be measured in the clockwise direction.
  • the pretilt direction may refer to a direction in which the director of the liquid crystal molecules is projected onto the horizontal surface of the alignment layer.
  • the pretilt direction may be an angle formed between the projected direction and the horizontal axis WA.
  • the pretilt direction of the vertical alignment layer may induce an alignment direction of a horizontal alignment state when voltage is applied to the liquid crystal cell.
  • the pretilt direction of the first and second vertical alignment layers and the pretilt direction of the third and fourth vertical alignment layers may cross each other.
  • the pretilt direction of the first and second vertical alignment layers and the pretilt direction of the third and fourth vertical alignment layers may be perpendicular to each other, for example, 85 degrees to 95 degrees, or about 90 degrees. .
  • the pretilt direction satisfies the above conditions, it is possible to provide a variable transmittance film having excellent light blocking rate when voltage is applied.
  • any one of a pretilt direction of the first and second vertical alignment layers and a pretilt direction of the third and fourth vertical alignment layers for example, the free of the first and second vertical alignment layers
  • the tilt direction has an optical axis OA within a range of 40 degrees to 50 degrees clockwise with respect to the horizontal axis WA of the liquid crystal cell, and the other direction, for example, free of the third and fourth vertical alignment layers.
  • the tilt direction may have an optical axis OA within a range of 130 degrees to 140 degrees in a clockwise direction with respect to the horizontal axis WA of the liquid crystal cell.
  • the above-mentioned pretilt angle and direction may be a pretilt angle and direction measured in each GHLC layer when the GHLC layer of each liquid crystal cell is in a vertical alignment state in one example.
  • the first to fourth vertical alignment layers may be a rubbing alignment layer or a photo alignment layer.
  • the orientation direction is determined by the rubbing direction
  • the photoalignment film it is determined by the polarization direction or the like of the irradiated light.
  • the pretilt angle and the pretilt direction of the vertical alignment layer are based on an alignment condition, for example, rubbing conditions and pressure conditions during rubbing orientation, or a light alignment condition, for example, a polarization state of light, an irradiation angle of light, an irradiation intensity of light, and the like. It can be implemented with appropriate adjustments.
  • the pretilt angle may be achieved by controlling the rubbing intensity of the rubbing alignment layer, etc.
  • the pretilt direction may be achieved by controlling the rubbing direction of the rubbing alignment layer.
  • Such an attainment method is a known method.
  • the photo-alignment film it can be achieved by the alignment film material, the direction of polarization applied to the alignment, the state or intensity, and the like.
  • the first to fourth vertical alignment layer may be a rubbing alignment layer.
  • Each of the first to fourth vertical alignment layers may have a unique orientation direction.
  • the rubbing directions of the first and second vertical alignment layers may be about 170 degrees to 190 degrees as opposite directions, and the rubbing directions of the third and fourth vertical alignment layers may be about 170 degrees to the opposite direction. 190 degrees can be achieved.
  • the rubbing direction can be confirmed by measuring the pretilt angle.
  • the rubbing direction is measured by measuring the pretilt angle in the manner described in the following examples. Measurement may be possible.
  • the direction RA of the rubbing orientation of the first vertical alignment layer 12 is 40 degrees to 50 degrees
  • the direction of rubbing orientation of the second vertical alignment layer 14 ( RA) is 220 degrees to 230 degrees
  • the direction RA of the rubbing orientation of the third vertical alignment layer 22 is 130 degrees to 140 degrees
  • the direction RA of the rubbing orientation of the fourth vertical alignment layer 24 May be 310 degrees to 320 degrees.
  • the direction RA of each rubbing orientation is an angle measured in a clockwise or counterclockwise direction with respect to the horizontal axis WA.
  • the direction for measuring the direction RA of each rubbing orientation is selected by measuring only one of the clockwise or counterclockwise directions.
  • an angle between the direction RA of the rubbing orientation of the first vertical alignment layer 12, the horizontal axis WA, the rubbing direction RA of the second vertical alignment layer 14, and The angles formed by the horizontal axis WA are all in the range of 40 to 50 degrees when measured in the clockwise direction with respect to the horizontal axis WA, and the direction RA of the rubbing orientation of the first vertical alignment layer 12 is measured.
  • the rubbing direction RA of the second vertical alignment layer 14 may be opposite to each other.
  • the angle between the direction RA of the rubbing orientation of the third vertical alignment layer 22 and the horizontal axis WA, the rubbing direction RA of the fourth vertical alignment layer 24, and the The angles formed by the horizontal axis WA are all in the range of 130 to 140 degrees when measured in the clockwise direction with respect to the horizontal axis WA, and the direction RA of the rubbing orientation of the third vertical alignment layer 22 is different from each other.
  • the rubbing direction RA of the fourth vertical alignment layer 24 may be opposite to each other.
  • the conditions can be controlled so that the above-mentioned pretilt angle and direction can be achieved.
  • the exemplary transmittance variable film may further include an electrode film disposed outside the first to fourth vertical alignment layers.
  • the outer side of a configuration may mean the side opposite to the side where the liquid crystal layer is present.
  • the electrode films disposed on the outside of the first to fourth vertical alignment layers may be referred to as first to fourth electrode films, respectively.
  • the first liquid crystal cell 10 exemplarily shows a first liquid crystal cell including a GHLC layer, an electrode film, and a vertical alignment layer.
  • the first liquid crystal cell 10 includes the first electrode film 11, the first vertical alignment layer 12, the first GHLC layer 13, the second vertical alignment layer 14, and the second electrode.
  • the film 15 may be sequentially included.
  • the thicknesses of the first and second electrode films and the first and second vertical alignment layers may be appropriately selected in consideration of the purpose of the present application.
  • the second liquid crystal cell 20 exemplarily shows a second liquid crystal cell including a GHLC layer, an electrode film, and a vertical alignment layer.
  • the second liquid crystal cell 20 includes a third electrode film 21, a third vertical alignment layer 22, a second GHLC layer 23, a fourth vertical alignment layer 24, and a fourth electrode.
  • the film 25 may be sequentially included.
  • the thicknesses of the third and fourth electrode films and the third and fourth vertical alignment layers may be appropriately selected in consideration of the purpose of the present application.
  • the electrode film may include a transparent conductive layer on the base film and the base film, respectively.
  • the electrode film may take over an electric field suitable for the first liquid crystal cell and the second liquid crystal cell so as to switch the alignment state of the liquid crystal and the anisotropic dye.
  • the direction of the electric field may be a vertical direction, for example, a thickness direction of the first liquid crystal cell and the second liquid crystal cell.
  • Plastic films include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon Polyphenylsulfone (PPS), polyetherimide (PEI); polyethylenemaphthatlate (PEN); polyethyleneterephtalate (PET); polyimide (PI); polysulfone (PSF) or polyarylate (PAR).
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Poly methyl methacrylate
  • PC polycarbonate
  • PE polyethylene
  • PP polypropylene
  • PVA polyvinyl alcohol
  • DAC diace
  • the first and / or fourth electrode film may include an optically isotropic base film or an optically anisotropic base film.
  • the second and / or third electrode film may include an optically isotropic base film, such as a polycarbonate (PC) film, a cyclo olefin copolymer (COP) film, or a polyimide (PI) film.
  • PC polycarbonate
  • COP cyclo olefin copolymer
  • PI polyimide
  • the transparent conductive layer for example, one formed by depositing a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as ITO (Indium Tin Oxide) may be used.
  • a conductive polymer for example, one formed by depositing a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as ITO (Indium Tin Oxide) may be used.
  • ITO Indium Tin Oxide
  • various materials and forming methods capable of forming a transparent conductive layer are known and may be applied without limitation.
  • the variable transmittance film of the present application may further include an adhesive.
  • the first liquid crystal cell and the second liquid crystal cell may exist in a state of being bonded to each other by the pressure-sensitive adhesive.
  • the adhesive layer used for adhesion of an optical film can be selected suitably, and can be used.
  • the thickness of the pressure-sensitive adhesive may be appropriately selected in consideration of the purpose of the present application.
  • the variable transmittance film of the present application may further include a hard coating film.
  • the hard coat film may include a base film and a hard coat layer on the base film.
  • the hard coat film may be used by appropriately selecting a known hard coat film in consideration of the purpose of the present application.
  • the thickness of the hard coat film may be appropriately selected in consideration of the purpose of the present application.
  • the hard coat film may be formed on the outside of the first liquid crystal cell and / or the second liquid crystal cell through the pressure-sensitive adhesive.
  • the hard coat film may be attached to the outside of the first electrode film and / or the fourth electrode film through the adhesive.
  • the adhesive used for adhesion of an optical film can be selected suitably, and can be used.
  • the present application may further include a variable transmittance film antireflection film.
  • the anti-reflection film may include a base film and an anti-reflection layer on the base film.
  • the antireflection film can be appropriately selected from a known antireflection film.
  • the thickness of the antireflection film may be appropriately selected in consideration of the purpose of the present application.
  • the anti-reflection film may be formed on the outside of the first liquid crystal cell and / or the second liquid crystal cell through an adhesive.
  • the antireflection film may be attached to the outside of the first electrode film and / or the fourth electrode film through an adhesive.
  • the adhesive used for adhesion of an optical film can be selected suitably, and can be used.
  • the transmittance variable film of the present application may adjust the transmittance according to whether the voltage is applied by adjusting the alignment state when the voltage is not applied to the first liquid crystal cell and the second liquid crystal cell.
  • the liquid crystal and the anisotropic dye may be aligned according to the alignment direction. Therefore, the orientation direction may be parallel to the optical axis direction of the liquid crystal and / or the absorption axis direction of the anisotropic dye.
  • variable transmittance film may implement a clear state when the first liquid crystal cell and the second liquid crystal cell are each in a vertical alignment state, and may implement a dark state in the horizontal alignment state.
  • the clear state may mean a state of high transmittance
  • the dark state may mean a state of low transmittance.
  • the transmittance in the clear state may be at least 40%, at least 45% or at least 50%, and in the dark state, the transmittance may be at most 5%, at most 4%, or at most 3%.
  • the transmittance may mean a straight light transmittance with respect to vertical light.
  • the vertical light is light incident in the direction parallel to the normal direction of the surface of the variable transmittance film
  • the straight light transmittance of the vertical light is also in the direction parallel to the normal direction among the vertical light incident on the surface of the variable transmittance film Percentage of transmitted light.
  • FIG. 6 exemplarily illustrates a principle of adjusting the transmittance of the variable transmittance film of the present application.
  • the left figure of FIG. 6 is a voltage non-application state and the right figure is a voltage application state.
  • the area of the arrow means the amount of transmitted light.
  • the upper layer means the first liquid crystal cell
  • the lower layer means the second liquid crystal cell
  • the blue ellipse means liquid crystal with negative dielectric anisotropy
  • the black ellipse means anisotropic dye. .
  • variable transmittance film of the present application may implement a clear mode because the first liquid crystal cell and the second liquid crystal cell exist in the vertical alignment state and the amount of transmitted light is relatively increased when the voltage is not applied.
  • the transmittance variable film may implement a clear mode in which transmittance is about 40% or more when voltage is not applied.
  • the variable transmittance film of the present application has excellent initial transmittance when no voltage is applied, when the initial transmittance is less than about 40% when a combination of an active polarizer having a PVA-based polarizing plate and a GHLC layer is applied.
  • the first liquid crystal cell and the second liquid crystal cell may exist in a horizontal alignment state when voltage is applied.
  • the uniaxial alignment direction of the first liquid crystal cell and the uniaxial alignment direction of the second liquid crystal cell may be orthogonal to each other.
  • the amount of transmitted light may be relatively reduced by the cross pole effect, thereby realizing a dark state.
  • the transmittance variable film may realize a dark state in which transmittance is about 5% or less when a voltage is applied.
  • the transmittance variable film may be converted to a clear state when the voltage is removed.
  • the first liquid crystal cell has an optical axis within a range of 40 degrees to 50 degrees in the clockwise direction with respect to the horizontal axis of the liquid crystal cell
  • the second liquid crystal cell refers to the horizontal axis of the liquid crystal cell.
  • the clockwise direction it can have an optical axis in the range of 130 degrees to 140 degrees.
  • variable transmittance film can be applied to various applications.
  • applications to which the variable transmittance film may be applied may include openings or eyewear in an enclosed space including a building, a container, or a vehicle such as a window or a sunroof.
  • the eyewear may include all eyewear configured to allow the observer to observe the outside through a lens, such as general glasses, sunglasses, sports goggles or a helmet, or an augmented reality experience device.
  • variable transmittance film of the present application is a typical application to which the variable transmittance film of the present application may be applied.
  • sunglasses, sports goggles and augmented reality experience devices such as eyewear in which the lens is mounted so as to be inclined with the observer's frontal view is commercially available.
  • variable transmittance film of the present application when observed in the inclined direction as described above, by reducing the difference in the contrast ratio at the left and right inclination angle can ensure excellent left and right symmetry, effectively to the eyewear of the structure as described above Can be applied.
  • the structure of the eyewear is not particularly limited. That is, the variable transmittance film may be mounted and applied in the left eye and / or right eye lens of a known eyewear structure.
  • the eyewear includes a left eye lens and a right eye lens; And a frame supporting the left eye lens and the right eye lens.
  • FIG. 10 is an exemplary schematic view of the eyewear, a schematic diagram of the eyewear including the frame 12 and the left and right eye lenses 14, but the structure of the eyewear to which the variable transmittance film of the present application can be applied Is not limited to FIG. 5.
  • the left eye lens and the right eye lens may each include the variable transmittance film.
  • Such a lens may include only the variable transmittance film or may include other configurations.
  • the eyewear may have various designs.
  • the frame when the eyewear is mounted by the observer, the frame may have an angle of 15 degrees to 40 degrees formed by a normal line of the observer's frontal gaze direction and the surface of the variable transmittance film. It may be inclined to be within the range. Examples of such eyewear may include sports goggles, augmented reality experience devices, and the like.
  • the variable transmittance film is formed to be inclined to the eyewear, the contrast ratio at the inclination angle may be improved by adjusting the pretilt angle of the first to fourth vertical alignment layers.
  • variable transmittance film of the present application can switch between a clear state and a dark state, and can secure excellent left and right symmetry by reducing the difference in contrast ratio in left and right viewing angles.
  • the variable transmittance film of the present application may be applied to various applications including eyewear, such as various construction or vehicle materials, augmented reality experience or sports goggles, sunglasses or helmets that need to control the transmittance.
  • FIG. 2 illustrates an optical axis in a horizontal alignment state of the first to second liquid crystal cells.
  • FIG. 7 is a voltage-transmission graph for Example 1.
  • FIG. 8 is a viewing angle-transmission graph for Example 1.
  • FIG. 9 is a wavelength-transmission graph with respect to voltage for Example 4.
  • 11 and 12 are examples of how to measure the pretilt angle.
  • the pretilt angle of the liquid crystal cell can be measured in the following manner.
  • the pretilt angle of the liquid crystal cell is measured in one liquid crystal cell and in a double cell in which two liquid crystal cells are superimposed. In the case of measuring in the double cell, it is useful when the first to fourth vertical alignment layers have similar pretilt angles.
  • the pretilt direction can be confirmed by placing the absorption type linear polarizer on one surface of the liquid crystal cell in a state in which each liquid crystal cell is horizontally aligned and measuring the transmittance while rotating the polarizer 360 degrees. For example, when the transmittance becomes minimum in the process of rotating the polarizer 360 degrees, an angle perpendicular to the absorption axis of the polarizer or a horizontal angle may be defined as the pretilt direction.
  • a liquid crystal cell is disposed between the light source and the transmittance measurement sensor (eg, LCMS-200).
  • the transmittance measurement sensor eg, LCMS-200
  • the transmittance is evaluated by a measuring sensor while irradiating light with a light source while rotating the liquid crystal cell.
  • the alignment state of the liquid crystal cell may be maintained in the vertical alignment state.
  • the pretilt angle is measured through the angle formed between the surface normal of the liquid crystal cell (solid line indicated in the figure) and the Y-axis at the point where the transmittance is maximized. For example, if the highest transmittance is achieved when the Y-axis and the surface normal form an A degree in FIG. 11, the pretilt angle may be defined as 90 degrees minus the A degree. Degree A in the above is a positive number measured clockwise or counterclockwise.
  • the pretilt angle can be measured in the same manner as described above.
  • a double cell is disposed between the light source and the transmittance measurement sensor (ex. LCMS-200). That is, in FIG. 12, the measuring sensor is disposed on the other side of the first liquid crystal cell 10 in the front (outgoing direction) or the rear (in the drawing direction), and the double cell is rotated in the drawing. Rotate by and measure the angle formed by the Y-axis (axis in the direction connecting the light source and the measuring sensor to the shortest distance) and the surface normal of the double cell at the point of maximum transmittance (above A). The value minus the absolute value of the angle can be defined as the pretilt angle. Even in this case, the alignment of the liquid crystal cells 10 and 20 may be maintained in the vertical alignment.
  • a film having an indium tin oxide (ITO) layer formed on one surface of a PC (polycarbonate) film having a length of about 300 mm and a length of about 200 mm was prepared.
  • a vertical alignment layer of Hanchem Co. PVM-11 polyimide layer was formed, and the liquid crystal of HCCH Co. (DegreeC), (triangle
  • the vertical alignment layer was coated on the ITO layer of the transparent conductive film by bar coating, and then fired at 120 ° C. for 1 hour to obtain an alignment layer having a thickness of 300 nm.
  • the first upper substrate was manufactured by rubbing the alignment layer with a rubbing cloth such that the rubbing direction was 45 degrees clockwise with respect to the horizontal axis. Subsequently, column spacers having a height of 10 ⁇ m and a diameter of 15 ⁇ m are disposed at 250 ⁇ m intervals on the ITO layer of the same transparent conductive film as described above, and the vertical alignment film is coated with a bar coating on the ITO layer in the same manner, followed by rubbing treatment.
  • the first lower substrate was manufactured by forming about 225 degrees clockwise with respect to this horizontal axis.
  • the second upper substrate was manufactured in the same manner except that the rubbing direction was changed to be about 135 degrees clockwise with respect to the horizontal axis.
  • the second lower substrate was manufactured in the same manner except that the rubbing direction was changed to be about 315 degrees clockwise relative to the horizontal axis.
  • a second liquid crystal cell was produced in the same manner as the preparation of the first liquid crystal cell.
  • the cell gaps of the first liquid crystal cell and the second liquid crystal cell were 12 ⁇ m, respectively, and the pretilt angles of the vertical alignment layers of the first upper substrate, the first lower substrate, the second upper substrate, and the second lower substrate were 88 degrees, respectively.
  • the prepared first liquid crystal cell and the second liquid crystal cell were laminated with an OCA adhesive such that the rubbing directions of the first upper substrate and the second upper substrate were perpendicular to each other by 90 degrees to prepare a variable transmittance film of Example 1.
  • variable transmittance film of Example 1 In the manufacture of the variable transmittance film of Example 1, except that the pretilt angle of the vertical alignment layer of the first upper substrate, the first lower substrate, the second upper substrate and the second lower substrate were changed to 82 degrees, respectively.
  • a variable transmittance film was prepared in the same manner as in Example 1. In order to control the pretilt angle, the rotating rpm of the rubbing cloth at rubbing was set to about 1000 rpm, the stage moving speed was about 1.16 m / min, and the rubbing depth was controlled to about 280 ⁇ m.
  • variable transmittance film of Example 1 In the manufacture of the variable transmittance film of Example 1, except that the pretilt angle of the vertical alignment layer of the first upper substrate, the first lower substrate, the second upper substrate and the second lower substrate, respectively, changed to 75 degrees A variable transmittance film was prepared in the same manner as in Example 1. In order to control the pretilt angle, the rotating rpm of the rubbing cloth at rubbing was about 1000 rpm, the stage moving speed was about 1.16 m / min, and the rubbing depth was controlled at about 380 ⁇ m.
  • the transmittance variable was changed in the same manner as in Example 1 except that the size of the spacer was changed so that the cell gaps of the first liquid crystal cell and the second liquid crystal cell were each 8 ⁇ m. A film was prepared.
  • variable transmittance film of Example 1 In the production of the variable transmittance film of Example 1, except that the first liquid crystal cell and the second liquid crystal cell was laminated with an OCA adhesive so that the rubbing direction of the upper substrate and the upper substrate is about 45 degrees, and Similarly, a variable transmittance film was produced.
  • a variable transmittance film was prepared by preparing a reverse-TN type liquid crystal-dye film cell by performing the same method as the preparation of the first liquid crystal cell of Example 1 except that the pitch was 100 ⁇ m.
  • the polarizing plate was laminated with an OCA adhesive in a direction in which the rubbing direction and the absorption axis of the upper substrate of the variable transmittance film of Comparative Example 3 coincide to prepare a variable transmittance film of Comparative Example 4.
  • variable transmittance film of Example 1 In the manufacture of the variable transmittance film of Example 1, the rubbing directions of the first upper substrate, the first lower substrate, the second upper substrate and the second lower substrate are respectively 0 degrees, 180 degrees, 90 degrees in the clockwise direction with respect to the horizontal axis.
  • a variable transmittance film was prepared in the same manner as in Example 1, except that rubbing orientation was performed to form FIGS.
  • the alignment layer of the upper substrate and the lower substrate of the liquid crystal cell of the variable transmittance film was mixed with 2% aqueous TMAH (Tetramethylammonium hydroxide) solution and NMP (N-Methyl-2-Pyrrolidone) in a ratio of 1: 9.
  • TMAH Tetramethylammonium hydroxide
  • NMP N-Methyl-2-Pyrrolidone
  • the paste is buried, heated at 100 ° C for 15 minutes, connected with an electrode tape, and ready for voltage application.
  • four electrodes are connected to the electrode tapes of the first upper substrate and the second upper substrate to form one terminal, and the electrode tapes of the first lower substrate and the second lower substrate are connected. Make a terminal and prepare it.
  • the prepared sample was placed on the backlight, and the two electrodes were connected to the terminals of a function generator, and the transmittance was measured by measuring the luminance value with a photodiode while applying a voltage from 0 Vrms to 15 Vrms. At this time, the initial luminance value of the backlight is measured and converted into a percentage to record the transmittance value. Contrast ratio is the ratio (Tc / T) of the transmittance
  • Example 7 is a voltage-transmission graph measured for Example 1.
  • the transmittance is the average transmittance for the wavelength of 400 nm to 700 nm.
  • Example 1 is a clear mode showing a transmittance of about 51.5 ⁇ 0.5% when no voltage is applied (0V), and a dark mode showing a transmittance of about 2.7 ⁇ 0.1% when a voltage of about 15V is applied. Switched When the voltage was removed, it was switched back to the clear mode showing a transmittance of about 51.5 ⁇ 0.5%. Hysteresis did not occur.
  • Example 8 is a viewing angle-transmittance graph measured for Example 1.
  • the transmittance is the average transmittance for the wavelength of 400 nm to 700 nm. 8 shows that Example 1 has excellent transmittance symmetry in the left and right viewing angles.
  • FIG. 9 is a wavelength-transmission graph with respect to voltage for Example 4.
  • Table 1 below shows the initial transmittance when applying a voltage ratio, the light blocking transmittance when applying a 15V voltage, and the contrast ratio for Examples 1 to 3 and Comparative Examples 1 to 3. From Table 1, it can be confirmed that Examples 1 to 3 are excellent in contrast ratio as well as initial permeability.
  • Example 1 has a smaller difference in transmittance at the left and right viewing angles than Comparative Example 4, and thus it can be confirmed that the left and right symmetry is excellent.
  • Example 1 Comparative Example 4 0 V 15 V 0 V 15 V Transmittance (Front) 51.5% 2.7% 51.4% 2.6% Transmittance (left 30 degrees) 40.7% 2.6% 39.5% 2.6% Transmittance (30 degrees right) 40.1% 2.6% 42.7% 2.6%
  • Table 3 shows the results obtained by irradiating the incident light of the backlight with the surface normal of the variable transmittance film at an angle of about 30 degrees with respect to Examples 1 to 3, and measuring initial transmittance, light shielding transmittance, and contrast ratio. From Table 3 it can be seen that when the variable transmittance film is mounted to the eyewear at an inclination angle, the contrast ratio at the inclination angle can be improved by adjusting the pretilt angle of the vertical alignment layer.

Abstract

본 출원은 투과율 가변 필름 및 이의 용도에 관한 것이다. 본 출원의 투과율 가변 장치는 클리어 상태 및 다크 상태의 사이를 스위칭할 수 있고, 좌우 시야각에서의 콘트라스트 비의 차이를 감소시킴으로써 우수한 좌우 대칭성을 확보할 수 있다. 이러한 본 출원의 투과율 가변 필름은 투과율의 조절이 필요한 다양한 건축용 또는 차량용 소재나, 증강 현실 체험용 또는 스포츠용 고글, 선글라스 또는 헬멧 등의 아이웨이(eyewear)를 포함하는 다양한 용도에 적용될 수 있다.

Description

투과도 가변 필름
본 출원은 2016년 4월 14일자 제출된 대한민국 특허출원 제10-2016-0045629호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은 투과도 가변 필름에 관한 것이다.
호스트 물질(host material)과 이색성 염료 게스트(dichroic dye guest)의 혼합물을 적용한 소위 GH셀(Guest host cell)을 사용한 투과율 가변 장치는 공지이며, 상기에서 호스트 물질로는 주로 액정 화합물이 사용된다.
이러한 투과율 가변 장치는 선글라스나 안경 등의 아이웨어(eyewear), 건물 외벽 또는 차량의 선루프 등을 포함한 다양한 용도에 적용되고 있다. 최근에는 소위 증강 현실(AR, Augmented Reality)의 체험을 위한 아이웨어류에도 상기 투과율 가변 소자의 적용이 검토되고 있다.
본 출원은 투과도 가변 필름을 제공하는 것을 목적으로 한다.
본 출원은 투과율 가변 필름에 관한 것이다. 본 명세서에서 용어 투과율 가변 필름은 상대적으로 높은 투과율의 상태(이하, 투과 상태 또는 클리어 상태)와 상대적으로 낮은 투과율의 상태(이하, 차단 상태 또는 다크 상태)의 사이를 스위칭할 수 있도록 설계된 필름을 의미할 수 있다.
일 예시에서 상기 투과율 가변 필름은, 상기 투과 상태에서의 투과율이 약 30% 이상, 약 35% 이상, 약 40% 이상, 약 45% 이상 또는 약 50% 이상일 수 있다. 또한, 상기 투과율 가변 필름은, 상기 차단 상태에서의 투과율이 약 20% 이하, 약 15% 이하 또는 약 10% 이하일 수 있다.
상기 투과 상태에서의 투과율은 수치가 높을수록 유리하고, 차단 상태에서의 투과율은 낮을수록 유리하기 때문에 각각의 상한과 하한은 특별히 제한되지 않는다. 일 예시에서 상기 투과 상태에서의 투과율의 상한은 약 100, 약 95%, 약 90%, 약 85%, 약 80%, 약 75%, 약 70%, 약 65% 또는 약 60%일 수 있다. 상기 차단 상태에서의 투과율의 하한은 약 0%, 약 1%, 약 2%, 약 3%, 약 4%, 약 5%, 약 6%, 약 7%, 약 8%, 약 9% 또는 약 10%일 수 있다.
상기 투과율은 직진광 투과율일 수 있다. 용어 직진광 투과율은 소정 방향으로 투과율 가변 필름을 입사한 광 대비 상기 입사 방향과 동일한 방향으로 상기 투과율 가변 필름을 투과한 광(직진광)의 비율일 수 있다. 일 예시에서 상기 투과율은, 상기 투과율 가변 필름의 표면 법선과 평행한 방향으로 입사한 광에 대하여 측정한 결과(법선광 투과율)이거나, 혹은 상기 표면 법선과 0도를 초과하고, 20도 이내인 각도를 이루는 방향으로 입사한 광에 대해 측정한 결과(경사광 투과율)일 수 있다. 상기 경사광 투과율의 측정을 위해 입사하는 광의 방향이 상기 표면 법선과 이루는 각도는 다른 예시에서 약 0.5도 이상, 약 1도 이상 또는 약 1.5도 이상이거나, 약 19.5 도 이하, 약 19 도 이하, 약 18.5도 이하, 약 18도 이하, 약 17.5도 이하, 약 17도 이하, 약 16.5도 이하, 약 16도 이하, 약 15.5도 이하, 약 15도 이하, 약 14.5도 이하, 약 14도 이하, 약 13.5도 이하, 약 13도 이하, 약 12.5도 이하, 약 12도 이하, 약 11.5도 이하, 약 11도 이하, 약 10.5도 이하, 약 10도 이하, 약 9.5도 이하, 약 9 도 이하, 약 8.5 도 이하, 약 8 도 이하, 약 7.5 도 이하, 약 7 도 이하, 약 6.5 도 이하, 약 6 도 이하, 약 5.5 도 이하, 약 5 도 이하, 약 4.5 도 이하, 약 4 도 이하, 약 3.5 도 이하 또는 약 3 도 이하일 수 있다.
일 예시에서 상기 투과도 가변 필름의 투과 상태에서의 투과율 중에서 법선광 투과율에 비하여 경사광 투과율이 보다 높을 수 있다. 이러한 상태는 후술하는 것과 같이 프리틸트각 등을 제어하여 조절할 수 있다. 상기와 같이 법선광 투과율 대비 경사광 투과율이 높은 투과도 가변 필름은, 아이웨어용으로 특히 적합하게 적용될 수 있다.
적어도 2개의 게스트호스트 액정층(Guest host liquid crystal layer, 이하 GHLC층으로 호칭)을 포함하는 구조에서 상기 각 GHLC층 내의 이색성 염료의 배향을 조절하는 것에 의해 상기 투과 및 차단 상태간의 스위칭이 가능하게 될 수 있다.
본 출원의 예시적인 투과도 가변 필름은 제 1 액정 셀 및 제 2 액정 셀을 포함할 수 있다. 상기 제 1 액정 셀은 제 1 GHLC층을 포함할 수 있다. 상기 제 2 액정 셀은 제 2 GHLC층을 포함할 수 있다.
상기 제 1 및 제 2 액정셀은 서로 중첩되어 포함되어 있을 수 있다. 이에 따라서 상기 제 1 액정셀을 투과한 광은 제 2 액정셀로 입사될 수 있고, 반대로 제 2 액정셀을 투과한 광도 제 1 액정셀로 입사될 수 있다.
도 1은, 상기와 같이 서로 중첩되어 있는 제 1 액정 셀(10) 및 제 2 액정 셀(20)의 상태를 모식적으로 나타낸 도면이다.
이러한 구조는 본 명세서에서 더블셀(double cell) 구조로 호칭될 수 있다.
상기 제 1 및 제 2 액정셀은 각각 수직 배향 및 수평 배향 상태간을 스위칭할 수 있다. 하나의 예시에서, 상기 수직 배향 및 수평 배향 상태 간의 스위칭은 액정 셀에 전압 인가 여부에 의해 수행될 수 있다. 예를 들어, 전압 비인가 상태에서 수직 배향 상태인 액정셀에 전압을 인가하여 수평 배향 상태로 전환시키거나, 반대로 수평 배향 상태인 액정셀에 전압을 인가하여 수직 배향 상태로 전환시킬 수 있다.
본 명세서에서 수직 배향 상태는 액정 분자의 방향자가 액정층의 평면에 대하여 수직하게 배열된 상태, 예를 들어, 약 85도 내지 95도 또는 약 90도를 이루는 배열 상태를 의미할 수 있다.
본 명세서에서 수평 배향 상태는 액정 분자의 방향자가 액정 층의 평면에 대하여 평행으로 배열된 상태, 예를 들어, -5도 내지 5도 또는 약 0도를 이루는 배열 상태를 의미할 수 있다.
본 명세서에서 액정 분자의 방향자는 액정층의 광축(Optical axis) 또는 지상축(Slow axis)을 의미할 수 있다. 상기 액정 분자의 방향자는 액정 분자가 막대(rod) 모양인 경우 장축 방향을 의미할 수 있고, 액정 분자가 원판(discotic) 모양인 경우 원판 평면의 법선 방향의 축을 의미할 수 있다.
상기 수평 배향 상태에서 제 1 액정셀과 제 2 액정셀의 광축은 약 85도 내지 95도 범위 내의 각도를 이루거나, 직교할 수 있다. 하나의 예시에서, 도 2에 나타낸 바와 같이, 수평 배향 상태에서 상기 제 1 및 제 2 액정셀(10, 20) 중 어느 하나, 예를 들면, 제 1 액정셀(10)은, 액정셀의 가로축(WA)을 기준으로 시계 방향으로 40도 내지 50도의 범위 내의 광축(OA)을 가지고, 다른 하나, 예를 들면, 제 2 액정셀(20)은 상기 액정셀의 가로축(WA)을 기준으로 시계 방향으로 130도 내지 140도의 범위 내의 광축(OA)을 가질 수 있다. 이러한 제 1 액정셀과 제 2 액정셀의 광축 관계를 통해 좌우 시야각에서의 콘트라스트 비의 차이를 감소시켜 좌우 대칭성이 우수한 투과도 가변 필름을 제공할 수 있다.
상기와 같은 액정셀의 광축은, 통상적으로 후술하는 배향막의 배향 방향에 따라 결정되고, 액정셀에 대해서는 다음과 같은 방식으로 측정할 수 있다. 우선 제 1 또는 제 2 액정셀을 수평 배향시킨 상태에서 상기 액정셀의 일면에 흡수형 선형 편광자를 배치하고, 상기 편광자를 360도 회전시키면서 투과율을 측정하여 확인할 수 있다. 즉, 상기 상태에서 액정셀 또는 흡수형 선형 편광자측으로 광을 조사하면서 다른 측에서 휘도(투과율)을 측정함으로써 광축 방향을 확인할 수 있다. 예를 들면, 상기 편광자를 360도 회전시키는 과정에서 투과율이 최소가 될 때에 상기 편광자의 흡수축과 수직을 이루는 각도 또는 수평을 이루는 각도를 광축의 방향으로 규정할 수 있다.
본 명세서에서 상기 액정셀의 가로축(WA)은, 액정셀의 장축 방향과 평행한 방향 또는 아이웨어 또는 TV 등의 디스플레이 장치에 적용되었을 때에 그 아이웨어를 착용한 관찰자 또는 디스플레이 장치를 관찰하는 관찰자의 양 눈을 연결하는 선과 평행한 방향을 의미할 수 있다.
제 1 GHLC층 및 제 2 GHLC층은 각각 액정 및 이방성 염료를 포함할 수 있다. 이하, 액정 및 이방성 염료를 기재하면서 특별한 언급이 없는 한 제 1 GHLC층 및 제 2 GHLC층의 액정 및 이방성 염료에 공통적으로 적용될 수 있는 내용이다.
본 명세서에서 용어 「GHLC층」은, 액정의 배열에 따라 이방성 염료가 함께 배열되어, 이방성 염료의 정렬 방향과 상기 정렬 방향의 수직한 방향에 대하여 각각 비등방성 광 흡수 특성을 나타내는 기능성 층을 의미할 수 있다. 예를 들어, 이방성 염료는 빛의 흡수율이 편광 방향에 따라서 달라지는 물질로서, 장축 방향으로 편광된 빛의 흡수율이 크면 p형 염료로 호칭하고 단축 방향으로 편광된 빛의 흡수율이 크면 n형 염료라고 호칭할 수 있다. 하나의 예시에서, p형 염료가 사용되는 경우, 염료의 장축 방향으로 진동하는 편광은 흡수되고 염료의 단축 방향으로 진동하는 편광은 흡수가 적어 투과시킬 수 있다. 이하 특별한 언급이 없는 한 이방성 염료는 p형 염료인 것으로 가정한다.
GHLC층을 포함하는 상기 액정 셀은 능동형 편광자(Active Polarizer)로 기능할 수 있다. 본 명세서에서 용어 「능동형 편광자(Active Polarizer)」는 외부 작용 인가에 따라 비등방성 광흡수를 조절할 수 있는 기능성 소자를 의미할 수 있다. 예를 들어 GHLC층은 액정 및 이방성 염료의 배열을 조절함으로써 상기 이방성 염료의 배열 방향과 평행한 방향의 편광 및 수직한 방향의 편광에 대한 비등방성 광 흡수를 조절할 수 있다. 액정 및 이방성 염료의 배열은 자기장 또는 전기장과 같은 외부 작용의 인가에 의하여 조절될 수 있으므로, GHLC층은 외부 작용 인가에 따라 비등방성 광 흡수를 조절할 수 있다.
제 1 GHLC층 및 제 2 GHLC층의 두께는 각각 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 일 예시에서 상기 제 1 또는 제 2 GHLC층 또는 상기 층을 포함하는 액정셀의 두께는, 약 0.01μm 이상, 0.05μm 이상, 0.1μm 이상, 0.5μm 이상, 1μm 이상, 1.5μm 이상, 2μm 이상, 2.5μm 이상, 3μm 이상, 3.5μm 이상, 4μm 이상, 4.5μm 이상, 5μm 이상, 5.5μm 이상, 6μm 이상, 6.5μm 이상, 7μm 이상, 7.5μm 이상, 8μm 이상, 8.5μm 이상, 9μm 이상 또는 9.5μm 이상일 수 있다. 이와 같이 두께를 제어함으로써, 투과 상태에서의 투과율과 차단 상태에서의 투과율의 차이가 큰 필름, 즉 콘트라스트 비율이 큰 필름을 구현할 수 있다. 상기 두께는 두꺼울수록 높은 콘트라스트 비율의 구현이 가능하여 특별히 제한되는 것은 아니지만, 일반적으로 약 30 μm 이하, 25 μm 이하, 20 μm 이하 또는 15 μm 이하일 수 있다.
제 1 GHLC층 및 제 2 GHLC층에 각각 포함되는 액정으로는 전압 인가에 따라 배열 상태를 스위칭할 수 있는 액정을 적절히 선택하여 사용할 수 있다. 상기 액정으로는 예를 들어 네마틱 액정을 사용할 수 있다. 본 명세서에서 네마틱 액정은 막대 모양의 액정 분자가 위치에 대한 규칙성은 없으나 액정 분자의 장축 방향으로 평행하게 배열되어 있는 액정을 의미할 수 있다.
제 1 GHLC층 및 제 2 GHLC층은 각각 유전율 이방성이 음수인 액정을 포함할 수 있다. 액정의 유전율 이방성의 절대값은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 본 명세서에서 용어 「유전율 이방성(△ε)」은 액정의 수평 유전율(ε//)과 수직 유전율(εㅗ,)의 차이(ε// - εㅗ)를 의미할 수 있다. 본 명세서에서 용어「수평 유전율(ε//)」은 액정 분자의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수평하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미하고, 「수직 유전율(εㅗ)」은 액정 분자의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수직하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미한다.
본 명세서에서 용어 「염료」는, 가시광 영역, 예를 들면, 400 nm 내지 700 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 「이방성 염료」는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다.
이방성 염료로는, 예를 들면, 액정의 정렬 상태에 따라 정렬될 수 있는 특성을 가지는 것으로 알려진 공지의 염료를 선택하여 사용할 수 있다. 이방성 염료로는, 예를 들면, 흑색 염료(black dye)를 사용할 수 있다. 이러한 염료로는, 예를 들면, 아조 염료 또는 안트라퀴논 염료 등으로 공지되어 있으나, 이에 제한되는 것은 아니다.
이방성 염료의 이색비(dichroic ratio)는 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 상기 이방성 염료는 이색비가 5 이상 내지 20 이하일 수 있다. 본 명세서에서 용어「이색비」는, 예를 들어, p형 염료인 경우, 염료의 장축 방향에 평행한 편광의 흡수를 상기 장축 방향에 수직하는 방향에 평행한 편광의 흡수로 나눈 값을 의미할 수 있다. 이방성 염료는 가시광 영역의 파장 범위 내, 예를 들면, 약 380 nm 내지 700 nm 또는 약 400 nm 내지 700 nm의 파장 범위 내에서 적어도 일부의 파장 또는 어느 한 파장에서 상기 이색비를 가질 수 있다.
제 1 GHLC층 및 제 2 GHLC층의 이방성 염료의 함량은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 제 1 GHLC층 및 제 2 GHLC층의 이방성 염료의 함량은 각각 0.1 중량% 이상 내지 10 중량% 이하일 수 있다. 상기 이방성 염료의 비율은 목적하는 투과율 등을 고려하여 변경할 수 있다.
상기 제 1 및/또는 제 2 GHLC층 또는 그를 포함하는 제 1 및/또는 제 2 액정셀은 각각 또는 동시에 약 0.5 이상의 이방성도(R)를 가질 수 있다.
상기 이방성도(R)는 액정 호스트의 배향 방향(alignment direction)에 평행하게 편광된 광선의 흡광도(E(p)) 및 액정 호스트의 배향 방향에 수직으로 편광된 광선의 흡광도(E(s))로부터 하기 수학식에 따라 측정한다.
<이방성도 측정>
이방성도(R) = [E(p)-E(s)] / [E(p) + 2*E(s)].
상기에서 사용되는 기준은 GHLC층내에 염료를 함유하지 않는 다른 동일한 장치이다.
구체적으로 이방성도(R)는, 염료 분자가 수평 배향된 액정셀의 흡광도에 대한 값(E(p)) 및 염료 분자가 수직 배향된 동일한 액정셀의 흡광도에 대한 값(E(s))으로부터 측정될 수 있다. 상기 흡광도를, 염료를 전혀 함유하지 않지만 그 밖에는 동일한 구성을 갖는 액정셀과 비교하여 측정한다. 이러한 측정은, 진동면이 하나의 경우에는 배향 방향과 평행한 방향으로 진동(E(p))하고 후속 측정에서는 배향 방향과 수직인 방향으로 진동(E(s))하는 편광된 광선을 이용하여 수행될 수 있다. 액정셀은, 측정 도중에 스위칭되거나 회전되지 않고, 따라서, 상기 E(p) 및 E(s)의 측정은 편광된 입사광의 진동면을 회전시킴으로써 수행될 수 있다.
상세한 절차의 일 예시는 하기에 기술된 바와 같다. E(p) 및 E(s)의 측정을 위한 스펙트럼은 퍼킨 엘머 람다 1050 UV 분광계(Perkin Elmer Lambda 1050 UV spectrometer)를 이용하여 기록한다. 분광계에는 측정용 빔 및 기준 빔 모두에서 250 nm 내지 2500 nm의 파장 범위용의 글랜-톰슨 편광자(Glan-Thompson polariser)가 장착되어 있다. 2개의 편광자는 스테핑 모터(stepping motor)에 의해 제어되며, 동일한 방향으로 배향된다. 편광자의 편광자 방향에 있어서의 변화, 예를 들면 0도내지 90도의 전환은 측정용 빔 및 기준 빔에 대하여 항상 동기적으로 및 동일한 방향으로 수행된다. 개별 편광자의 배향은 뷔르츠부르크 대학교(University of Wurzburg)의 티. 카르스텐스(T. Karstens)의 1973년 학위 논문에 기술되어 있는 방법을 이용하여 측정할 수 있다.
이 방법에서, 편광자는 배향된 이색성 샘플에 대해 5도씩 단계적으로 회전되며, 흡광도는 바람직하게는 최대 흡수 영역에서 고정된 파장에서 기록된다. 각각의 편광자 위치에 대해 새로운 기준선 영점(zero line)이 실행된다. 2개의 이색성 스펙트럼 E(p) 및 E(s)의 측정을 위하여, JSR 사의 폴리이미드 AL-1054 로 코팅된 역평행-러빙된 테스트 셀은 측정용 빔 및 기준 빔 모두 내에 위치된다. 2개의 테스트 셀은 동일한 층 두께로 선택될 수 있다. 순수한 호스트(액정)을 함유하는 테스트 셀은 기준 빔 내에 위치된다. 액정 중에 염료의 용액을 함유하는 테스트 셀은 측정용 빔 내에 위치된다. 측정용 빔 및 기준 빔에 대한 2개의 테스트 셀은 동일한 배향 방향에서 음파 경로(ray path)내에 설치된다. 분광계의 최대로 가능한 정밀도를 보장하기 위하여, E(p)는 반드시 그의 최대 흡수 파장 범위, 예를 들면, 0.5 내지 1.5의 파장 범위 내에 있을 수 있다. 이는 30% 내지 5%의 투과도에 상응한다. 이는 층 두께 및/또는 염료 농도를 상응하게 조정함으로써 설정된다.
이방성도(R)는 문헌[참조: "Polarized Light in Optics and Spectroscopy", D. S. Kliger et al., Academic Press, 1990]에 나타나 있는 바와 같은 상기 수학식에 따라 E(p) 및 E(s)에 대한 측정값으로부터 계산될 수 있다.
상기 이방성도(R)는 다른 예시에서 약 0.55 이상, 0.6 이상 또는 0.65 이상일 수 있다. 상기 이방성도(R)는 예를 들면, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하 또는 약 0.7 이하일 수 있다.
이러한 이방성도(R)는 액정셀의 종류, 예를 들면, 액정 화합물(호스트)의 종류, 이방성 염료의 종류 및 비율, 액정셀의 두께 등을 제어하여 달성할 수 있다.
상기 범위 내의 이방성도(R)를 통해 보다 저에너지를 사용하면서도, 투과 상태와 차단 상태에서의 투과율의 차이가 커져서 콘트라스트 비율이 높아지는 필름의 제공이 가능할 수 있다.
제 1 액정 셀 및 제 2 액정 셀은 각각 상기 제 1 GHLC층 및 제 2 GHLC층의 양측에 배치된 2장의 배향막을 더 포함할 수 있다. 하나의 예시에서, 상기 제 1 액정셀은 제 1 수직 배향막, 제 1 GHLC층 및 제 2 수직 배향막을 순차로 포함할 수 있고, 상기 상기 제 2 액정셀은 제 3 수직 배향막, 제 2 GHLC층 및 제 4 수직 배향막을 순차로 포함할 수 있다.
본 출원의 투과도 가변 필름은 상기 제 1 GHLC층 및 제 2 GHLC층의 전압 비인가 시 및/또는 전압 인가 시의 배향 방향을 조절함으로써 투과도를 조절할 수 있다. 상기 배향 방향은 상기 제1 내지 제4 수직 배향막의 프리틸트 각 및 프리틸트 방향을 조절함으로써 조절할 수 있다.
본 명세서에서 프리틸트는 각도(angle)와 방향(direction)을 가질 수 있다. 상기 프리틸트 각도는 극각(Polar angle)으로 호칭할 수 있고, 상기 프리틸트 방향은 방위각(Azimuthal angle)으로 호칭할 수도 있다.
상기 프리틸트 각도는 액정 분자의 방향자가 배향막과 수평한 면에 대하여 이루는 각도 또는 액정셀의 표면 법선 방향과 이루는 각도를 의미할 수 있다. 상기 수직 배향막의 프리틸트 각도는 액정 셀에 전압 비인가 시의 수직 배향 상태를 유도할 수 있다.
하나의 예시에서, 상기 제 1 내지 제 4 수직 배향막은 프리틸트 각이 70도 내지 89도의 범위 내일 수 있다. 프리틸트 각도가 상기 범위 내인 경우 초기 투과도가 우수한 투과도 가변 필름을 제공할 수 있다. 상기 프리틸트각은 일 예시에서 약 71도 이상, 72 도 이상, 약 73 도 이상 또는 약 74 도 이상일 수 있고, 약 88.5도 이하 또는 약 88도 이하일 수 있다.
하나의 예시에서 상기 제 1 수직 배향막의 프리틸트 각도는 상기 배향막과 수평한 면을 기준으로 시계 방향 또는 반시계 방향으로 측정한 각도이고, 제 2 수직 배향막의 프리틸트 각도는 그와는 역방향, 즉 제 1 수직 배향막의 프리틸트 각도가 시계 방향으로 측정된 경우에 반시계 방향 또는 제 1 수직 배향막의 프리틸트 각도가 반시계 방향으로 측정된 경우에 시계 방향으로 측정된 각도일 수 있다.
또한, 상기 제 3 수직 배향막의 프리틸트 각도는 상기 배향막과 수평한 면을 기준으로 시계 방향 또는 반시계 방향으로 측정한 각도이고, 제 4 수직 배향막의 프리틸트 각도는 그와는 역방향, 즉 제 3 수직 배향막의 프리틸트 각도가 시계 방향으로 측정된 경우에 반시계 방향 또는 제 3 수직 배향막의 프리틸트 각도가 반시계 방향으로 측정된 경우에 시계 방향으로 측정된 각도일 수 있다.
상기 프리틸트 방향은 액정 분자의 방향자가 배향막의 수평한 면에 사영된 방향을 의미할 수 있다. 일 예시에서 상기 프리틸트 방향은 상기 사영된 방향과 상기 가로축(WA)이 이루는 각도일 수 있다. 상기 수직 배향막의 프리틸트 방향은 액정 셀에 전압 인가 시 수평 배향 상태의 배향 방향을 유도할 수 있다
상기 제 1 및 제 2 수직 배향막의 프리틸트 방향과 제 3 및 제 4 수직 배향막의 프리틸트 방향은 서로 교차할 수 있다. 하나의 예시에서, 제 1 및 제 2 수직 배향막의 프리틸트 방향과 제 3 및 제 4 수직 배향막의 프리틸트 방향은 서로 직교를, 예를 들어, 85도 내지 95도 또는 약 90도를 이룰 수 있다. 프리틸트 방향이 상기 조건을 만족하는 경우 전압 인가 시 차광 율이 우수한 투과도 가변 필름을 제공할 수 있다.
또한, 일 예시에서 상기 제 1 및 제 2 수직 배향막의 프리틸트 방향과 상기 제 3 및 제 4 수직 배향막의 프리틸트 방향 중 어느 하나의 방향, 예를 들면, 상기 제 1 및 제 2 수직 배향막의 프리틸트 방향은, 액정셀의 가로축(WA)을 기준으로 시계 방향으로 40도 내지 50도의 범위 내의 광축(OA)을 가지고, 다른 하나의 방향, 예를 들면, 상기 제 3 및 제 4 수직 배향막의 프리틸트 방향은, 상기 액정셀의 가로축(WA)을 기준으로 시계 방향으로 130도 내지 140도의 범위 내의 광축(OA)을 가질 수 있다. 이러한 관계를 통해 좌우 시야각에서의 콘트라스트 비의 차이를 감소시켜 좌우 대칭성이 우수한 투과도 가변 필름을 제공할 수 있다.
상기 언급한 프리틸트 각도 및 방향은, 일 예시에서 상기 각 액정셀의 GHLC층이 수직 배향상태인 경우에 각 GHLC층에서 측정되는 프리틸트각 및 방향일 수 있다.
상기 제 1 내지 제 4 수직 배향막은 러빙 배향막 또는 광 배향막일 수 있다. 러빙 배향막의 경우, 배향 방향은 러빙 방향에 의해 정해지고, 광배향막의 경우는, 조사되는 광의 편광 방향 등에 의해 결정된다. 상기 수직 배향막의 프리틸트 각도 및 프리틸트 방향은 배향 조건, 예를 들어 러빙 배향 시의 러빙 조건이나 압력 조건, 혹은 광 배향 조건, 예를 들어, 광의 편광 상태, 광의 조사 각도, 광의 조사 세기 등을 적절히 조절하여 구현할 수 있다.
예를 들어, 수직 배향막이 러빙 배향막인 경우에 상기 프리틸트 각도는 상기 러빙 배향막의 러빙 세기 등을 제어하여 달성할 수 있고, 프리틸트 방향은 상기 러빙 배향막의 러빙 방향을 제어하여 달성할 수 있으며, 이러한 달성 방식은 공지의 방식이다. 또한, 광배향막의 경우, 배향막 재료, 배향에 적용되는 편광의 방향, 상태 내지는 세기 등에 의해 달성될 수 있다.
하나의 예시에서, 상기 제 1 내지 제 4 수직 배향막은 러빙 배향막일 수 있다. 상기 제 1 내지 제 4 수직 배향막은 각각 특유의 배향 방향을 가질 수 있다.
예를 들면, 상기 제 1 및 제 2 수직 배향막의 러빙 방향은 서로 역방향으로서, 약 170도 내지 190도를 이룰 수 있고, 역시 제 3 및 제 4 수직 배향막의 러빙 방향은 서로 역방향으로서 약 170도 내지 190도를 이룰 수 있다.
상기 러빙 방향은 프리틸트 각의 측정을 통해 확인할 수 있는데, 일반적으로 액정은 러빙 방향을 따라서 누우면서 프리틸트 각을 발생시키기 때문에, 하기 실시예에서 기재된 방식으로 프리틸트 각을 측정함으로써 상기 러빙 방향의 측정이 가능할 수 있다.
하나의 예시에서, 도 3에 나타낸 바와 같이, 상기 제 1 수직 배향막(12)의 러빙 배향의 방향(RA)은 40도 내지 50도이고, 상기 제 2 수직 배향막(14)의 러빙 배향의 방향(RA)은 220도 내지 230도이고, 상기 제 3 수직 배향막(22)의 러빙 배향의 방향(RA)은 130도 내지 140도이고, 상기 제 4 수직 배향막(24)의 러빙 배향의 방향(RA)은 310도 내지 320도일 수 있다. 이러한 제 1 내지 제 4 수직 배향막의 러빙 배향 방향의 관계를 통해 수직 배향 상태와 수평 배향 상태 간의 스위칭이 효과적으로 이루어질 수 있는 투과도 가변 필름을 제공할 수 있다. 상기 각 러빙 배향의 방향(RA)은 상기 가로축(WA)을 기준을 기준으로 시계 방향 또는 반시계 방향으로 측정된 각도이다. 다만, 상기 각 러빙 배향의 방향(RA)을 측정하는 방향은 상기 시계 또는 반시계 방향 중에서 어느 한 방향만을 선택하여 측정한다.
일 예시에서 도 3에 나타낸 바와 같이, 상기 제 1 수직 배향막(12)의 러빙 배향의 방향(RA)과 상기 가로축(WA)이 이루는 각도와 제 2 수직 배향막(14)의 러빙 방향(RA)과 상기 가로축(WA)이 이루는 각도는, 모두 상기 가로축(WA)을 기준으로 시계 방향으로 측정한 때에 40도 내지 50도의 범위 내이고, 상기 제 1 수직 배향막(12)의 러빙 배향의 방향(RA)과 제 2 수직 배향막(14)의 러빙 방향(RA)은 서로 역방향일 수 있다.
또한, 도 3에 나타낸 바와 같이, 상기 제 3 수직 배향막(22)의 러빙 배향의 방향(RA)과 상기 가로축(WA)이 이루는 각도와 제 4 수직 배향막(24)의 러빙 방향(RA)과 상기 가로축(WA)이 이루는 각도는, 모두 상기 가로축(WA)을 기준으로 시계 방향으로 측정한 때에 130도 내지 140도의 범위 내이고, 상기 제 3 수직 배향막(22)의 러빙 배향의 방향(RA)과 제 4 수직 배향막(24)의 러빙 방향(RA)은 서로 역방향일 수 있다.
제 1 내지 제 4 수직 배향막으로서 광배향막이 사용되는 경우에도 상기 언급한 프리틸트 각도 및 방향이 달성될 수 있도록 조건이 제어될 수 있다.
예시적인 투과도 가변 필름은 상기 제 1 내지 제 4 수직 배향막의 외측에 배치된 전극 필름을 추가로 포함할 수 있다. 본 명세서에서 어느 구성의 외측은 액정층이 존재하는 측의 반대 측을 의미할 수 있다. 상기 제 1 내지 제 4 수직 배향막의 외측에 배치된 전극 필름을 각각 제 1 내지 제 4 전극 필름으로 호칭할 수 있다.
도 4는 GHLC층, 전극 필름 및 수직 배향막을 포함하는 제 1 액정 셀을 예시적으로 나타낸다. 도 4에 나타낸 바와 같이, 제 1 액정 셀(10)은 제 1 전극 필름(11), 제 1 수직 배향막(12), 제 1 GHLC층(13), 제 2 수직 배향막(14) 및 제 2 전극 필름(15)을 순차로 포함할 수 있다. 상기 제1 및 제2 전극 필름과 제 1 및 제 2 수직 배향막의 두께는 본 출원의 목적을 고려하여 적절히 선택될 수 있다.
도 5는 GHLC층, 전극 필름 및 수직 배향막을 포함하는 제 2 액정 셀을 예시적으로 나타낸다. 도 5에 나타낸 바와 같이, 제 2 액정 셀(20)은 제 3 전극 필름(21), 제 3 수직 배향막(22), 제 2 GHLC층(23), 제 4 수직 배향막(24) 및 제 4 전극 필름(25)을 순차로 포함할 수 있다. 상기 제 3 및 제 4 전극 필름과 제 3 및 제 4 수직 배향막의 두께는 본 출원의 목적을 고려하여 적절히 선택될 수 있다.
상기 전극 필름은 각각 기재 필름 및 상기 기재 필름 상에 투명 전도성 층을 포함할 수 있다. 상기 전극 필름은 액정 및 이방성 염료의 정렬 상태를 전환할 수 있도록 제 1 액정 셀 및 2 액정 셀에 적절한 전계를 인계할 수 있다. 상기 전계의 방향은 수직 방향, 예를 들어, 제 1 액정 셀 및 2 액정 셀의 두께 방향일 수 있다.
상기 기재 필름으로는 플라스틱 필름 등을 사용할 수 있다. 플라스틱 필름으로는 TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone) 또는 PAR(polyarylate)을 포함하는 필름을 예시할 수 있다.
하나의 예시에서, 상기 제 1 및/또는 제 4 전극 필름은 광학적으로 등방성인 기재필름 또는 광학적으로 이방성인 기재필름을 포함할 수 있다. 하나의 예시에서, 상기 제 2 및/또는 제 3 전극 필름은 광학적으로 등방성인 기재 필름, 예를 들어 PC(polycarbonate) 필름, COP(cyclo olefin copolymer) 필름 또는 PI(polyimide) 필름을 포함할 수 있다.
투명 전도성 층으로는 예를 들면, 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등을 증착하여 형성한 것을 사용할 수 있다. 이외에도 투명 전도성 층을 형성할 수 있는 다양한 소재 및 형성 방법이 공지되어 있고, 이를 제한없이 적용할 수 있다.
본 출원의 투과도 가변 필름은 점착제를 더 포함할 수 있다. 상기 제 1 액정 셀 및 제 2 액정 셀은 상기 점착제에 의해 서로 합착된 상태로 존재할 수 있다. 상기 점착제로는 광학 필름의 부착에 사용되는 점착제층을 적절히 선택하여 사용할 수 있다. 상기 점착제의 두께는 본 출원의 목적을 고려하여 적절히 선택될 수 있다.
본 출원의 투과도 가변 필름은 하드 코팅 필름을 더 포함할 수 있다. 상기 하드 코팅 필름은 기재 필름 및 상기 기재 필름 상에 하드 코팅 층을 포함할 수 있다. 하드 코팅 필름은 본 출원의 목적을 고려하여 공지의 하드 코팅 필름을 적절히 선택하여 사용할 수 있다. 상기 하드 코팅 필름의 두께는 본 출원의 목적을 고려하여 적절히 선택될 수 있다.
상기 하드 코팅 필름은 제 1 액정 셀 및/또는 제 2 액정 셀의 외측에 점착제를 통하여 형성될 수 있다. 예를 들어, 하드 코팅 필름은 제 1 전극 필름 및/또는 제 4 전극 필름의 외측에 점착제를 통하여 부착될 수 있다. 상기 점착제로는 광학 필름의 부착에 사용되는 점착제를 적절히 선택하여 사용할 수 있다.
본 출원은 투과도 가변 필름은 반사 방지 필름을 더 포함할 수 있다. 상기 반사 방지 필름은 기재 필름 및 상기 기재 필름 상에 반사 방지 층을 포함할 수 있다. 반사 방지 필름은 본 출원의 목적을 고려하여 공지의 반사 방지 필름을 적절히 선택하여 사용할 수 있다. 상기 반사 방지 필름의 두께는 본 출원의 목적을 고려하여 적절히 선택될 수 있다.
상기 반사 방지 필름은 제 1 액정 셀 및/또는 제 2 액정 셀의 외측에 점착제를 통하여 형성될 수 있다. 예를 들어, 반사 방지 필름은 제 1 전극 필름 및/또는 제 4 전극 필름의 외측에 점착제를 통하여 부착될 수 있다. 상기 점착제로는 광학 필름의 부착에 사용되는 점착제를 적절히 선택하여 사용할 수 있다.
전술한 바와 같이, 본 출원의 투과도 가변 필름은 제1 액정셀 및 제2 액정셀에 전압 비인가 시 및 전압 인가 시의 배향 상태를 조절함으로써 전압 인가 여부에 따라 투과도를 조절할 수 있다. 액정 및 이방성 염료는 상기 배향 방향에 따라 정렬될 수 있다. 따라서, 배향 방향은 액정의 광축 방향 및/또는 이방성 염료의 흡수축 방향과 평행할 수 있다.
하나의 예시에서, 상기 투과도 가변 필름은 제 1 액정 셀 및 제 2 액정 셀이 각각 수직 배향 상태인 경우 클리어 상태를 구현할 수 있고, 수평 배향 상태인 경우 다크 상태를 구현할 수 있다. 본 명세서에서 클리어 상태는 투과율이 높은 상태를 의미할 수 있고, 다크 상태는 투과율이 낮은 상태를 의미할 수 있다.
하나의 예시에서, 상기 클리어 상태에서의 투과율은 40% 이상, 45% 이상 또는 50% 이상이고, 다크 상태에서의 투과율은 5% 이하, 4%이하 또는 3% 이하일 수 있다.
본 명세서에서 투과율은 수직광에 대한 직진광 투과율을 의미할 수 있다. 상기에서 수직광은, 상기 투과율 가변 필름의 표면의 법선 방향과 나란한 방향으로 입사하는 광이고, 수직광의 직진광 투과율은, 상기 투과도 가변 필름 표면에 입사한 수직광 중에서 역시 상기 법선 방향과 나란한 방향으로 투과된 광의 백분율이다.
도 6은 본 출원의 투과도 가변 필름의 투과도 조절 원리를 예시적으로 나타낸다. 도 6의 좌측 도면은 전압 비인가 상태이고 우측 도면은 전압 인가 상태이다. 화살표의 면적은 투과 광량을 의미한다. 좌측 및 우측 도면에서 상부 층은 제 1 액정 셀을 의미하고, 하부 층은 제 2 액정 셀을 의미하며, 푸른색 타원은 유전율 이방성이 음수인 액정을 의미하고, 검은색 타원은 이방성 염료를 의미한다.
도 6에 나타낸 바와 같이, 본 출원의 투과도 가변 필름은 전압 비인가 시 제 1 액정 셀 및 제 2 액정 셀이 각각 수직 배향 상태로 존재하고 투과 광량이 상대적으로 증가하므로 클리어 모드를 구현할 수 있다. 상기 투과도 가변 필름은 전압 비인가 시 투과율이 약 40% 이상인 클리어 모드를 구현할 수 있다. 본 출원의 투과도 가변 필름은 PVA계 편광판 및 GHLC층을 갖는 능동형 편광자의 조합을 적용한 경우 초기 투과도가 약 40% 미만인 것에 비하여 전압 비인가 시 초기 투과도가 우수하다.
도 6에 나타낸 바와 같이, 본 출원의 투과도 가변 필름은 전압 인가 시 제 1 액정 셀 및 제 2 액정 셀이 각각 수평 배향 상태로 존재할 수 있다. 상기 제 1 액정 셀의 일축 배향 방향과 제 2 액정 셀의 일축 배향 방향은 직교를 이룰 수 있다. 이 경우 제 1 액정 셀과 제 2 액정 셀의 흡수축이 직교를 이룰 수 있으므로, 크로스 폴 효과에 의해 투과 광량이 상대적으로 감소하므로 다크 상태를 구현할 수 있다. 상기 투과도 가변 필름은 전압 인가 시 투과율이 약 5% 이하인 다크 상태를 구현할 수 있다. 상기 투과도 가변 필름은 전압이 제거되는 경우 클리어 상태로 전환될 수 있다.
전술한 바와 같이 상기 수평 배향 상태에서 상기 제 1 액정셀은 상기 액정셀의 가로축을 기준으로 시계 방향으로 40도 내지 50도의 범위 내의 광축을 가지고, 상기 제 2 액정셀은 상기 액정셀의 가로축을 기준으로 시계 방향으로 130도 내지 140도의 범위 내의 광축을 가질 수 있다. 이러한 제 1 액정셀과 제 2 액정셀의 광축 관계를 통해 좌우 시야각에서의 콘트라스트 비의 차이를 감소시켜 좌우 대칭성이 우수한 투과도 가변 필름을 제공할 수 있다.
상기와 같은 투과율 가변 필름은 다양한 용도에 적용될 수 있다. 투과율 가변 필름이 적용될 수 있는 용도에는, 원도우 또는 선루프 등과 같은 건물, 용기 또는 차량 등을 포함하는 밀폐된 공간의 개구부나 아이웨어(eyewear) 등이 예시될 수 있다. 상기에서 아이웨어의 범위에는, 일반적인 안경, 선글라스, 스포츠용 고글 내지는 헬멧 또는 증강 현실 체험용 기기 등과 같이 관찰자가 렌즈를 통하여 외부를 관찰할 수 있도록 형성된 모든 아이 웨어가 포함될 수 있다.
본 출원의 투과율 가변 필름이 적용될 수 있는 대표적인 용도에는 아이웨어가 있다. 최근 선글라스, 스포츠용 고글이나 증강 현실 체험용 기기 등은 관찰자의 정면 시선과는 경사지도록 렌즈가 장착되는 형태의 아이웨어가 시판되고 있다. 본 출원의 투과율 가변 필름의 경우, 전술한 바와 같이 경사진 방향에서 관찰하게 될 때에 좌우 경사각에서의 콘트라스트 비의 차이를 감소시킴으로써 우수한 좌우 대칭성을 확보할 수 있으므로, 상기와 같은 구조의 아이웨어에도 효과적으로 적용될 수 있다.
본 출원의 투과율 가변 필름이 아이웨어에 적용되는 경우에 그 아이웨어의 구조는 특별히 제한되지 않는다. 즉, 공지의 아이웨어 구조의 좌안용 및/또는 우안용 렌즈 내에 상기 투과율 가변 필름이 장착되어 적용될 수 있다.
예를 들면, 상기 아이웨어는, 좌안용 렌즈와 우안용 렌즈; 및 상기 좌안용 렌즈와 우안용 렌즈를 지지하는 프레임을 포함할 수 있다.
도 10은, 상기 아이웨어의 예시적인 모식도로서, 상기 프레임(12) 및 좌안용과 우안용 렌즈(14)를 포함하는 아이웨어의 모식도이나, 본 출원의 투과율 가변 필름이 적용될 수 있는 아이웨어의 구조가 도 5에 제한되는 것은 아니다.
상기 아이웨어에서 좌안용 렌즈 및 우안용 렌즈는 각각 상기 투과율 가변 필름을 포함할 수 있다. 이러한 렌즈는, 상기 투과율 가변 필름만을 포함하거나, 기타 다른 구성을 포함할 수도 있다.
상기 아이웨어는 다양한 디자인을 가질 수 있으며, 예를 들면, 상기 프레임은 상기 아이웨어를 관찰자가 장착한 때에 상기 관찰자의 정면 시선 방향과 상기 투과율 가변 필름 표면의 법선이 이루는 각도가 15도 내지 40도의 범위 내가 되도록 경사지게 형성되어 있을 수 있다. 이러한 아이웨어로는, 스포츠용 고글이나 증강 현실 체험용 기기 등이 예시될 수 있다. 투과도 가변 필름이 아이웨어에 경사지게 형성되는 경우, 제1 내지 제 4 수직 배향막의 프리틸트 각의 조절을 통해 경사각에서의 콘트라스트 비를 개선할 수도 있다.
본 출원의 투과율 가변 필름은 클리어 상태 및 다크 상태의 사이를 스위칭할 수 있고, 좌우 시야각에서의 콘트라스트 비의 차이를 감소시킴으로써 우수한 좌우 대칭성을 확보할 수 있다. 이러한 본 출원의 투과율 가변 필름은 투과율의 조절이 필요한 다양한 건축용 또는 차량용 소재나, 증강 현실 체험용 또는 스포츠용 고글, 선글라스 또는 헬멧 등의 아이웨이(eyewear)를 포함하는 다양한 용도에 적용될 수 있다.
도 1은 본 출원의 투과도 가변 필름을 예시적으로 나타낸다.
도 2는 제 1 내지 제 2 액정셀의 수평 배향 상태에서 광축을 나타낸다.
도 3은 제 1 내지 제 4 수직 배향막의 프리틸트 방향을 나타낸다.
도 4는 제 1 액정셀을 예시적으로 나타낸다.
도 5는 제 2 액정셀을 예시적으로 나타낸다.
도 6은 본 출원의 투과도 가변 필름의 투과도 가변 원리를 나타낸다.
도 7은 실시예 1에 대한 전압-투과율 그래프이다.
도 8은 실시예 1에 대한 시야각-투과율 그래프이다.
도 9는 실시예 4에 대한 전압에 따른 파장-투과율 그래프이다.
도 10은 아이웨어를 예시적으로 나타낸다.
도 11과 12는 프리틸트 각도를 측정하는 방법의 예시이다.
<부호의 설명>
10: 제1 액정셀,
20: 제2 액정셀,
11: 제 1 전극 필름,
12: 제 1 수직 배향막,
13: 제 1 GHLC층,
14: 제 2 수직 배향막,
15: 제 2 전극 필름,
21: 제 3 전극 필름,
22: 제 3 수직 배향막,
23: 제 2 GHLC층,
24: 제 4 수직 배향막,
25: 제 4 전극 필름
14: 좌안용 또는 우안용 렌즈,
12: 프레임
이하 실시예 및 비교예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
프리틸트 각도의 측정 방법
액정셀의 프리틸트 각도는 다음의 방식으로 측정할 수 있다. 액정셀의 프리틸트 각도는 하나의 액정셀에 대해서 측정하는 방식과 2개의 액정셀이 중첩되어 있는 더블셀에서 측정하는 방식이 있는데, 이하 각각을 기술한다. 상기에서 더블셀에서 측정하는 방식의 경우는 제 1 내지 제 4 수직 배향막이 모두 유사한 프리틸트각도를 가지는 경우에 유용한다. 한편, 프리틸트 방향은, 각 액정셀을 수평 배향시킨 상태에서 상기 액정셀의 일면에 흡수형 선형 편광자를 배치하고, 상기 편광자를 360도 회전시키면서 투과율을 측정하여 확인할 수 있다. 예를 들면, 상기 편광자를 360도 회전시키는 과정에서 투과율이 최소가 될 때에 상기 편광자의 흡수축과 수직을 이루는 각도 또는 수평을 이루는 각도를 프리틸트 방향으로 규정할 수 있다.
1. 단일 액정셀의 프리틸트 각도의 측정
우선 도 11에 나타난 바와 같이 광원과 투과율 측정 센서(ex. LCMS-200)의 사이에 액정셀을 배치한다. 상기 상태에서 도면의 점선으로 표시된 바와 같이 측정 센서와 광원을 최단거리로 연결하는 방향을 Y축으로 상기 Y축과 직교하는 방향을 X축으로 정의한다. 그 후 도 11에 나타난 바와 같이 액정셀을 회전시키면서 광원으로 광을 조사하면서 측정 센서로 투과율을 평가한다. 이 과정에서 액정셀의 배향 상태는 수직 배향 상태로 유지할 수 있다. 상기와 같은 과정을 통해 투과율을 측정할 때에 투과율이 최대가 되는 지점에서 상기 액정셀의 표면 법선(도면에서 실선 표시)과 Y축이 이루는 각도를 통해 프리틸트 각을 측정한다. 예를 들어, 도 11에서 Y축과 상기 표면 법선이 A도를 이루는 경우에 가장 높은 투과율이 구현된다면, 프리틸트 각도는 90도에서 A도를 뺀 수치로 정의될 수 있다. 상기에서 A도는 시계 또는 반시계 방향으로 측정한 양의 수이다.
2. 더블셀의 프리틸트 각도의 측정
더블셀인 경우에도 상기와 같은 방식으로 프리틸트각을 측정할 수 있다. 우선 도 12에 나타난 바와 같이 더블셀을 광원과 투과율 측정 센서(ex. LCMS-200)의 사이에 배치한다. 즉, 도 12에서 제 1 액정셀(10)의 앞쪽(도면에서 나가는 방향) 또는 뒤쪽(도면에서 들어가는 방향) 중 어느 한쪽에 광원을 다른 한 쪽에 측정 센서를 배치하고, 더블셀을 도면의 회전 방향으로 회전시키면서, 투과율이 최대가 되는 시점에서 Y축(광원과 측정 센서를 최단거리로 연결하는 방향의 축)과 더블셀의 표면 법선이 이루는 각도(상기 A도)를 측정한 후에 90도에서 상기 각도의 절대값을 뺀 수치가 프리틸트 각으로 정의될 수 있다. 이 경우에도 액정셀(10, 20)의 배향은 수직 배향으로 유지될 수 있다.
실시예 1
투명 전도성 필름으로 가로의 길이가 약 300mm이고, 세로의 길이가 약 200mm인 PC(polycarbonate) 필름의 일면에 ITO(Indium Tin Oxide)층이 형성된 필름을 준비하였다. 상기 필름의 ITO층면에 수직 배향막으로는 한켐사의 PVM-11 폴리이미드층을 형성하였고, 액정으로는 HCCH사의 HNG730200(ne: 1.551, no: 1.476, ε∥: 9.6, ε⊥: 9.6, TNI: 100℃, △n: 0.075, △ ε: -5.7)를 준비하고, 이방성 염료로는 BASF사의 X12를 준비했다.
투명 전도성 필름의 ITO층 상에 상기 수직 배향막을 바코팅으로 코팅 후, 120℃ 온도에서 1시간동안 소성하여, 300nm 두께의 배향막을 얻었다. 상기 배향막을 러빙포로 러빙 처리하여 러빙 방향이 가로축을 기준으로 시계 방향으로 45도를 이루도록 하여 제1 상부 기판을 제조하였다. 이어서, 상기와 동일한 투명 전도성 필름의 ITO층상에 높이가 10μm이고, 직경이 15μm인 컬럼 스페이서를 250μm 간격으로 배치하고, 동일하게 ITO층 상에 수직 배향막을 바코팅으로 코팅 후, 러빙 처리하여 러빙 방향이 가로축을 기준으로 시계 방향으로 약 225도를 이루도록 하여 제 1 하부 기판을 제조하였다. 상기 액정 2g에 이방성 염료를 28 mg을 녹인 후, 0.2μm PP(polypropylene) 재질의 syringe filter로 부유물을 제거하였다. 제 1 하부 기판의 배향막 표면 위 테두리에 실란트를 실 디스펜서(seal dispenser)로 그렸다. 상기 제 1 하부 기판의 배향막에 액정-염료 혼합액을 뿌린 후, 제 1 상부 기판을 덮어주며 라미네이션하고 UV(Ultraviolet) 노광기로 UV B 기준 1J의 조사량으로 노광하여 제 1 액정셀을 제조하였다. 이때 제 1 상부 기판과 제 1 하부 기판의 러빙 방향이 서로 180도를 이루도록 라미네이션하였다.
제 1 상부 기판의 제조에 있어서, 러빙 방향이 가로축을 기준으로 시계방향으로 약 135도를 이루도록 변경한 것을 제외하고는 동일한 방법으로 제 2 상부 기판을 제조하였다. 제 1 하부 기판의 제조에 있어서, 러빙 방향이 가로축을 기준으로 시계방향으로 약 315도를 이루도록 변경한 것을 제외하고는 동일한 방법으로 제 2 하부 기판을 제조하였다. 상기 제 1 액정셀의 제조와 동일한 방법으로, 제 2 액정셀을 제조하였다.
상기 제 1 액정 셀 및 제 2 액정셀의 셀 갭은 각각 12㎛이고, 제 1 상부 기판, 제 1 하부 기판, 제 2 상부 기판 및 제 2 하부 기판의 수직 배향막의 프리틸트 각은 각각 88도였다. 제작된 제 1 액정셀과 제 2 액정셀을 제 1 상부 기판과 제 2 상부 기판의 러빙 방향이 서로 90도 직교하도록 OCA 점착제로 라미네이션하여 실시예 1의 투과도 가변 필름을 제작하였다.
실시예 2
실시예 1의 투과도 가변 필름의 제조에 있어서, 제 1 상부 기판, 제 1 하부 기판, 제 2 상부 기판 및 제 2 하부 기판의 수직 배향막의 프리틸트 각을 각각 82도로 변경한 것을 제외하고는 실시예 1과 동일하게 투과도 가변 필름을 제조하였다. 상기에서 프리틸트 각을 제어하기 위해서 러빙 시에 러빙포의 회전 rpm을 약 1000 rpm으로 하고, stage 이동 속도를 약 1.16m/min으로 하였으며, 러빙 깊이(rubbing depth)를 약 280μm로 제어하였다.
실시예 3
실시예 1의 투과도 가변 필름의 제조에 있어서, 제 1 상부 기판, 제 1 하부 기판, 제 2 상부 기판 및 제 2 하부 기판의 수직 배향막의 프리틸트 각을 각각 75도로 변경한 것을 제외하고는 실시예 1과 동일하게 투과도 가변 필름을 제조하였다. 상기에서 프리틸트 각을 제어하기 위해서 러빙 시에 러빙포의 회전 rpm을 약 1000 rpm으로 하고, stage 이동 속도를 약 1.16m/min으로 하였으며, 러빙 깊이(rubbing depth)를 약 380μm로 제어하였다.
실시예 4
실시예 1의 투과도 가변 필름의 제조에 있어서, 제 1 액정 셀 및 제 2 액정 셀의 셀 갭이 각각 8 ㎛로 되도록 스페이서의 크기를 변경한 것을 제외한 것을 제외하고는 실시예 1과 동일하게 투과도 가변 필름을 제조하였다.
비교예 1
실시예 1의 투과도 가변 필름의 제조에 있어서, 제 1 액정셀과 제 2 액정셀을 상부 기판과 상부 기판의 러빙 방향이 약 45도를 이루도록 OCA 점착제로 라미네이션한 것을 제외하고는, 실시예 1과 동일하게 투과도 가변 필름을 제작하였다.
비교예 2
실시예 1의 제 1 액정셀의 제조에 있어서, 제 1 상부 기판과 제 1 하부 기판의 러빙 방향이 서로 180도가 아닌 90도가 되도록 라미네이션하고, 액정에 좌선성의 카이랄 도펀트(chiral dopant)를 첨가하여 피치가 100μm 가 되도록 한 것을 제외하고는 실시예 1의 제1 액정셀의 제조와 동일한 방법을 수행하여, reverse-TN형 액정-염료 필름셀을 제조함으로써 투과도 가변 필름을 준비하였다.
비교예 3
비교예 3의 투과도 가변 필름의 상부 기판의 러빙 방향과 흡수축이 일치하는 방향으로 편광판을 OCA 점착제로 라미네이션하여 비교예 4의 투과도 가변 필름을 제조하였다.
비교예 4
실시예 1의 투과도 가변 필름의 제조에 있어서, 제 1 상부 기판, 제 1 하부 기판, 제 2 상부 기판 및 제 2 하부 기판의 러빙 방향을 가로축을 기준으로 시계 방향으로 각각 0도, 180도, 90도 및 270도를 이루도록 러빙 배향한 것을 제외하고는, 실시예 1과 동일하게 투과도 가변 필름을 제작하였다.
평가예 1 전기 광학 특성 평가
투과도 가변 필름의 액정 셀의 상부 기판 및 하부 기판의 배향막을 TMAH(Tetramethylammonium hydroxide) 2% 수용액 및 NMP(N-Methyl-2-Pyrrolidone)를 1:9로 혼합한 세정액으로, 끝부분을 세정후 실버페이스트를 묻혀, 100℃ 온도에서 15분간 가온 후, 전극 테이프로 연결하여, 전압인가 준비를 한다. 이때 더블 셀 구조의 투과도 가변 필름의 경우, 4개의 전극을 제 1 상부 기판과 제 2 상부 기판의 전극테이프를 연결하여 단자를 하나 만들고, 제 1 하부 기판과 제 2 하부 기판의 전극테이프를 연결하여 단자를 하나 만들어 내어 준비한다. 준비한 샘플을 백라이트 위에 올려놓고, 두 개의 전극을 함수 발생기(function generator)의 단자에 연결하고, 0Vrms에서 15Vrms까지 전압을 인가하면서 포토다이오드로 휘도 값을 계측하여 투과율을 측정하였다. 이때 백라이트의 초기 휘도 값을 계측하여 백분율로 환산하여 투과율 값을 기록한다. 콘트라스트 비는, 전압 무인가 상태에서의 투과율(Tc) 대비 15V 전압 인가 시의 투과율(T)의 비율(Tc/T)이다.
도 7은 실시예 1에 대해 측정한 전압-투과율 그래프이다. 상기 투과율은 400 nm 내지 700 nm 파장에 대한 평균 투과율이다. 도 7에 나타낸 바와 같이, 실시예 1은 전압 비 인가 시 (0V), 약 51.5±0.5%의 투과율을 나타내는 클리어 모드이고, 약 15V 의 전압 인가 시 약 2.7±0.1%의 투과율을 나타내는 다크 모드로 스위칭되었다. 전압을 제거하는 경우, 다시 약 51.5±0.5%의 투과율을 나타내는 클리어 모드로 스위칭되었다. Hysteresis 현상이 발생하지 않았다.
도 8은 실시예 1에 대해 측정한 시야각-투과율 그래프이다. 상기 투과율은 400 nm 내지 700 nm 파장에 대한 평균 투과율이다. 도 8로부터 실시예 1은 좌우 시야각에서 투과율 대칭성이 우수함을 확인할 수 있다.
도 9는 실시예 4에 대한 전압에 따른 파장-투과율 그래프이다. 도 9로부터 본 출원의 투과율 가변 필름의 경우, 중간 전압에서 최대 전압 대비 높은 투과율(법선광 투과율)을 확보할 수 있도록 구성될 수 있음을 알 수 있다.
하기 표 1은 실시예 1 내지 3 및 비교예 1 내지 3에 대하여 전압 비 인가시의 초기 투과도, 15V 전압 인가시의 차광 투과도 및 콘트라스트 비를 나타낸다. 하기 표 1로부터 실시예 1 내지 3은 초기 투과도 뿐만 아니라 콘트라스트 비도 우수함을 확인할 수 있다.
초기 투과도(0V) 차광 투과도(15V) CR
실시예1 51.5% 2.7% 19.1
실시예2 47.3% 2.6% 18.2
실시예3 42.5% 2.6% 16.3
비교예1 51.5% 9.4% 5.5
비교예2 70.2% 32.1% 2.2
비교예3 24.5% 1.3% 18.8
하기 표 2는 실시예 1 및 비교예 4에 대하여 정면, 좌우 시야각 30도에서 측정된 투과율을 나타낸다. 하기 표 2로부터 실시예 1이 비교예 4 대비 좌우 시야각에서의 투과도의 차이가 적으므로, 좌우 대칭성이 우수하다는 것을 확인할 수 있다.
실시예1 비교예4
0V 15V 0V 15V
투과도(정면) 51.5% 2.7% 51.4% 2.6%
투과도(좌30도) 40.7% 2.6% 39.5% 2.6%
투과도(우30도) 40.1% 2.6% 42.7% 2.6%
하기 표 3은 실시예 1 내지 실시예 3 대하여 백라이트의 입사 광이 투과도 가변 필름의 표면 법선과 약 30도의 각도를 이루도록 조사하고, 초기 투과도, 차광 투과도 및 콘트라스트 비를 측정한 결과를 나타낸다. 표 3으로부터 투과도 가변 필름이 아이웨어에 경사각으로 장착되는 경우 수직 배향막의 프리틸트 각의 조절을 통해 경사각에서의 콘트라스트 비를 개선할 수 있음을 확인할 수 있다.
초기 투과도(30도 경사각) 차광 투과도(15V) CR
실시예1 43.2% 2.7% 16
실시예2 46.3% 2.6% 17.8
실시예3 49.6% 2.6% 19.1

Claims (11)

  1. 제 1 게스트호스트 액정층을 포함하는 제 1 액정셀 및 제 2 게스트호스트 액정층을 포함하는 제2 액정셀을 포함하고,
    상기 제 1 및 제 2 액정셀은 서로 중첩되어 포함되어 있으며,
    상기 제 1 및 제 2 액정셀은 각각 수직 배향 및 수평 배향 상태간을 스위칭할 수 있고,
    상기 수평 배향 상태에서 상기 제 1 액정셀은 상기 액정셀의 가로축을 기준으로 시계 방향으로 40도 내지 50도의 범위 내의 광축을 가지며, 상기 제 2 액정셀은 상기 액정셀의 가로축을 기준으로 시계 방향으로 130도 내지 140도의 범위 내의 광축을 가지는 투과도 가변필름.
  2. 제 1 항에 있어서,
    제 1 및 제 2 게스트호스트 액정층은 각각 액정 및 이방성 염료를 포함하는 투과도 가변 필름.
  3. 제 2 항에 있어서,
    상기 액정은 유전율 이방성이 음수인 투과도 가변 필름.
  4. 제 1 항에 있어서, 제 1 또는 제 2 게스트호스트 액정층의 이방성도(R)가 0.5 이상인 투과도 가변 필름.
  5. 제 1 항에 있어서,
    상기 제 1 액정셀은 제 1 수직 배향막, 제 1 게스트호스트 액정층 및 제 2 수직 배향막을 순차로 포함하고, 상기 제 2 액정셀은 제 3 수직 배향막, 제 2 게스트호스트 액정층 및 제 4 수직 배향막을 순차로 포함하는 투과도 가변 필름.
  6. 제 5 항에 있어서,
    상기 제 1 내지 제 4 수직 배향막은 프리틸트 각이 70도 내지 89도의 범위 내이고, 상기 제 1 및 제 2 수직 배향막의 프리틸트 방향은 액정셀의 가로축 방향을 기준으로 시계 방향으로 각각 40도 내지 50도의 범위 내이고, 상기 제 3 및 제 4 수직 배향막의 프리틸트 방향은 액정셀의 가로축 방향을 기준으로 시계 방향으로 각각 130도 내지 140도의 범위 내인 투과도 가변 필름.
  7. 제 6 항에 있어서,
    상기 제 1 및 제 2 수직 배향막의 프리틸트 각은 중 어느 하나는 상기 배향막과 수평한 방향을 기준으로 시계 방향으로 측정한 각도이고, 다른 하나는 상기 배향막과 수평한 방향을 기준으로 반시계 방향으로 측정한 각도이며, 상기 제 3 및 제 4 수직 배향막의 프리틸트 각은 중 어느 하나는 상기 배향막과 수평한 방향을 기준으로 시계 방향으로 측정한 각도이고, 다른 하나는 상기 배향막과 수평한 방향을 기준으로 반시계 방향으로 측정한 각도인 투과도 가변 필름.
  8. 제 5 항에 있어서,
    제 1 내지 제 4 수직 배향막의 외측에 배치된 전극 필름을 추가로 포함하는 투과도 가변 필름.
  9. 제 1 항에 있어서,
    상기 제 1 및 제 2 액정셀은 서로 합착된 상태로 존재하는 투과도 가변 필름.
  10. 좌안용 렌즈와 우안용 렌즈; 및 상기 좌안용 렌즈와 우안용 렌즈를 지지하는 프레임을 포함하는 아이웨어로서,
    상기 좌안용 렌즈 및 우안용 렌즈는 각각 제 1 항의 투과율 가변 필름을 포함하고,
    상기 프레임은, 장착 시의 관찰자의 정면 시선 방향과 상기 투과율 가변 필름 표면의 법선이 이루는 각도가 15도 내지 40도의 범위 내가 되도록 형성되어 있는 아이웨어.
  11. 제 10 항에 있어서, 증강 현실 체험용 기기인 아이웨어.
PCT/KR2017/004060 2016-04-14 2017-04-14 투과도 가변 필름 WO2017179940A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780016201.2A CN108700702B9 (zh) 2016-04-14 2017-04-14 透射率可变膜
EP17782695.5A EP3444646B1 (en) 2016-04-14 2017-04-14 Eyewear comprising transmittance-variable film
JP2018543088A JP6641586B2 (ja) 2016-04-14 2017-04-14 透過率可変フィルム
US16/080,158 US10656480B2 (en) 2016-04-14 2017-04-14 Transmittance-variable film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160045629 2016-04-14
KR10-2016-0045629 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017179940A1 true WO2017179940A1 (ko) 2017-10-19

Family

ID=60041987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004060 WO2017179940A1 (ko) 2016-04-14 2017-04-14 투과도 가변 필름

Country Status (7)

Country Link
US (1) US10656480B2 (ko)
EP (1) EP3444646B1 (ko)
JP (1) JP6641586B2 (ko)
KR (1) KR101876986B1 (ko)
CN (1) CN108700702B9 (ko)
TW (1) TWI639860B (ko)
WO (1) WO2017179940A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546553A (zh) * 2017-04-28 2019-12-06 株式会社Lg化学 光调制装置
TWI680177B (zh) * 2017-12-20 2019-12-21 南韓商Lg化學股份有限公司 穿透率可變膜及擴增實境儀器
TWI680336B (zh) * 2017-10-31 2019-12-21 南韓商Lg化學股份有限公司 穿透率可變裝置以及眼用佩戴品
JP2020086177A (ja) * 2018-11-27 2020-06-04 大日本印刷株式会社 調光ユニット、該調光ユニットを備える調光部材及び該調光部材を備える移動体
CN112204462A (zh) * 2018-08-14 2021-01-08 株式会社Lg化学 光学装置
JP2021502601A (ja) * 2017-11-28 2021-01-28 エルジー・ケム・リミテッド 透過度可変装置及びその用途
CN112639551A (zh) * 2018-09-04 2021-04-09 株式会社Lg化学 透射率可变装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11126047B2 (en) * 2018-03-22 2021-09-21 Liqxtal Technology Inc. Ocular optical system
KR102171302B1 (ko) * 2018-07-02 2020-10-28 주식회사 엘지화학 광변조 소자
WO2020009443A1 (ko) * 2018-07-02 2020-01-09 주식회사 엘지화학 광변조 소자
TWI752428B (zh) * 2019-03-07 2022-01-11 南韓商Lg化學股份有限公司 光調控元件
US11029908B2 (en) * 2019-08-28 2021-06-08 Himax Display, Inc. Head mounted display apparatus
CN111929923A (zh) * 2020-08-19 2020-11-13 董达智 续航时间无限的电致变色自动控光滑雪护目镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460248A (en) * 1980-11-28 1984-07-17 Sharp Kabushiki Kaisha Two-layer guest-host liquid crystal display device
KR20000068650A (ko) * 1997-07-30 2000-11-25 하루타 히로시 액정표시장치
KR20010007255A (ko) * 1999-06-07 2001-01-26 가마이 고로 확산 접착층, 광학 부재 및 반사형 액정 디스플레이디바이스
US20120212399A1 (en) * 2010-02-28 2012-08-23 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
WO2015133878A1 (ko) * 2014-03-07 2015-09-11 주식회사 엘지화학 광학 소자

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166619A (en) 1979-06-15 1980-12-25 Stanley Electric Co Ltd Multilayer liquid crystal display device
JPS5737329A (en) * 1980-08-19 1982-03-01 Casio Comput Co Ltd Liquid crystal display device
JPS60159725A (ja) * 1984-01-30 1985-08-21 Nippon Seiki Co Ltd 液晶表示装置
JPS60211428A (ja) * 1984-04-05 1985-10-23 Matsushita Electric Ind Co Ltd 立体表示装置
US5943104A (en) * 1997-03-25 1999-08-24 University Technology Corporation Liquid crystal eyewear with two identical guest host subcells and tilted homeotropic alignment
US6252624B1 (en) * 1997-07-18 2001-06-26 Idemitsu Kosan Co., Ltd. Three dimensional display
WO2003069396A2 (en) * 2002-02-15 2003-08-21 Elop Electro-Optics Industries Ltd. Device and method for varying the reflectance or transmittance of light
JP4432356B2 (ja) * 2003-04-30 2010-03-17 ソニー株式会社 調光装置及び撮像装置
JP2005173493A (ja) * 2003-12-15 2005-06-30 Sony Corp 撮像装置
GB0500116D0 (en) * 2005-01-06 2005-02-09 Koninkl Philips Electronics Nv Liquid crystal based light control element
JP2006220770A (ja) * 2005-02-08 2006-08-24 Nippon Oil Corp 液晶フィルムおよび液晶表示素子
JP4444152B2 (ja) * 2005-04-18 2010-03-31 日本電信電話株式会社 3次元表示装置
TW200811492A (en) * 2006-07-12 2008-03-01 Nitto Denko Corp Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same
JP2008174717A (ja) * 2006-12-18 2008-07-31 Fujifilm Corp 液晶組成物及び液晶素子
JP5061066B2 (ja) * 2007-09-07 2012-10-31 富士フイルム株式会社 ポリマーフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
JP2010079287A (ja) * 2008-08-28 2010-04-08 Fujifilm Corp 液晶表示装置
CN101813798B (zh) * 2009-02-23 2013-08-28 住友化学株式会社 复合偏振板和使用其的ips模式液晶显示装置
KR20100106838A (ko) * 2009-03-24 2010-10-04 동우 화인켐 주식회사 복합구성 편광판 세트 및 이를 포함하는 면상 스위칭 모드 액정표시장치
US9513524B2 (en) 2010-10-04 2016-12-06 Alphamicron Incorporated Wide band variable transmittance optical device
US9632315B2 (en) * 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
CN102854650A (zh) * 2012-08-01 2013-01-02 江苏和成显示科技股份有限公司 具有染料液晶组合物的透明液晶显示器
KR101632059B1 (ko) * 2012-08-21 2016-06-20 주식회사 엘지화학 광학 필름 및 이를 포함하는 표시 소자
CN102854660B (zh) * 2012-09-24 2015-02-11 深圳市华星光电技术有限公司 一种使用光学补偿膜减弱va液晶显示器暗态漏光的方法
CN105190419A (zh) * 2013-05-08 2015-12-23 默克专利股份有限公司 用于调节光学能量通过的具有两个液晶切换层的装置
CN104345372B (zh) * 2013-08-09 2018-04-10 住友化学株式会社 光学膜
CN103605239B (zh) * 2013-11-22 2016-08-17 深圳市华星光电技术有限公司 一种液晶显示器
JP6450998B2 (ja) 2014-03-07 2019-01-16 エルジー・ケム・リミテッド 光変調装置{light modulation device}
US10459224B2 (en) * 2014-09-29 2019-10-29 Honeywell International Inc. High transmittance eyewear for head-up displays
CN105204232B (zh) * 2015-10-14 2018-01-30 深圳市华星光电技术有限公司 液晶显示面板
US9933631B2 (en) * 2016-03-28 2018-04-03 Lc-Tec Displays Ab Electro-optic guest-host liquid crystal variable transmission filter with wide viewing angle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460248A (en) * 1980-11-28 1984-07-17 Sharp Kabushiki Kaisha Two-layer guest-host liquid crystal display device
KR20000068650A (ko) * 1997-07-30 2000-11-25 하루타 히로시 액정표시장치
KR20010007255A (ko) * 1999-06-07 2001-01-26 가마이 고로 확산 접착층, 광학 부재 및 반사형 액정 디스플레이디바이스
US20120212399A1 (en) * 2010-02-28 2012-08-23 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
WO2015133878A1 (ko) * 2014-03-07 2015-09-11 주식회사 엘지화학 광학 소자

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262600B2 (en) 2017-04-28 2022-03-01 Lg Chem, Ltd. Light modulation device
US11536987B2 (en) 2017-04-28 2022-12-27 Lg Chem, Ltd. Light modulation device
CN110546553B (zh) * 2017-04-28 2022-07-05 株式会社Lg化学 光调制装置
US11506915B2 (en) 2017-04-28 2022-11-22 Lg Chem, Ltd. Light modulation device
CN110546553A (zh) * 2017-04-28 2019-12-06 株式会社Lg化学 光调制装置
US11347080B2 (en) 2017-04-28 2022-05-31 Lg Chem, Ltd. Light modulation device
US11314106B2 (en) 2017-04-28 2022-04-26 Lg Chem, Ltd. Light modulation device
US11099435B2 (en) 2017-10-31 2021-08-24 Lg Chem, Ltd. Transmittance-variable device
TWI680336B (zh) * 2017-10-31 2019-12-21 南韓商Lg化學股份有限公司 穿透率可變裝置以及眼用佩戴品
US11506940B2 (en) 2017-11-28 2022-11-22 Lg Chem, Ltd. Transmittance-variable device and use thereof
JP2021502601A (ja) * 2017-11-28 2021-01-28 エルジー・ケム・リミテッド 透過度可変装置及びその用途
JP7222169B2 (ja) 2017-11-28 2023-02-15 エルジー・ケム・リミテッド 透過度可変装置及びその用途
TWI680177B (zh) * 2017-12-20 2019-12-21 南韓商Lg化學股份有限公司 穿透率可變膜及擴增實境儀器
US11262636B2 (en) 2017-12-20 2022-03-01 Lg Chem, Ltd. Transmittance-variable film and use thereof
CN112204462A (zh) * 2018-08-14 2021-01-08 株式会社Lg化学 光学装置
CN112204462B (zh) * 2018-08-14 2023-03-24 株式会社Lg化学 光学装置
CN112639551B (zh) * 2018-09-04 2022-07-05 株式会社Lg化学 透射率可变装置
CN112639551A (zh) * 2018-09-04 2021-04-09 株式会社Lg化学 透射率可变装置
JP2020086177A (ja) * 2018-11-27 2020-06-04 大日本印刷株式会社 調光ユニット、該調光ユニットを備える調光部材及び該調光部材を備える移動体

Also Published As

Publication number Publication date
CN108700702A (zh) 2018-10-23
JP2019511004A (ja) 2019-04-18
US10656480B2 (en) 2020-05-19
JP6641586B2 (ja) 2020-02-05
EP3444646A1 (en) 2019-02-20
KR20170117893A (ko) 2017-10-24
EP3444646B1 (en) 2023-09-27
TWI639860B (zh) 2018-11-01
CN108700702B9 (zh) 2021-02-02
EP3444646A4 (en) 2019-04-17
US20190049641A1 (en) 2019-02-14
TW201804180A (zh) 2018-02-01
KR101876986B1 (ko) 2018-07-11
CN108700702B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2017179940A1 (ko) 투과도 가변 필름
WO2018199614A1 (ko) 투과율 가변 장치
WO2019124961A1 (ko) 투과도 가변 필름 및 이의 용도
WO2017061768A1 (ko) 광학 필름
WO2015030393A1 (ko) 편광판, 이의 제조방법 및 이를 포함하는 액정표시장치
WO2018199619A1 (ko) 광학 디바이스
WO2019240414A1 (ko) 광학 디바이스
WO2016159671A1 (ko) 액정 소자
WO2018199618A1 (ko) 광학 디바이스
WO2018199616A1 (ko) 광학 디바이스
WO2013181869A1 (zh) 一种液晶显示面板及其制备工艺和显示器
WO2019235807A1 (ko) 액정 표시 장치
WO2016159672A1 (ko) 액정 소자
WO2019088640A1 (ko) 투과율 가변 장치
WO2019031713A1 (ko) 액정표시장치
WO2019066456A1 (ko) 광학 소자의 구동 방법
WO2019190187A1 (ko) 광학 디바이스
WO2017146546A1 (ko) 미러 디스플레이
WO2012011676A2 (ko) 입체화상시스템
WO2020180086A1 (ko) 광변조 소자
WO2019107709A1 (ko) 광학 디바이스
WO2014081260A1 (ko) 광학 필름
WO2020213943A1 (ko) 편광 가변 소자
WO2014084689A1 (ko) 표시 장치
WO2018080089A1 (ko) 투과도 가변 필름

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018543088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017782695

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782695

Country of ref document: EP

Effective date: 20181114

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782695

Country of ref document: EP

Kind code of ref document: A1