WO2012023265A1 - 熱中性子遮蔽材料及びその製造方法 - Google Patents
熱中性子遮蔽材料及びその製造方法 Download PDFInfo
- Publication number
- WO2012023265A1 WO2012023265A1 PCT/JP2011/004539 JP2011004539W WO2012023265A1 WO 2012023265 A1 WO2012023265 A1 WO 2012023265A1 JP 2011004539 W JP2011004539 W JP 2011004539W WO 2012023265 A1 WO2012023265 A1 WO 2012023265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boride
- cermet layer
- cermet
- mass
- thermal neutron
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/08—Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/12—Laminated shielding materials
- G21F1/125—Laminated shielding materials comprising metals
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
Definitions
- the present invention relates to a thermal neutron shielding material having a cermet layer on a metal base material and a manufacturing method thereof.
- Patent Document 1 discloses that a glaze containing 10 to 20 wt% of gadolinium oxide and boron oxide is applied to a metal surface such as stainless steel by coating, baking or spraying. A thermal neutron shielding material used for a spent nuclear fuel storage container, a fuel transport container material, etc. is described.
- Patent Document 1 when an oxide of boron (B) or gadolinium (Gd) having high neutron absorption capability is deposited on the metal surface by thermal spraying, an oxide simple substance such as boron oxide and gadolinium oxide, so-called ceramics, Since the thermal spray coating is formed by plasma spraying at a high temperature (about 6000 ° C.), when the thermal spray particles collide with the base material, a large tensile stress is generated in the coating due to solidification / shrinkage caused by cooling. Not only a high adhesion can not be obtained, but also a film thickness of 0.05 mm or more cannot be obtained.
- the thermal spray coating of an oxide which is difficult to plastically deform has a problem that a fine coating cannot be obtained because microcracks and voids are unavoidable in the coating.
- the storage container for storing the spent nuclear fuel and the fuel transport container may be exposed to an atmosphere such as salt water or water at the time of transportation or storage, so that there is a problem that corrosion resistance is necessary. Therefore, the present invention provides a thermal neutron shielding material having good corrosion resistance and higher thermal neutron shielding ability by forming a B-containing cermet layer having good adhesion to the metal matrix on the metal surface, and a method for producing the same. The purpose is to provide.
- the thermal neutron shielding material according to claim 2 is characterized in that, in claim 1, the cermet layer further includes a binary boride.
- the thermal neutron shielding material according to claim 3 is characterized in that, in claim 1, the cermet layer is a double boride cermet made of a bonded phase of an M2M′B2 type double boride and an M ′ based alloy.
- the thermal neutron shielding material according to claim 4 is the cermet layer according to claim 3, wherein the cermet layer is composed of 35 to 95% by mass of a hard phase made of a double boride and a binder phase of a Ni-based alloy in which the balance binds the hard phase.
- the B content is 3 to 7.5% by mass
- the Mo content is 0.8 to (1.6-0.05X) in terms of Mo / B atomic ratio (X:% by mass of B contained, The same applies to the following X notation), characterized in that the Cr content is (55-5X)% or less, the balance is Ni of 10% by mass or more, and unavoidable impurities.
- the B content is 3 to 7.5% by mass
- the Mo content is 0.8 to (1.6-0.05X) in terms of Mo / B atomic ratio
- the Cr and / or Ni content is The total of either one or both is (55-5X)% by mass or less
- the C content is 0.95% by mass or less
- the balance is 10% by mass or more Fe, and unavoidable impurities. .
- the thermal neutron shielding material according to claim 6 is characterized in that, in any one of claims 1 to 5, the metal base material is ordinary steel, alloy steel, tool steel, stainless steel or aluminum alloy.
- a method for producing a thermal neutron shielding material according to claim 7 is the method for producing a thermal neutron shielding material according to any one of claims 1 to 6, wherein the cermet layer is formed on a metal base material by thermal spraying. It is characterized by that.
- the cermet in this specification means the composite material of a metal and a ceramic.
- the thermal neutron shielding material of the present invention has a cermet layer formed on a metal base material such as ordinary steel, alloy steel, tool steel, stainless steel, and aluminum alloy, and the cermet layer has a hard phase composed of double boride and the balance Is a double boride cermet comprising a binder phase that binds a hard phase.
- the cermet layer can be formed on the surface of ordinary steel, alloy steel, stainless steel or aluminum alloy currently used to improve the thermal neutron shielding ability and improve safety, and to reduce the thickness.
- storage density of spent nuclear fuel can be increased.
- the thermal neutron shielding material of the present invention has sufficient corrosion resistance to an atmosphere such as salt water or water during transportation or storage.
- the thermal neutron shielding material according to Embodiment 1 of the present invention has a cermet layer formed on a metal base material, and MM′B or M 2 M′B 2 (M, M ′) is formed on the metal base material.
- M, M ′ Transition metal
- the cermet layer further includes a binary boride.
- B is an indispensable element for forming the ternary boride in the cermet layer, and is contained in an amount of 3 to 7.5% by mass in the cermet layer.
- the B content is less than 3% by mass, the amount of ternary boride formed is small and the ratio of hardness in the structure is small, so that sufficient hardness and wear resistance of the obtained cermet layer can be imparted. Can not.
- it exceeds 7.5% by mass the hardness increases but the strength (toughness and thermal shock resistance) of the cermet layer is lowered. Therefore, the B content in the cermet layer is 3 to 7.5% by mass. Since the formed cermet layer contains ternary boride, it has excellent neutron shielding ability.
- Preferred combinations of the ternary boride and the metal bonded phase are a combination of a Mo 2 FeB 2 type boride and an Fe-based alloy, a combination of a W 2 FeB 2 type boride and an Fe-based alloy, and a Mo 2 NiB 2 type boride. And a combination of a W 2 NiB 2 type boride and a Ni base alloy, and a combination of a WCoB type boride and a Co base alloy.
- the cermet material combining Mo 2 FeB 2 type boride and Fe-based alloy is excellent in wear resistance and relatively inexpensive, and the cermet material combining W 2 FeB 2 type boride and Fe-based alloy is further Abrasion resistance is improved.
- the cermet material combining the Mo 2 NiB 2 type boride and the Ni base alloy is excellent in wear resistance, corrosion resistance, and heat resistance, and the cermet material combining the W 2 NiB 2 type boride and the Ni base alloy is further Abrasion resistance is improved.
- a cermet material combining a WCoB type boride and a Co-based alloy is excellent in heat resistance.
- W or Ta can be substituted with Mo in an arbitrary ratio.
- Mo and Ta can be substituted with W at an arbitrary ratio.
- Fe, Ni, Cr, and Co can be replaced with Fe, Ni, and Co in the cermet at an arbitrary ratio, and characteristics such as corrosion resistance and heat resistance can be controlled.
- the amount of ternary boride contained in the cermet layer is preferably in the range of 12 to 95% by mass based on the entire cermet layer.
- the amount of the ternary boride is less than 12% by mass, sufficient neutron shielding ability cannot be obtained.
- the amount of ternary boride exceeds 95% by mass, the metal phase with high plastic deformability decreases, and the amount of ceramics increases, resulting in defects such as pores in high-speed flame spraying, resulting in a dense sprayed coating. It cannot be obtained, and excellent adhesion with the metal base material cannot be obtained. Therefore, the ratio of the double boride in the cermet layer is desirably 12 to 95% by mass.
- a binary boride to the ternary boride cermet.
- the binary boride include B 4 C, AlB 12 , ZrB 12 , YB 12 , FeB, and NiB.
- the ratio of the M ′ metal phase in the cermet layer is 5% by mass or more.
- the proportion of the metal phase is less than 5% by mass, the metal phase having high plastic deformability decreases in the cermet layer, and the amount of ceramics increases, resulting in defects such as pores in high-speed flame spraying, resulting in a dense film. This is because defects that cannot be obtained and excellent adhesion cannot be easily obtained.
- Table 1 The compositions of these binary borides are shown in Table 1.
- the thickness of the cermet layer in the thermal neutron shielding material of Embodiment 1 is preferably 0.05 to 5 mm.
- a dense coating is formed in the thermal spraying layer by collision of new powder particles on the sprayed coating that has already been formed. For this reason, when the thickness of the thermal spray layer is less than 0.05 mm, the thickness of the thermal spray coating is thin and a dense thermal spray layer cannot be obtained.
- the thickness of the thermal spray layer exceeds 5 mm, the thickness of the thermal spray coating is Therefore, the residual stress in the thermal spray coating is increased and cracks are likely to occur in the thermal spray coating, and a thermal neutron shielding material having good corrosion resistance and high thermal neutron shielding capability cannot be obtained. Therefore, the thickness of the cermet layer in the thermal neutron shielding material is preferably 0.05 to 5 mm.
- the thermal spray powder is adjusted so that the cermet layer is blended, and a thermal spray gun is formed on a metal base material such as ordinary steel, alloy steel, tool steel, stainless steel, or aluminum alloy. And is formed by spraying to a predetermined thickness.
- a metal base material such as ordinary steel, alloy steel, tool steel, stainless steel, or aluminum alloy.
- M, M ' transition metal type ternary boride powder, binary boride powder, and M' metal powder in the spraying powder charging container of the spray gun. It is preferable that the thermal spraying is performed in the atmosphere by applying the high-speed flame spraying method.
- the high-speed flame spraying method forms a thermal spray layer at a relatively low temperature among the thermal spraying techniques, so it can be suitably used for cermet materials and double boride cermets, can reduce tensile residual stress in the thermal spray coating, High adhesion can be obtained.
- the cermet layer of Embodiment 1 includes a metal phase having a high plastic deformability, it has very few defects such as pores, a dense film is obtained, and has excellent adhesion. In addition, when high-speed flame spraying is used, the composition fluctuation of the material can be suppressed and excellent corrosion resistance can be exhibited.
- ⁇ Particle size of sprayed powder As the particle size of the sprayed powder, a particle size of 15 to 100 ⁇ m can be usually used in the plasma spraying method, but when the high-speed flame spraying is used, a particle size of about 20 to 60 ⁇ m is preferable. When the particle size of the sprayed powder is coarse, it is difficult to form a dense cermet layer, and defects such as pores are easily formed in the cermet layer, and the hardness is lowered. On the other hand, when the particle size of the thermal spray powder becomes fine, the fluidity of the thermal spray powder decreases and the thermal spray workability is impaired.
- Example 1 to 14 Examples will be described below, and the first embodiment will be described in more detail.
- Table 2 shows the M2M′B2 type ternary boride, M ′ metal phase, boride content, metal phase content, and composition (wt%) in the cermet layer of the cermet layers formed in Examples 1 to 14.
- the ratio of M2M′B2 type ternary boride and M ′ metal phase of the thermal spray powder was adjusted so that the cermet layer composition shown in Table 2 was obtained, and the cermet was formed on the metal base material. Form a layer.
- Comparative Example 1 was obtained by setting the hard phase to 100% and the metal phase to 0%. Note that a tool steel (SKD) test piece is used as the metal base material for thermal spraying in Examples 1 to 14.
- SSD tool steel
- the spray powder is blended with the raw material powder so as to have the composition of the cermet layers of the compositions of Examples 1 to 14 shown in Table 2, and wet pulverized with a ball mill.
- the wet pulverized powder is granulated with a spray dryer and held at 1150 ° C. for 1 hour to cause M 2 M′B 2 type ternary boride, which becomes a hard phase, and M ′ metal phase to react.
- the formed M 2 M′B 2 type ternary boride and M ′ metal phase are classified to complete a sprayed powder having a size of 20 to 60 ⁇ m for forming a cermet layer.
- shot (white alumina # 20) is used for the surface layer of the metal base material on which the cermet layer is formed, and the surface of the metal base material is roughened.
- the prepared raw material powder is sprayed to form a cermet layer having a composition of Examples 1 to 14 having a thickness of 0.3 mm on the SKD steel base material.
- the sprayer used was a high-speed flame sprayer (JP-5000 manufactured by PRAXAIR / TAFA), which forms a cermet layer under the following conditions.
- Thermal spray distance (distance between substrate and thermal spray gun): 380 mm
- Oxygen flow rate 1900 scfh Kerosene flow rate: 5gph
- Example 15 Table 3 shows the MM′B type ternary boride, M ′ metal phase, boride content, metal phase content, and composition (wt%) in the cermet layer of the cermet layer formed in Example 15.
- M ′ metal phase, boride amount, metal phase amount, and composition (wt%) in the cermet layer The same applies to other conditions such as the manufacture of metal, metal base material, and thermal spraying conditions.
- Example 2 and Comparative Example 1 of Embodiment 1 shown in Table 2 the adhesion of the cermet layer formed on the surface of the metal base material was evaluated.
- the adhesion evaluation was performed using a torsion tester.
- the test method was performed by preparing a test piece that can be attached to a torsion tester, fixing one end of the test piece, and rotating the other end (see FIG. 1).
- the torque value when peeling or cracking occurred in the cermet layer by rotation was defined as the adhesion of the cermet layer.
- the adhesion strength of Example 2 showed a large and high value, but Comparative Example 1 showed a low torque value. The results are shown in Table 4.
- the thermal neutron shielding material of the second embodiment is the same as that of the first embodiment in that a cermet layer is formed on a metal base material, but the cermet layer includes a hard phase composed of a double boride, The balance consists of a binder phase that binds the hard phase. That is, a double boride cermet comprising a M2M′B2 type double boride and a bonded phase of an M′-based alloy.
- M Mo
- M ′ Ni or Fe.
- the cermet layer is composed of 35 to 95% by mass of a hard phase made of a double boride, and the balance is a Ni-base alloy or Fe-base alloy binder phase that binds the hard phase.
- B content is 3 to 7.5% by mass
- Mo content is 0.8 to (1.6-0.05X) in terms of Mo / B atomic ratio
- Cr content is (55-5X) mass% or less
- the balance is 10% by mass or more of Ni and unavoidable impurities.
- the binder phase can be changed to an Fe-based alloy instead of the Ni-based alloy.
- the cermet layer has a hard phase of 35 to 95% by mass made of double boride, and the balance is the hard alloy.
- a Fe-phase binder phase that binds the phases B content is 3 to 7.5% by mass, Mo content is 0.8 to (1.6-0.05X) in terms of Mo / B atomic ratio, Cr and / or Ni content is not more than (55-5X) mass% in any one or both, C content is 0.05 to 0.95% by mass or less,
- the balance consists of 10 mass% or more of Fe and inevitable impurities.
- B is an indispensable element for forming a double boride in the cermet layer, and is contained in an amount of 3 to 7.5% by mass in the cermet layer.
- the B content is less than 3% by mass, the formation of double borides is small and the ratio of the hard phase in the structure is small, so that sufficient hardness and wear resistance of the obtained cermet layer can be imparted. Can not.
- it exceeds 7.5% by mass the hardness increases but the strength (toughness and thermal shock resistance) of the cermet layer is lowered. Therefore, the B content in the cermet layer is 3 to 7.5% by mass. Since the formed cermet layer contains double borides, the neutron shielding ability is excellent.
- Mo is an indispensable element for forming a boride that becomes a hard phase like B.
- a part of Mo is dissolved in the binder phase to improve the mechanical properties and wear resistance of the alloy, and to improve the corrosion resistance to a reducing atmosphere.
- Mo 2 NiB 2 type or Mo 2 FeB 2 type double boride has a stoichiometric ratio of Mo to B of 1: 1, but is not actually a complete stoichiometric compound and has a composition range of several percent. Therefore, the atomic ratio of Mo / B (hereinafter abbreviated as Mo / B ratio) does not have to be 1, but it is important that the Mo / B atomic ratio is within a certain range around 1.
- M ′ 5 B 3 type such as Cr 5 B 3 is different from Mo 2 NiB 2 type double boride.
- Others such as M ′′ 3 B type (M ′: mainly composed of Ni, including Cr, Mo, etc.) such as boride and Ni 3 B (M ′: mainly composed of Cr, including Mo, Ni, etc.) Boride is formed as the third phase, and the strength of the cermet layer is significantly reduced.
- Mo / B ratio is larger than (1.6-0.05X)
- a Mo—Ni-based intermetallic compound is formed as the third phase, and the strength of the cermet layer is reduced.
- Mo 2 FeB 2 type double boride cermet when the Mo / B ratio is smaller than 0.8, Fe boride such as Fe 2 B, which is different from Mo 2 FeB 2 type double boride, is formed. In addition to a decrease in wear resistance and corrosion resistance, the strength of the cermet layer is decreased. When the Mo / B ratio exceeds (1.6-0.05X), the amount of carbides such as M 6 C and M 23 C 6 (M represents a metal) and the formation of intermetallic compounds between Fe-Mo increase. This causes a decrease in strength.
- Ni is an essential element for forming the double boride in the cermet layer and is the main element constituting the binder phase, like B and Mo. It is desirable to contain 10% by mass or more in the cermet layer. When the Ni content is less than 10% by mass, a sufficient liquid phase does not appear at the time of spraying, a dense sprayed layer cannot be obtained, and the strength is significantly reduced. This is because if the Ni content in the binder phase is small, the bond strength with the double boride is weakened, the strength of the binder phase is lowered, and consequently the strength of the cermet layer is lowered.
- Cr may be added to replace Ni.
- Cr is an element constituting a double boride by substitutional solid solution with Ni in the double boride in the cermet layer.
- the added Cr also dissolves in the binder phase, and has the effect of greatly improving the corrosion resistance, wear resistance, high temperature characteristics, and mechanical characteristics of the cermet layer.
- borides such as Cr 5 B 3 are formed and the strength is lowered.
- Fe is an essential element for forming the double boride in the cermet layer and is the main element constituting the binder phase, like B and Mo. It is desirable to contain 10% by mass or more in the cermet layer. When the Fe content is less than 10% by mass, a sufficient liquid phase does not appear at the time of spraying, a dense sprayed layer cannot be obtained, and the strength is significantly reduced. This is because if the amount of Fe in the binder phase is small, the bond strength with the double boride is weakened, the strength of the binder phase is lowered, and consequently the strength of the cermet layer is lowered.
- Ni or / and Cr may be added to replace Fe.
- Ni or / and Cr show the effect of improving the corrosion resistance and oxidation resistance of the cermet layer.
- the mechanical properties and wear resistance can be reduced by arbitrarily controlling the binder phase to martensite, ferrite, austenite and their mixed phase structure.
- the content of Ni or / and Cr is added exceeding 35% by mass in the case of containing alone or in combination, the corrosion resistance and heat resistance are very excellent, but the strength is lowered. Therefore, the content of Ni or / and Cr is preferably (55-5X) mass% in terms of the total amount when contained alone or in combination.
- the inevitable impurities and other elements contained in the process for producing the thermal spraying powder of the second embodiment may be contained in a very small amount so as not to impair the properties of the cermet layer. It is.
- the Mo 2 FeB 2 type complex boride cermet has a role of reducing the oxide of the powder surface. Some of them are dissolved in the binder phase to improve the hardness. If the content is less than 0.05% by mass, the effect is small, and if it exceeds 1% by mass, the formation of carbides is promoted and the strength of the cermet layer tends to decrease. Moreover, it leads also to a fall of corrosion resistance. Therefore, the C content is desirably 0.05 to 1% by mass.
- the amount of double boride contained in the cermet layer is preferably in the range of 35 to 95% by mass of the entire sprayed layer.
- the amount of the double boride is less than 35% by mass, sufficient neutron shielding ability cannot be obtained.
- the amount of the double boride exceeds 95% by mass, the binder phase having high plastic deformability decreases, and the amount of ceramics increases, so that defects such as pores are generated by thermal spraying, and a dense thermal spray coating cannot be obtained. An excellent adhesion with a metal base material cannot be obtained. Therefore, the ratio of the double boride in the cermet layer is desirably 35 to 95% by mass.
- the thickness of the thermal spray layer in the thermal neutron shielding material of the second embodiment is the same as that of the first embodiment.
- the thermal neutron shielding material according to the second embodiment is formed by adjusting the thermal spraying powder so that the cermet layer is blended, and using a thermal spray gun on the metal base material and spraying it to a predetermined thickness.
- the particle size of the thermal spray powder in the second embodiment is the same as that in the first embodiment.
- Example 16 will be shown below, and the second embodiment will be described in more detail.
- Table 5 shows the composition of the cermet layer formed in Example 16 and the ratio between the boride and the bonding layer of the formed cermet layer.
- the cermet layer was formed on the metal base material by adjusting the ratio of the double boride of the thermal spraying raw material powder and the metal powder as the binder phase so as to have the cermet layer composition shown in Table 5.
- a stainless steel (SUS316L) test piece was used as the metal base material for thermal spraying.
- the thermal spray powder was first blended with the raw material powder so as to have the thermal spray layer composition of Example 16 in Table 5, and wet pulverized with a ball mill.
- the wet pulverized powder was granulated with a spray dryer and held at 1150 ° C. for 1 hour to form an M 2 M′B 2 type double boride which becomes a hard phase by reaction.
- the formed M 2 M′B 2 type double boride cermet was classified to complete a sprayed powder having a size of 20 to 60 ⁇ m for forming a cermet layer.
- shot white alumina # 20
- the prepared raw material powder was sprayed to form a cermet layer having a composition of Example 16 having a thickness of 0.3 mm on the base material.
- the thermal spraying machine and thermal spraying conditions used are the same as those in the first embodiment.
- Comparative Example 2 For comparison, a sprayed layer formed using only a double boride that does not form a binder phase (not a cermet) as a thermal spraying powder is shown as Comparative Example 2 (see Table 5).
- Comparative Example 2 the raw material powder for thermal spraying is different from that of Example 16, but the same is true for other conditions such as thermal spraying conditions.
- Example 16 of Comparative Example 2 and Comparative Example 2 the adhesion of the thermal spray layer formed on the surface of the metal base material was evaluated.
- the adhesion evaluation was performed using a torsion tester.
- the test method was performed by preparing a test piece that can be attached to a torsion tester, fixing one end of the test piece, and rotating the other end (see FIG. 1).
- the torque value when peeling or cracking occurred in the sprayed layer by rotation was defined as the adhesion of the sprayed layer.
- the adhesion strength of Example 16 was large and high, while Comparative Example 2 showed a low torque value. The results are shown in Table 6.
- the thermal neutron shielding material of the present invention is a high-hardness material, a material excellent in corrosion resistance and wear resistance, and has a thin wall thickness while maintaining excellent corrosion resistance and thermal neutron shielding properties. And storage density of spent nuclear fuel can be increased. Furthermore, the thermal neutron shielding material of the present invention has sufficient corrosion resistance to the atmosphere of salt water, water, etc. during transportation and storage of spent nuclear fuel, and can be widely applied to members that require thermal neutron shielding. The above availability is extremely high.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
【課題】金属表面に、金属母材との密着性のよいB含有サーメット層を形成することにより、良好な耐食性とより高い熱中性子遮蔽能を持つ熱中性子遮蔽材料を提供すること。 【解決手段】 普通鋼、合金鋼、工具鋼、ステンレス鋼、アルミニウム合金などの金属母材上にサーメット層を形成させた熱中性子遮蔽材料であって、 前記サーメット層が、MM'B又はM2M'B2(M,M'=遷移金属)型三元硼化物と、M'金属相とからなる。 また、前記サーメット層は、二元硼化物をさらに有する。 また、前記サーメット層は、M2M'B2型複硼化物とM'基合金の結合相よりなる複硼化物サーメット(M=Mo,M'=NiまたはFe)とする。
Description
本発明は、金属母材上にサーメット層を有する熱中性子遮蔽材料及びその製造方法に関する。
最近の環境、エネルギー問題の観点からCO2を排出しない原子力発電による電力供給の増加が予想される。
使用済み核燃料の貯蔵容器や燃料輸送容器(キャスク)等には熱中性子吸収能の高い材料が使用されるが、原子力発電の稼動増加により、使用済み核燃料の貯蔵密度を増加させる必要がある。
核燃料の収容能力を高めるためには、容器の肉厚を薄くする必要があり、より熱中性子吸収能に優れる材料が求められている。
使用済み核燃料の貯蔵容器や燃料輸送容器(キャスク)等には熱中性子吸収能の高い材料が使用されるが、原子力発電の稼動増加により、使用済み核燃料の貯蔵密度を増加させる必要がある。
核燃料の収容能力を高めるためには、容器の肉厚を薄くする必要があり、より熱中性子吸収能に優れる材料が求められている。
その一例として、使用済み核燃料を貯蔵する保管容器や燃料輸送容器を構成する材料として、熱中性子吸収能が大きいボロン(B)を添加したステンレス鋼やアルミニウム合金が提案されているが、Bの添加量が増加すると熱中性子遮蔽能は向上するが、熱間加工性を低下させるという問題点があり、Bの添加量は1%程度が上限とされていた。
Bの添加量を増加させるため、特許文献1には、ステンレス鋼などの金属表面に、酸化ガドリニウムと酸化ボロンの含有量が各々10~20wt%である琺瑯剤を、塗布、焼き付け又は溶射により付着させた、使用済み核燃料の保管容器や燃料輸送容器材料などに用いる熱中性子遮蔽材料が記載されている。
Bの添加量を増加させるため、特許文献1には、ステンレス鋼などの金属表面に、酸化ガドリニウムと酸化ボロンの含有量が各々10~20wt%である琺瑯剤を、塗布、焼き付け又は溶射により付着させた、使用済み核燃料の保管容器や燃料輸送容器材料などに用いる熱中性子遮蔽材料が記載されている。
しかし、特許文献1において、中性子吸収能の高いボロン(B)またはガドリニウム(Gd)の酸化物を溶射で金属表面に付着させる場合には、酸化ボロン、酸化ガドリニウムといった酸化物単体、いわゆるセラミックスが、高温(約6000℃)のプラズマ溶射で溶射皮膜を形成するため、溶射粒子は基材に衝突する際に、冷却に伴う凝固・収縮によって皮膜には大きな引張応力が発生し、金属母材との高い密着力が得られないばかりでなく、0.05mm以上の膜厚が得られない。
また、塑性変形しにくい酸化物の溶射皮膜は、皮膜中にはマイクロクラックの発生、空隙(ポア)の残存が避けられないため、緻密な皮膜が得られない、という問題点がある。
さらに、使用済み核燃料を貯蔵する保管容器や燃料輸送容器は、輸送時や保管時には塩水、水等の雰囲気に曝される場合があるため耐食性が必要であるという課題もある。
そこで、本発明は、金属表面に、金属母材との密着性のよいB含有サーメット層を形成することにより、良好な耐食性とより高い熱中性子遮蔽能を持つ熱中性子遮蔽材料及びその製造方法を提供することを目的とする。
また、塑性変形しにくい酸化物の溶射皮膜は、皮膜中にはマイクロクラックの発生、空隙(ポア)の残存が避けられないため、緻密な皮膜が得られない、という問題点がある。
さらに、使用済み核燃料を貯蔵する保管容器や燃料輸送容器は、輸送時や保管時には塩水、水等の雰囲気に曝される場合があるため耐食性が必要であるという課題もある。
そこで、本発明は、金属表面に、金属母材との密着性のよいB含有サーメット層を形成することにより、良好な耐食性とより高い熱中性子遮蔽能を持つ熱中性子遮蔽材料及びその製造方法を提供することを目的とする。
上記課題を解決するために、
請求項1に記載の熱中性子遮蔽材料は、金属母材上にサーメット層を有する熱中性子遮蔽材料であって、前記サーメット層が、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物と、M’金属相と、からなるサーメットであることを特徴とする。
請求項2に記載の熱中性子遮蔽材料は、請求項1において、前記サーメット層が、二元硼化物をさらに有することを特徴とする。
請求項3に記載の熱中性子遮蔽材料は、請求項1において、前記サーメット層が、M2M’B2型複硼化物とM’基合金の結合相よりなる複硼化物サーメットであることを特徴とする(M=Mo,M’=NiまたはFe)。
請求項4に記載の熱中性子遮蔽材料は、請求項3において、前記サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するNi基合金の結合相とからなり、B含有量が3~7.5質量%、Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)(X:含有するBの質量%、以下のX表記において同じ)、Cr含有量が(55-5X)%以下、残部が10質量%以上のNi、および不可避的不純物よりなることを特徴とする。
請求項5に記載の熱中性子遮蔽材料は、請求項3において、前記サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するFe基合金の結合相とからなり、B含有量が、3~7.5質量%、Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、Crおよび/又はNi含有量が、いずれか一方または両者の合計で(55-5X)%質量以下、C含有量が、0.95質量%以下、残部が10質量%以上のFe、および不可避的不純物よりなることを特徴とする。
請求項6に記載の熱中性子遮蔽材料は、請求項1~5のいずれかにおいて、前記金属母材は、普通鋼、合金鋼、工具鋼、ステンレス鋼又はアルミニウム合金であることを特徴とする。
請求項7に記載の熱中性子遮蔽材料の製造方法は、請求項1~6のいずれかに記載の熱中性子遮蔽材料の製造方法であって、前記サーメット層を金属母材上に溶射によって形成することを特徴とする。
なお、本明細書におけるサーメットとは、金属とセラミックの複合材料を意味する。
請求項1に記載の熱中性子遮蔽材料は、金属母材上にサーメット層を有する熱中性子遮蔽材料であって、前記サーメット層が、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物と、M’金属相と、からなるサーメットであることを特徴とする。
請求項2に記載の熱中性子遮蔽材料は、請求項1において、前記サーメット層が、二元硼化物をさらに有することを特徴とする。
請求項3に記載の熱中性子遮蔽材料は、請求項1において、前記サーメット層が、M2M’B2型複硼化物とM’基合金の結合相よりなる複硼化物サーメットであることを特徴とする(M=Mo,M’=NiまたはFe)。
請求項4に記載の熱中性子遮蔽材料は、請求項3において、前記サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するNi基合金の結合相とからなり、B含有量が3~7.5質量%、Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)(X:含有するBの質量%、以下のX表記において同じ)、Cr含有量が(55-5X)%以下、残部が10質量%以上のNi、および不可避的不純物よりなることを特徴とする。
請求項5に記載の熱中性子遮蔽材料は、請求項3において、前記サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するFe基合金の結合相とからなり、B含有量が、3~7.5質量%、Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、Crおよび/又はNi含有量が、いずれか一方または両者の合計で(55-5X)%質量以下、C含有量が、0.95質量%以下、残部が10質量%以上のFe、および不可避的不純物よりなることを特徴とする。
請求項6に記載の熱中性子遮蔽材料は、請求項1~5のいずれかにおいて、前記金属母材は、普通鋼、合金鋼、工具鋼、ステンレス鋼又はアルミニウム合金であることを特徴とする。
請求項7に記載の熱中性子遮蔽材料の製造方法は、請求項1~6のいずれかに記載の熱中性子遮蔽材料の製造方法であって、前記サーメット層を金属母材上に溶射によって形成することを特徴とする。
なお、本明細書におけるサーメットとは、金属とセラミックの複合材料を意味する。
本発明の熱中性子遮蔽材料は、普通鋼、合金鋼、工具鋼、ステンレス鋼、アルミニウム合金などの金属母材上にサーメット層を形成させ、サーメット層は、複硼化物よりなる硬質相と、残部が硬質相を結合する結合相と、からなる複硼化物サーメットである。
前記サーメット層は、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物、M’金属相、を含有するか、M2M’B2型複硼化物とM’基合金の結合相とよりなる複硼化物サーメット(ここでM=Mo,M’=NiまたはFe)であるので、熱中性子遮蔽材料として良好な耐食性および高い熱中性子遮蔽能を有している。
また、現在使用されている普通鋼、合金鋼、ステンレス鋼又はアルミニウム合金の表面に、上記サーメット層を形成して熱中性子遮蔽能を向上させて安全性を高めることができ、肉厚を薄くすることが可能となり、使用済核燃料の貯蔵密度を増加することができる。
さらに、本発明の熱中性子遮蔽材料は、輸送時や保管時には塩水、水等の雰囲気に対する十分な耐食性を有している。
前記サーメット層は、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物、M’金属相、を含有するか、M2M’B2型複硼化物とM’基合金の結合相とよりなる複硼化物サーメット(ここでM=Mo,M’=NiまたはFe)であるので、熱中性子遮蔽材料として良好な耐食性および高い熱中性子遮蔽能を有している。
また、現在使用されている普通鋼、合金鋼、ステンレス鋼又はアルミニウム合金の表面に、上記サーメット層を形成して熱中性子遮蔽能を向上させて安全性を高めることができ、肉厚を薄くすることが可能となり、使用済核燃料の貯蔵密度を増加することができる。
さらに、本発明の熱中性子遮蔽材料は、輸送時や保管時には塩水、水等の雰囲気に対する十分な耐食性を有している。
[実施の形態1]
本発明の実施の形態1の熱中性子遮蔽材料は、金属母材上にサーメット層を形成させたものであり、金属母材上に、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物と、M’金属相と、からなるサーメット層を有することを特徴とする。
また、熱中性子遮蔽材料は、前記サーメット層が、二元硼化物をさらに有することを特徴とする。
また、熱中性子遮蔽材料は、前記サーメット層が、M2M’B2型複硼化物とM’基合金の結合相よりなる複硼化物サーメットであることを特徴とする(M=Mo,M’=NiまたはFe)。
金属母材表面に形成させる前記サーメット層は、金属粉末として溶射することができる。
本発明の実施の形態1の熱中性子遮蔽材料は、金属母材上にサーメット層を形成させたものであり、金属母材上に、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物と、M’金属相と、からなるサーメット層を有することを特徴とする。
また、熱中性子遮蔽材料は、前記サーメット層が、二元硼化物をさらに有することを特徴とする。
また、熱中性子遮蔽材料は、前記サーメット層が、M2M’B2型複硼化物とM’基合金の結合相よりなる複硼化物サーメットであることを特徴とする(M=Mo,M’=NiまたはFe)。
金属母材表面に形成させる前記サーメット層は、金属粉末として溶射することができる。
Bは、本サーメット層中の三元硼化物を形成するために必要不可欠な元素であり、サーメット層中に、3~7.5質量%含有させる。B含有量が3質量%未満になると、三元硼化物の形成量が少なく、組織中の硬質の割合が少なくなるため、得られたサーメット層の十分な硬度と耐摩耗性を付与することができない。
一方、7.5質量%を超えると、硬度は高くなるがサーメット層の強度(靭性や耐熱衝撃性)の低下をもたらす。よって、本サーメット層中のB含有量は、3~7.5質量%とする。
形成されるサーメット層には三元硼化物が含まれるため中性子遮蔽能力に優れている。
一方、7.5質量%を超えると、硬度は高くなるがサーメット層の強度(靭性や耐熱衝撃性)の低下をもたらす。よって、本サーメット層中のB含有量は、3~7.5質量%とする。
形成されるサーメット層には三元硼化物が含まれるため中性子遮蔽能力に優れている。
上記B以外の元素として、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物としてのMとしては、Mo、W、Ta、M’としては、Fe、Ni、Cr、Coを選択的に添加する。
三元硼化物と金属結合相の好ましい組合せは、Mo2FeB2型硼化物とFe基合金との組合せ、W2FeB2型硼化物とFe基合金との組合せ、Mo2NiB2型硼化物とNi基合金との組合せ、W2NiB2型硼化物とNi基合金との組合せ、WCoB型硼化物とCo基合金との組合せである。
Mo2FeB2型硼化物とFe基合金とを組合せたサーメット材は、耐摩耗性に優れ、比較的安価であり、W2FeB2型硼化物とFe基合金とを組合せたサーメット材は更に耐摩耗性が向上する。Mo2NiB2型硼化物とNi基合金とを組合せたサーメット材は、耐摩耗性、耐食性、耐熱性に優れ、W2NiB2型硼化物とNi基合金とを組合せたサーメット材は、さらに耐摩耗性が向上する。WCoB型硼化物とCo基合金とを組合せたサーメット材は、耐熱性に優れる。
Mo2FeB2型硼化物とFe基合金とを組合せたサーメット材は、耐摩耗性に優れ、比較的安価であり、W2FeB2型硼化物とFe基合金とを組合せたサーメット材は更に耐摩耗性が向上する。Mo2NiB2型硼化物とNi基合金とを組合せたサーメット材は、耐摩耗性、耐食性、耐熱性に優れ、W2NiB2型硼化物とNi基合金とを組合せたサーメット材は、さらに耐摩耗性が向上する。WCoB型硼化物とCo基合金とを組合せたサーメット材は、耐熱性に優れる。
前記Mo2FeB2型硼化物またはMo2NiB2型硼化物中において、WまたはTaはMoと任意の割合で置換することができる
前記W2NiB2型硼化物、W2FeB2型硼化物、WCoB型硼化物中において、MoおよびTaはWと任意の割合で置換することができる。
Fe、Ni、Cr、Coは、サーメット中のFe、Ni、Coと任意の割合で置換することができ、耐食性、耐熱性といった特性を制御することができる。
なお、実施形態1の溶射用の粉末を製造する過程で含まれる不可避的不純物(Si、Al、Mg、P、S、N、O、C等)や他の元素(希土類等)が、サーメット層の特性を損なわない程度に極く少量含まれても差し支えないことは勿論である。
サーメット層中に含まれる三元硼化物の量は、サーメット層全体の12~95質量%の範囲であることが好ましい。三元硼化物の量が12質量%未満になると、十分な中性子遮蔽能が得られない。一方、三元硼化物の量が95質量%を超えると塑性変形能の高い金属相が少なくなり、セラミックス量が多くなることにより、高速フレーム溶射ではポア等の欠陥を生じ、緻密な溶射皮膜が得られず、金属母材との優れた密着力が得られない。
よって、本サーメット層中の複硼化物の割合は、12~95質量%とすることが望ましい。
よって、本サーメット層中の複硼化物の割合は、12~95質量%とすることが望ましい。
また、三元硼化物サーメットに、さらに二元硼化物を添加することも可能である。
二元硼化物としては、例えば、B4C、AlB12、ZrB12、YB12、FeB、NiB等が挙げられる。二元硼化物を添加する場合、サーメット層中のM’金属相の割合が5質量%以上存在することが好ましい。
金属相の割合が5質量%未満であると、サーメット層において塑性変形能の高い金属相が少なくなり、セラミックス量が多くなることにより、高速フレーム溶射ではポア等の欠陥を生じ、緻密な皮膜が得られず、優れた密着力が得られないという欠陥が出やすくなるからである。
これらの二元硼化物の組成を表1に示す。
二元硼化物としては、例えば、B4C、AlB12、ZrB12、YB12、FeB、NiB等が挙げられる。二元硼化物を添加する場合、サーメット層中のM’金属相の割合が5質量%以上存在することが好ましい。
金属相の割合が5質量%未満であると、サーメット層において塑性変形能の高い金属相が少なくなり、セラミックス量が多くなることにより、高速フレーム溶射ではポア等の欠陥を生じ、緻密な皮膜が得られず、優れた密着力が得られないという欠陥が出やすくなるからである。
これらの二元硼化物の組成を表1に示す。
<サーメット層の厚み>
実施の形態1の熱中性子遮蔽材料におけるサーメット層の厚みとしては、0.05~5mmとすることが好適である。
サーメット層を溶射により形成する場合、溶射層は,すでに形成されている溶射皮膜上に新たな粉末粒子が高速で衝突することによって、緻密な皮膜が形成される。このため、溶射層の厚みが0.05mm未満の場合は、溶射皮膜の厚さが薄く、緻密な溶射層が得られず、一方、溶射層の厚みが5mmを超える場合は、溶射皮膜の厚さが厚くなり、溶射皮膜中の残留応力が高くなり溶射皮膜に割れを発生しやすくなり、良好な耐食性や高い熱中性子遮蔽能を備えた熱中性子遮蔽材料が得られない。
よって、熱中性子遮蔽材料におけるサーメット層の厚みとしては、0.05~5mmとすることが望ましい。
実施の形態1の熱中性子遮蔽材料におけるサーメット層の厚みとしては、0.05~5mmとすることが好適である。
サーメット層を溶射により形成する場合、溶射層は,すでに形成されている溶射皮膜上に新たな粉末粒子が高速で衝突することによって、緻密な皮膜が形成される。このため、溶射層の厚みが0.05mm未満の場合は、溶射皮膜の厚さが薄く、緻密な溶射層が得られず、一方、溶射層の厚みが5mmを超える場合は、溶射皮膜の厚さが厚くなり、溶射皮膜中の残留応力が高くなり溶射皮膜に割れを発生しやすくなり、良好な耐食性や高い熱中性子遮蔽能を備えた熱中性子遮蔽材料が得られない。
よって、熱中性子遮蔽材料におけるサーメット層の厚みとしては、0.05~5mmとすることが望ましい。
<金属母材上へのサーメット層の形成>
実施の形態1の熱中性子遮蔽材料は、サーメット層の配合になるように溶射用粉末を調整し、普通鋼、合金鋼、工具鋼、ステンレス鋼、又はアルミニウム合金などの金属母材上に溶射ガンを使用して,所定の厚みになるように噴射して形成する。
溶射ガンの溶射粉末投入容器に、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物粉末、二元硼化物粉末、M’金属粉末を混合調整して投入し、高速フレーム溶射法を適用して、大気中で溶射施工することが好ましい。
高速フレーム溶射法は、溶射技術の中でも比較的低温で溶射層を形成するため、サーメット材料や複硼化物サーメットに好適に採用でき、溶射皮膜中の引張の残留応力を低減でき、金属母材との高い密着力を得ることができる。
実施の形態1の熱中性子遮蔽材料は、サーメット層の配合になるように溶射用粉末を調整し、普通鋼、合金鋼、工具鋼、ステンレス鋼、又はアルミニウム合金などの金属母材上に溶射ガンを使用して,所定の厚みになるように噴射して形成する。
溶射ガンの溶射粉末投入容器に、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物粉末、二元硼化物粉末、M’金属粉末を混合調整して投入し、高速フレーム溶射法を適用して、大気中で溶射施工することが好ましい。
高速フレーム溶射法は、溶射技術の中でも比較的低温で溶射層を形成するため、サーメット材料や複硼化物サーメットに好適に採用でき、溶射皮膜中の引張の残留応力を低減でき、金属母材との高い密着力を得ることができる。
また、実施の形態1のサーメット層は、塑性変形能の高い金属相を含むため、ポア等の欠陥が極めて少なく、緻密な皮膜が得られ、優れた密着力を有している。加えて、高速フレーム溶射を用いた場合、材料の組成変動を抑制することができ、優れた耐食性を発揮できる。
<溶射粉末の粒度>
溶射粉末の粒度としては、通常、プラズマ溶射法では15~100μmのものを用いることができるが、上記高速フレーム溶射を用いた場合では、20~60μm程度のものを用いることが好ましい。
溶射粉末の粒度が粗いと、緻密なサーメット層を形成することが困難となりサーメット層にポア等の欠陥ができやすく硬度が低下する。一方、溶射粉末の粒度が微細になると、溶射粉末の流動性が低下し溶射作業性を損なう。
溶射粉末の粒度としては、通常、プラズマ溶射法では15~100μmのものを用いることができるが、上記高速フレーム溶射を用いた場合では、20~60μm程度のものを用いることが好ましい。
溶射粉末の粒度が粗いと、緻密なサーメット層を形成することが困難となりサーメット層にポア等の欠陥ができやすく硬度が低下する。一方、溶射粉末の粒度が微細になると、溶射粉末の流動性が低下し溶射作業性を損なう。
<実施例1~14>
以下に、実施例を示し、実施の形態1についてさらに詳細に説明する。
表2に、実施例1~14において形成するサーメット層の、M2M’B2型三元硼化物、M’金属相、硼化物量、金属相量、サーメット層中の組成(wt%)を示す。
実施例1~14のそれぞれにおいて、表2に示すサーメット層組成となるように、溶射粉のM2M’B2型三元硼化物及びM’金属相の割合を調整して、金属母材上にサーメット層を形成する。また、硬質相を100%とし金属相を0%としたものを比較例1とした。
なお、実施例1~14の溶射の金属母材には工具鋼(SKD)の試験片を用いる。
以下に、実施例を示し、実施の形態1についてさらに詳細に説明する。
表2に、実施例1~14において形成するサーメット層の、M2M’B2型三元硼化物、M’金属相、硼化物量、金属相量、サーメット層中の組成(wt%)を示す。
実施例1~14のそれぞれにおいて、表2に示すサーメット層組成となるように、溶射粉のM2M’B2型三元硼化物及びM’金属相の割合を調整して、金属母材上にサーメット層を形成する。また、硬質相を100%とし金属相を0%としたものを比較例1とした。
なお、実施例1~14の溶射の金属母材には工具鋼(SKD)の試験片を用いる。
溶射粉は、まず、表2の実施例1~14の組成のサーメット層組成になるように原料粉末を配合し、ボールミルでの湿式粉砕する。次に、湿式粉砕した粉末をスプレードライヤーによって造粒し、1150℃で1時間保持し、硬質相となるM2M’B2型三元硼化物とM’金属相を反応形成させる。
その後、この形成されたM2M’B2型三元硼化物及びM’金属相を分級して、サーメット層形成用の20~60μmの大きさの溶射粉末を完成させる。
一方、サーメット層を形成させる金属母材の表層にはショット(ホワイトアルミナ♯20)を使用し、金属母材の表面を粗面化する。
その後、この形成されたM2M’B2型三元硼化物及びM’金属相を分級して、サーメット層形成用の20~60μmの大きさの溶射粉末を完成させる。
一方、サーメット層を形成させる金属母材の表層にはショット(ホワイトアルミナ♯20)を使用し、金属母材の表面を粗面化する。
その後、用意した原料粉末を溶射してSKD鋼母材上に、厚み0.3mmの、実施例1~14の組成のサーメット層を形成する。用いた溶射機は、高速フレーム溶射機(PRAXAIR/TAFA製JP-5000)で、以下の条件でサーメット層を形成する。
溶射距離(基材と溶射ガンとの距離):380mm
酸素流量:1900scfh
灯油流量:5gph
溶射距離(基材と溶射ガンとの距離):380mm
酸素流量:1900scfh
灯油流量:5gph
<実施例15>
表3に、実施例15において形成するサーメット層の、MM’B型三元硼化物、M’金属相、硼化物量、金属相量、サーメット層中の組成(wt%)を示す。実施例15においては、実施例1~14と、MM’B型三元硼化物、M’金属相、硼化物量、金属相量、サーメット層中の組成(wt%)が異なるが、溶射粉の製造、金属母材、溶射条件等、その他の条件においては同様である。
表3に、実施例15において形成するサーメット層の、MM’B型三元硼化物、M’金属相、硼化物量、金属相量、サーメット層中の組成(wt%)を示す。実施例15においては、実施例1~14と、MM’B型三元硼化物、M’金属相、硼化物量、金属相量、サーメット層中の組成(wt%)が異なるが、溶射粉の製造、金属母材、溶射条件等、その他の条件においては同様である。
<実施の形態1の評価>
<金属母材との密着性評価>
表2に記載した実施の形態1の実施例2及び比較例1について、金属母材の表面に形成したサーメット層の密着性を評価した。密着性評価はねじり試験機を用いて行った。試験方法は、ねじり試験機に取り付けられるような試験片を作成し、試験片の一端を固定し、他端を回転させて行った(図1参照)。回転により、サーメット層に剥離又はクラックを生じた時のトルク値をサーメット層の密着力とした。
実施例2の密着力は大きく高い値を示したが、比較例1は低いトルク値を示した。その結果を表4に示す。
<金属母材との密着性評価>
表2に記載した実施の形態1の実施例2及び比較例1について、金属母材の表面に形成したサーメット層の密着性を評価した。密着性評価はねじり試験機を用いて行った。試験方法は、ねじり試験機に取り付けられるような試験片を作成し、試験片の一端を固定し、他端を回転させて行った(図1参照)。回転により、サーメット層に剥離又はクラックを生じた時のトルク値をサーメット層の密着力とした。
実施例2の密着力は大きく高い値を示したが、比較例1は低いトルク値を示した。その結果を表4に示す。
[実施の形態2]
次に、本発明の実施の形態2について説明する。
実施の形態2の熱中性子遮蔽材料は、金属母材上にサーメット層を形成させたものである点で実施の形態1と同様であるが、サーメット層は、複硼化物よりなる硬質相と、残部が硬質相を結合する結合相と、からなる。すなわち、M2M’B2型複硼化物とM’基合金の結合相とよりなる複硼化物サーメットである。ここで、M=Mo,M’=NiまたはFeである。
次に、本発明の実施の形態2について説明する。
実施の形態2の熱中性子遮蔽材料は、金属母材上にサーメット層を形成させたものである点で実施の形態1と同様であるが、サーメット層は、複硼化物よりなる硬質相と、残部が硬質相を結合する結合相と、からなる。すなわち、M2M’B2型複硼化物とM’基合金の結合相とよりなる複硼化物サーメットである。ここで、M=Mo,M’=NiまたはFeである。
また、サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するNi基合金又はFe基合金の結合相とからなり、
B含有量が、3~7.5質量%、
Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、
Cr含有量が(55-5X)質量%以下、
残部が10質量%以上のNi、および不可避的不純物よりなる。
B含有量が、3~7.5質量%、
Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、
Cr含有量が(55-5X)質量%以下、
残部が10質量%以上のNi、および不可避的不純物よりなる。
なお、上記結合相は、Ni基合金に代えてFe基合金に変更することも可能であり、この場合、サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するFe基の結合相とからなり、
B含有量が、3~7.5質量%、
Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、
Crおよび/又はNi含有量が、いずれか一方または両者の合計で(55-5X)質量%以下、
C含有量が、0.05~0.95%質量以下、
残部が10質量%以上のFe、および不可避的不純物よりなる。
B含有量が、3~7.5質量%、
Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、
Crおよび/又はNi含有量が、いずれか一方または両者の合計で(55-5X)質量%以下、
C含有量が、0.05~0.95%質量以下、
残部が10質量%以上のFe、および不可避的不純物よりなる。
Bは、サーメット層中の複硼化物を形成するために必要不可欠な元素であり、サーメット層中に、3~7.5質量%含有させる。B含有量が3質量%未満になると、複硼化物の形成量が少なく、組織中の硬質相の割合が少なくなるため、得られたサーメット層の十分な硬度と耐摩耗性を付与することができない。一方、7.5質量%を超えると、硬度は高くなるがサーメット層の強度(靭性や耐熱衝撃性)の低下をもたらす。よって、本サーメット層中のB含有量は、3~7.5質量%とする。形成されるサーメット層には複硼化物が含まれるため中性子遮蔽能力に優れている。
MoはB同様硬質相となる硼化物を形成するために必要不可欠な元素である。また、Moの一部は結合相に固溶して、合金の機械的特性および耐摩耗性を向上させる他に、還元性雰囲気に対する耐食性を向上させる。
Mo2NiB2型またはMo2FeB2型複硼化物は、MoとBの化学量論比は1:1であるが、実際は完全な化学量論的な化合物ではなく、数%の組成範囲を有するため、Mo/Bの原子比(以下Mo/B比と略す)は1である必要はないが、1の前後のある特定の範囲にすることが重要である。
Mo2NiB2型またはMo2FeB2型複硼化物は、MoとBの化学量論比は1:1であるが、実際は完全な化学量論的な化合物ではなく、数%の組成範囲を有するため、Mo/Bの原子比(以下Mo/B比と略す)は1である必要はないが、1の前後のある特定の範囲にすることが重要である。
Mo2NiB2型複硼化物サーメットの場合、Mo/B比が0.8より小さい場合には、Mo2NiB2型複硼化物とは異なる、Cr5 B3などのM'5B3型(M':Crを主体とし、Mo、Ni等を含む)硼化物やNi3BなどのM''3B型(M'':Niを主体とし、Cr、Mo等を含む)などの他の硼化物が第3相として形成され、サーメット層の強度の低下が著しい。Mo/B比が(1.6-0.05X)より大きい場合には、Mo-Ni系の金属間化合物を第3相として形成し、サーメット層の強度の低下を招く。
Mo2FeB2型複硼化物サーメットの場合、Mo/B比が0.8より小さい場合には、Mo2FeB2型複硼化物とは異なる、Fe2B等のFe硼化物が形成するため、耐摩耗性および耐食性が低下することに加え、サーメット層の強度が低下する。Mo/B比が(1.6-0.05X)を超える場合、M6CやM23C6(Mは金属を表す)などの炭化物およびFe-Mo間の金属間化合物の形成量が増加するために強度の低下を招く。
Mo2NiB2型複硼化物サーメットの場合、Niは、BおよびMo同様に、本サーメット層中の複硼化物の形成に必要不可欠な元素であり、結合相を構成する主な元素であり、サーメット層中に10質量%以上含有させることが望ましい。Ni含有量が10質量%未満の場合は、溶射時に十分な液相が出現せず緻密な溶射層が得られず、強度の低下が著しい。これは結合相中のNiが少ないと複硼化物との結合力が弱まることに加え、結合相の強度が低下し、ひいてはサーメット層の強度低下を招くためである。
Mo2NiB2型複硼化物サーメットの場合、CrをNiと置換するように添加してもよい。Crは、サーメット層中の複硼化物中のNiと置換固溶し、複硼化物を構成する元素である。また、添加したCrは、結合相中にも固溶し、サーメット層の耐食性、耐摩耗性、高温特性、および機械的特性を大幅に向上させる効果がある。サーメット層中のCr含有量が、(55-5X)質量%を超えると、Cr5B3などの硼化物を形成し、強度が低下する。
Mo2FeB2型複硼化物サーメットの場合、Feは、BおよびMo同様に、本サーメット層中の複硼化物の形成に必要不可欠な元素であり、結合相を構成する主な元素であり、サーメット層中に10質量%以上含有させることが望ましい。Fe含有量が10質量%未満の場合は、溶射時に十分な液相が出現せず緻密な溶射層が得られず、強度の低下が著しい。これは結合相中のFeが少ないと複硼化物との結合力が弱まることに加え、結合相の強度が低下し、ひいてはサーメット層の強度低下を招くためである。
Mo2FeB2型複硼化物サーメットの場合、Ni又は/及びCrをFeと置換するように添加してもよい。Ni又は/およびCrは、サーメット層の耐食性および耐酸化性を向上させる効果を示す。また、NiとCrを組み合わせて使用(複合含有)することで、結合相をマルテンサイト、フェライト、オーステナイトおよびこれらの混相組織に任意に制御することにより、機械的特性および耐摩耗性を低減することなく、用途に応じた耐食性、耐熱性の付与が可能である。Ni又は/およびCrの含有量は、単体含有あるいは複合含有した場合のいずれも含有量が35質量%を超えて添加すると、耐食性および耐熱性は非常に優れるものの、強度の低下を生じる。よって、Ni又は/およびCrの含有量は、単体含有あるいは複合含有した場合の合計量で、(55-5X)質量%にすることが望ましい。
なお、実施形態2の溶射用の粉末を製造する過程で含まれる不可避的不純物や他の元素が、サーメット層の特性を損なわない程度にごく少量含まれても差し支えないことは実施形態1と同様である。
Cについては、Mo2FeB2型複硼化物サーメットの場合、粉末表面の酸化物を還元する役割を有している。また一部は結合相中に固溶して硬度の向上をもたらす。含有量が0.05質量%未満では効果が少なく、1質量%を超えると炭化物の形成を促進し、サーメット層の強度が低下する傾向を示す。また、耐食性の低下にも繋がる。したがって、Cの含有量は、0.05~1質量%にすることが望ましい。
Cについては、Mo2FeB2型複硼化物サーメットの場合、粉末表面の酸化物を還元する役割を有している。また一部は結合相中に固溶して硬度の向上をもたらす。含有量が0.05質量%未満では効果が少なく、1質量%を超えると炭化物の形成を促進し、サーメット層の強度が低下する傾向を示す。また、耐食性の低下にも繋がる。したがって、Cの含有量は、0.05~1質量%にすることが望ましい。
サーメット層中に含まれる複硼化物の量は、溶射層全体の35~95質量%の範囲であることが好ましい。複硼化物の量が35質量%未満になると、十分な中性子遮蔽能が得られない。一方、複硼化物の量が95質量%を超えると塑性変形能の高い結合相が少なくなり、セラミックス量が多くなることにより、溶射ではポア等の欠陥を生じ、緻密な溶射皮膜が得られず、金属母材との優れた密着力が得られない。よって、本サーメット層中の複硼化物の割合は、35~95質量%とすることが望ましい。
<サーメット層の厚み>
実施形態2の熱中性子遮蔽材料における溶射層の厚みは、実施形態1の場合と同様である。
実施形態2の熱中性子遮蔽材料における溶射層の厚みは、実施形態1の場合と同様である。
<金属母材上へのサーメット層の形成>
実施の形態2の熱中性子遮蔽材料は、サーメット層の配合になるように溶射用粉末を調整し、金属母材上に溶射ガンを使用して,所定の厚みになるように噴射して形成する。
溶射ガンの溶射粉末投入容器に、M2M’B2(M,M’=遷移金属)型複硼化物粉末、金属粉末を混合調整して投入し、高速フレーム溶射法を適用して、大気中で溶射施工することが好ましい。
実施の形態2の熱中性子遮蔽材料は、サーメット層の配合になるように溶射用粉末を調整し、金属母材上に溶射ガンを使用して,所定の厚みになるように噴射して形成する。
溶射ガンの溶射粉末投入容器に、M2M’B2(M,M’=遷移金属)型複硼化物粉末、金属粉末を混合調整して投入し、高速フレーム溶射法を適用して、大気中で溶射施工することが好ましい。
<溶射粉末の粒度>
実施の形態2における溶射粉末の粒度は、実施の形態1と同様である。
実施の形態2における溶射粉末の粒度は、実施の形態1と同様である。
<実施例16>
以下に、実施例16を示し、実施の形態2についてさらに詳細に説明する。
表5に、実施例16において、形成したサーメット層の組成、形成したサーメット層の硼化物と結合層の割合を示す。実施例16において、表5に示すサーメット層組成となるように、溶射用原料粉末の複硼化物及び結合相となる金属粉の割合を調整して、金属母材上にサーメット層を形成した。なお、溶射の金属母材にはステンレス鋼(SUS316L)の試験片を用いた。
以下に、実施例16を示し、実施の形態2についてさらに詳細に説明する。
表5に、実施例16において、形成したサーメット層の組成、形成したサーメット層の硼化物と結合層の割合を示す。実施例16において、表5に示すサーメット層組成となるように、溶射用原料粉末の複硼化物及び結合相となる金属粉の割合を調整して、金属母材上にサーメット層を形成した。なお、溶射の金属母材にはステンレス鋼(SUS316L)の試験片を用いた。
溶射粉は、まず、表5の実施例16組成の溶射層組成になるように原料粉末を配合し、ボールミルでの湿式粉砕した。次に、湿式粉砕した粉末をスプレードライヤーによって造粒し、1150℃で1時間保持し、硬質相となるM2M’B2型の複硼化物を反応形成させた。その後、この形成されたM2M’B2型複硼化物サーメットを分級して、サーメット層形成用の20~60μmの大きさの溶射粉末を完成させた。
一方、サーメット層を形成させる金属母材の表層にはショット(ホワイトアルミナ♯20)を使用し、金属母材の表面を粗面化した。
一方、サーメット層を形成させる金属母材の表層にはショット(ホワイトアルミナ♯20)を使用し、金属母材の表面を粗面化した。
その後、用意した原料粉末を溶射して、母材上に厚み0.3mmの、実施例16の組成のサーメット層を形成した。用いた溶射機や溶射条件等は、前記実施形態1と同様である。
<比較例2>
また、比較のため、結合相を形成しない(サーメットとならない)複硼化物のみを溶射用粉末として用いて形成した溶射層を比較例2(表5参照)として示す。比較例2においては、実施例16と、溶射用原料粉末が異なるが、溶射条件等、その他の条件においては同様である。
また、比較のため、結合相を形成しない(サーメットとならない)複硼化物のみを溶射用粉末として用いて形成した溶射層を比較例2(表5参照)として示す。比較例2においては、実施例16と、溶射用原料粉末が異なるが、溶射条件等、その他の条件においては同様である。
<実施例16、比較例2の評価>
<金属母材との密着性評価>
実施の形態2の実施例16、比較例2について、金属母材の表面に形成した溶射層の密着性を評価した。密着性評価はねじり試験機を用いて行った。試験方法は、ねじり試験機に取り付けられるような試験片を作成し、試験片の一端を固定し、他端を回転させて行った(図1参照)。回転により、溶射層に剥離又はクラックを生じた時のトルク値を溶射層の密着力とした。実施例16の密着力は大きく高い値を示したが、比較例2は低いトルク値を示した。その結果を表6に示す。
<金属母材との密着性評価>
実施の形態2の実施例16、比較例2について、金属母材の表面に形成した溶射層の密着性を評価した。密着性評価はねじり試験機を用いて行った。試験方法は、ねじり試験機に取り付けられるような試験片を作成し、試験片の一端を固定し、他端を回転させて行った(図1参照)。回転により、溶射層に剥離又はクラックを生じた時のトルク値を溶射層の密着力とした。実施例16の密着力は大きく高い値を示したが、比較例2は低いトルク値を示した。その結果を表6に示す。
以上説明したように、本発明の熱中性子遮蔽材料は、優れた耐食性、および熱中性子遮断性を維持しつつ、高硬度材料であり、耐食耐摩耗に優れた材料であり、肉厚を薄くすることが可能となり、使用済核燃料の貯蔵密度を増加することができる。
さらに、本発明の熱中性子遮蔽材料は、使用済核燃料の輸送時や保管時の塩水、水等の雰囲気に対する十分な耐食性を有しており、熱中性子遮断性を要する部材に広く適用でき、産業上の利用可能性が極めて高い。
さらに、本発明の熱中性子遮蔽材料は、使用済核燃料の輸送時や保管時の塩水、水等の雰囲気に対する十分な耐食性を有しており、熱中性子遮断性を要する部材に広く適用でき、産業上の利用可能性が極めて高い。
Claims (7)
- 金属母材上にサーメット層を有する熱中性子遮蔽材料であって、前記サーメット層が、MM’B又はM2M’B2(M,M’=遷移金属)型三元硼化物と、M’金属相と、からなるサーメットであることを特徴とする熱中性子遮蔽材料。
- 前記サーメット層が、二元硼化物をさらに有することを特徴とする請求項1に記載の熱中性子遮蔽材料。
- 前記サーメット層が、M2M’B2型複硼化物とM’基合金の結合相よりなる複硼化物サーメットであることを特徴とする(M=Mo,M’=NiまたはFe)請求項1記載の熱中性子遮蔽材料。
- 前記サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するNi基合金の結合相とからなり、B含有量が3~7.5質量%、Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)(X:含有するBの質量%、以下のX表記において同じ)、Cr含有量が(55-5X)%以下、残部が10質量%以上のNi、および不可避的不純物よりなることを特徴とする請求項3に記載の熱中性子遮蔽材料。
- 前記サーメット層は、複硼化物よりなる硬質相35~95質量%と、残部が該硬質相を結合するFe基合金の結合相とからなり、B含有量が、3~7.5質量%、Mo含有量が、Mo/B原子比で0.8~(1.6-0.05X)、Crおよび/又はNi含有量が、いずれか一方または両者の合計で(55-5X)%質量以下、C含有量が、0.95質量%以下、残部が10質量%以上のFe、および不可避的不純物よりなることを特徴とする請求項3に記載の熱中性子遮蔽材料。
- 前記金属母材は、普通鋼、合金鋼、工具鋼、ステンレス鋼又はアルミニウム合金であることを特徴とする請求項1~5のいずれかに記載の熱中性子遮蔽材料。
- 請求項1~5のいずれかに記載の熱中性子遮蔽材料の製造方法であって、
前記サーメット層を金属母材上に溶射によって形成することを特徴とする熱中性子遮蔽材料の製造方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-183395 | 2010-08-18 | ||
JP2010183484A JP2012042317A (ja) | 2010-08-18 | 2010-08-18 | 熱中性子遮蔽材料及びその製造方法 |
JP2010183395A JP2012042314A (ja) | 2010-08-18 | 2010-08-18 | 熱中性子遮蔽材料及びその製造方法 |
JP2010-183484 | 2010-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012023265A1 true WO2012023265A1 (ja) | 2012-02-23 |
Family
ID=45604935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/004539 WO2012023265A1 (ja) | 2010-08-18 | 2011-08-10 | 熱中性子遮蔽材料及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012023265A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3401413A1 (en) * | 2017-05-11 | 2018-11-14 | Sandvik Intellectual Property AB | An iron tungsten borocarbide body for nuclear shielding applications |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH042659A (ja) * | 1990-04-16 | 1992-01-07 | Agency Of Ind Science & Technol | 中性子遮蔽用炭素材料 |
WO1998005802A1 (fr) * | 1996-08-06 | 1998-02-12 | Toyo Kohan Co., Ltd. | Alliage fritte dur |
JP2000514552A (ja) * | 1996-07-01 | 2000-10-31 | アリン・コーポレーション | 中性子の遮蔽に応用される金属マトリックス組成物 |
JP2001089823A (ja) * | 1999-09-22 | 2001-04-03 | Toyo Kohan Co Ltd | 複硼化物系硬質焼結合金及びその合金を用いた樹脂加工機械用スクリュー |
JP2001303233A (ja) * | 2000-04-26 | 2001-10-31 | Toyo Kohan Co Ltd | 溶融金属に対する耐食性に優れた溶融金属用部材およびその製造方法 |
JP2002504186A (ja) * | 1995-09-29 | 2002-02-05 | アリン コーポレイション | 改良された金属マトリックス複合材 |
JP2002045957A (ja) * | 2000-08-03 | 2002-02-12 | Toyo Kohan Co Ltd | 溶融金属に対する耐食性に優れた溶融金属用部材およびその製造方法 |
JP2003055729A (ja) * | 2001-08-16 | 2003-02-26 | Toyo Kohan Co Ltd | 優れた耐食性、耐摩耗性を有する焼結合金材料、その製造方法、およびそれらを用いた機械構造部材 |
JP2003205352A (ja) * | 2002-01-08 | 2003-07-22 | Toyo Kohan Co Ltd | 溶融金属に対して優れた耐食性、耐摩耗性を有する焼結合金からなる溶融金属用部材、その製造方法、およびそれらを用いた機械構造部材 |
JP2009068052A (ja) * | 2007-09-11 | 2009-04-02 | Toyo Kohan Co Ltd | 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末 |
JP2009520876A (ja) * | 2005-11-14 | 2009-05-28 | ローレンス・リバモア・ナショナル・セキュリティ・エルエルシー | 耐食性中性子吸収コーティング |
-
2011
- 2011-08-10 WO PCT/JP2011/004539 patent/WO2012023265A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH042659A (ja) * | 1990-04-16 | 1992-01-07 | Agency Of Ind Science & Technol | 中性子遮蔽用炭素材料 |
JP2002504186A (ja) * | 1995-09-29 | 2002-02-05 | アリン コーポレイション | 改良された金属マトリックス複合材 |
JP2000514552A (ja) * | 1996-07-01 | 2000-10-31 | アリン・コーポレーション | 中性子の遮蔽に応用される金属マトリックス組成物 |
WO1998005802A1 (fr) * | 1996-08-06 | 1998-02-12 | Toyo Kohan Co., Ltd. | Alliage fritte dur |
JP2001089823A (ja) * | 1999-09-22 | 2001-04-03 | Toyo Kohan Co Ltd | 複硼化物系硬質焼結合金及びその合金を用いた樹脂加工機械用スクリュー |
JP2001303233A (ja) * | 2000-04-26 | 2001-10-31 | Toyo Kohan Co Ltd | 溶融金属に対する耐食性に優れた溶融金属用部材およびその製造方法 |
JP2002045957A (ja) * | 2000-08-03 | 2002-02-12 | Toyo Kohan Co Ltd | 溶融金属に対する耐食性に優れた溶融金属用部材およびその製造方法 |
JP2003055729A (ja) * | 2001-08-16 | 2003-02-26 | Toyo Kohan Co Ltd | 優れた耐食性、耐摩耗性を有する焼結合金材料、その製造方法、およびそれらを用いた機械構造部材 |
JP2003205352A (ja) * | 2002-01-08 | 2003-07-22 | Toyo Kohan Co Ltd | 溶融金属に対して優れた耐食性、耐摩耗性を有する焼結合金からなる溶融金属用部材、その製造方法、およびそれらを用いた機械構造部材 |
JP2009520876A (ja) * | 2005-11-14 | 2009-05-28 | ローレンス・リバモア・ナショナル・セキュリティ・エルエルシー | 耐食性中性子吸収コーティング |
JP2009068052A (ja) * | 2007-09-11 | 2009-04-02 | Toyo Kohan Co Ltd | 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3401413A1 (en) * | 2017-05-11 | 2018-11-14 | Sandvik Intellectual Property AB | An iron tungsten borocarbide body for nuclear shielding applications |
WO2018206173A1 (en) * | 2017-05-11 | 2018-11-15 | Sandvik Hyperion AB | An iron tungsten borocarbide body for nuclear shielding applications |
EP3650562A1 (en) * | 2017-05-11 | 2020-05-13 | Hyperion Materials & Technologies (Sweden) AB | An iron tungsten borocarbide body for nuclear shielding applications |
RU2761020C2 (ru) * | 2017-05-11 | 2021-12-02 | Хиперион Матириалз Энд Текнолоджиз (Свиден) Аб | Композиция из борокарбида вольфрама и железа для применения в целях защиты от ядерного излучения |
US11279991B2 (en) | 2017-05-11 | 2022-03-22 | Hyperion Materials & Technologies (Sweden) Ab | Iron tungsten borocarbide body for nuclear shielding applications |
TWI759437B (zh) * | 2017-05-11 | 2022-04-01 | 瑞典商瑞典合銳材料科技有限公司 | 用於核屏蔽應用的碳化鐵鎢硼物體,其製造方法及用途 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105088108B (zh) | 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层 | |
JPS60103170A (ja) | 耐摩耗コーテイング及びその製造方法 | |
CN105642885A (zh) | 一种具有包覆复合结构的热喷涂自粘结金属合金粉末 | |
CN101838807A (zh) | 一种发动机进、排气门用激光熔覆涂层材料及其涂层 | |
WO2014069180A1 (ja) | 耐高温腐食特性を備えたNi-Cr-Co系合金とそれを用いて表面改質したポペットバルブ | |
CN108504964B (zh) | 一种高稳定性铁基非晶合金、粉末及其涂层 | |
JP2012042317A (ja) | 熱中性子遮蔽材料及びその製造方法 | |
JP3853322B2 (ja) | 溶射用粉末複合材料、溶射皮膜被覆部材およびその部材の製造方法 | |
CN111850374A (zh) | 一种激光熔覆用高熵合金粉末及覆层制备方法 | |
JP5154869B2 (ja) | 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末 | |
Wang et al. | Ceramic fibers reinforced functionally graded thermal barrier coatings | |
WO2010103563A1 (ja) | 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末 | |
WO2012023265A1 (ja) | 熱中性子遮蔽材料及びその製造方法 | |
WO2014185181A1 (ja) | 溶射層形成用粉末、サーメット溶射層、サーメット被覆材、およびサーメット被覆材の製造方法 | |
JP6169566B2 (ja) | サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法 | |
CN108927513B (zh) | 一种耐高温冲蚀磨损的粉末材料及熔覆层的制备方法 | |
JP2012102362A (ja) | 硼化物サーメット系溶射用粉末 | |
JP2012042314A (ja) | 熱中性子遮蔽材料及びその製造方法 | |
JP6087587B2 (ja) | 溶射層形成用粉末、サーメット溶射層、サーメット被覆材、およびサーメット被覆材の製造方法 | |
AU2010229319B2 (en) | Chrome-free coating for substrate | |
JP2011230279A (ja) | ショットピーニング用高硬度投射材 | |
Wang et al. | Study on plasma-spraying of MCrAlY coatings | |
Li et al. | Influence of annealing on the microstructure and wear performance of diamond/NiCrAl composite coating deposited through cold spraying | |
JP2011017049A (ja) | 硼化物系サーメット溶射用粉末 | |
JP4547253B2 (ja) | 溶射用粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11817915 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11817915 Country of ref document: EP Kind code of ref document: A1 |