WO2012022111A1 - 一种外延片托盘及与其配合的支撑和旋转联接装置 - Google Patents

一种外延片托盘及与其配合的支撑和旋转联接装置 Download PDF

Info

Publication number
WO2012022111A1
WO2012022111A1 PCT/CN2011/001147 CN2011001147W WO2012022111A1 WO 2012022111 A1 WO2012022111 A1 WO 2012022111A1 CN 2011001147 W CN2011001147 W CN 2011001147W WO 2012022111 A1 WO2012022111 A1 WO 2012022111A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
counterbore
shaft
drive shaft
rotating
Prior art date
Application number
PCT/CN2011/001147
Other languages
English (en)
French (fr)
Inventor
金小亮
陈爱华
孙仁君
张伟
Original Assignee
江苏中晟半导体设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中晟半导体设备有限公司 filed Critical 江苏中晟半导体设备有限公司
Priority to DE112011101454T priority Critical patent/DE112011101454T5/de
Publication of WO2012022111A1 publication Critical patent/WO2012022111A1/zh
Priority to US13/670,933 priority patent/US20130061805A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Definitions

  • the present invention relates to an epitaxial wafer tray that is handled by a robot in a MOCVD (Metal Organic Chemical Vapor Deposition) system for producing a compound semiconductor photovoltaic device, and a coupling device that is supported from the center and that rotates the tray.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOCVD system is a device for epitaxially growing a semiconductor thin film to form a semiconductor device such as an LED (Light Emitting Diode).
  • batch processing is usually used to increase the system yield.
  • a batch of epitaxial wafers 40 (or substrates, substrate sheets, etc.) are placed together in the reaction chamber of the MOCVD system to complete epitaxial growth.
  • a new batch of epitaxial wafers 40 is replaced and the next round of reaction processing is started.
  • a plurality of epitaxial wafers 40 are placed on the same substrate tray 10 (Fig. 1).
  • the automated production requires the robot 10 to be loaded and unloaded in the reaction chamber to realize the simultaneous epitaxial growth of the batch of epitaxial wafers 40. Processing.
  • a heater is generally disposed below the epitaxial wafer tray, and the tray is heated by a heating element arranged around the center of the tray. Due to design limitations and manufacturing variations, the temperature at each point on the heater may not be exactly the same, so the temperature in the radial direction of the tray tends to be uniform by rotating the tray during heating.
  • the rotation of the tray is also a key control means for obtaining the boundary conditions of the gas concentration and the uniform gas velocity of the plurality of epitaxial wafers, so that the rotation speed needs to be adjusted in a wide range, and the tray is needed Smooth operation within the speed range.
  • a support cylinder 51 is provided, which is in contact with the edge of the tray 10 on which the plurality of epitaxial sheets 40 are placed to support the tray 10, so that the center of the tray 10 falls within the support surface, so the tray 10 Very stable when static.
  • the heating element of the heater 30 is below the tray, especially at its central position.
  • the rotation of the tray 10 is driven by the drive shaft 20 at the intermediate position below the chassis 511 of the support cylinder 51, and there are many components for transmitting and rotating. It is difficult to adjust the level and dynamic balance of the tray 10, and the components are rotated more.
  • the inertia is large, and the device that supports and rotates the tray 10 from the edge is generally suitable for the case of low speed rotation.
  • the middle portion of the bottom of the tray 10 is provided with a concave counterbore 101 whose bottom surface is parallel to the upper surface of the tray 10.
  • the portion 201 corresponding to the cylindrical or conical shape of the top end of the drive shaft 20 is vertically inserted into the counterbore 101 of the tray 10.
  • the surface of the drive shaft 20 is brought into contact with the surface of the counterbore 101 of the tray 10 to become a support surface of the tray 10, and the tray 10 is rotated by the drive shaft 20 under the action of friction.
  • the dynamic balance of the MOCVD system is easy to adjust, and the removal and insertion of the tray 10 by the robot is also easy.
  • the moment of inertia is relatively small, and it is suitable for use in the case of medium-high speed rotation; and the rotational speed of the tray 10 can be driven by the frictional force to follow the rotational speed of the drive shaft 20, which facilitates the speed control.
  • Processing the counterbore 101 on the tray 10 causes the thickness of the corresponding portion of the tray 10 to be reduced, and the mechanical strength is lowered.
  • the overall thickness of the tray 10 is often increased, thereby causing an increase in the weight of the tray 10. , resulting in increased heat capacity, extending the time required for heating or cooling. Disclosure of invention
  • the object of the present invention is to provide an epitaxial wafer tray and a supporting and rotating coupling device therewith.
  • the robot can pick up and replace the tray in the reaction chamber, so that the tray can be coupled with the driving shaft at the bottom center position, and is driven by the driving shaft. Smooth rotation at various required speeds to process a number of epitaxial wafers or substrate substrates placed on the tray.
  • the technical solution of the present invention is to provide an epitaxial wafer tray and a supporting and rotating coupling device therewith, comprising a mechanically detachable tray placed in a reaction chamber of an MOCVD system, and a tray from below with the tray a vertical drive shaft that is coupled to the convex shaft at the center of the bottom surface; A plurality of reaction gases are introduced into the reaction chamber to perform epitaxial reaction or thin film deposition on a plurality of epitaxial wafers placed on the tray.
  • the plurality of epitaxial wafers are correspondingly placed in a plurality of shallow concave disks opened on the upper surface of the tray.
  • a tray rotating shaft protruding downward is disposed in the middle of the bottom of the tray, and is correspondingly inserted into a counterbore formed in the top of the driving shaft, and is driven by a friction transmission or an axial contact of a corresponding contact surface of the tray rotating shaft and the counterbore
  • the tray is supported and driven to rotate.
  • the epitaxial wafer tray for an MOCVD system and a rotating device therefor further comprising a rotary sealing device connected to the driving shaft, a rotary driving device, and a heater disposed under the tray;
  • the driving shaft is axially worn down Passing through the heater and being taken out from the bottom of the reaction chamber by the rotary sealing device, and connected to the rotary driving device;
  • the drive shaft is rotated by the rotary driving device, and the tray is rotated together with the drive shaft to enable the heater to heat the tray and obtain a uniform reaction gas on the epitaxial wafer.
  • the tray rotating shaft is a stepped shape that protrudes downward, and includes a first boss disposed at the bottom of the tray, and a second boss disposed under the first boss and having a smaller diameter;
  • the annular end surface of the bottom end of the first boss is parallel to the upper surface and the bottom surface of the tray; the annular top surface of the counterbore is perpendicular to the axis of the drive shaft;
  • the height a1 of the second boss is smaller than the depth bl of the counterbore, so that when the second boss is completely inserted into the counterbore, and between the bottom surface of the second boss and the bottom surface of the counterbore The gap enables the annular end surface of the first boss to be in reliable contact with the annular top surface of the counterbore.
  • the first boss is cylindrical; the second boss is cylindrical or conical in diameter smaller than the first boss.
  • the downwardly protruding tray rotating shaft is correspondingly inserted into the counterbore, so that the step end surface of the bottom end of the tray rotating shaft is in contact with the bottom surface of the counterbore, supports the tray, and passes through Friction drive, causing the drive shaft to rotate the tray together;
  • the step end faces are parallel to the upper surface and the bottom surface of the tray.
  • a bottom surface of the counterbore is perpendicular to an axis of the drive shaft;
  • the height a2 of the tray rotating shaft is larger than the depth b2 of the counterbore, so that a part of the tray rotating shaft is inserted into the counterbore, and a gap is left between the top surface of the driving shaft and the bottom surface of the tray, so that the step The end face and the bottom surface of the counterbore can be reliably contacted.
  • the tray rotating shaft is cylindrical or conical.
  • the downwardly projecting tray rotating shaft is correspondingly inserted into the counterbore matching the shape thereof, and the step side surface of the tray rotating shaft is in contact with the side surface of the counter shaft of the driving shaft, and is used as the tray rotating shaft and the driving shaft.
  • the contact surface of the friction drive enables the drive shaft to rotate the tray together.
  • the tray shaft is cylindrical or conical, and the drive shaft is cylindrical or conical.
  • a plurality of axial positioning devices are respectively disposed on the tray rotating shaft and the corresponding counterbore, and at least one pair of contact surfaces are coupled in the rotating direction by the positioning device, and is driven when the driving shaft rotates The tray rotates.
  • the axial positioning devices are respectively a plurality of positioning keys disposed on a side of the rotating shaft of the tray, and a plurality of positioning slots corresponding to the side of the counterbore of the driving shaft;
  • the position of the positioning key and the positioning groove is aligned by a corner position sensor disposed on the rotary driving device, and the side end surface of the at least one positioning key and the side end of the positioning groove are rotated The surface contacts, causing the tray to rotate in synchronism with the drive shaft.
  • the present invention has an advantage in that a mechanically detachable epitaxial wafer tray is proposed, which is provided with a downwardly projecting tray rotating shaft at the center of the bottom thereof, and is coupled to the counterbore inserted into the top of the driving shaft. .
  • a pair of respectively disposed contact end faces parallel to the surface of the tray are frictionally driven, or frictionally transmitted through contact between the tray rotating shaft and the corresponding side of the counterbore of the driving shaft, so that the tray is on the driving shaft Under the driving, it can rotate smoothly under various required rotation speeds, and the epitaxial wafers on the tray are uniformly heated by the heater at the bottom of the tray, and a uniform gas concentration and a uniform gas velocity boundary layer are obtained on the epitaxial wafer.
  • the epitaxial wafer is subjected to an epitaxial reaction or a thin film deposition treatment.
  • the present invention further provides a plurality of positioning grooves and positioning keys corresponding to the side surfaces of the tray rotating shaft and the counterbore of the driving shaft, and the driving surface of the rotating shaft is synchronized with the rotation speed of the driving shaft.
  • the tray rotating shaft has a downwardly convex structure, the contact surface of the frictional drive with the drive shaft is outside the bottom of the tray, and the surface processing is easy.
  • the protruding tray shaft does not need to increase the overall thickness of the tray, which can ensure the mechanical strength of the tray. Therefore, the material consumption of the manufacturing tray is reduced, the weight of the tray is reduced, the heat capacity is reduced, and the tray is reduced.
  • the heating and cooling time increases the production efficiency and improves the ability of the epitaxial reaction temperature regulation control.
  • FIG. 1 is a schematic view showing a plurality of epitaxial wafers arranged on a tray in an MOCVD system
  • FIG. 2 is a schematic structural view of a conventional MOCVD system supporting and rotating a tray from an edge;
  • Figure 3 is a schematic view showing the structure of an existing MOCVD system which supports from the center and drives the rotation of the tray;
  • Figure 4 is a schematic view showing the structure of another MOCVD system which supports from the center and drives the rotation of the tray;
  • Figure 5 is a schematic view showing the connection relationship between the mechanically detachable epitaxial wafer tray of the present invention and its rotating device and the MOCVD system;
  • FIG. 6 is a schematic structural view of an epitaxial wafer tray and a rotating device thereof for use in an MOCVD system according to the present invention in a first embodiment
  • Figure ⁇ is a schematic view showing the structure of the epitaxial wafer tray for the MOCVD system of the present invention and its rotating device in the second embodiment by the parallel end face contact friction transmission;
  • FIG. 8 is a schematic structural view of an epitaxial wafer tray and a rotating device thereof for use in an MOCVD system according to the present invention, which are subjected to side contact friction transmission in Embodiment 3;
  • Figure 9 is a schematic view showing the structure of an epitaxial wafer tray and a rotating device thereof for use in a MOCVD system according to the present invention by a fixed contact transmission;
  • Figure 10 is a bottom plan view showing the structure of the end surface of the tray shaft for fixing the contact transmission in the fourth embodiment of the present invention.
  • Figure 11 is a plan view showing a structure of an end face of a drive shaft for fixing a contact transmission in the fourth embodiment of the present invention. The best way to implement the invention
  • the mechanically detachable circular tray 10 of the present invention is placed in the reaction chamber 50 of the MOCVD system; the upper surface 11 of the tray 10 is parallel to the bottom surface 12, and is disposed on the upper surface 11 around the center.
  • a plurality of shallow concave disks for arranging a plurality of epitaxial wafers 40 (Fig. 1).
  • the rotating device is a vertically disposed driving shaft 20, and the tray 10 is taken up by a robot, so that the tray rotating shaft 100 protruding from the bottom of the bottom of the tray 10 is inserted into the counterbore 200 opened at the top of the driving shaft 20, and the driving shaft is driven. 20 is coupled to the tray 10.
  • the drive shaft 20 passes downwardly through the heater 30 below the tray 10 and is drawn from the bottom of the reaction chamber 50 by a rotary seal 21 to be coupled to the rotary drive 22.
  • the drive shaft 20 is rotated by the motor of the rotary driving device 22, and the tray 10 and the drive shaft 20 are synchronously rotated by mutual coupling, so that the heater 30 can evenly align the tray 10. Heating is performed, and a uniform reaction gas is obtained on the epitaxial wafer 40.
  • the tray rotating shaft 100 has a downwardly projecting structure, it is not necessary to increase the overall thickness of the tray 10, that is, the mechanical strength can be ensured, thereby reducing the material consumption of the manufacturing tray 10, and reducing the weight of the tray 10, thereby reducing the weight thereof. Heat capacity.
  • the tray rotating shaft 100 has an outwardly projecting structure, the contact surface of the rotating shaft with the driving shaft protrudes outside the bottom of the tray, and the processing of the surface is easy to carry out.
  • the mechanically detachable tray 10 of the present invention is coupled with the drive shaft 20 at the bottom center, and the lower convex tray shaft 100 can be brought into contact with the counterbore 200 of the drive shaft 20 by various structures, through friction transmission or contact transmission. The rotation of the tray 10 driven by the drive shaft 20.
  • the tray rotating shaft 100 at the bottom center of the tray 10 is a downwardly protruding stepped shape, and includes a cylindrical first convex disposed at the bottom of the tray 10.
  • the stage 110 and a second boss 120 of a cylindrical shape (Fig. 5) or a conical shape (Fig. 6) disposed under the first boss 110.
  • the annular end surface 111 of the first boss 110 is parallel to both the upper surface 11 and the bottom surface 12 of the tray 10.
  • a top hole 200 is defined in a top end of the drive shaft 20, and an annular top surface 211 of the counterbore 200 is perpendicular to an axis of the drive shaft 20.
  • the tray rotating shaft 100 is The second boss 120 is completely inserted into the counterbore 200, and the side surface 112 of the second boss 120 is positioned as a vertical direction of the tray 10 and positioned on the plane to place the annular end surface 111 of the first boss 110 having a larger diameter.
  • the position of the tray 10 in the reaction chamber 50 is positioned in the vertical direction, and the tray 10 is supported by the drive shaft 20.
  • the annular top surface 211 of the drive shaft 20 serves as an effective area for the support of the tray 10, as determined by the inner and outer diameters of the counterbore 200 of the drive shaft 20.
  • the height a1 of the second boss 120 must be smaller than the depth bl of the counterbore 200.
  • the bottom surface 113 of the second boss 120 and the bottom surface 212 of the counterbore 200 are left.
  • the gap ensures a reliable contact of the annular end surface 111 of the first boss 110 with the annular top surface 211.
  • the annular end surface 111 of the first boss 110 and the annular top surface 211 of the drive shaft 20 serve as a contact surface of the tray rotating shaft 100 and the drive shaft 20, and drive the tray 10 and the drive shaft 20 - Rotate.
  • the tray rotating shaft 100 at the bottom center of the tray 10 is a cylindrical or conical step (not shown) which protrudes downward, and the step end surface 121 is formed. It is parallel to both the upper surface 11 and the bottom surface 12 of the tray 10.
  • the tray rotating shaft 100 When the tray rotating shaft 100 is planarly positioned via its step side surface 122 so as to be inserted into the counterbore 200 opened at the top end of the driving shaft 20, the step end surface 121 falls on the bottom surface 222 of the counterbore 200, and the tray 10 is positioned in the reaction chamber in the vertical direction.
  • the position is 50 miles, and the tray 10 is supported by the drive shaft 20.
  • the bottom surface 222 of the counterbore 200 of the drive shaft 20 supports the effective area of the tray 10, as determined by the diameter of the tray shaft 100.
  • the step end surface 121 matches and contacts the bottom surface 222 of the counterbore 200, and serves as a contact surface for frictionally transmitting the tray rotating shaft 100 and the driving shaft 20, and drives the tray 10 and the driving shaft 20 - Rotate.
  • the height a2 of the tray rotating shaft 100 must be greater than the depth b2 of the counterbore 200, so that a part of the tray rotating shaft 100 is inserted into the counterbore 200, and a gap is left between the top surface 221 of the driving shaft 20 and the bottom surface 12 of the tray 10 to ensure the step end surface 121. Reliable contact with the bottom surface 222 of the counterbore 200.
  • the tray rotating shaft 100 is disposed downward with a step protruding from the bottom surface 12 of the tray 10, which may be cylindrical or conical, correspondingly setting the counterbore 200 at the top end of the driving shaft 20 to Cylindrical or conical or other shape matching the tray rotating shaft 100, after the tray rotating shaft 100 is inserted into the counterbore 200, the stepped side 131 of the tray rotating shaft 100 is in contact with the side surface 231 of the counterbore 200 of the drive shaft 20, and the tray 10 is supported. And as the contact surface of the tray rotating shaft 100 and the drive shaft 20 frictionally driven, the tray 10 is rotated following the drive shaft 20.
  • axial positioning devices are respectively disposed on the protruding tray rotating shaft 100 and the counterbore 200 of the driving shaft 20, and the coupling is increased by the positioning device.
  • a plurality of pairs of contact faces in the direction of rotation ensure that the rotational speed of the tray 10 coincides with the rotational speed of the drive shaft 20.
  • a plurality of outwardly projecting positioning keys 140 may be disposed on the side of the tray rotating shaft 100, and a plurality of shape-matching positioning grooves 240 are formed at corresponding positions on the side of the counterbore 200 of the driving shaft 20.
  • the position of the positioning key 140 and the positioning groove 240 is aligned by the corner position sensor provided on the rotary driving device 22, and the tray rotating shaft 100 is inserted into the counterbore 200 so that the positioning key 140 is
  • the side end surface 141 is in contact with the side end surface 241 of the positioning groove 240, and the tray 10 is rotated together with the drive shaft 20 by the axial contact transmission, and the rotational speeds of the two can be kept uniform.
  • FIG. 11 is a schematic structural view showing the arrangement of the cross-shaped positioning groove 240 in the counterbore 200 of the drive shaft 20.
  • the positioning key 140 on the tray rotating shaft 100 can also be correspondingly arranged in a cross shape to increase the rotation direction. Contact surfaces.
  • the positioning key 140 shown in FIG. 10 can be inserted into the cross-shaped positioning groove 240 shown in FIG. 11, and any one of the positioning grooves 240 can be matched with the positioning key 140 to facilitate the positioning of the tray 10 and the driving shaft 20. quasi.
  • the present invention provides a tray 10 in which a plurality of epitaxial wafers 40 are placed.
  • a coupling coupling corresponding to the counterbore 200 inserted into the top of the driving shaft 20 is facilitated by The robot picks up and replaces in the reaction chamber 50.
  • the present invention performs frictional transmission through a pair of contact end faces parallel to the surface of the tray 10 through the tray rotating shaft 100 and the counterbore 200 of the drive shaft 20, or through contact between the tray rotating shaft 100 and the corresponding side of the counterbore 200 of the drive shaft 20.
  • the friction transmission is performed, so that the tray 10 can be smoothly rotated at various required rotation speeds under the driving of the drive shaft 20, and the plurality of epitaxial sheets 40 on the tray 10 are uniformly heated by the heater 30 under the tray 10, and are extended.
  • a boundary layer of a uniform gas concentration and a uniform gas velocity is obtained on the sheet 40, and the epitaxial wafer 40 is subjected to an epitaxial reaction or a thin film deposition treatment.
  • the present invention further provides a plurality of corresponding positioning slots 240 and positioning keys 140 corresponding to the side surfaces of the tray rotating shaft 100 and the counterbore 200 of the driving shaft 20, and the tray 10 and the driving are matched by the fitting of a plurality of pairs of contact surfaces in the rotating direction.
  • the rotational speed of the shaft 20 is synchronized. Therefore, when the drive shaft 20 drives the tray 10 to rotate, the friction transmission is no longer relied on, especially under the condition of medium and high speed rotation, the reliability of long-term use is improved, and the replacement of the tray 10 due to wear is reduced, thereby reducing the epitaxial wafer 40. Cost of production.
  • the tray rotating shaft 100 has a downwardly projecting structure, the contact surface which rubs against the drive shaft 20 is exposed to the outside of the bottom of the tray 10, and the surface processing is easily performed.
  • the protruding tray rotating shaft 100 does not need to additionally increase the overall thickness of the tray 10, that is, the mechanical strength of the tray 10 can be ensured, thereby reducing the material consumption of the manufacturing tray 10, reducing the weight of the tray 10, and reducing the weight thereof.
  • the heat capacity, thereby reducing the heating and cooling time of the tray 10, improves the production efficiency, and also improves the ability of the epitaxial reaction temperature adjustment control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

-种外延片托盘及与其配合的支撑和旋转联接装置
技术领域
本发明涉及一种用于生产化合物半导体光电器件的 MOCVD (金属有机 化学气相沉淀) 系统中通过机械手取放的外延片托盘以及与其配合从中心处 支撑并且带动托盘旋转的联接装置。 背景技术
金属有机化学气相沉淀系统 (以下简称 MOCVD系统) 是一种用于外延 生长半导体薄膜, 以形成如 LED (发光二极管) 等半导体器件的设备。
在大规模生产时, 通常使用批处理方式来提高系统产量, 即将一批多片 外延片 40 (或称衬底、 衬底片等)一起放入 MOCVD系统的反应腔中, 完成 外延生长后, 再更换新的一批外延片 40, 开始下一轮的反应处理。 若干外延 片 40被放置在同一个衬底托盘 10上(图 1 ), 自动化生产需要在反应腔中以机 械手装卸该托盘 10, 来实现上述一批外延片 40同时外延生长、 同时取放的批 处理过程。
在外延片托盘下方一般设置有加热器, 通过其中围绕托盘圆心排列的加 热元件, 对托盘进行加热。 由于设计上的限制和制造上的差异, 加热器上各 点的温度不可能完全一样, 因此在加热过程中通过旋转托盘可以使托盘径向 上的温度趋于均匀一致。 此外, 托盘的旋转还是多个外延片的表面取得均勾 的气体浓度和均匀的气体速度等边界条件的一个关键控制手段, 因此其转速 需要在一个很大范围内可以调节, 并使托盘在需要的转速范围内可以平稳运 行。
目前有两种典型的支撑托盘并且带动托盘旋转的方式。如图 2所示,是一 种从边缘支撑并带动托盘旋转的 MOCVD系统。 该 MOCVD系统的反应腔中, 设置有支撑筒 51, 从下方与放置若干外延片 40的托盘 10的边缘位置接触, 来 支撑该托盘 10, 保证托盘 10的中心落在支撑面内, 因此托盘 10在静态时很稳 定。 所述加热器 30的加热元件在托盘下方, 特别是在其中心位置可以连续设
1
确 认 本 置, 保证托盘 10中心的温度环境与其他位置一致。
然而, 该种托盘 10的旋转, 是由支撑筒 51的底盘 511下方、 中间位置的驱 动轴 20带动,传递转动使用的部件多,调节托盘 10水平度和动平衡都很困难, 而且部件多转动惯量大, 该种从边缘支撑并带动托盘 10旋转的装置一般适用 于低速转动的情况。
如图 3或图 4所示, 是从中心支撑并且带动托盘 10旋转的 MOCVD系统。 其中,托盘 10底部中间位置设置有凹入的沉孔 101,其底面与托盘 10的上表面 平行。 与该圆柱形(图 3 )或圆锥形(图 4)等形状的沉孔 101相匹配, 对应将 驱动轴 20顶端圆柱形或圆锥形的部分 201, 垂直插入该托盘 10的沉孔 101中。 通过驱动轴 20的表面与托盘 10沉孔 101的表面接触,成为托盘 10的支撑面,并 在摩擦力作用下, 由驱动轴 20带动托盘 10—起旋转。
由于结构简单、 部件少, 该种 MOCVD系统的动平衡易于调节, 由机械 手对托盘 10进行取出和放入的操作也很容易。 而且由于使用的部件少, 转动 惯量也相对小, 适合在中高速转动的情况下使用; 并且通过摩擦力即可驱动 托盘 10的转速跟随驱动轴 20的转速, 方便了速度的控制。
当采用石墨作为托盘 10材料时, 为了增强接触面上的摩擦力和抗摩擦强 度, 需要有特殊的表面加工处理, 由于该接触面落在沉孔 101里, 增加了表面 加工处理的难度。
在托盘 10上加工沉孔 101会使得托盘 10相应部位的厚度减薄,机械强度降 低, 为保证沉孔 101部位的机械强度,往往要使托盘 10的整体厚度增加, 因而 造成托盘 10的重量增加, 导致热容量增加, 延长了加热或冷却需要的时间。 发明的公开
本发明的目的是提供一种外延片托盘及与其配合的支撑和旋转联接装 置, 通过机械手在反应腔里取放、 更换托盘, 使托盘能与底部中心位置的驱 动轴耦合, 由驱动轴带动在各种需要的转速下平稳转动, 对放在托盘上的若 干外延片或衬底基片进行处理。
为了达到上述目的, 本发明的技术方案是提供一种外延片托盘及与其配 合的支撑和旋转联接装置,包含放置在 MOCVD系统的反应腔中可机械装卸 的托盘,以及从下方与所述托盘的底面中心外凸转轴藕合连接的垂直驱动轴; 所述反应腔中引入有若干反应气体, 对所述托盘上放置的若干外延片进行外 延反应或薄膜沉积。
所述若干外延片对应放置在托盘上表面开设的若干浅凹盘内。
所述托盘的底部中间设置有向下凸出的托盘转轴, 其对应插入所述驱动 轴顶部开设的沉孔中, 通过托盘转轴与沉孔上对应设置的接触面的摩擦传动 或轴向接触传动, 使所述驱动轴旋转时, 支撑并带动与其耦合连接的所述托 盘旋转。
所述用于 MOCVD系统的外延片托盘及其旋转装置,还包含与所述驱动 轴连接的旋转密封装置、旋转驱动装置, 以及设置在所述托盘下方的加热器; 所述驱动轴向下穿过所述加热器, 并通过所述旋转密封装置从反应腔的 底部引出, 与旋转驱动装置连接;
由所述旋转驱动装置带动所述驱动轴旋转, 并使所述托盘与驱动轴一起 旋转, 使加热器能对所述托盘均勾加热, 并在外延片上获得均匀反应气体。
在一种实施例中, 所述托盘转轴是向下凸出的阶梯形, 包含一设置在托 盘底部的第一凸台, 以及设置在第一凸台下、 直径较小的第二凸台;
所述第一凸台底端的环形端面与所述托盘的上表面、 底面均平行; 所述沉孔的环形顶面与所述驱动轴的轴心垂直;
所述托盘转轴的第二凸台对应插入所述沉孔时, 使所述第一凸台底端的 环形端面与所述沉孔的环形顶面相接触, 支撑托盘, 并通过摩擦传动, 使所 述驱动轴带动托盘一起旋转。
所述第二凸台的高度 al小于所述沉孔的深度 bl, 使第二凸台完全插入 所述沉孔时, 并在所述第二凸台的底面与沉孔的底面之间留有空隙, 使所述 第一凸台的环形端面与所述沉孔的环形顶面能可靠接触。
所述第一凸台是圆柱形; 所述第二凸台是直径小于第一凸台的圆柱形或 圆锥形。
在另一种实施例中, 所述向下凸出的托盘转轴, 对应插入所述沉孔时, 使所述托盘转轴底端的台阶端面与所述沉孔的底面相接触, 支撑托盘, 并通 过摩擦传动, 使所述驱动轴带动托盘一起旋转;
所述台阶端面与所述托盘的上表面、 底面均平行。
所述沉孔的底面与所述驱动轴的轴心垂直; 所述托盘转轴的高度 a2大于所述沉孔的深度 b2, 使托盘转轴的一部分 插入该沉孔中, 并在所述驱动轴的顶面与托盘的底面之间留有空隙, 使所述 台阶端面与沉孔的底面能可靠接触。
所述托盘转轴是圆柱形或圆锥形。
还有一种实施例中, 所述向下凸出的托盘转轴对应插入与其形状相匹配 的沉孔中, 通过托盘转轴的台阶侧面与驱动轴沉孔的侧面相接触, 作为托盘 转轴与驱动轴之间摩擦传动的接触面, 使驱动轴能带动托盘一起旋转。
所述托盘转轴是圆柱形或圆锥形, 所述驱动轴是圆柱形或圆锥形。 在另一种实施例中, 在所述托盘转轴上和对应的沉孔上分别设置若干轴 向定位装置, 通过该定位装置在旋转方向上的至少一对接触面耦合, 当驱动 轴旋转时带动托盘旋转。
所述轴向定位装置分别是设置在托盘转轴侧面的若干定位键, 以及在驱 动轴沉孔的侧面, 对应开设的若干定位槽;
所述托盘转轴插入沉孔时, 所述定位键与定位槽的位置, 由设置在所述 旋转驱动装置上的转角位置传感器对准, 转动时至少一个定位键的侧端面与 定位槽的侧端面相接触, 使托盘与驱动轴同步旋转。
与现有技术相比, 本发明的优点在于, 提出了一种可机械装卸的外延片 托盘, 通过在其底部中心设置向下凸出的托盘转轴, 对应插入驱动轴顶部的 沉孔中耦合联接。 通过托盘转轴和驱动轴沉孔上, 分别设置的一对平行于托 盘表面的接触端面进行摩擦传动, 或是通过托盘转轴和驱动轴沉孔上对应侧 面的接触进行摩擦传动, 使托盘在驱动轴的带动下, 能在各种需要的转速下 平稳转动, 并使托盘上的若干外延片通过托盘底部的加热器均匀加热, 并在 外延片上获得均匀的气体浓度、 均匀的气体速度的边界层, 对外延片进行外 延反应或薄膜沉积处理。
而且, 本发明还在托盘转轴和驱动轴沉孔的侧面对应设置若干定位槽和 定位键, 通过其在旋转方向的接触面传动, 使托盘与驱动轴的转速同步。 避 免了由于摩擦传动而弓 I起的部件磨损, 提高了在中高速旋转条件下长期使用 的可靠性, 减少了托盘的更换, 从而减少了外延片的生产成本。
由于托盘转轴具有向下凸出的结构, 使其与驱动轴摩擦传动的接触面在 托盘底部的外面, 容易进行表面加工处理。 凸出的托盘转轴, 不需要额外增加托盘的整体厚度, 即能保证该处的机 械强度, 因此, 使制造托盘的材料消耗减少, 更减轻了托盘的重量, 减少了 其热容量, 从而减少了托盘加热与冷却的时间, 提高了生产效率, 亦提高了 外延反应温度调节控制的能力。 附图的简要说明
图 1是 MOCVD系统中若干外延片排列放置在托盘上的示意图; 图 2是现有一种从边缘支撑并带动托盘旋转的 MOCVD系统的结构示意 图;
图 3是现有一种从中心支撑并且带动托盘旋转的 MOCVD系统的结构示 意图;
图 4是现有另一种从中心支撑并且带动托盘旋转的 MOCVD系统的结构 示意图; '
图 5是本发明可机械装卸的外延片托盘及其旋转装置与 MOCVD系统的 连接关系示意图;
图 6是本发明用于 MOCVD系统的外延片托盘及其旋转装置在实施例 1 中通过平行端面接触摩擦传动的结构示意图;
图 Ί是本发明用于 MOCVD系统的外延片托盘及其旋转装置在实施例 2 中通过平行端面接触摩擦传动的结构示意图;
图 8是本发明用于 MOCVD系统的外延片托盘及其旋转装置在实施例 3 中通过侧面接触摩擦传动的结构示意图;
图 9是本发明用于 MOCVD系统的外延片托盘及其旋转装置在实施例 4 中通过固定接触传动的结构示意图;
图 10是本发明在实施例 4中用于固定接触传动的托盘转轴端面的一种结 构仰视图;
图 11是本发明在实施例 4中用于固定接触传动的驱动轴端面的一种结构 俯视图。 实现本发明的最佳方式
以下结合附图说明本发明的多个具体实施方式 如图 5所示,本发明所述可机械装卸的圆形托盘 10,放置在 MOCVD系 统的反应腔 50中;该托盘 10的上表面 11与底面 12平行,在上表面 11上围 绕中心开设有若干浅凹盘, 用于排列放置多个外延片 40 (图 1 )。所述旋转装 置是垂直设置的驱动轴 20, 通过机械手取放托盘 10, 使托盘 10底部中间、 向下凸出的托盘转轴 100, 对应插入驱动轴 20顶部开设的沉孔 200中, 将驱 动轴 20与托盘 10耦合连接。 该驱动轴 20向下穿过所述托盘 10下方的加热 器 30, 并通过一个旋转密封装置 21从反应腔 50的底部引出, 与旋转驱动装 置 22连接。
若干反应气体从反应腔 50顶部进入,在托盘 10的外延片 40上进行外延 反应或薄膜沉积后, 从反应腔 50下部排出。 在对外延片 40处理的过程中, 由所述旋转驱动装置 22的马达带动驱动轴 20旋转, 并通过相互的耦合使托 盘 10与驱动轴 20能同步旋转, 使加热器 30能对托盘 10均匀加热, 并在外 延片 40上获得均匀的反应气体。
由于托盘转轴 100具有向下凸出的结构,不需要增加托盘 10的整体厚度, 即能保证机械强度, 因此, 使制造托盘 10的材料消耗减少, 更减轻了托盘 10的重量, 从而减少了其热容量。
由于托盘转轴 100具有向外凸出的结构, 转轴上与驱动轴的接触面凸出 在托盘底部的外面, 该表面的加工处理容易实施。 本发明所述可机械装卸的托盘 10, 与底部中心的驱动轴 20耦合, 可通 过以下多种结构使下凸的托盘转轴 100与驱动轴 20沉孔 200的接触,通过摩 擦传动或者接触传动实现由驱动轴 20带动的托盘 10的旋转。
实施例 1
如图 5或图 6所示,在本实施例中,所述托盘 10底部中心位置的托盘转 轴 100, 是向下凸出的阶梯形, 包含一设置在托盘 10底部的圆柱形的第一凸 台 110, 以及设置在第一凸台 110下、直径较小的圆柱形(图 5 )或圆锥形(图 6) 的第二凸台 120。 所述第一凸台 110的环形端面 111与托盘 10的上表面 11、 底面 12均平行。
所述驱动轴 20的顶端开设有一沉孔 200,该沉孔 200的环形顶面 211与 驱动轴 20的轴心垂直。 在托盘 10放入反应腔 50时, 将上述托盘转轴 100 的第二凸台 120完全插入该沉孔 200中, 由第二凸台 120的侧面 112作为托 盘 10垂直方向的导向和平面上定位,使直径较大的第一凸台 110的环形端面 111放在驱动轴 20的环形顶面 211上, 在垂直方向上定位托盘 10在反应腔 50里的位置, 并由驱动轴 20支撑托盘 10。 所述驱动轴 20的环形顶面 211 作为托盘 10支撑的有效面积, 由该驱动轴 20的沉孔 200的内外直径决定。
所述第二凸台 120的高度 al必须小于沉孔 200的深度 bl, 使第二凸台 120插入沉孔 200时, 第二凸台 120的底面 113与沉孔 200的底面 212之间 留有空隙, 保证第一凸台 110的环形端面 111与环形顶面 211的可靠接触。 在外延反应时, 所述第一凸台 110的环形端面 111和驱动轴 20的环形顶面 211 , 作为托盘转轴 100与驱动轴 20相互摩擦传动的接触面, 驱动所述托盘 10与驱动轴 20—起旋转。 实施例 2
如图 7所示,在本实施例中,所述托盘 10底部中心位置的托盘转轴 100, 是向下凸出的一个圆柱形或圆锥形的台阶 (图中未示出), 该台阶端面 121 与托盘 10的上表面 11、 底面 12均平行。
托盘转轴 100经由其台阶侧面 122进行平面的定位,使其插入驱动轴 20 顶端开设的沉孔 200时, 台阶端面 121落在沉孔 200底面 222上, 在垂直方 向上定位了托盘 10在反应腔 50里的位置, 并且由驱动轴 20支撑托盘 10。 所述驱动轴 20的沉孔 200的底面 222支撑托盘 10的有效面积, 由托盘转轴 100的直径决定。
托盘转轴 100插入沉孔 200时, 所述台阶端面 121与沉孔 200底面 222 相匹配且相接触,作为托盘转轴 100与驱动轴 20相互摩擦传动的接触面,驱 动所述托盘 10与驱动轴 20—起旋转。托盘转轴 100的高度 a2必须大于沉孔 200的深度 b2,使托盘转轴 100的一部分插入沉孔 200中,驱动轴 20的顶面 221与托盘 10的底面 12之间留有空隙, 保证台阶端面 121与沉孔 200的底 面 222的可靠接触。 实施例 3
与上述实施例 1、 2中主要通过托盘转轴 100与驱动轴 20上, 平行于托 盘 10上表面 11、底面 12的一对接触面的配合, 带动托盘 10与驱动轴 20— 起旋转的结构不同。
如图 8所示, 本实施例中, 托盘转轴 100向下设置有凸出托盘 10底面 12的台阶, 可以是圆柱形或圆锥形, 相对应地将驱动轴 20顶端的沉孔 200 也设置为圆柱形或圆锥形或其他与托盘转轴 100相匹配的形状, 使托盘转轴 100插入沉孔 200后,通过托盘转轴 100的台阶侧面 131与驱动轴 20沉孔 200 的侧面 231相接触, 支撑托盘 10, 并且作为托盘转轴 100与驱动轴 20相互 摩擦传动的接触面, 使托盘 10跟随驱动轴 20—起旋转。 实施例 4
如图 9至图 11所示, 在一些优选的实施方式中, 在凸出的托盘转轴 100 和驱动轴 20的沉孔 200上分别设置轴向的定位装置, 通过定位装置的耦合, 对应增加了旋转方向上的若干对接触面, 保证托盘 10转速与驱动轴 20转速 的一致。
具体地, 可在托盘转轴 100的侧面设置若干向外凸出的定位键 140, 在 驱动轴 20沉孔 200的侧面对应位置, 开设若干形状匹配的定位槽 240。在托 盘 10放入反应腔 50时, 通过设置在旋转驱动装置 22上的转角位置传感器, 对准该定位键 140和定位槽 240的位置, 将托盘转轴 100插入沉孔 200, 使 定位键 140的侧端面 141与定位槽 240的侧端面 241相接触, 通过轴向的接 触传动使托盘 10与驱动轴 20—起旋转, 且两者转速能保持一致。
如图 10所示,是托盘转轴 100上设置一对定位键 140的一种可选的结构 示意。 图 11所示, 是驱动轴 20的沉孔 200中设置十字形定位槽 240的一种 结构示意, 此时, 托盘转轴 100上的定位键 140亦可对应设置成十字形, 来 增加旋转方向的接触面。 或是可将图 10所示的定位键 140插入图 11所示的 十字形定位槽 240, 定位槽 240中的任意一对都可与定位键 140匹配, 方便 托盘 10与驱动轴 20的定位对准。
由于在旋转方向上增加了定位槽 240与定位键 140的若干对接触面, 尤 其在中高速旋转的条件下, 使驱动轴 20带动托盘 10同步旋转时不再依靠摩 擦传动,长期使用可靠性高,减少了托盘 10因为磨损而造成的更换,从而减 少了外延片 40的生产成本。 综上所述, 本发明提出了一种放置若干外延片 40的托盘 10, 通过在底 部中心设置向下凸出的托盘转轴 100,对应插入驱动轴 20顶部的沉孔 200中 耦合联接, 方便由机械手在反应腔 50里进行取放和更换。
本发明通过托盘转轴 100和驱动轴 20沉孔 200上,分别设置的一对平行 于托盘 10表面的接触端面进行摩擦传动, 或是通过托盘转轴 100和驱动轴 20沉孔 200上对应侧面的接触进行摩擦传动,使托盘 10在驱动轴 20的带动 下, 能在各种需要的转速下平稳转动, 并使托盘 10上的若干外延片 40通过 托盘 10下方的加热器 30均匀加热, 并在外延片 40上获得均匀的气体浓度、 均匀的气体速度的边界层, 对外延片 40进行外延反应或薄膜沉积处理。
而且,本发明还在托盘转轴 100和驱动轴 20沉孔 200的侧面对应设置若 干对应的定位槽 240和定位键 140, 通过其在旋转方向的若干对接触面的贴 合, 使托盘 10与驱动轴 20的转速同步。 因而使驱动轴 20带动托盘 10旋转 时不再依靠摩擦传动,尤其在中高速旋转的条件下,长期使用的可靠性提高, 减少了托盘 10因为磨损而造成的更换, 从而减少了外延片 40的生产成本。
另外, 由于托盘转轴 100具有向下凸出的结构,使其与驱动轴 20摩擦的 接触面暴露在托盘 10底部的外面, 容易进行该表面加工处理。
并且, 凸出的托盘转轴 100, 不需要额外增加托盘 10的整体厚度, 即能 保证该处的机械强度, 因此, 使制造托盘 10的材料消耗减少, 更减轻了托盘 10的重量, 减少了其热容量, 从而减少了托盘 10加热与冷却的时间, 提高 了生产效率, 亦提高了外延反应温度调节控制的能力。
尽管本发明的内容己经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利要求
1. 一种外延片托盘及与其配合的支撑和旋转联接装置,包含放置在 MOCVD 反应腔 (50) 中可机械装卸的托盘 (10), 以及从下方与所述托盘 (10) 的底面 (12) 中心联接的垂直驱动轴 (20); 所述反应腔 (50) 中引入有 若干反应气体, 对所述托盘(10)上放置的若干外延片(40)进行外延反 应或薄膜沉积, 其特征在于,
所述托盘 (10) 的上表面设有若干浅凹盘, 对应放置若干外延片; 所述托盘 (10) 的底部中间设置有向外凸出的托盘转轴 (100); 所述驱动轴 (20) 的顶部开设有沉孔 (200);
在当所述托盘 (10) 由机械放入反应腔 (50) 中时, 至少所述托盘 转轴 (100) 的一部份插入所述驱动轴 (20)顶部对应的沉孔 (200) 中, 通过托盘转轴 (100) 与沉孔 (200) 上对应设置的接触面的耦合联接定 位并支撑所述托盘 (10) 在反应腔 (50) 中的位置, 并且使所述驱动轴 (20) 旋转时带动所述托盘 (10) 旋转。
2. 如权利要求 1所述外延片托盘及与其配合的支撑和旋转联接装置,其特征 在于, 还包含与所述驱动轴 (20) 连接的旋转密封装置 (21 )、 旋转驱动 装置 (22), 以及设置在所述托盘 (10) 下方的加热器 (30);
所述驱动轴 (20) 向下穿过所述加热器(30), 并通过所述旋转密封 装置 (21 ) 从反应腔 (50) 的底部引出, 与旋转驱动装置 (22) 连接; 由所述旋转驱动装置 (22) 带动所述驱动轴 (20) 旋转, 并使所述 托盘 (10) 与驱动轴 (20) —起旋转。
3. 如权利要求 1或 2所述外延片托盘及与其配合的支撑和旋转联接装置,其 特征在于, 所述托盘转轴 (100) 是向下凸出的阶梯形, 包含一设置在托 盘 (10) 底部的第一凸台 (110), 以及设置在第一凸台 (110) 下的第二 凸台 ( 120);
所述第一凸台 (110) 底端的环形端面 (111 ) 与所述托盘 (10) 的 上表面 (11 ) 和底面 (12 ) 均平行;
所述沉孔 (200) 的环形顶面 (211 ) 与所述驱动轴 (20) 的轴心垂 直;
所述第二凸台 (120) 的高度 al小于所述沉孔 (200) 的深度 M ; 所述托盘转轴 (100) 的第二凸台 (120) 对应插入所述沉孔 (200) 时, 使所述环形端面 (111 ) 与沉孔 (200) 的环形顶面 (211 ) 相接触, 支撑托盘(10), 并通过摩擦传动, 当所述驱动轴 (20)旋转时, 带动托 盘 (10) 旋转。
4. 如权利要求 3所述外延片托盘及与其配合的支撑和旋转联接装置,其特征 在于, 所述第一凸台 (110)是圆柱形; 所述第二凸台 (120)是直径小于 第一凸台 (110) 的圆柱形或圆锥形。
5. 如权利要求 1或 2所述外延片托盘及与其配合的支撑和旋转联接装置,其 特征在于, 所述向下凸出的托盘转轴 (100), 对应插入所述沉孔 (200) 时, 使所述托盘转轴 (100) 底端的台阶端面 (121 ) 与所述沉孔 (200) 的底面(222)相接触, 支撑托盘(10), 并通过摩擦传动, 当所述驱动轴
(20) 旋转时, 带动托盘 (10) 旋转; - 所述台阶端面(121 )与所述托盘(10)的上表面(11 )和底面(12) 均平行;
所述沉孔 (200) 的底面 (222) 与所述驱动轴 (20) 的轴心垂直; 所述托盘转轴 (100) 的高度 a2大于所述沉孔 (200) 的深度 b2。
6. 如权利要求 5所述外延片托盘及与其配合的支撑和旋转联接装置,其特征 在于, 所述托盘转轴 (100) 是圆柱形或圆锥形。
7. 如权利要求 1或 2所述外延片托盘及与其配合的支撑和旋转联接装置,其 特征在于, 所述向下凸出的托盘转轴 (100)对应插入与其形状相匹配的 沉孔(200) 中, 通过托盘转轴 (100) 的台阶侧面(131 )与驱动轴(20) 沉孔 (200) 的侧面 (231 ) 相接触, 支撑托盘 (10), 并作为所述托盘转 轴(100)与所述驱动轴(20)相互摩擦传动的接触面,使所述驱动轴(20) 能带动所述托盘 (10) 旋转。
8. 如权利要求 1或 2所述外延片托盘及与其配合的支撑和旋转联接装置,其 特征在于, 所述托盘转轴(100)与所述驱动轴 (20) 的沉孔(200)上分 别设置若干轴向的定位装置,通过定位装置在旋转方向上的至少一对接触 面的耦合, 使所述驱动轴 (20) 能带动所述托盘 (10) 旋转。
9. 如权利要求 8所述外延片托盘及与其配合的支撑和旋转联接装置,其特征 在于, 所述轴向定位装置分别是设置在托盘转轴 (100)侧面的若干定位 键 (140), 以及在驱动轴 (20) 沉孔 (200) 的侧面, 对应开设的若干定 位槽 (240);
所述托盘转轴 (100)插入沉孔 (200) 时, 所述定位键 (140) 与定 位槽(240) 的位置, 由设置在所述旋转驱动装置 (22)上的转角位置传 感器对准, 使定位键 (140) 与定位槽 (240) 准确耦合。
PCT/CN2011/001147 2010-08-19 2011-07-12 一种外延片托盘及与其配合的支撑和旋转联接装置 WO2012022111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011101454T DE112011101454T5 (de) 2010-08-19 2011-07-12 Epitaxialwafer-Suszeptor und dem Suszeptor angepasste Halte- und Dreh-Verbindungsvorrichtung
US13/670,933 US20130061805A1 (en) 2010-08-19 2012-11-07 Epitaxial wafer susceptor and supportive and rotational connection apparatus matching the susceptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010263418.3A CN101922042B (zh) 2010-08-19 2010-08-19 一种外延片托盘支撑旋转联接装置
CN201010263418.3 2010-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/670,933 Continuation US20130061805A1 (en) 2010-08-19 2012-11-07 Epitaxial wafer susceptor and supportive and rotational connection apparatus matching the susceptor

Publications (1)

Publication Number Publication Date
WO2012022111A1 true WO2012022111A1 (zh) 2012-02-23

Family

ID=43337242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001147 WO2012022111A1 (zh) 2010-08-19 2011-07-12 一种外延片托盘及与其配合的支撑和旋转联接装置

Country Status (4)

Country Link
US (1) US20130061805A1 (zh)
CN (1) CN101922042B (zh)
DE (1) DE112011101454T5 (zh)
WO (1) WO2012022111A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778079B2 (en) 2007-10-11 2014-07-15 Valence Process Equipment, Inc. Chemical vapor deposition reactor
EP2828886A4 (en) * 2012-03-20 2015-07-29 Veeco Instr Inc CLAVET PLATE HOLDER
CN115216843A (zh) * 2022-07-14 2022-10-21 深圳市纳设智能装备有限公司 一种石墨托盘状态检测方法、装置、系统和终端设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922042B (zh) * 2010-08-19 2012-05-30 江苏中晟半导体设备有限公司 一种外延片托盘支撑旋转联接装置
CN102154690B (zh) * 2011-05-23 2012-05-30 东莞市天域半导体科技有限公司 行星式外延生长设备中托盘的构成方法和装置
CN103132051B (zh) * 2011-11-23 2015-07-08 中微半导体设备(上海)有限公司 化学气相沉积反应器或外延层生长反应器及其支撑装置
CN103205731A (zh) * 2012-03-21 2013-07-17 江苏汉莱科技有限公司 一种mocvd新反应系统
CN102758192B (zh) * 2012-06-05 2014-08-20 中国电子科技集团公司第四十八研究所 一种半导体外延片载片盘及其支撑装置及mocvd反应室
CN103540912B (zh) * 2012-07-09 2016-06-08 中晟光电设备(上海)股份有限公司 Mocvd设备及该设备中的托盘支撑旋转系统
US9316443B2 (en) * 2012-08-23 2016-04-19 Lam Research Ag Method and apparatus for liquid treatment of wafer shaped articles
US9093482B2 (en) * 2012-10-12 2015-07-28 Lam Research Ag Method and apparatus for liquid treatment of wafer shaped articles
US9748120B2 (en) 2013-07-01 2017-08-29 Lam Research Ag Apparatus for liquid treatment of disc-shaped articles and heating system for use in such apparatus
CN103215563A (zh) * 2013-04-28 2013-07-24 光垒光电科技(上海)有限公司 沉积设备以及旋转装置
US9245777B2 (en) * 2013-05-15 2016-01-26 Lam Research Ag Apparatus for liquid treatment of wafer shaped articles and heating system for use in such apparatus
CN103436862B (zh) * 2013-08-06 2015-04-22 中国电子科技集团公司第四十八研究所 一种用于mocvd反应器的支撑轴及mocvd反应器
CN105575860B (zh) * 2014-10-09 2018-09-14 北京北方华创微电子装备有限公司 托盘的旋转连接组件以及应用其的反应腔室
EP3310941B1 (de) * 2015-06-16 2020-12-30 Schneider GmbH & Co. KG Vorrichtung und verfahren zur beschichtung von linsen
CN105350073B (zh) * 2015-10-30 2018-09-25 中国电子科技集团公司第四十八研究所 一种硅外延设备的石墨盘旋转密封装置及自动上下料系统
CN106801222B (zh) * 2015-11-26 2018-06-19 中晟光电设备(上海)股份有限公司 一种晶片托盘及mocvd系统
ITUB20160556A1 (it) * 2016-02-08 2017-08-08 L P E S P A Suscettore con perno riscaldato e reattore per deposizione epitassiale
TWI619198B (zh) * 2016-03-14 2018-03-21 Wafer carrier
DE102016125278A1 (de) 2016-12-14 2018-06-14 Schneider Gmbh & Co. Kg Vorrichtung, Verfahren und Verwendung zur Beschichtung von Linsen
CN111554610A (zh) * 2020-04-16 2020-08-18 清华大学 微腔刻蚀基底盛放装置及微腔刻蚀系统
WO2023220681A1 (en) * 2022-05-12 2023-11-16 Watlow Electric Manufacturing Company Hybrid shaft assembly for thermal control in heated semiconductor pedestals
CN115161766B (zh) * 2022-07-14 2024-04-26 中国电子科技集团公司第四十八研究所 硅外延设备的石墨基座旋转结构及石墨基座水平调节方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284079A (ja) * 1986-05-31 1987-12-09 Babcock Hitachi Kk 光化学的気相堆積装置
JPH05109655A (ja) * 1991-10-15 1993-04-30 Applied Materials Japan Kk Cvd−スパツタ装置
JPH06310438A (ja) * 1993-04-22 1994-11-04 Mitsubishi Electric Corp 化合物半導体気相成長用基板ホルダおよび化合物半導体気相成長装置
CN1489644A (zh) * 2001-02-07 2004-04-14 ��ķ�ƶ��ɷ����޹�˾ 通过化学汽相沉积在晶片上生长外延层的无基座式反应器
CN101906622A (zh) * 2010-08-20 2010-12-08 华晟光电设备(香港)有限公司 用于mocvd系统中控制外延片温度及均匀性的装置与方法
CN101922042A (zh) * 2010-08-19 2010-12-22 华晟光电设备(香港)有限公司 一种外延片托盘及与其配合的支撑和旋转联接装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008447A (en) * 1958-11-15 1961-11-14 Electronique & Automatisme Sa Apparatus for the production of electrically conductive film layers of controlled resistivity
US3633537A (en) * 1970-07-06 1972-01-11 Gen Motors Corp Vapor deposition apparatus with planetary susceptor
US3828580A (en) * 1971-05-03 1974-08-13 Bosch Gmbh Robert Coupling construction
US4993355A (en) * 1987-03-31 1991-02-19 Epsilon Technology, Inc. Susceptor with temperature sensing device
US4999211A (en) * 1989-09-22 1991-03-12 Itt Corporation Apparatus and method for making a photocathode
JPH10154740A (ja) * 1996-11-22 1998-06-09 Mecs:Kk ウェハとトレーのセッティングシステムとそのためのトレーへのウェハセッティング装置
SG71808A1 (en) * 1997-07-04 2000-04-18 Tokyo Electron Ltd Centrifugal coating apparatus with detachable outer cup
US6118100A (en) * 1997-11-26 2000-09-12 Mattson Technology, Inc. Susceptor hold-down mechanism
US6827092B1 (en) * 2000-12-22 2004-12-07 Lam Research Corporation Wafer backside plate for use in a spin, rinse, and dry module and methods for making and implementing the same
JP2002231645A (ja) * 2001-02-02 2002-08-16 Ngk Insulators Ltd 窒化物半導体膜の製造方法
JP4331901B2 (ja) * 2001-03-30 2009-09-16 日本碍子株式会社 セラミックサセプターの支持構造
US20050229849A1 (en) * 2004-02-13 2005-10-20 Applied Materials, Inc. High productivity plasma processing chamber
CN1328410C (zh) * 2004-10-19 2007-07-25 吉林大学 氧化锌生长用低压金属有机化学汽相沉积设备及其工艺
JP2006173560A (ja) * 2004-11-16 2006-06-29 Sumitomo Electric Ind Ltd ウエハガイド、有機金属気相成長装置および窒化物系半導体を堆積する方法
CN101224862A (zh) * 2007-01-15 2008-07-23 北京北方微电子基地设备工艺研究中心有限责任公司 一种真空旋转升降装置
US8021487B2 (en) * 2007-12-12 2011-09-20 Veeco Instruments Inc. Wafer carrier with hub

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284079A (ja) * 1986-05-31 1987-12-09 Babcock Hitachi Kk 光化学的気相堆積装置
JPH05109655A (ja) * 1991-10-15 1993-04-30 Applied Materials Japan Kk Cvd−スパツタ装置
JPH06310438A (ja) * 1993-04-22 1994-11-04 Mitsubishi Electric Corp 化合物半導体気相成長用基板ホルダおよび化合物半導体気相成長装置
CN1489644A (zh) * 2001-02-07 2004-04-14 ��ķ�ƶ��ɷ����޹�˾ 通过化学汽相沉积在晶片上生长外延层的无基座式反应器
CN101922042A (zh) * 2010-08-19 2010-12-22 华晟光电设备(香港)有限公司 一种外延片托盘及与其配合的支撑和旋转联接装置
CN101906622A (zh) * 2010-08-20 2010-12-08 华晟光电设备(香港)有限公司 用于mocvd系统中控制外延片温度及均匀性的装置与方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778079B2 (en) 2007-10-11 2014-07-15 Valence Process Equipment, Inc. Chemical vapor deposition reactor
EP2828886A4 (en) * 2012-03-20 2015-07-29 Veeco Instr Inc CLAVET PLATE HOLDER
KR20160006253A (ko) * 2012-03-20 2016-01-18 비코 인스트루먼츠 인코포레이티드 키형 웨이퍼 캐리어
US9816184B2 (en) 2012-03-20 2017-11-14 Veeco Instruments Inc. Keyed wafer carrier
KR101946432B1 (ko) * 2012-03-20 2019-02-11 비코 인스트루먼츠 인코포레이티드 키형 웨이퍼 캐리어
CN115216843A (zh) * 2022-07-14 2022-10-21 深圳市纳设智能装备有限公司 一种石墨托盘状态检测方法、装置、系统和终端设备
CN115216843B (zh) * 2022-07-14 2023-07-07 深圳市纳设智能装备有限公司 一种石墨托盘状态检测方法、装置、系统和终端设备

Also Published As

Publication number Publication date
DE112011101454T5 (de) 2013-03-14
CN101922042A (zh) 2010-12-22
CN101922042B (zh) 2012-05-30
US20130061805A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2012022111A1 (zh) 一种外延片托盘及与其配合的支撑和旋转联接装置
JP5926730B2 (ja) 改良されたウェハキャリア
US20190304825A1 (en) Dual temperature heater
US9076828B2 (en) Edge ring for a thermal processing chamber
KR102071681B1 (ko) 자가 중심설정 서셉터 링 조립체
JP2001522142A (ja) 改良された低質量ウェハ支持システム
TW201335414A (zh) 石墨盤、具有上述石墨盤的反應腔室和對基底的加熱方法
CN202465868U (zh) 石墨盘、具有上述石墨盘的反应腔室
JP2009283904A (ja) 成膜装置および成膜方法
US20210384065A1 (en) Wafer carrier for metal organic chemical vapor deposition
CN107195579B (zh) 晶圆承载装置
JP2009016567A (ja) 気相成長装置及び気相成長方法
TWI484587B (zh) Substrate processing equipment
JP2004327761A (ja) エピタキシャル成長用サセプタ
CN105386121B (zh) 用于碳化硅外延生长的行星旋转装置
TWM496843U (zh) 一種化學氣相沉積裝置及旋轉軸
TW202140850A (zh) 在由半導體材料製成的基板晶圓上沉積磊晶層的方法和設備
TWI718501B (zh) 用於氣相沉積設備之晶圓承載裝置
JPH0963966A (ja) 気相成長装置
KR20190096806A (ko) 성막 장치
CN110273143B (zh) 工艺腔室及半导体加工设备
JP2010034185A (ja) 気相成長装置用のサセプタ及びエピタキシャルウェーハの製造方法
CN207958544U (zh) 一种外延片托盘的旋转支撑装置
TW202247335A (zh) 晶舟、用於對準及旋轉晶舟之總成、用於處理晶圓之垂直批式熔爐總成
JPH0529230A (ja) 気相成長装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011101454

Country of ref document: DE

Ref document number: 1120111014546

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817639

Country of ref document: EP

Kind code of ref document: A1