WO2015133878A1 - 광학 소자 - Google Patents

광학 소자 Download PDF

Info

Publication number
WO2015133878A1
WO2015133878A1 PCT/KR2015/002250 KR2015002250W WO2015133878A1 WO 2015133878 A1 WO2015133878 A1 WO 2015133878A1 KR 2015002250 W KR2015002250 W KR 2015002250W WO 2015133878 A1 WO2015133878 A1 WO 2015133878A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
oxide layer
less
optical device
Prior art date
Application number
PCT/KR2015/002250
Other languages
English (en)
French (fr)
Inventor
민성준
임은정
오동현
김정운
유정선
김진홍
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/038,369 priority Critical patent/US9958742B2/en
Priority to EP15758039.0A priority patent/EP3115832B1/en
Priority to JP2016525065A priority patent/JP6326693B2/ja
Priority to CN201580002633.9A priority patent/CN105723275B/zh
Priority claimed from KR1020150032441A external-priority patent/KR101630119B1/ko
Publication of WO2015133878A1 publication Critical patent/WO2015133878A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • G02F1/13737Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • the present application relates to an optical element and its use.
  • a sunroof typically refers to a fixed or actuating (venting or sliding) opening that is present on the ceiling of a vehicle and serves to allow light or fresh air to enter the interior of the vehicle.
  • These sunroofs can be operated manually or driven by a motor, and there are various types of sunroofs depending on the intended use.
  • the sunroof may be a pop-up type sunroof, a spoiler (tile & slide) type sunroof, an inbuilt type sunroof, a folding type sunroof, a top-mounted type sunroof, a panoramic loop.
  • Patent Document 1 International Application Publication No. 2010-098576 uses a glass composition of a specific composition to provide excellent sunroof absorption of ultraviolet rays and solar rays. It discloses a technique for preparing a.
  • the present application provides an optical element whose transmittance is variable depending on whether an external signal is applied.
  • the present application also provides an energy saving optical device having a heat shielding effect by applying the external signal using a composite layer having a low transmittance in the infrared region.
  • Exemplary optical elements of the present application may include a polarizing layer, a liquid crystal layer and a composite layer.
  • the liquid crystal layer may be formed on the polarizing layer and include a liquid crystal compound and an anisotropic dye.
  • the composite layer may be adjacent to the liquid crystal layer and may sequentially include a first oxide layer, a metal layer, and a second oxide layer.
  • the liquid crystal compound and / or the anisotropic dye may exist in an oriented state, and the liquid crystal compound may be changed in orientation by a signal applied by the composite layer.
  • One composite layer may be adjacent to one side of the liquid crystal layer, or two composite layers may be adjacent to both sides of the liquid crystal layer.
  • FIG. 1 illustrates a case in which two composite layers exist on both sides of a liquid crystal layer, for example, a polarizing layer 101;
  • An optical element including a liquid crystal layer 102 formed on the polarizing layer and two composite layers 103A and 103B disposed on both sides of the liquid crystal layer is illustrated.
  • Exemplary optical elements of the present application may vary the light transmittance by a signal applied by the outside.
  • the signal applied by the outside may be, for example, a voltage applied by the composite layer.
  • the composite layer has a low transmittance to light in the infrared region. Therefore, heat may be blocked when a voltage is applied by the composite layer, thereby saving energy.
  • the optical element will be described in more detail.
  • the term "polarizing layer” may refer to a functional layer that exhibits selective transmission and blocking properties, for example, reflection or absorption properties, for incident light.
  • the polarizing layer may have a function of transmitting light vibrating in one direction from incident light vibrating in various directions and blocking light vibrating in the other direction.
  • the kind of polarizing layer is not particularly limited, and for example, as a reflective polarizing layer, for example, a dual brightness enhancement film (DBEF), a lyotropic liquid crystal layer (LLC layer) or a wire grid polarizer Or the like, and a polarizer in which iodine is impregnated in a polymer stretched film such as a PVA stretched film, or a liquid crystal polymerized in an oriented state as a host, and arranged according to the alignment of the liquid crystal.
  • DBEF dual brightness enhancement film
  • LLC layer lyotropic liquid crystal layer
  • wire grid polarizer Or the like a polarizer in which iodine is impregnated in a polymer stretched film such as a PVA stretched film, or a liquid crystal polymerized in an oriented state as a host, and arranged according to the alignment of the liquid crystal.
  • Guest-host type polarizers using the anisotropic dye as a guest may be used, but the present invention is not limited
  • the liquid crystal layer may include a liquid crystal compound and an anisotropic dye.
  • the liquid crystal layer may be a guest-host type liquid crystal layer.
  • the guest-host type liquid crystal layer may exhibit anisotropic light absorption by arranging anisotropic dyes according to the arrangement of liquid crystal compounds to absorb light parallel to the alignment direction of the dye and transmit vertical light.
  • the alignment direction of the liquid crystal compound and / or the anisotropic dye in the liquid crystal layer may be changed by a signal applied from the outside.
  • the signal applied by the outside means all kinds of signals performed to change the alignment of the liquid crystal compound and / or the anisotropic dye, and a representative example is application of voltage.
  • liquid crystal compound any kind of liquid crystal compound can be used as long as its orientation can be changed by external signal application.
  • a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal compound.
  • the liquid crystal compound may be, for example, a compound having no polymerizable group or a crosslinkable group so that the orientation direction thereof may be changed by external signal application.
  • a nematic liquid crystal compound may be used as the liquid crystal compound.
  • fills following formula 1 can be used, for example.
  • n o is the normal refractive index of the liquid crystal compound, for example, the refractive index in the uniaxial direction of the nematic liquid crystal compound
  • n e is the extraordinary refractive index of the liquid crystal compound, for example, It is the refractive index of the long-axis direction of a nematic liquid crystal compound
  • b is a number which satisfy
  • Liquid crystal compounds also have a difference between an ideal dielectric constant ( ⁇ e , an extraordinary dielectric anisotropy) and a normal dielectric constant ( ⁇ o , an ordinary dielectric anisotropy, a uniaxial dielectric constant) of at least 3, at least 3.5, at least 4, at least 6, 8 or more or 10 or more. Having such a dielectric constant can provide a device having excellent driving voltage characteristics.
  • the difference in the dielectric constant is that the higher the numerical value, the more the device can exhibit appropriate characteristics, and its upper limit is not particularly limited.
  • the liquid crystal compound has an ideal dielectric constant ( ⁇ e , extraordinary dielectric anisotropy) of about 6 to 50, and a normal dielectric constant ( ⁇ o , ordinary dielectric anisotropy, dielectric constant in the uniaxial direction) of about 2.5 to 7 Phosphorus compounds can be used.
  • ⁇ e extraordinary dielectric anisotropy
  • ⁇ o normal dielectric constant
  • the term “dye” may refer to a material capable of intensively absorbing and / or modifying light in at least part or the entire range within the visible light region, for example, in the wavelength range of 400 nm to 700 nm
  • the term “Anisotropic dye” may mean a material capable of anisotropic absorption of light in at least part or the entire range of the visible light region.
  • the anisotropic dye has a dichroic ratio, that is, a value obtained by dividing the absorption of polarized light parallel to the long axis direction of the anisotropic dye by the absorption of polarized light parallel to the direction perpendicular to the long axis direction.
  • Dyes can be used.
  • the dye may satisfy the dichroic ratio at at least some of the wavelengths or at any one within the wavelength range of the visible region, for example, in the wavelength range of about 380 nm to 700 nm or about 400 nm to 700 nm.
  • the upper limit of the dichroic ratio may be, for example, about 20, 18, 16, or 14.
  • the kind of the anisotropic dye is not particularly limited, and for example, all kinds of dyes known to have properties as described above and can be oriented according to the orientation of the liquid crystal compound may be used.
  • the optical device of the present application controls the anisotropic light absorption for the polarization in the direction parallel to the alignment direction of the anisotropic dye and the polarization in the vertical direction by adjusting the orientation of the liquid crystal compound and / or the anisotropic dye present in the liquid crystal layer.
  • the alignment of the liquid crystal compound and / or the anisotropic dye in the liquid crystal layer may be controlled by an external signal application, and thus the liquid crystal layer may control anisotropic light absorption according to whether an external signal is applied.
  • a liquid crystal layer having such characteristics may be referred to as a so-called active polarizer, and as described later, the entire optical element may be adjusted by controlling a relationship with a transmission axis and / or an absorption axis of the polarization layer by applying an external signal. Permeability can be adjusted.
  • the liquid crystal layer is formed by switching the alignment state of the liquid crystal compound and / or the anisotropic dye between a homogeneous alignment state, a tilted alignment state, or a homeotropic alignment state. Polarization characteristics can be adjusted.
  • the horizontal alignment may mean a case in which the optical axis of the liquid crystal layer has an inclination angle within a range of about 0 degrees to 15 degrees, about 0 degrees to 10 degrees, and about 0 degrees to 5 degrees with respect to the plane of the liquid crystal layer.
  • the vertical alignment may mean a case in which the optical axis of the liquid crystal layer has an inclination angle of about 90 degrees to 85 degrees with respect to the plane of the liquid crystal layer.
  • the inclination orientation in the present specification may mean a case in which the optical axis of the liquid crystal layer has an inclination angle other than the horizontal alignment or the vertical alignment with respect to the plane of the liquid crystal layer, for example, the optical axis of the liquid crystal layer with respect to the plane of the liquid crystal layer It may mean a case having an inclination angle greater than about 15 degrees and less than 85 degrees.
  • optical axis may refer to a slow axis when incident light passes through a corresponding region, and when the liquid crystal compound is rod-shaped, it may mean a long axis direction of the rod, and the liquid crystal compound may be a disc ( In the case of a discostic shape, it may be in the normal direction of the disc surface.
  • the horizontal alignment, the tilt alignment or the vertical alignment of the liquid crystal layer means a substantially horizontal alignment, an inclination alignment or a vertical alignment in which the light transmittance of a desired optical element can be adjusted, in which case the plane direction phase difference and thickness of the liquid crystal layer
  • the direction retardation is not particularly limited.
  • the optical device may include a structure in which a liquid crystal layer exists between two opposing polarizing layers as well as a case in which a polarizing layer is present on one surface of the liquid crystal layer as described above, in which case the liquid crystal
  • the layer may have a thickness direction retardation described below in a predetermined range as long as appropriate light transmittance can be adjusted in a horizontal alignment state, and a surface direction retardation may exist in a predetermined range even in a vertical alignment state.
  • the phase difference is not limited to the following.
  • the plane direction retardation Rin of the liquid crystal cell is, for example, 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, 50 nm or more, 60 nm or more, 70 nm or more, 80 nm or more, 90 nm or more, 100 nm or more, 110 nm or more, 120 nm or more, 130 nm or more, or 140 nm or more.
  • the upper limit of the phase difference in the plane direction of the liquid crystal layer in a voltage-free state is 300 nm or less, 290 nm or less, 280 nm or less, 270 nm or less, 260 nm or less, 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, or 200 nm or less. , 190 nm or less, 180 nm or less, 170 nm or less, or 160 nm or less.
  • the thickness direction phase difference Rth of the liquid crystal layer is, for example, 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, 50 nm or more. It can be more than 60 nm, more than 70 nm, more than 80 nm, more than 90 nm, more than 100 nm, more than 110 nm, more than 120 nm, more than 130 nm, or more than 140 nm.
  • the upper limit of the phase difference in the thickness direction of the liquid crystal layer is 300 nm or less, 290 nm or less, 280 nm or less, 270 nm or less, 260 nm or less, 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, or 200 nm or less. , 190 nm or less, 180 nm or less, 170 nm or less, or 160 nm or less.
  • plane direction phase difference (Rin) is a numerical value calculated by the following general formula (1)
  • Thickness direction phase difference (Rth) is a numerical value calculated by the following general formula (2).
  • Rin (nx-ny) ⁇ d
  • nx, ny, nz, and d denote refractive indexes in the in-plane slow axis direction of the liquid crystal layer, refractive indices in the in-plane fastening axis direction, and refractive indices and thicknesses in the thickness direction, respectively.
  • the harvesting angle refractive index may be, for example, the refractive index measured for light of 550 nm wavelength.
  • phase difference according to the alignment state and the respective states when voltage is applied or unapplied of the liquid crystal compound and / or anisotropic dye in the liquid crystal layer may be freely adjusted so that an appropriate light transmittance adjustment effect can be exerted according to the application to which the optical element is applied. Can be.
  • the liquid crystal compound and / or the anisotropic dye in the liquid crystal layer in the initial state may be present in a state in which the optical axis of the liquid crystal layer is oriented to form an inclination angle of 0 degrees to 90 degrees with respect to the plane of the liquid crystal layer.
  • the "initial state” may refer to a state in which an external signal that may affect the alignment of the liquid crystal compound and / or the anisotropic dye is not applied.
  • the liquid crystal compound and / or the anisotropic dye in the initial state may be present in a horizontally or vertically oriented state.
  • the liquid crystal compound and / or the anisotropic dye may be present in an aligned state such that the optical axis of the liquid crystal layer is in the range of 0 ° to 90 ° with the absorption axis direction of the polarizing layer.
  • the transmittance of the optical element may be adjusted by adjusting an angle formed between the optical axis of the liquid crystal layer and the absorption axis direction of the polarizing layer.
  • the optical axis of the liquid crystal layer when the optical axis of the liquid crystal layer is perpendicular to the absorption axis direction of the polarizing layer is perpendicular to the transmittance of the optical element can be reduced, and the angle of the optical axis of the liquid crystal layer is parallel to the absorption axis direction is parallel.
  • the transmittance of the optical element can be increased.
  • the liquid crystal compound and / or the anisotropic dye are present in a state oriented so as to be at an angle with the absorption axis of the polarizer, or in a state oriented so as to be parallel to the absorption axis of the polarizer, for example, or twisted oriented. May exist in a state.
  • the "twisted oriented state” is a state in which the major axis of the liquid crystal compound and / or the anisotropic dye is parallel to the plane of the liquid crystal layer, but the direction of the major axis of the neighboring liquid crystal compound and / or the anisotropic dye is slightly twisted and arranged at an angle. It may mean.
  • the drive mode of a liquid crystal layer is not specifically limited as long as it can exhibit the orientation characteristic of the above-mentioned liquid crystal compound and / or anisotropic dye.
  • the liquid crystal layer may be driven in an electrically controlled birefringence (ECB) mode, twisted nematic (TN) mode, or super twisted nematic (STN) mode, but is not limited thereto.
  • EBC electrically controlled birefringence
  • TN twisted nematic
  • STN super twisted nematic
  • the liquid crystal compound and / or the anisotropic dye of the liquid crystal layer may switch the orientation of the initial state by applying an external signal.
  • the transmittance when the liquid crystal layer is in the horizontal alignment state from the initial state, the transmittance may be increased by switching to the vertical alignment state by applying an external signal, and in the horizontal alignment state by the external signal application when the liquid crystal layer is in the vertical alignment state in the initial state. By switching, the transmittance can be reduced.
  • a predetermined direction of pretilt may be required to determine the alignment direction of the liquid crystal compound and / or the anisotropic dye.
  • the manner in which the pretilt is imparted above is not particularly limited, and for example, it is possible to dispose an appropriate alignment film so as to impart the intended pretilt.
  • the alignment direction of the anisotropic dye is perpendicular to the plane of the polarizing layer existing below, so that light transmitted through the polarizing layer is anisotropic in the liquid crystal layer. It can be transmitted without being absorbed by the dye, thereby increasing the transmittance of the optical element.
  • the optical axis alignment direction of the liquid crystal layer is When disposed to have a predetermined angle with respect to the absorption axis, a portion of the light transmitted through the polarizing layer can be absorbed by the anisotropic dye, thereby reducing the transmittance of the optical element.
  • the optical device may switch between a transmission mode and a blocking mode depending on whether an external signal is applied to the liquid crystal layer. For example, the optical device may switch between a transmission mode in which the transmittance of the visible light region is 20% or more and a blocking mode in which the transmittance of the visible light region is 3% or less by applying an external signal to the liquid crystal layer.
  • the light transmittances of the transmission mode and the blocking mode are not limited to the above, and as described above, by adjusting the alignment characteristics of the liquid crystal compound and / or the anisotropic dye, the light transmittance can be adjusted in a wider range.
  • the blocking mode when the liquid crystal layer is in a horizontal alignment state in the initial state, the blocking mode may be implemented by forming the alignment direction of the optical axis of the liquid crystal layer at a predetermined angle with the absorption axis of the polarizing layer, and by applying an external signal
  • the transmittance of the optical element may be increased to implement the transmission mode.
  • the optical device when the liquid crystal layer is in the vertical alignment state in the initial state, the optical device may implement a transmission mode in the initial state, and convert the liquid crystal layer to the horizontal alignment state according to the above-described pretilt by applying an external signal. In this case, the transmittance may be reduced by making the alignment direction of the optical axis of the liquid crystal layer at a predetermined angle with the absorption axis of the polarizing layer, and in this case, the optical device may implement a blocking mode.
  • the optical device may further include an alignment film adjacent to the liquid crystal layer in order to control the initial alignment of the liquid crystal compound and / or the anisotropic dye.
  • an alignment film a known vertical or horizontal alignment film can be used without particular limitation.
  • Such an alignment film may be a contact alignment film such as a rubbing alignment film, or an alignment film known to be capable of exhibiting alignment characteristics by a non-contact method such as irradiation of linearly polarized light, including a photo-alignment compound.
  • the liquid crystal layer may further include a chiral agent.
  • the chiral agent may induce the molecular arrangement of the liquid crystal compound and / or the anisotropic dye to have a helical structure.
  • the chiral agent can be used without particular limitation, so long as it can induce liquid crystalline, for example, nematic regularity, and can cause a desired spiral structure.
  • the chiral agent for inducing the helical structure in the liquid crystal needs to include at least chirality in the molecular structure.
  • the chiral agent for example, compounds having one or two or more asymmetric carbons, compounds having asymmetric points on heteroatoms such as chiral amines or chiral sulfoxides, or cumulene Or a compound having an axially asymmetric optically active site with an axial agent such as binaphthol.
  • the chiral agent may be, for example, a low molecular weight compound having a molecular weight of 1,500 or less.
  • a commercially available chiral nematic liquid crystal for example, a chiral dopant liquid crystal S-811 commercially available from Merck, LCLC, etc. of BASF may be used.
  • the liquid crystal layer may further include a pillar pattern. More specifically, the liquid crystal layer may further include a pillar pattern formed to maintain a gap between two adjacent layers existing above and below the liquid crystal layer.
  • the lower and upper layers may be a polarizing plate and a composite layer, and when the liquid crystal layer is present between the two composite layers, the lower and upper layers may be two composite layers.
  • the liquid crystal compound and / or the anisotropic dye may be present in a region where the pillar pattern does not exist.
  • the pillar pattern is formed on one of the upper and lower layers, for example, adjacent to the liquid crystal layer, and may be present in a state of being attached to the other layer by an adhesive.
  • the adhesive capable of attaching the pillar pattern and the composite layer may be present on the pillar surface of the pillar pattern, and the type of the adhesive is not particularly limited, and a known adhesive for bonding an optical element may be used.
  • the pillar pattern may include curable resin.
  • the kind of curable resin is not specifically limited, For example, heat curable resin or photocurable resin, for example, ultraviolet curable resin can be used.
  • heat curable resin for example, silicone resin, silicon resin, fran resin, polyurethane resin, epoxy resin, amino resin, phenol resin, urea resin, polyester resin, melamine resin, etc. may be used, but is not limited thereto.
  • UV curable resins typically include acrylic polymers such as polyester acrylate polymers, polystyrene acrylate polymers, epoxy acrylate polymers, polyurethane acrylate polymers or polybutadiene acrylate polymers, silicone acrylate polymers or alkyl acrylates. Polymers and the like may be used, but are not limited thereto.
  • the shape and arrangement manner of the pillar pattern may be appropriately designed within a range not impairing the object of the present application, for example, within a range formed to maintain a constant gap between two composite layers.
  • the pillar pattern may be present in one or more pillar shapes spaced apart or partitioned into a partition wall shape.
  • Column width, spacing, thickness of the pillar pattern The area ratio in the liquid crystal layer may be appropriately selected within a range that does not impair the purpose of the present application.
  • the width of the pillars may be 1 ⁇ m to 500 ⁇ m
  • the spacing between the pillars may be 10 ⁇ m to 5000 ⁇ m
  • the area ratio of the pillar patterns in the liquid crystal layer may be about 0.1% with respect to 100% of the area of the liquid crystal layer.
  • the height of the pillar may be appropriately selected within a range similar to the thickness of the liquid crystal layer in consideration of the thickness of the liquid crystal layer.
  • the composite layer may sequentially include a first cargo layer, a metal layer, and a second oxide layer.
  • the composite layer may serve as an electrode layer capable of applying an external signal, for example, a voltage, to the liquid crystal layer. Since the composite layer has high light transmittance in the visible light region, excellent transparency, low light transmittance in the infrared region, not only has an effect of blocking heat, but also has high electrical conductivity and low sheet resistance. Therefore, such a composite layer can save energy and can be usefully used as an electrode layer of an optical element.
  • the composite layer can have a transmittance of at least 80%, at least 85%, or at least 90% for visible light, for example, light of any wavelength or 550 nm wavelength in the range of about 400 nm to 700 nm.
  • the composite layer satisfying the numerical range may be usefully used as an electrode layer of the optical element.
  • the light transmittance of the visible light region of the composite layer is not limited to the numerical range, and may have a light transmittance of the visible light region that is generally applicable to a transparent electrode.
  • the composite layer may have a transmittance of 70% or less, 65% or less, or 60% or less for light at any wavelength in the infrared region, for example, in the range of about 700 nm to 1000 nm or more than 780 nm. Since the composite layer satisfying the numerical range can block heat in the infrared region, for example, energy saving can be achieved.
  • the lower limit of the light transmittance of the infrared region of the composite layer is not particularly limited. For example, when the composite layer is used as an electrode layer of the smart window, the lower limit may be 0% to 5%.
  • the composite layer may have a sheet resistance value of 20 ⁇ / ⁇ or less, 15 ⁇ / ⁇ or less, or 10 ⁇ / ⁇ or less, and the lower limit is not particularly limited, but may be 0.1 ⁇ / ⁇ or more.
  • the composite layer having the sheet resistance within the numerical range is applied to the optical device, power consumption can be minimized, thereby increasing the efficiency of the optical device.
  • Characteristics such as light transmittance and sheet resistance of the visible and / or infrared region of the composite layer may be adjusted by, for example, refractive index, thickness, electrical conductivity, or material of the first oxide layer, the metal layer, and the second oxide layer.
  • the "oxide layer” may mean a layer containing an oxide as a main component
  • the "metal layer” may mean a layer containing a metal as a main component.
  • An oxide layer can mean, for example, a layer comprising at least about 80% by weight of oxide
  • a metal layer can mean, for example, a layer comprising at least about 80% by weight of metal.
  • the refractive index of the first oxide layer may be higher than that of the second oxide layer, and the refractive index of the metal layer may be lower than that of the second oxide layer.
  • the metal layer may have a refractive index of 0.1 to 1.0 for a wavelength of 550 nm. More specifically, the refractive index of the metal layer with respect to light having a wavelength of 550 nm may be 0.1 or more, or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 or more, or 0.5 or more, 1.0 or less, 0.95 Or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, 0.6 or less, or 0.55 or less.
  • the refractive index of the light of the wavelength of 550 nm of the first oxide layer is in the range of 1.2 to 2.8 or 1.9 to 2.75, more specifically the refractive index of the light of the wavelength of 550 nm of the first oxide layer is 1.2 or more.
  • the refractive index of the light having a wavelength of 550 nm of the second oxide layer may be in the range of 1.5 to 2.5. More specifically, the refractive index of the second oxide layer with respect to light having a wavelength of 550 nm is 1.5 or more, 1.55 or more, 1.6 or more, 1.65 or more, 1.7 or more, 1.75 or more, 1.8 or more, 1.85 or more, 1.9 or more, 1.95 or more, or 2.0. Or less, 2.5 or less, 2.45 or less, 2.4 or less, 2.35 or less, 2.3 or less, 2.25 or less, 2.2 or less, 2.15 or less, 2.1 or less, or 2.0 or less.
  • the refractive index is, for example, M-2000 [manufacturer: J. A. Woollam Co., Inc. (USA)].
  • the composite layer has a high light transmittance in the visible region and a low light transmittance in the infrared region, which is useful as a transparent electrode layer in an energy-saving optical device. Can be used.
  • the method of adjusting the refractive indices of the first oxide layer, the metal layer and the second oxide layer in the above range is not particularly limited, for example, by adjusting the thickness of each layer or adjusting the deposition process conditions of each layer. Can be. Specifically, the degree of crystallinity may be adjusted by adjusting the deposition conditions of each layer, and thus the refractive index may be different even with the same thickness and material.
  • the deposition process may be performed by a known deposition method, for example, may be performed by a sputtering method. More specifically, the first oxide layer and the second oxide layer may be deposited by, for example, RF sputtering, and the metal layer may be deposited by, for example, DC sputtering.
  • the thickness of the metal layer may be in the range of 5 nm to 20 nm. More specifically, the thickness of the metal layer may be 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, 10 nm or more, 11 nm or more, or 12 nm or more, 20 nm or less, 19 nm or less, 18 It may be less than or equal to 17 nm, less than or equal to 16 nm, less than or equal to 15 nm, less than or equal to 14 nm, or less than or equal to 13 nm.
  • the thickness of the metal layer When the thickness of the metal layer is in the above range, it is easy to adjust the refractive index of the metal layer in the above-described range. In addition, when the thickness of the metal layer is within the above thickness range, since a continuous film of the metal layer is easily formed, excellent electrical conductivity and low resistance may be realized, and light transmittance may be increased in the visible light region of the optical device.
  • the metal layer may also include a conductive metal having a sheet resistance value of 20 ⁇ / ⁇ or less, preferably 10 ⁇ / ⁇ or less.
  • a conductive metal having a sheet resistance value of 20 ⁇ / ⁇ or less, preferably 10 ⁇ / ⁇ or less.
  • the metal layer may include, for example, a metal such as silver (Ag), aluminum (Al), platinum (Pt), copper (Cu), or gold (Au).
  • the metal layer may include silver, for example.
  • some of the silver oxide may be included in the metal layer by contact with air and moisture in the manufacturing process of the composite layer or the process in which the composite layer is included and used in the optical device.
  • the metal layer includes silver and silver oxide, the silver oxide may be included in an amount of 0.1 wt% or more and 50 wt% or less with respect to 100 wt% of the metal layer.
  • the thickness of the first oxide layer may be in the range of 20 nm to 60 nm or 40 nm to 50 nm. More specifically, the thickness of the first oxide layer may be 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more or 40 nm or more, 60 nm or less, 55 nm or less, 50 nm or less, or 45 nm or less. .
  • the thickness of the first oxide layer is in the above range, it is easy to adjust the transmittance or refractive index with respect to the light of the first oxide layer in the above-described range, and the defective rate of deposition of the metal layer formed on the first oxide layer is Can be lowered.
  • the thickness of the second oxide layer may be in the range of 10 nm to 100 nm, preferably 20 nm to 60 nm. More specifically, the thickness of the second oxide layer may be 10 nm or more, 15 nm or more, 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more, 40 nm or more, 45 nm or more or 50 nm or more, 100 nm 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, 70 nm or less, 65 nm or less, 60 nm or less, or 55 nm or less.
  • the thickness of the second oxide layer is in the above range, it is easy to adjust the transmittance or refractive index of the second oxide layer to light in the above-described range, and there is an advantage in that it can have excellent electrical conductivity and low resistance value. .
  • the resistivity value of the second oxide layer may be, for example, in the range of 1.0 ⁇ 10 ⁇ 5 ⁇ cm to 1.0 ⁇ 10 5 ⁇ cm, preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm to 1.0 ⁇ 10 4 ⁇ cm.
  • the specific resistance value of the second oxide layer is in the above range, the sheet resistance value of the composite layer can be lowered, thereby increasing the efficiency of the optical element.
  • the first oxide layer and the second oxide layer are antimony (Sb), barium (Ba), gallium (Ga), germanium (Ge), hafnium (Hf), indium (In), lanthanum (La), and magnesium (Mg), respectively. ), Selenium (Se), silicon (Si), tantalum (Ta), titanium (Ti), vanadium (V), yttrium (Y), zinc (Zn) and zirconium (Zr) It may include a metal oxide including a metal comprising a.
  • the second oxide layer is from the group consisting of gallium (Ga), aluminum (Al), zirconium (Zr), titanium (Ti), niobium (Nb), tantalum (Ta), indium (In) and vanadium (V). It may further comprise one or more second metals selected.
  • the metal included in the second oxide layer may be, for example, a doping material.
  • the second oxide layer further includes a second metal to improve electron mobility when used as an electrode layer in an optical device. Since the second oxide layer has a high refractive index like the first oxide layer, visible light of the composite layer is provided through an optical design. It is possible to increase the light transmittance of the region and to lower the light transmittance of the infrared region. In addition, since the second oxide layer has electrical conductivity, it does not inhibit the electrical conductivity of the metal layer and allows the composite layer to serve as a transparent electrode having a low emission function (Low-E) in various optical devices.
  • Low-E low emission function
  • the content of the second metal in the second oxide layer may be 0.1 wt% or more and 10 wt% or less.
  • the refractive index of the second oxide layer may vary by, for example, the content of the second metal. Therefore, it is necessary to adjust the content of the second metal in the second oxide layer to maximize the light transmittance of the visible light region of the composite layer.
  • the second metal included in the second oxide layer affects the electrical conductivity of the second oxide layer. When the content in the second oxide layer of the second metal satisfies the above range, the second oxide layer may realize an optimum refractive index and electrical conductivity.
  • the thickness of the composite layer may be appropriately selected within a range that does not impair the purpose of the present application.
  • the thickness of the composite layer may be adjusted within the range of 50 nm to 300 nm or 70 nm to 200 nm, for example, in order to exhibit high light transmittance in the visible region, low light transmittance in the infrared region, excellent electrical conductivity and low resistance characteristics. Can be.
  • the composite layer may further include a substrate layer, for example, a first oxide layer may be adjacent to the substrate layer.
  • a base material layer a well-known raw material can be used without a restriction
  • inorganic films, plastic films, etc. such as a glass film, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, can be used.
  • the optically isotropic base material layer the optically anisotropic base material layer like a retardation layer, a polarizing plate, a color filter substrate, etc. can be used.
  • the polarizing layer is present inside the base layer, that is, between the liquid crystal layer and the base layer, even when an anisotropic base layer is used as the base layer, an element having an appropriate performance can be realized.
  • plastic substrate layer examples include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin
  • the substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
  • the second oxide layer may be present adjacent to the liquid crystal layer compared to the first oxide layer.
  • the composite layer may be present at both sides of the liquid crystal layer. That is, the liquid crystal layer may be disposed between two composite layers disposed opposite to each other.
  • the composite layers present at both sides may have the same structure having the same refractive index, thickness, sheet resistance, or the like, or may have an independent structure having different refractive index, thickness, sheet resistance, or the like.
  • the present application also relates to the use of the optical element.
  • the optical device of the present application may vary transmittance depending on whether it is applied to an external signal, and also reduce energy by blocking heat because an external signal is applied using a composite layer having a low transmittance to light in an infrared region. Can be.
  • Such optical elements can be applied to and used in various optical devices.
  • the optical element of the present application can be applied to, for example, a sunroof and used.
  • the "sunroof” is a fixed or operative (venting or sliding) opening in the ceiling of the vehicle, collectively referred to a device that can function to allow light or fresh air to enter the interior of the vehicle. It can mean.
  • the manner of operation of the sunroof in the present application is not particularly limited, for example, can be manually operated or driven by a motor, the shape, size or style of the sunroof may be appropriately selected according to the intended use.
  • the sunroof may be a pop-up type sunroof, a spoiler (tile & slide) type sunroof, an inbuilt type sunroof, a folding type sunroof, a top-mounted type sunroof, a panoramic loop.
  • System type sunroofs, t-tops or targa roofts type sunroofs, or solar type sunroofs may be exemplified, but are not limited thereto.
  • An exemplary sunroof of the present application may include the optical element of the present application, and in this case, the details of the optical element may be equally applicable to the items described in the item of the optical element.
  • the sunroof may further comprise a sunscreen layer.
  • the "ultraviolet ray blocking layer” may mean a known functional layer having an ultraviolet ray blocking function.
  • the UV blocking layer may be formed on one side or both sides of the polarizing layer, the liquid crystal layer, or the composite layer.
  • the UV blocking layers 201A and 201B may be present on the outermost side of the sunroof, for example, as shown in FIG. 2.
  • a sunscreen adhesive or a sunscreen film can be used, for example.
  • a sunscreen adhesive what added the additive which has a well-known ultraviolet-ray blocking function to the well-known adhesive component can be used.
  • the ultraviolet ray blocking film for example, one formed of a layer containing an additive having a known ultraviolet ray blocking function on one surface of a known adhesive can be used.
  • the sunscreen adhesive may be EW1501-D1-UV, EW1502-D1-UV, or EW1504-D1-UV manufactured by DAIO Paper, but is not limited thereto.
  • the optical device of the present application can vary the transmittance by applying an external signal, and can also apply an external signal using a composite layer having a low transmittance with respect to the light in the infrared region, thereby cutting off heat and saving energy. can do.
  • Such optical elements can be usefully used in various optical devices such as sunroofs.
  • FIG. 3 exemplarily shows a structure of an optical element of Example 1.
  • FIG. 4 shows the transmittance according to the driving voltage of the optical device of Example 1.
  • FIG. 5 shows the transmittance and reflectance of the optical element of Example 1.
  • FIG. 6 shows the transmittance and reflectance of the optical element of Comparative Example 1.
  • Example 7 shows the characteristics according to the wavelengths of the metal layers of Example 1 and Comparative Example 2.
  • CeO 2 was deposited to a thickness of 35 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer.
  • a metal layer made of Ag was deposited to a thickness of 10 nm on the first metal oxide layer by using a DC sputter method under a condition of 1.5 W / cm 2 and 3 mTorr, and doped Ga as the second metal oxide layer on the metal layer.
  • One zinc oxide layer (GZO) was deposited to a thickness of 45 nm to prepare a composite layer.
  • the refractive index of each layer was measured using an M-2000 apparatus [manufacturer: J. A. Woollam Co., Inc. (USA)], the refractive index of the first oxide layer was 2.34 at a wavelength of 550 nm, the refractive index of the metal layer was 0.19 at a wavelength of 550 nm, and the refractive index of the zinc oxide layer was 1.94 at a wavelength of 550 nm.
  • the visible light transmittance of the composite layer was measured using a UV-vis spectrometer, and the transmittance was 87.2% at a wavelength of 550 nm.
  • the optical element for sunroof of the structure of FIG. 3 was manufactured by the following method.
  • the first oxide layer of the manufactured composite layer is contacted with the surface of the OCA through OCA (EW1501-D1-UV) 301 on a known absorption type linear polarizing layer 101.
  • anisotropic dye (X12, manufactured by BASF) in an amount of 1 to 3 parts by weight based on 100 parts by weight of the liquid crystal compound (HPC21600, manufactured by HCCH) and the liquid crystal compound on the second oxide layer of the composite layer.
  • an optical device was manufactured by stacking the composite layer 103B so that the second oxide layer of the other composite layer prepared above was in contact with the liquid crystal layer.
  • the optical axis of the liquid crystal layer is formed to have an inclination angle of about 0 to 15 degrees with respect to the plane of the liquid crystal layer, that is, the liquid crystal compound and / or anisotropic dye is formed to be horizontally aligned, the optical axis of the liquid crystal layer of the absorption type linear polarizing layer It was formed to form an angle of about 90 degrees with the absorption axis.
  • a sunroof of Example 2 was prepared in the same manner as in Example 1, except that the prepared composite layer was used as the composite layer.
  • CeO 2 was deposited to a thickness of 30 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer.
  • a metal layer made of Ag was deposited to a thickness of 10 nm on the first metal oxide layer by using a DC sputter method under a condition of 1.5 W / cm 2 and 3 mTorr, and doped Al as the second metal oxide layer on the metal layer.
  • One zinc oxide layer (AZO) was deposited to a thickness of 50 nm to prepare a composite layer.
  • the refractive index of the first metal oxide layer was 2.34 at a wavelength of 550 nm
  • the refractive index of the metal layer was 0.19 at a wavelength of 550 nm
  • the refractive index of the second metal oxide layer was 1.89 at a wavelength of 550 nm.
  • the visible light transmittance of the composite layer was measured using a UV-vis spectrometer, and the transmittance was 85.5% at a wavelength of 550 nm.
  • the sheet resistance of the composite layer with a sheet resistance meter it showed less than 10 ⁇ / ⁇ .
  • a sunroof of Comparative Example 1 was prepared in the same manner as in Example 1, except that the ITO transparent electrode layer was used as the composite layer.
  • a sunroof of Comparative Example 2 was prepared in the same manner as in Example 1, except that the prepared composite layer was used as the composite layer.
  • CeO 2 was deposited to a thickness of 35 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer.
  • Ag was deposited to a thickness of 10 nm on the first metal oxide layer under a condition of 0.5 W / cm 2 and 15 mTorr by DC sputter method to form a metal layer, and then doped Ga as the second metal oxide layer on the metal layer.
  • One zinc oxide layer (GZO) was deposited to a thickness of 45 nm to prepare a composite layer.
  • the refractive index of the first oxide layer was 2.34 at a wavelength of 550 nm
  • the refractive index of the metal layer was 1.95 at a wavelength of 550 nm
  • the refractive index of the zinc oxide layer was 1.94 at a wavelength of 550 nm.
  • Example 2 Except that the first metal oxide layer was formed at 10 nm and the thickness of the second metal oxide layer was formed at 80 nm at the time of preparation of the composite layer, the same method as in Example 2 was carried out to provide the line of Comparative Example 3 The loop was prepared.
  • the composite layer showed a transmittance of 72.6% at a wavelength of 550 nm.
  • the liquid crystal layer was formed to have a thickness of 10 ⁇ m and 15 ⁇ m, respectively, and after connecting a power source capable of applying a vertical electric field to the composite layer, about 550 nm of the optical device according to the driving voltage.
  • the transmittance of the light was measured using a haze meter NDH 5000SP (manufacturer: Nippon Denshoku (JAPAN)) apparatus, and the results are shown in FIG. 4. As shown in FIG. 4, it can be seen that the transmittance is low when no voltage is applied. As the voltage is applied, the transmittance increases as the liquid crystal compound and the anisotropic dye are converted to the vertical alignment state.
  • the transmittance and reflectance of the optical devices manufactured in Examples and Comparative Examples were measured under no voltage applied. Specifically, the measurement was performed using a Solid Spec-3700 (manufacturer: shimadzu (JAPAN)) device, and the results are shown in FIGS. 5 (Example 1) and 6 (Comparative Example 1), respectively.
  • the optical element of the embodiment using the transparent electrode layer of the composite layer of the present application has a similar light transmittance in the visible region, compared with the optical element of Comparative Example 1 using the ITO transparent electrode layer. In the infrared region, it can be seen that the light transmittance is significantly lower.
  • n denotes a refractive index according to the wavelength of light of the metal layer
  • denotes a wavelength of light
  • k denotes an absorption coefficient according to the wavelength of light of the metal layer.
  • Evaluation example 4 first and second metal Oxide layer Refractive index Composite Transmittance evaluation
  • An optical modulator was manufactured in the same manner as in Examples 1 and 2, but the transmittance of light of 550 nm wavelength of the composite layer according to the refractive index was evaluated while changing the refractive indices of the first metal oxide layer and the second metal oxide layer. Is shown in FIG. 8. As shown in FIG. 8, it can be seen that the light transmittance of the composite layer is affected by the refractive indices of the first metal oxide layer and the second metal oxide layer, and in particular, the refractive index range of the first metal oxide layer and the second metal oxide layer. When it is within the scope of the present application it can be seen that the excellent light transmittance of about 80% or more for the light of the 550nm wavelength.
  • 201A, 201B UV blocking layer

Abstract

본 출원은, 광학 소자에 관한 것이다. 본 출원의 예시적인 광학 소자는 외부 신호 인가 여부에 의하여 투과도를 가변할 수 있고, 또한 적외선 영역의 광에 대하여 낮은 투과도를 가지는 복합층을 이용하여 외부 신호를 인가할 수 있으므로, 열을 차단하여 에너지를 절감할 수 있다. 이러한 광학 소자는 다양한 광학 장치, 예를 들어 선루프 등에 유용하게 사용될 수 있다.

Description

광학 소자
본 출원은, 광학 소자 및 그 용도에 관한 것이다.
선루프는 통상적으로 차량의 천장에 존재하는 고정된 또는 작동(벤팅 또는 슬라이딩)하는 개구부(opening)를 의미하는 것으로, 빛 또는 신선한 공기가 차량의 내부로 유입되도록 하는 기능을 한다. 이러한 선루프는 수동으로 작동하거나 또는 모터로 구동할 수 있으며, 선루프의 형상, 크기 또는 스타일은 목적하는 용도에 따라 다양한 종류가 존재한다. 예를 들어, 선루프는 작동 방식에 따라 팝-업 타입 선루프, 스포일러(tile & slide) 타입 선루프, 인빌트 타입 선루프, 폴딩 타입 선루프, 탑-마운트 타입 선루프, 파노라믹 루프 시스템 타입 선루프, 제거 가능한 루프 패널즈(t-tops 또는 targa roofts) 타입 선루프 또는 솔라 타입 선루프 등으로 분류된다. 또한, 선루프의 재료에 대한 연구도 활발히 진행 중에 있으며, 예를 들어, 특허문헌 1(국제출원공개 제2010-098576호)은 특정 조성의 유리 조성물을 이용하여 자외선 및 태양열선의 흡수가 우수한 선루프를 제조하는 기술을 개시하고 있다.
본 출원은, 외부 신호 인가 여부에 따라 투과도가 가변하는 광학 소자를 제공한다. 본 출원은 또한, 적외선 영역에서 낮은 투과도를 가지는 복합층을 이용하여 상기 외부 신호를 인가함으로써, 열 차단 효과를 가지는 에너지 절감형 광학 소자를 제공한다.
본 출원의 예시적인 광학 소자는 편광층, 액정층 및 복합층을 포함할 수 있다. 상기에서 액정층은 상기 편광층 상에 형성되고 액정 화합물과 이방성 염료를 포함할 수 있다. 상기에서 복합층은 상기 액정층과 인접하여 존재할 수 있고, 제 1 산화물층, 금속층 및 제 2 산화물층을 순차로 포함할 수 있다. 상기에서, 액정 화합물 및/또는 이방성 염료는 배향된 상태로 존재할 수 있고, 상기 액정 화합물은 상기 복합층에 의해 인가되는 신호에 의해 배향이 변경될 수 있다. 복합층은 액정층의 일 측면에 인접하여 1개 존재하거나 또는 액정층의 양 측면에 인접하여 2개 존재할 수 있다. 도 1은 2개의 복합층이 액정층의 양 측면에 존재하는 경우를, 예를 들어, 편광층(101); 상기 편광층 상에 형성된 액정층(102) 및 상기 액정층의 양측에 배치된 2개의 복합층(103A, 103B)을 포함하는 광학 소자를 예시적으로 나타낸다.
본 출원의 예시적인 광학 소자는 외부에 의해 인가되는 신호에 의해 광 투과도를 가변할 수 있다. 상기 외부에 의해 인가되는 신호는, 예를 들면, 상기 복합층에 의해 인가되는 전압일 수 있다. 후술하는 바와 같이 복합층은 적외선 영역의 광에 대한 낮은 투과도를 가진다. 따라서, 상기 복합층에 의하여 전압을 인가하는 경우 열을 차단할 수 있고, 이로 인해 에너지를 절감하는 효과가 있다. 이하, 상기 광학 소자에 대하여 더욱 구체적으로 설명한다.
본 명세서에서 「편광층」은 입사 광에 대하여 선택적 투과 및 차단 특성, 예를 들어 반사 또는 흡수 특성을 나타내는 기능성 층을 의미할 수 있다. 편광층은 예를 들어, 여러 방향으로 진동하는 입사 광으로부터 어느 한쪽 방향으로 진동하는 광은 투과하고, 나머지 방향으로 진동하는 광은 차단시키는 기능을 가질 수 있다. 편광층의 종류는 특별히 제한되지 않고, 예를 들어 반사형 편광층으로서 예를 들어, DBEF(Dual Brightness Enhancement Film), 유방성 액정층(LLC층: Lyotropic Liquid Crystal) 또는 와이어 그리드 편광기(wire grid polarizer) 등을 사용할 수 있고, 흡수형 편광층으로서 예를 들어, PVA 연신 필름 등과 같은 고분자 연신 필름에 요오드를 염착한 편광자 또는 배향된 상태로 중합된 액정을 호스트로 하고, 상기 액정의 배향에 따라 배열된 이방성 염료를 게스트로 하는 게스트-호스트형 편광자를 사용할 수 있으나 이에 제한되는 것은 아니다.
본 출원에서 액정층은 액정 화합물 및 이방성 염료를 포함할 수 있다. 상기 액정층은 게스트-호스트형 액정층일 수 있다. 상기 게스트-호스트형 액정층은 액정 화합물의 배열에 따라 이방성 염료가 함께 배열되어 염료의 정렬 방향에 평행한 광은 흡수하고 수직한 광은 투과시킴으로써 비등방성 광흡수 효과를 나타낼 수 있다. 액정층 내의 액정 화합물 및/또는 이방성 염료는, 외부에 의해 인가되는 신호에 의해 정렬 방향이 변환될 수 있다. 이 경우에 상기 외부에 의해 인가되는 신호는 액정 화합물 및/또는 이방성 염료의 정렬을 변경시킬 수 있도록 수행되는 모든 종류의 신호를 의미하고, 대표적인 예로는 전압의 인가가 있다.
액정 화합물로는 외부 신호 인가에 의하여 그 배향 방향이 변경될 수 있는 것이라면 모든 종류의 액정 화합물을 사용할 수 있다. 예를 들며, 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 또한, 외부 신호 인가에 의하여 그 배향 방향이 변경될 수 있도록, 액정 화합물은 예를 들어 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다.
하나의 예시에서 액정 화합물로는, 네마틱 액정 화합물을 사용할 수 있다. 상기 화합물로는, 예를 들면, 하기 수식 1을 만족하는 네마틱 액정 화합물을 사용할 수 있다.
[수식 1]
(1.53 - b) < {(2no 2+ne 2)/3}0.5 < (1.53 + b)
수식 1에서, no는 액정 화합물의 정상 굴절률(ordinary refractive index), 예를 들면 네마틱 액정 화합물의 단축 방향의 굴절률이고, ne는 액정 화합물의 이상 굴절률(extraordinary refractive index), 예를 들면, 네마틱 액정 화합물의 장축 방향의 굴절률이며, b는 0.1 = b =1을 만족하는 수이다. 수식 1을 만족하는 액정 화합물을 선택하여, 전압이 인가되지 않은 상태에서도 우수한 투명성이 확보되는 액정셀을 제작할 수 있다. 수식 4에서 b는 다른 예시에서는 0.1 내지 0.9, 0.1 내지 0.7, 0.1 내지 0.5 또는 0.1 내지 0.3일 수 있다.
액정 화합물은 또한 이상 유전율(εe, extraordinary dielectric anisotropy, 장축 방향의 유전율)과 정상 유전율(εo, ordinary dielectric anisotropy, 단축 방향의 유전율)의 차이가 3 이상, 3.5 이상, 4 이상, 6 이상, 8 이상 또는 10 이상일 수 있다. 이러한 유전율을 가지면 구동 전압 특성이 우수한 소자를 제공할 수 있다. 상기 유전율의 차이는, 그 수치가 높을수록 소자가 적절한 특성을 나타낼 수 있는 것으로, 그 상한은 특별히 제한되지 않는다. 예를 들어, 액정 화합물로는 이상 유전율(εe, extraordinary dielectric anisotropy, 장축 방향의 유전율)이 6 내지 50 정도이고, 정상 유전율(εo, ordinary dielectric anisotropy, 단축 방향의 유전율)이 2.5 내지 7 정도인 화합물을 사용할 수 있다.
본 명세서에서 「염료」는, 가시광 영역, 예를 들면, 400 nm 내지 700 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 「이방성 염료」는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다. 상기와 같은 이방성 염료의 사용을 통해서 광학 소자의 광 투과도를 조절할 수 있다. 이방성 염료로는 특별히 제한되지 않으나, 예를 들면 흑색 염료(black dye) 또는 칼라 염료(color dye)를 사용할 수 있다. 상기 이방성 염료는, 이색비(dichroic ratio), 즉 이방성 염료의 장축 방향에 평행한 편광의 흡수를 상기 장축 방향에 수직하는 방향에 평행한 편광의 흡수로 나눈 값이 5 이상, 6 이상 또는 7 이상인 염료를 사용할 수 있다. 상기 염료는 가시광 영역의 파장 범위 내, 예를 들면, 약 380 nm 내지 700 nm 또는 약 400 nm 내지 700 nm의 파장 범위 내에서 적어도 일부의 파장 또는 어느 한 파장에서 상기 이색비를 만족할 수 있다. 상기 이색비의 상한은, 예를 들면 20, 18, 16 또는 14 정도일 수 있다. 이방성 염료의 종류는 특별히 제한되지 않으며, 예를 들면, 상기와 같은 특성을 가지면서 액정 화합물의 배향에 따라 배향될 수 있는 특성을 가지는 것으로 공지된 모든 종류의 염료가 사용될 수 있다.
본 출원의 광학 소자는 상기 액정층 내에 존재하는 액정 화합물 및/또는 이방성 염료의 배향을 조절함으로써 상기 이방성 염료의 배열 방향과 평행한 방향의 편광 및 수직한 방향의 편광에 대한 비등방성 광 흡수를 조절할 수 있다. 예를 들어, 액정층 내의 액정 화합물 및/또는 이방성 염료의 배향은 외부 신호 인가에 의하여 배향이 조절될 수 있으며, 이에 따라 상기 액정층은 외부 신호 인가 여부에 따라 비등방성 광 흡수를 조절할 수 있다. 이러한 특성을 가지는 액정층을 소위 능동형 편광자(Active Polarizer)로 호칭할 수 있고, 후술하는 바와 같이 외부 신호 인가에 의하여 상기 편광층의 투과축 및/또는 흡수축과의 관계를 조절함으로써 광학 소자의 전체 투과도를 조절할 수 있다.
하나의 예시에서, 액정층은 액정 화합물 및/또는 이방성 염료의 배향 상태를 수평배향 (homogeneous alignment) 상태, 경사배향 (tiltiedalignment) 상태 또는 수직배향 (homeotropicalignment) 상태 사이에서 상호 스위칭(switching)하는 것에 의하여 편광 특성을 조절할 수 있다.
본 명세서에서 수평배향은 액정층의 광축이 액정층의 평면에 대하여 약 0도 내지 15도, 약 0도 내지 10도, 약 0도 내지 5도 범위 내의 경사각을 가지는 경우를 의미할 수 있다. 또한, 본 명세서에서 수직 배향은 액정층의 광축이 액정층의 평면에 대하여 약 90도 내지 85도의 경사각을 가지는 경우를 의미할 수 있다. 또한 본 명세서에서 경사 배향은, 액정층의 광축이 액정층의 평면에 대하여 수평 배향 또는 수직 배향 이외의 경사각을 가지는 경우를 의미할 수 있고, 예를 들어 액정층의 광축이 액정층의 평면에 대하여 약 15도 초과 내지 85도 미만의 경사각을 가지는 경우를 의미할 수 있다. 본 명세서에서 용어 「광축」은 입사광이 해당 영역을 투과할 때의 지상축을 의미할 수 있고, 액정 화합물이 막대(rod) 형상인 경우에는 막대의 장축 방향을 의미할 수 있고, 액정 화합물이 원반(discostic) 형상인 경우에는 원반 면의 법선 방향일 수 있다.
또한, 상기에서 액정층의 수평 배향, 경사 배향 또는 수직 배향은 목적하는 광학 소자의 광 투과도의 조절이 가능한 실질적인 수평 배향, 경사 배향 또는 수직 배향을 의미하며, 이 경우 액정층의 면 방향 위상차 및 두께 방향 위상차는 특별히 제한되는 않다.
다른 하나의 예시에서, 광학 소자는 상기와 같이 액정층의 어느 일면에 편광층이 존재하는 경우뿐만 아니라, 대향하는 2개의 편광층 사이에 액정층이 존재하는 구조도 포함할 수 있으며, 이 경우 액정층은 수평 배향 상태에서, 적절한 광 투과도 조절이 가능한 한, 하기 기술하는 두께 방향 위상차가 소정 범위로 존재할 수 있고, 수직 배향 상태에서도 면방향 위상차가 소정 범위로 존재할 수 있으나, 면 방향 위상차 및 두께 방향 위상차가 하기에 제한되는 것은 아니다.
상기에서, 액정층 내의 액정 화합물 및/또는 이방성 염료가 수평 배향하고 있는 상태에서 액정셀의 면방향 위상차 (Rin)는, 예를 들면, 10nm이상, 20nm이상, 30nm이상, 40nm이상, 50nm이상, 60nm이상, 70nm이상, 80nm이상, 90nm이상, 100nm 이상, 110nm이상, 120nm이상, 130nm이상 또는 140nm이상일 수 있다. 또한, 전압 무인가 상태에서 상기 액정층의 면방향의 위상차의 상한은, 300nm이하, 290nm 이하, 280nm이하, 270nm이하, 260nm이하, 250nm이하, 240nm이하, 230nm 이하, 220nm이하, 210nm이하, 200nm이하, 190nm이하, 180nm이하, 170nm 이하 또는 160nm이하일 수 있다. 또한, 전압 인가에 의해 액정 화합물 및/또는 이방성 염료가 수직 배향하고 있는 상태에서 상기 액정층의 두께 방향 위상차(Rth)는, 예를 들면, 10nm이상, 20nm이상, 30nm이상, 40nm이상, 50nm이상, 60 nm이상, 70nm이상, 80nm이상, 90nm이상, 100nm이상, 110nm이상, 120nm 이상, 130nm이상 또는 140nm이상이 될 수 있다. 또한, 전압이 인가되면, 액정층의 두께 방향의 위상차의 상한은, 300nm이하, 290nm이하, 280nm이하, 270nm 이하, 260nm이하, 250nm이하, 240nm이하, 230nm이하, 220nm이하, 210nm 이하, 200nm이하, 190nm이하, 180nm이하, 170nm이하 또는 160nm이하 정도로 될 수 있다.
본 명세서에서 용어「면 방향 위상차(Rin)」는 하기 일반식 1로 계산되는 수치이고, 용어「두께 방향 위상차(Rth)」는 하기 일반식 2로 계산되는 수치이다.
[일반식 1]
Rin=(nx-ny)×d
[일반식 2]
Rth=(nz-ny)×d
일반식 1 및 2에서 부호 nx, ny, nz 및 d는 각각 액정층의 면내 지상축 방향의 굴절률, 면내 진상축 방향의 굴절률, 두께 방향의 굴절률 및 두께를 의미한다. 사익 각 굴절률은 예를 들면, 550nm 파장의 광에 대하여 측정된 굴절률일 수 있다. 상기를 통해서, 전압 무인가 상태에서는 투과 모드가 구현되고, 전압 인가 상태에서는 차단 모드가 구현할 수 있는 광학 소자를 제조할 수 있다. 상기 액정층 내의 액정화합물 및/또는 이방성 염료의 전압인가 또는 무인가시의 배향 상태와 각 상태에 따른 위상차는 상기 광학 소자가 적용되는 용도에 따라 적절한 광투과도의 조절 효과가 발휘될 수 있도록 자유롭게 조절될 수 있다.
하나의 예시에서, 초기 상태에서 액정층 내의 액정 화합물 및/또는 이방성 염료는 액정층의 광축이 액정층의 평면에 대하여 0도 내지 90도의 경사각을 이루도록 배향된 상태로 존재할 수 있다. 본 명세서에서 「초기 상태」는, 액정 화합물 및/또는 이방성 염료의 배향에 영향을 미칠 수 있는 외부 신호가 인가되지 않은 상태를 의미할 수 있다. 하나의 구체적인 예시에서, 초기 상태에서 액정 화합물 및/또는 이방성 염료는 수평 배향 또는 수직 배향된 상태로 존재할 수 있다.
또한, 초기 상태에서 액정 화합물 및/또는 이방성 염료는 액정층의 광축이 편광층의 흡수축 방향과 0도 내지 90도의 범위를 이루도록 배향된 상태로 존재할 수 있다. 하나의 예시에서, 액정층이 수평 배향 상태로 존재하는 경우에도 액정층의 광축과 편광층의 흡수축 방향이 이루는 각도를 조절함으로써 광학 소자의 투과도를 조절할 수 있다. 하나의 예시에서, 액정층의 광축이 편광층의 흡수축 방향과 이루는 각도가 수직을 이루는 경우 광학 소자의 투과도를 감소시킬 수 있고, 액정층의 광축이 흡수축 방향과 이루는 각도가 평행을 이루는 경우 광학 소자의 투과도를 증가시킬 수 있다.
상기에서, 액정 화합물 및/또는 이방성 염료는 편광판의 흡수축과 어느 하나의 각도를 이루도록 배향된 상태로 존재하거나, 예를 들어 편광판의 흡수축과 평행을 이루도록 배향된 상태로 존재하거나 또는 트위스티드 배향된 상태로 존재할 수 있다. 본 명세서에서 「트위스티드 배향된 상태」는 액정 화합물 및/또는 이방성 염료의 장축이 액정층의 평면과 평행하지만, 이웃하는 액정 화합물 및/또는 이방성 염료의 장축의 방향은 조금씩 각도가 변하여 비틀어져 배열된 상태를 의미할 수 있다. 또한, 액정층의 구동 모드는 상기와 같은 액정 화합물 및/또는 이방성 염료의 배향 특성을 나타낼 수 있는 한 특별히 제한되지 않는다. 예를 들어, 액정층은 ECB(Electrically Controlled Birefringence) 모드, TN(Twisted Nematic) 모드 또는 STN(Super Twisted Nematic) 모드로 구동될 수 있으나, 이에 제한되는 것은 아니다.
전술한 바와 같이, 액정층의 액정 화합물 및/또는 이방성 염료는 외부 신호 인가에 의하여 초기 상태의 배향을 스위칭할 수 있다. 하나의 예시에서, 액정층이 초기 상태에서 수평 배향 상태인 경우 외부 신호 인가에 의하여 수직 배향 상태로 스위칭함으로써 투과도를 높일 수 있고, 초기 상태에서 수직 배향 상태인 경우 외부 신호 인가에 의하여 수평 배향 상태로 스위칭함으로써 투과도를 감소시킬 수 있다. 또한, 초기 수직 배향 상태에서 수평 배향 상태로 스위칭함에 있어서, 액정 화합물 및/또는 이방성 염료의 배향 방향을 결정하기 위하여 일정 방향의 프리 틸트(Pre Tilt)가 필요할 수 있다. 상기에서 프리 틸트를 부여하는 방식은 특별히 제한되지 않고, 예를 들어 의도하는 프리 틸트를 부여할 수 있도록 적절한 배향막을 배치하는 것에 의하여 가능하다.
상기에서 액정층의 액정 화합물 및/또는 이방성 염료가 수직 배향된 상태인 경우 이방성 염료의 정렬 방향이 하부에 존재하는 편광층의 평면에 대하여 수직을 이루므로 편광층을 투과한 광이 액정층의 이방성 염료에 흡수되지 않고 투과될 수 있고, 이를 통해 광학 소자의 투과도를 증가시킬 수 있다. 반면, 액정층의 액정 화합물 및/또는 이방성 염료가 수평 배향된 상태인 경우 이방성 염료의 정렬 방향이 하부에 존재하는 편광층의 평면에 대하여 평행을 이루고 있으므로, 액정층의 광축 배향 방향이 편광층의 흡수축에 대하여 소정의 각도를 가지도록 배치하는 경우, 편광층을 투과한 광의 일부를 이방성 염료에 흡수시킬 수 있고, 이를 통해 광학 소자의 투과도를 감소시킬 수 있다.
하나의 예시에서, 광학 소자는 액정층에 외부 신호 인가 여부에 따라 투과 모드 및 차단 모드의 사이를 스위칭할 수 있다. 광학 소자는 예를 들어, 액정층에 외부 신호 인가에 의하여 가시광 영역의 투과율이 20% 이상인 투과 모드와 가시광 영역의 투과율이 3% 이하인 차단 모드의 사이를 스위칭할 수 있다. 그러나, 투과 모드 및 차단 모드의 광 투과율이 상기에 제한되는 것은 아니고 전술한 바와 같이, 액정 화합물 및/또는 이방성 염료의 배향 특성을 조절함으로써, 보다 다양한 광 투과율 범위로도 조절할 수 있다.
하나의 예시에서, 초기 상태에서 액정층이 수평 배향 상태인 경우 액정층의 광축의 배향 방향이 편광층의 흡수축과 소정의 각도를 이루도록 형성함으로써 차단 모드를 구현할 수 있고, 외부 신호 인가에 의하여 액정층을 수직 배향 상태로 전환하는 경우 광학 소자의 투과도가 증가되어 투과 모드를 구현할 수 있다. 다른 하나의 예시에서, 초기 상태에서 액정층이 수직 배향 상태인 경우 광학 소자는 초기 상태에서 투과 모드를 구현할 수 있고, 외부 신호 인가에 의하여 액정층을 전술한 프리 틸트에 따라 수평 배향 상태로 전환하는 경우, 액정층의 광축의 배향 방향이 편광층의 흡수축과 소정의 각도를 이루도록 함으로써 투과도를 감소시킬 수 있으며 이 경우 광학 소자는 차단 모드를 구현할 수 있다.
광학 소자는 액정 화합물 및/또는 이방성 염료의 초기 정렬 상태를 조절하기 위하여 액정층에 인접하는 배향막을 추가로 포함할 수 있다. 배향막으로는, 특별한 제한 없이 공지의 수직 또는 수평 배향막을 사용할 수 있다. 이러한 배향막은, 러빙 배향막과 같이 접촉식 배향막이거나, 혹은 광배향성 화합물을 포함하여, 예를 들면 직선 편광의 조사 등과 같은 비접촉식 방식에 의해 배향 특성을 나타낼 수 있는 것으로 공지된 배향막을 사용할 수 있다.
상기에서 액정층이 TN 모드 또는 STN 모드로 구동하는 경우, 액정층은 키랄제(chiral agent)를 추가로 포함할 수 있다. 키랄제는 상기 액정 화합물 및/또는 이방성 염료의 분자 배열이 나선 구조를 갖도록 유도할 수 있다. 상기 키랄제로는, 액정성, 예를 들면, 네마틱 규칙성을 손상시키지 않고, 목적하는 나선 구조를 유발할 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 액정에 나선 구조를 유발하기 위한 키랄제는 분자 구조 중에 키랄리티(chirality)를 적어도 포함할 필요가 있다. 키랄제로는, 예를 들면, 1개 또는 2개 이상의 비대칭 탄소(asymmetric carbon)를 가지는 화합물, 키랄 아민 또는 키랄 술폭시드 등의 헤테로원자 상에 비대칭점(asymmetric point)이 있는 화합물 또는 크물렌(cumulene) 또는 비나프톨(binaphthol) 등의 축부제를 가지는 광학 활성인 부위(axially asymmetric optically active site)를 가지는 화합물이 예시될 수 있다. 키랄제는 예를 들면 분자량이 1,500 이하인 저분자 화합물일 수 있다. 키랄제로는, 시판되는 키랄 네마틱 액정, 예를 들면, Merck사에서 시판되는 키랄 도판트 액정 S-811 또는 BASF사의 LC756 등을 사용할 수도 있다.
액정층은 또한, 기둥 패턴을 추가로 포함할 수 있다. 보다 구체적으로, 액정층은, 액정층의 상부 및 하부에 존재하는 2개의 인접하는 층 사이에서 간격을 유지할 수 있도록 형성된 기둥 패턴을 추가로 포함할 수 있다. 액정층이 편광판과 복합층의 사이에 존재하는 경우 상기 하부 및 상부의 층은 편광판 및 복합층일 수 있고, 액정층이 2개의 복합층 사이에 존재하는 경우 상기 하부 및 상부의 층은 2개의 복합층일 수 있다. 액정 화합물 및/또는 이방성 염료는 상기 기둥 패턴이 존재하지 않는 영역 내에 존재할 수 있다. 기둥 패턴은 예를 들어, 액정층에 인접하여 존재하는 상부 및 하부 층 중 어느 하나의 층 상에 형성되어 있고, 접착제에 의하여 다른 하나의 층에 부착된 상태로 존재할 수 있다. 상기 기둥 패턴과 복합층을 부착할 수 있는 접착제는 기둥 패턴의 기둥 면에 존재할 수 있고, 접착제의 종류는 특별히 제한되지 않고, 공지의 광학 소자 접합용 접착제를 사용할 수 있다.
기둥 패턴은 경화성 수지를 포함할 수 있다. 경화성 수지의 종류는 특별히 제한되지 않고, 예를 들어 가열 경화성 수지 또는 광 경화성 수지, 예를 들어 자외선 경화성 수지를 사용할 수 있다. 가열 경화성 수지로는, 예를 들어 실리콘 수지, 규소 수지, 프란 수지, 폴리우레탄 수지, 에폭시 수지, 아미노 수지, 페놀 수지, 요소 수지, 폴리에스테르 수지 또는 멜라민 수지 등을 사용할 수 있으나 이에 제한되는 것은 아니다. 자외선 경화성 수지로는 대표적으로 아크릴 중합체, 예를 들어, 폴리에스테르 아크릴레이트 중합체, 폴리스티렌 아크릴레이트 중합체, 에폭시 아크릴레이트 중합체, 폴리우레탄 아크릴레이트 중합체 또는 폴리부타디엔 아크릴레이트 중합체, 실리콘 아크릴레이트 중합체 또는 알킬 아크릴레이트 중합체 등을 사용할 수 있으나 이에 제한되는 것은 아니다.
기둥 패턴의 형상 및 배열 방식은 본 출원의 목적을 손상시키지 않는 범위 내에서, 예를 들어 2개의 복합층 사이에서 일정한 간격을 유지할 수 있도록 형성되는 범위 내에서 적절히 설계될 수 있다. 기둥 패턴은 하나 또는 둘 이상의 기둥 형상이 이격되어 존재하거나 또는 격벽 형상으로 구획을 이루도록 존재할 수도 있다. 기둥 패턴의 기둥 너비, 간격, 두께 액정층 내에서 면적 비율은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 예를 들어, 기둥의 너비는 1㎛ 내지 500㎛일 수 있고, 기둥 간의 간격은 10㎛ 내지 5000㎛일 수 있으며, 액정층 내의 기둥 패턴의 면적 비율은 액정층의 면적 100%에 대하여 약 0.1% 내지 50%일 수 있다. 또한, 기둥의 높이는 액정층의 두께를 고려하여 액정층의 두께와 유사한 범위 내로 적절히 선택될 수 있다.
이하, 상기 복합층에 대하여 구체적으로 설명한다. 복합층은 제 1 화물층, 금속층 및 제 2 산화물층을 순차로 포함할 수 있다. 상기 복합층은, 액정층에 외부 신호, 예를 들면, 전압을 인가할 수 있는 전극층의 역할을 수행할 수 있다. 상기 복합층은, 가시광 영역에서 높은 광 투과율을 가지므로 투명성이 우수하고, 적외선 영역에서 낮은 광 투과율을 가지므로 열을 차단하는 효과가 있을 뿐만 아니라, 높은 전기 전도도 및 낮은 면저항 값을 가진다. 따라서, 이러한 복합층은 에너지 절감이 가능하고, 광학 소자의 전극층으로 유용하게 사용될 수 있다.
복합층은 가시광 영역, 예를 들면, 약 400 nm 내지 700 nm 범위 내의 어느 한 파장 또는 550 nm 파장의 광에 대한 투과율이 80% 이상, 85% 이상 또는 90% 이상일 수 있다. 상기 수치범위를 만족하는 복합층은 광학 소자의 전극층으로 유용하게 사용될 수 있다. 그러나, 복합층의 가시광 영역의 광투과율이 상기 수치범위에 제한되는 것은 아니고, 통상 투명 전극으로 적용 가능한 정도의 가시광 영역의 광투과율을 가질 수 있다.
복합층은 적외선 영역, 예를 들면, 약 700 nm 내지 1000 nm 범위 내의 어느 한 파장 또는 780 nm 이상의 광에 대한 투과율이 70% 이하, 65% 이하 또는 60% 이하일 수 있다. 상기 수치범위를 만족하는 복합층은 적외선 영역의 열을 차단할 수 있으므로, 예를 들면, 에너지 절감이 가능하다. 복합층의 적외선 영역의 광투과율의 하한은, 특별히 제한되지 않으나, 예를 들면, 상기 복합층이 스마트 윈도우의 전극층으로 사용될 경우에는 하한이 0% 내지 5% 일 수 있다.
복합층은 면저항 값이 20 Ω/□ 이하, 15 Ω/□ 이하 또는 10 Ω/□ 이하일 수 있고, 하한은 특별히 제한되지 않으나, 0.1 Ω/□ 이상일 수 있다. 상기 수치범위의 면저항 값을 가지는 복합층이 광학 소자에 적용될 경우 소비 전력을 최소화할 수 있으므로 광학 소자의 효율을 높일 수 있는 장점이 있다.
복합층의 가시광 영역 및/또는 적외선 영역의 광투과율, 면저항 등의 특성은, 예를 들면, 제 1 산화물층, 금속층 및 제 2 산화물층의 굴절률, 두께, 전기전도도 또는 재료 등에 의하여 조절될 수 있다. 본 명세서에서 「산화물층」은 산화물을 주성분으로 포함하는 층을 의미할 수 있고, 「금속층」은 금속을 주성분으로 포함하는 층을 의미할 수 있다. 산화물층은 예를 들어, 산화물을 약 80 중량%이상 포함하는 층을 의미할 수 있고, 금속층은 예를 들어, 금속을 약 80 중량%이상 포함하는 층을 의미할 수 있다.
하나의 예시에서, 제 1 산화물층의 굴절률은 제 2 산화물층에 비하여 높을 수 있고, 금속층의 굴절률은 제 2 산화물층의 굴절률에 비해 낮을 수 있다.
하나의 예시에서, 상기 금속층은 550 nm의 파장에 대한 굴절률이 0.1 내지 1.0 범위 내일 수 있다. 보다 구체적으로 상기 금속층의 550nm의 파장의 광에 대한 굴절률은 0.1 이상, 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상, 0.45 이상 또는 0.5 이상일 수 있고, 1.0 이하, 0.95 이하, 0.9 이하, 0.85 이하, 0.8 이하, 0.75 이하, 0.7 이하, 0.65 이하, 0.6 이하 또는 0.55 이하일 수 있다.
또한, 상기 제 1 산화물층의 550 nm의 파장의 광에 대한 굴절률은 1.2 내지 2.8 또는 1.9 내지 2.75의 범위 내에 있고, 보다 구체적으로 상기 제 1 산화물층의 550nm의 파장의 광에 대한 굴절률은 1.2 이상, 1.25 이상, 1.3 이상, 1.35 이상, 1.4 이상, 1.45 이상, 1.5 이상, 1.55 이상, 1.6 이상, 1.65 이상, 1.7 이상, 1.75 이상, 1.8 이상, 1.85 이상, 1.9 이상, 1.95 이상 또는 2.0 이상일 수 있고. 2.8 이하, 2.75 이하, 2.7 이하, 2.65 이하, 2.6 이하, 2.55 이하, 2.5 이하, 2.45 이하, 2.4 이하, 2.35 이하, 2.3 이하, 2.25 이하, 2.2 이하, 2.15 이하, 2.1 이하 또는 2.05 이하일 수 있다.
또한, 상기 제 2 산화물층의 550nm의 파장의 광에 대한 굴절률은 1.5 내지 2.5의 범위 내에 있을 수 있다. 보다 구체적으로, 상기 제 2 산화물층의 550nm의 파장의 광에 대한 굴절률은 1.5 이상, 1.55 이상, 1.6 이상, 1.65 이상, 1.7 이상, 1.75 이상, 1.8 이상, 1.85 이상, 1.9 이상, 1.95 이상 또는 2.0 이상일 수 있고, 2.5 이하, 2.45 이하, 2.4 이하, 2.35 이하, 2.3 이하, 2.25 이하, 2.2 이하, 2.15 이하, 2.1 이하 또는 2.0 이하일 수 있다. 상기 굴절률은, 예를 들면, M-2000 장치 [제조사: J. A. Woollam Co., Inc. (USA)]를 사용하여 측정할 수 있다.
금속층, 제 1 산화물층 및 제 2 산화물층이 각각 상기 굴절률 범위를 만족하는 경우에 복합층은 가시광 영역의 광투과율은 높고 적외선 영역의 광투과율은 낮으므로 에너지 절감형 광학 소자에서 투명 전극층으로 유용하게 사용될 수 있다.
상기 제 1 산화물층, 금속층 및 제 2 산화물층의 굴절률을 상기 범위로 조절하는 방식은 특별히 제한되지 않으나 예를 들어, 각 층의 두께를 조절하거나 또는 각 층의 증착 공정 조건을 조절하는 것에 의하여 조절될 수 있다. 구체적으로, 각 층의 증착 조건을 조절하여 결정화도를 조절할 수 있으며, 이에 따라 동일한 두께 및 재료라고 하더라도 굴절률이 상이할 수 있게 된다. 상기 증착 공정은, 공지의 증착 방법에 의하여 수행될 수 있고, 예를 들면, 스퍼터 방식에 의하여 수행될 수 있다. 보다 구체적으로, 제 1 산화물층 및 제 2 산화물층은, 예를 들면, RF 스퍼터 방식에 의해 증착될 수 있고, 금속층은, 예를 들면, DC 스퍼터 방식에 의하여 증착될 수 있다.
하나의 예시에서, 금속층의 두께는 5 nm 내지 20 nm의 범위 내에 있을 수 있다. 보다 구체적으로 금속층의 두께는 5 nm이상, 6 nm이상, 7 nm이상, 8 nm이상, 9 nm이상, 10 nm이상, 11 nm이상 또는 12 nm이상일 수 있고, 20 nm이하, 19 nm이하, 18 nm이하, 17 nm이하, 16 nm이하, 15 nm이하, 14 nm이하 또는 13 nm이하일 수 있다. 금속층의 두께를 상기 범위로 하는 경우, 금속층의 굴절률을 상기 기술한 범위로 조절하는 것이 용이하다. 또한, 금속층의 두께를 상기 두께 범위로 하는 경우, 금속층의 연속적인 막이 형성되기 용이하므로 우수한 전기 전도도 및 낮은 저항을 구현할 수 있으며 광학 소자의 가시광 영역에서 광투과율을 높일 수 있다.
금속층은 또한, 면저항 값이 20 Ω/□ 이하, 바람직하게는 10 Ω/□ 이하인 전도성 금속을 포함할 수 있다. 금속층에 포함되는 전도성 금속의 전기 전도도가 상기 범위인 경우, 복합층의 면저항 값을 낮출 수 있으므로, 광학 소자의 효율을 높일 수 있는 장점이 있다.
상기 금속층은 예를 들어, 은(Ag), 알루미늄(Al), 백금(Pt), 구리(Cu) 또는 금(Au) 등의 금속을 포함할 수 있다. 금속층은, 예를 들면, 은을 포함할 수 있다. 이 경우에, 복합층의 제조과정 또는 복합층이 광학 소자에 포함되어 사용되는 과정에서 공기 및 수분과의 접촉에 의하여, 금속층 내에 은 산화물이 일부 포함될 수 있다. 금속층이 은 및 은 산화물을 포함하는 경우에, 상기 은 산화물은 상기 금속층 100 중량%에 대하여 0.1 중량% 이상 50 중량% 이하로 포함될 수 있다.
하나의 예시에서, 제 1 산화물층의 두께는 20 nm 내지 60 nm 또는 40 nm 내지 50 nm의 범위 내에 있을 수 있다. 보다 구체적으로, 제 1 산화물층의 두께는 20 nm이상, 25 nm이상, 30 nm이상, 35 nm이상 또는 40 nm이상일 수 있고, 60 nm이하, 55 nm이하, 50 nm이하 또는 45 nm이하일 수 있다. 제 1 산화물층의 두께를 상기 범위로 하는 경우, 제 1 산화물층의 광에 대한 투과율 또는 굴절률을 상기 기술한 범위로 조절하는 것이 용이하고, 제 1 산화물층 상에 형성되는 금속층의 증착의 불량률을 낮출 수 있다.
하나의 예시에서, 제 2 산화물층의 두께는 10 nm 내지 100 nm, 바람직하게는 20 nm 내지 60 nm의 범위 내에 있을 수 있다. 보다 구체적으로 제 2 산화물층의 두께는 10 nm이상, 15 nm이상, 20 nm이상, 25 nm이상, 30 nm이상, 35 nm이상, 40 nm이상, 45 nm이상 또는 50 nm이상일 수 있고, 100 nm이하, 95 nm이하, 90 nm이하, 85 nm이하, 80 nm이하, 75 nm이하, 70 nm이하, 65 nm이하, 60 nm이하 또는 55 nm이하일 수 있다. 제 2 산화물층의 두께를 상기 범위로 하는 경우, 제 2 산화물층의 광에 대한 투과율 또는 굴절률을 상기 기술한 범위로 조절하는 것이 용이하고, 우수한 전기 전도도 및 낮은 저항값을 가질 수 있는 장점이 있다.
제 2 산화물층의 비저항 값은, 예를 들어, 1.0 x 10-5 Ωcm 내지 1.0 x 105 Ωcm, 바람직하게 1.0 x 10-4 Ωcm 내지 1.0 x 104 Ωcm 범위 내에 있을 수 있다. 제 2 산화물층의 비저항 값을 상기 범위로 하는 경우, 복합층의 면저항 값을 낮출 수 있으므로, 광학 소자의 효율을 높일 수 있는 장점이 있다.
제 1 산화물층 및 제 2 산화물층은 각각 안티몬(Sb), 바륨(Ba), 갈륨(Ga), 게르마늄(Ge), 하프늄(Hf), 인듐(In), 란티늄(La), 마그네슘(Mg), 셀렌(Se), 규소(Si), 탄탈(Ta), 티타늄(Ti), 바나듐(V), 이트륨(Y), 아연(Zn) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 금속을 포함하는 금속 산화물을 포함할 수 있다.
상기에서 제 2 산화물층은 갈륨(Ga), 알루미늄(Al), 지르코늄(Zr), 티타늄(Ti), 니오븀(Nb), 탄탈(Ta), 인듐(In) 및 바나듐(V)으로 이루어진 군으로부터 선택되는 1종 이상의 제 2 금속을 추가로 포함할 수 있다.
제 2 산화물층에 포함되는 금속은 예를 들어, 도핑 물질일 수 있다. 제 2 산화물층은 제 2 금속을 더 포함하여 광학 소자에서 전극층으로 사용될 경우 전자 이동성을 향상시킬 수 있으며, 상기 제 1 산화물층과 마찬가지로 고굴절의 특성을 가지고 있으므로, 광학 설계를 통하여 상기 복합층의 가시광 영역의 광투과율을 높이고 적외선 영역의 광투과율을 낮출 수 있다. 또한, 제 2 산화물층은 전기 전도도를 가지고 있으므로 금속층의 전기 전도도를 저해하지 않으며 상기 복합층을 다양한 광학 소자에서 저방사 기능((Low-E)을 하는 투명 전극으로서의 역할을 할 수 있게 한다.
제 2 금속의 제 2 산화물층 내에서의 함량은0.1 중량% 이상 10 중량% 이하일 수 있다. 제 2 산화물층의 굴절률은, 예를 들면, 상기 제 2 금속의 함량에 의하여 변화할 수 있다. 따라서, 상기 복합층의 가시광 영역의 광투과율을 최대로 구현할 수 있도록 제 2 산화물층 내에 제 2 금속의 함량을 조절할 필요가 있다. 또한, 제 2 산화물층에 포함되는 제 2 금속은 제 2 산화물층의 전기 전도도에 영향을 미친다. 제 2 금속의 제 2 산화물층 내에서의 함량이 상기 범위를 만족하는 경우, 제 2 산화물층은 최적의 굴절률 및 전기 전도도를 구현할 수 있다.
복합층의 두께는 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 복합층의 두께는, 예를 들면, 가시광 영역에서 높은 광투과율, 적외선 영역에서 낮은 광투과율, 우수한 전기 전도도 및 낮은 저항 특성을 나타내기 위하여, 50 nm 내지 300 nm 또는 70nm 내지 200 nm 범위 내로 조절될 수 있다.
복합층은, 기재층을 추가로 포함할 수 있고, 예를 들면, 제 1 산화물층이 상기 기재층에 인접하게 존재할 수 있다. 기재층으로는, 특별한 제한 없이 공지의 소재를 사용할 수 있다. 예를 들면, 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기계 필름이나 플라스틱 필름 등을 사용할 수 있다. 기재층으로는, 광학적으로 등방성인 기재층이나, 위상차층과 같이 광학적으로 이방성인 기재층 또는 편광판이나 컬러 필터 기판 등을 사용할 수 있다. 예를 들어, 편광층이 기재층의 내측, 즉 액정층과 기재층의 사이에 존재하는 경우에는 기재층으로서 이방성 기재층이 사용되는 경우에도 적절한 성능의 소자가 구현될 수 있다.
플라스틱 기재층으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기재층을 사용할 수 있지만 이에 제한되는 것은 아니다. 기재층에는, 필요에 따라서 금, 은, 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 코팅층이 존재할 수도 있다.
본 출원에서 제 2 산화물층은 제 1 산화물층에 비하여 액정층에 인접하여 존재할 수 있다. 또한, 복합층은 액정층의 양측에 존재할 수 있다. 즉, 액정층은 대향 배치된 2개의 복합층 사이에 배치될 수 있다. 이 경우에, 양측에 존재하는 복합층은 동일한 굴절률, 두께 또는 면저항 등을 가지는 동일한 구조이거나 또는 상이한 굴절률, 두께 또는 면저항 등을 가지는 독립적인 구조를 가질 수 있다.
본 출원은 또한, 상기 광학 소자의 용도에 관한 것이다. 본 출원의 광학 소자는 외부 신호에 인가에 여부에 따라 투과도를 가변할 수 있고, 또한 적외선 영역의 광에 대하여 낮은 투과도를 가지는 복합층을 이용하여 외부 신호를 인가하므로 열을 차단하여 에너지를 절감할 수 있다. 이러한 광학 소자는 다양한 광학 장치에 적용되어 사용될 수 있다. 본 출원의 광학 소자는 예를 들어, 선루프에 적용되어 사용될 수 있다.
본 명세서에서 「선루프」는 차량의 천장에 존재하는 고정된 또는 작동(벤팅 또는 슬라이딩)하는 개구부(opening)로서, 빛 또는 신선한 공기가 차량의 내부로 유입되도록 하는 기능을 할 수 있는 장치를 통칭하는 의미일 수 있다. 본 출원에서 선루프의 작동 방식은 특별히 제한되지 않으며, 예를 들어, 수동으로 작동하거나 또는 모터로 구동할 수 있으며, 선루프의 형상, 크기 또는 스타일은 목적하는 용도에 따라 적절히 선택될 수 있다. 예를 들어, 선루프는 작동 방식에 따라 팝-업 타입 선루프, 스포일러(tile & slide) 타입 선루프, 인빌트 타입 선루프, 폴딩 타입 선루프, 탑-마운트 타입 선루프, 파노라믹 루프 시스템 타입 선루프, 제거 가능한 루프 패널즈(t-tops 또는 targa roofts) 타입 선루프 또는 솔라 타입 선루프 등이 예시될 수 있으나 이에 제한되는 것은 아니다.
본 출원의 예시적인 선루프는 본 출원의 상기 광학 소자를 포함할 수 있고, 이 경우 광학 소자에 대한 구체적인 사항은 상기 광학 소자의 항목에서 기술한 내용이 동일하게 적용될 수 있다.
상기 선루프는 또한, 자외선 차단층을 추가로 포함할 수 있다. 본 명세서에서 「자외선 차단층」은 자외선 차단 기능을 가지는 공지의 기능성 층을 의미할 수 있다. 자외선 차단층은 편광층, 액정층 또는 복합층의 일측 또는 양측에 형성되어 있을 수 있다. 자외선 차단층은 예를 들어, 자외선 차단층(201A, 201B)은 예를 들어 도 2에 도시한 바와 같이, 선루프의 최외각 측면에 각각 존재할 수 있다. 이러한 자외선 차단층으로는 예를 들어, 자외선 차단 점착제 또는 자외선 차단 필름을 사용할 수 있다. 자외선 차단 점착제로는 공지의 점착제 성분에 공지의 자외선 차단 기능을 가지는 첨가제를 첨가시킨 것을 사용할 수 있다. 자외선 차단 필름으로는, 예를 들어, 공지의 점착제의 일면에 공지의 자외선 차단 기능을 가지는 첨가제를 포함하는 층을 형성한 것을 사용할 수 있다. 자외선 차단 점착제로는 예를 들어 DAIO Paper사의 EW1501-D1-UV, EW1502-D1-UV 또는 EW1504-D1-UV 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 광학 소자는 외부 신호 인가 여부에 의하여 투과도를 가변할 수 있고, 또한 적외선 영역의 광에 대하여 낮은 투과도를 가지는 복합층을 이용하여 외부 신호를 인가할 수 있으므로, 열을 차단하여 에너지를 절감할 수 있다. 이러한 광학 소자는 다양한 광학 장치, 예를 들어 선루프 등에 유용하게 사용될 수 있다.
도 1은 광학 소자를 예시적으로 나타낸다.
도 2는 선루프의 구조를 예시적으로 나타낸다.
도 3은 실시예 1의 광학 소자의 구조를 예시적으로 나타낸다.
도 4는 실시예 1의 광학 소자의 구동 전압에 따른 투과도를 나타낸다.
도 5는 실시예 1의 광학 소자의 투과율 및 반사율을 나타낸다.
도 6은 비교예 1의 광학 소자의 투과율 및 반사율을 나타낸다.
도 7은 실시예 1 및 비교예 2의 금속층의 파장에 따른 특성을 나타낸다.
도 8은 제 1 금속 산화물층 및 제 2 금속 산화물층의 굴절률에 따른 광 투과율 평가 결과를 나타낸다.
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명하지만 본 출원의 범위가 하기 제시된 내용에 의해 제한되는 것은 아니다.
실시예 1
복합층의 제조
유리 기판 상에 RF Sputter 방식을 이용하여 CeO2를 35 nm의 두께로 증착하여 제 1 금속 산화물층을 형성하였다. 상기 제 1 금속 산화물층 상에 DC sputter 방식을 이용하여 1.5 W/cm2 및 3 mTorr의 조건에서 Ag로 이루어진 금속층을 10 nm 두께로 증착하고, 상기 금속층 상에 제 2 금속 산화물층으로서 Ga을 도핑한 산화 아연층(GZO)을 45 nm 두께로 증착하여 복합층을 제조하였다.
이 경우, 각 층의 굴절률을 M-2000 장치[제조사: J. A. Woollam Co., Inc. (USA)]를 이용하여 측정한 결과, 제 1 산화물층의 굴절률은 550 nm의 파장에서 2.34, 금속층의 굴절률은 550 nm의 파장에서 0.19, 산화 아연층의 굴절률은 550 nm의 파장에서 1.94였다.
또한, 상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 87.2%의 투과율을 나타내었다.
나아가, 상기 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 미만을 나타내었다.
선루프용 광학 소자의 제조
하기 방법에 따라 도 3의 구조의 선루프용 광학 소자를 제조하였다. 공지의 흡수형 선형 편광층(101) 상에 OCA(DAIO Paper사의 EW1501-D1-UV)(301)를 통하여 상기 제조된 복합층의 제 1 산화물층이 OCA 표면에 접하도록 복합층()103A)을 적층하고, 다음으로 상기 복합층의 제 2 산화물층 상에 액정 화합물(HPC21600, HCCH사제) 및 상기 액정 화합물 100 중량부에 대하여 이방성 염료(X12, BASF사제)를 1 내지 3 중량부 비율로 포함하는 액정층(102)을 형성한 후, 다음으로 상기 제조된 다른 하나의 복합층의 제 2 산화물층이 액정층에 접하도록 복합층(103B)을 적층하여 광학 소자를 제조하였다. 상기에서, 액정층의 광축은 액정층의 평면에 대하여 약 0도 내지 15도의 경사각을 이루도록 즉 액정 화합물 및/또는 이방성 염료가 수평 배향하도록 형성하였고, 액정층의 광축은 상기 흡수형 선형 편광층의 흡수축과 약 90도의 각도를 이루도록 형성하였다.
실시예 2
복합층으로 하기 제조된 복합층을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 실시예 2의 선루프를 제조하였다.
복합층의 제조
유리 기판 상에 RF Sputter 방식을 이용하여 CeO2를 30 nm의 두께로 증착하여 제 1 금속 산화물층을 형성하였다. 상기 제 1 금속 산화물층 상에 DC sputter 방식을 이용하여 1.5 W/cm2 및 3 mTorr의 조건에서 Ag로 이루어진 금속층을 10 nm 두께로 증착하고, 상기 금속층 상에 제 2 금속 산화물층으로서 Al을 도핑한 산화 아연층(AZO)을 50 nm 두께로 증착하여 복합층을 제조하였다.
이 경우, 제 1 금속 산화물층의 굴절률은 550 nm의 파장에서 2.34, 금속층의 굴절률은 550 nm의 파장에서 0.19, 제 2 금속 산화물층의 굴절률은 550 nm의 파장에서 1.89였다. 또한, 상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 85.5%의 투과율을 나타내었다. 나아가, 상기 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 미만을 나타내었다.
비교예 1
복합층으로 ITO 투명 전극층을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 비교예 1의 선루프를 제조하였다.
비교예 2
복합층으로 하기 제조된 복합층을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 비교예 2의 선루프를 제조하였다.
복합층의 제조
유리 기판 상에 RF Sputter 방식을 이용하여 CeO2를 35 nm의 두께로 증착하여 제 1 금속 산화물층을 형성하였다. 상기 제 1 금속 산화물층 상에 DC sputter 방식으로 0.5W/cm2 및 15 mTorr의 조건에서 Ag를 10 nm 두께로 증착하여 금속층을 형성한 후, 상기 금속층 상에 제 2 금속 산화물층으로서 Ga을 도핑한 산화 아연층(GZO)을 45 nm 두께로 증착하여 복합층을 제조하였다.
이 경우, 제 1 산화물층의 굴절률은 550 nm의 파장에서 2.34, 금속층의 굴절률은 550 nm의 파장에서 1.95, 산화 아연층의 굴절률은 550 nm의 파장에서 1.94였다.
또한, 상기 금속층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 초과의 값을 나타내었고, 상기 금속층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 46.8%의 투과율을 나타내었으며, 굴절률은 1.95로 측정되었다. 나아가, 상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 79.1%의 투과율을 나타내었다. 또한, 상기 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 초과의 값을 나타내었다.
비교예 3
복합층의 제조시에 제1 금속 산화물층을 10 nm로 형성하고, 제2 금속 산화물층의 두께를 80 nm로 형성한 것을 제외하고는, 실시예 2와 동일한 방법을 수행하여 비교예 3의 선루프를 제조하였다.
상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 72.6%의 투과율을 나타내었다.
또한, 상기 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 초과의 값을 나타내었다.
평가예 1
실시예 1에서 제조된 광학 소자에 대하여, 액정층의 두께를 각각 10 ㎛ 및 15 ㎛로 형성하고, 복합층에 수직 전계를 인가할 수 있는 전원을 연결한 후 구동 전압에 따른 광학 소자의 약 550nm의 광에 대한 투과도를 헤이즈미터 NDH 5000SP [제조사: Nippon Denshoku (JAPAN)] 장치를 이용하여 측정하였고, 그 결과를 도 4에 나타내었다. 도 4에 나타낸 바와 같이 전압이 인가되지 않은 상태에서는 낮은 투과도를 나타내는 것을 확인할 수 있고, 전압이 인가될수록 액정 화합물 및 이방성 염료가 수직 정렬 상태로 변환되면서 투과도가 증가하는 것을 확인할 수 있다.
평가예 2: 투과도 및 반사도 평가
실시예 및 비교예에서 제조된 광학 소자에 대하여 전압이 인가되지 않은 상태에서 투과도 및 반사도를 측정하였다. 구체적으로 Solid Spec-3700 [제조사: shimadzu (JAPAN)] 장치를 이용하여 측정하였고, 그 결과를 도 5(실시예 1) 및 도 6(비교예 1)에 각각 나타내었다. 도 5 및 도 6에 나타낸 바와 같이, 본 출원의 복합층을 투명 전극층을 사용한 실시예의 광학 소자는, ITO 투명 전극층을 사용한 비교예 1의 광학 소자와 비교하여, 가시광 영역에서는 광투과율이 유사한 반면, 적외선 영역에서는 현저히 낮은 광 투과율을 보임을 확인할 수 있다.
평가예 3: 금속층의 파장에 따른 굴절률 및 흡수 계수 평가
실시예 1 및 비교예 2에서 제조된 금속층에 대하여 굴절률에 따른 굴절률 및 흡수 계수를 평가하고 그 결과를 도 7에 나타내었다. 도 7에서 n은 금속층의 빛의 파장에 따른 굴절률을 의미하고, λ는 빛의 파장을 의미하며, k는 금속층의 빛의 파장에 따른 흡수 계수를 의미한다. 도 7에 나타낸 바와 같이, 동일한 두께로 금속층을 형성하더라도 금속층의 형성 조건에 따라 굴절률 및 흡수 계수가 상이한 것을 확인할 수 있다.
평가예 4: 제 1 및 제 2 금속 산화물 층의 굴절률에 따른 복합층의 투과율 평가
실시예 1 및 2와 동일하게 광변조 장치를 제조하되, 제 1 금속 산화물층 및 제 2 금속 산화물층의 굴절률을 변화시키면서, 굴절률에 따른 복합층의 550nm 파장의 광에 대한 투과율을 평가하고 그 결과를 도 8에 나타내었다. 도 8에 나타낸 바와 같이, 복합층의 광 투과율은 제1 금속 산화물층 및 제2 금속 산화물층의 굴절률에 영향을 받는 것을 확인할 수 있고, 특히 제 1 금속 산화물층 및 제2 금속 산화물층의 굴절률 범위가 본 출원의 범위 내에 속하는 경우 550nm 파장의 빛에 대하여 약 80% 이상의 우수한 광 투과율을 나타내는 것을 확인할 수 있다.
[부호의 설명]
101: 편광층
102: 액정층
103A, 103B: 복합층
201A, 201B: 자외선 차단층
301: OCA층

Claims (20)

  1. 편광층; 상기 편광층 상에 형성되고 액정화합물과 이방성 염료를 포함하는 액정층; 및 상기 액정층과 인접하여 존재하며, 순차 형성된 제 1 산화물층, 금속층 및 제 2 산화물층을 포함하는 복합층을 포함하고, 상기 액정층의 액정 화합물의 배향 방향이 상기 복합층에 의해 인가되는 신호에 의해 변경될 수 있도록 설치되어 있는 광학 소자.
  2. 제 1 항에 있어서, 초기 상태에서 액정층은 광축이 액정층의 평면에 대하여 0도 내지 90도의 경사각을 이루도록 배향된 상태로 존재하는 광학 소자.
  3. 제 1 항에 있어서, 초기 상태에서 액정층은 광축이 편광판의 흡수축 방향과 0도 내지 90도 범위 내의 각도를 이루도록 배향된 상태로 존재하는 광학 소자.
  4. 제 1 항에 있어서, 액정 화합물 및 이방성 염료는 외부 신호 인가에 의하여 배향이 스위칭 가능하도록 액정층 내에 존재하는 광학 소자.
  5. 제 1 항에 있어서, 액정층과 인접하여 존재하는 배향층을 추가로 포함하는 광학 소자.
  6. 제 1 항에 있어서, 액정층은 외부 신호 인가에 의하여 가시광 영역의 투과율이 20% 이상인 투과 모드와 가시광 영역의 투과율이 3% 이하인 차단 모드 사이를 스위칭할 수 있도록 배치되어 있는 광학 소자.
  7. 제 1 항에 있어서, 이방성 염료는 이색비가 5 내지 20 범위 내인 광학 소자
  8. 제 1 항에 있어서, 복합층은 적외선 영역의 광에 대한 투과율이 70% 이하인 광학 소자
  9. 제 1 항에 있어서, 복합층은 면 저항이 20 Ω/□ 이하인 광학 소자
  10. 제 1 항에 있어서, 제 1 산화물층의 굴절률이 제 2 산화물층의 굴절률에 비하여 높고, 금속층의 굴절률이 제 2 산화물층의 굴절률에 비해 낮은 광학 소자
  11. 제 1 항에 있어서, 금속층은 550 nm의 파장에 대한 굴절률이 0.1 내지 1의 범위 내에 있는 광학 소자
  12. 제 1 항에 있어서, 금속층은 두께가 5 nm 내지 20 nm의 범위 내에 있는 광학 소자
  13. 제 1 항에 있어서, 금속층은 면저항 값이 20 Ω/□ 이하인 전도성 금속을 포함하는 광학 소자
  14. 제 1 항에 있어서, 제 1 산화물층의 550 nm의 파장의 광에 대한 굴절률은 1.2 내지 2.8의 범위 내이고, 제 2 산화물층의 굴절률은 1.5 내지 2.5의 범위 내인 광학 소자
  15. 제 1 항에 있어서, 제 1 산화물층은 두께가 20 nm 내지 60 nm의 범위 내이고, 제 2 산화물층은 두께가 10 nm 내지 100 nm의 범위 내인 광학 소자
  16. 제 1 항에 있어서, 제 2 산화물층은 비저항 값이 1.0 x 10-5 Ωcm 내지 1.0 x 105 Ωcm 의 범위 내에 있는 광학 소자
  17. 제 1 항에 있어서, 제 1 산화물층 및 상기 제 2 산화물층은 각각 안티몬(Sb), 바륨(Ba), 갈륨(Ga), 게르마늄(Ge), 하프늄(Hf), 인듐(In), 란티늄(La), 마그네슘(Mg), 셀렌(Se), 규소(Si), 탄탈(Ta), 티타늄(Ti), 바나듐(V), 이트륨(Y), 아연(Zn) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 금속을 포함하는 금속 산화물층인 광학 소자
  18. 제 17 항에 있어서, 제 2 산화물층은 갈륨(Ga), 알루미늄(Al), 지르코늄(Zr), 티타늄(Ti), 니오븀(Nb), 탄탈(Ta), 인듐(In) 및 바나듐(V)으로 이루어진 군으로부터 선택되는 1종 이상의 제 2 금속을 추가로 포함하는 광학 소자
  19. 제 1 항에 있어서, 제 2 산화물층이 제 1 산화물층에 비하여 액정층에 인접하여 존재하는 광학 소자
  20. 제 1 항의 광학 소자를 포함하는 선루프.
PCT/KR2015/002250 2014-03-07 2015-03-09 광학 소자 WO2015133878A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/038,369 US9958742B2 (en) 2014-03-07 2015-03-09 Optical element with conductive composite layer
EP15758039.0A EP3115832B1 (en) 2014-03-07 2015-03-09 Optical element
JP2016525065A JP6326693B2 (ja) 2014-03-07 2015-03-09 光学素子
CN201580002633.9A CN105723275B (zh) 2014-03-07 2015-03-09 光学元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140027222 2014-03-07
KR10-2014-0027222 2014-03-07
KR1020150032441A KR101630119B1 (ko) 2014-03-07 2015-03-09 광학 소자
KR10-2015-0032441 2015-03-09

Publications (1)

Publication Number Publication Date
WO2015133878A1 true WO2015133878A1 (ko) 2015-09-11

Family

ID=54055600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002250 WO2015133878A1 (ko) 2014-03-07 2015-03-09 광학 소자

Country Status (1)

Country Link
WO (1) WO2015133878A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017105051A1 (ko) 2015-12-17 2017-06-22 주식회사 엘지화학 액정 윈도우 및 이를 포함하는 광학 소자
WO2017179940A1 (ko) * 2016-04-14 2017-10-19 주식회사 엘지화학 투과도 가변 필름
CN107924077A (zh) * 2015-10-26 2018-04-17 株式会社Lg化学 光学器件
JP2018529116A (ja) * 2015-12-02 2018-10-04 エルジー・ケム・リミテッド 光学素子
WO2019066428A1 (ko) * 2017-09-29 2019-04-04 주식회사 엘지화학 광학 디바이스의 제조 방법
CN111033373A (zh) * 2017-09-29 2020-04-17 株式会社Lg化学 用于驱动光学元件的方法
US20200225393A1 (en) * 2016-12-23 2020-07-16 Lg Chem, Ltd. Reflectance-Variable Mirror

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749261A (en) * 1986-01-17 1988-06-07 Taliq Corporation Shatter-proof liquid crystal panel with infrared filtering properties
US5111329A (en) * 1990-11-28 1992-05-05 Ford Motor Company Solar load reduction panel with controllable light transparency
JPH11323341A (ja) * 1989-10-02 1999-11-26 Merck Patent Gmbh 電気光学液晶系
JP2006330511A (ja) * 2005-05-27 2006-12-07 Nissan Motor Co Ltd 光の散乱透過、および反射の切り替えが可能な調光構造体
US20070206263A1 (en) * 2006-03-03 2007-09-06 Neuman George A Electro-Optical Element Including IMI Coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749261A (en) * 1986-01-17 1988-06-07 Taliq Corporation Shatter-proof liquid crystal panel with infrared filtering properties
JPH11323341A (ja) * 1989-10-02 1999-11-26 Merck Patent Gmbh 電気光学液晶系
US5111329A (en) * 1990-11-28 1992-05-05 Ford Motor Company Solar load reduction panel with controllable light transparency
JP2006330511A (ja) * 2005-05-27 2006-12-07 Nissan Motor Co Ltd 光の散乱透過、および反射の切り替えが可能な調光構造体
US20070206263A1 (en) * 2006-03-03 2007-09-06 Neuman George A Electro-Optical Element Including IMI Coatings

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924077A (zh) * 2015-10-26 2018-04-17 株式会社Lg化学 光学器件
EP3370108A4 (en) * 2015-10-26 2018-10-17 LG Chem, Ltd. Optical element
US10712607B2 (en) 2015-10-26 2020-07-14 Lg Chem, Ltd. Optical device
JP2018529116A (ja) * 2015-12-02 2018-10-04 エルジー・ケム・リミテッド 光学素子
US10976597B2 (en) 2015-12-02 2021-04-13 Lg Chem, Ltd. Optical device
WO2017105051A1 (ko) 2015-12-17 2017-06-22 주식회사 엘지화학 액정 윈도우 및 이를 포함하는 광학 소자
JP2018527622A (ja) * 2015-12-17 2018-09-20 エルジー・ケム・リミテッド 液晶ウィンドウ及びこれを含む光学素子
US20190079327A1 (en) * 2015-12-17 2019-03-14 Lg Chem, Ltd. Liquid crystal window and optical element comprising it
US10718980B2 (en) 2015-12-17 2020-07-21 Lg Chem, Ltd. Liquid crystal window and optical element comprising it
WO2017179940A1 (ko) * 2016-04-14 2017-10-19 주식회사 엘지화학 투과도 가변 필름
KR101876986B1 (ko) * 2016-04-14 2018-07-11 주식회사 엘지화학 투과도 가변 필름
US10656480B2 (en) 2016-04-14 2020-05-19 Lg Chem, Ltd. Transmittance-variable film
US20200225393A1 (en) * 2016-12-23 2020-07-16 Lg Chem, Ltd. Reflectance-Variable Mirror
CN111033373A (zh) * 2017-09-29 2020-04-17 株式会社Lg化学 用于驱动光学元件的方法
US10845654B2 (en) 2017-09-29 2020-11-24 Lg Chem, Ltd. Method for manufacturing optical device by varying rubbing strength
WO2019066428A1 (ko) * 2017-09-29 2019-04-04 주식회사 엘지화학 광학 디바이스의 제조 방법
CN111033373B (zh) * 2017-09-29 2022-09-27 株式会社Lg化学 用于驱动光学元件的方法

Similar Documents

Publication Publication Date Title
US9958742B2 (en) Optical element with conductive composite layer
WO2015133878A1 (ko) 광학 소자
KR102258279B1 (ko) 광학 소자
KR102010760B1 (ko) 광학 소자
KR102056595B1 (ko) 액정 윈도우 및 이를 포함하는 광학 소자
WO2012033583A1 (en) Switchable privacy filter
KR20190096890A (ko) 광학 소자
KR20180074594A (ko) 반사율 가변 미러
WO2015133862A1 (ko) 광변조 장치
EP3933454B1 (en) Optical device
WO2018117721A1 (ko) 반사율 가변 미러
KR102590959B1 (ko) 광학 디바이스
EP3933458B1 (en) Optical device
KR20170101157A (ko) 반사율 가변 미러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758039

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015758039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758039

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016525065

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15038369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE