WO2012020834A1 - 水素製造方法及び装置 - Google Patents

水素製造方法及び装置 Download PDF

Info

Publication number
WO2012020834A1
WO2012020834A1 PCT/JP2011/068405 JP2011068405W WO2012020834A1 WO 2012020834 A1 WO2012020834 A1 WO 2012020834A1 JP 2011068405 W JP2011068405 W JP 2011068405W WO 2012020834 A1 WO2012020834 A1 WO 2012020834A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
water
hydrogen
inert gas
gas
Prior art date
Application number
PCT/JP2011/068405
Other languages
English (en)
French (fr)
Inventor
竹島 伸一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180039128.3A priority Critical patent/CN103140435B/zh
Priority to DE112011102702.8T priority patent/DE112011102702B4/de
Priority to JP2012528715A priority patent/JP5549732B2/ja
Publication of WO2012020834A1 publication Critical patent/WO2012020834A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a hydrogen production method and apparatus, and more particularly to a method and apparatus for producing hydrogen by thermochemical water splitting. ⁇ Related technologies>
  • thermochemical water splitting method is a method in which water is split at a lower temperature than in the case of direct water splitting by combining chemical reactions.
  • water is decomposed into hydrogen and oxygen using a redox reaction of redox materials having different oxidation states as described below (M Red-Ox is a redox material): M Red-Ox (high oxidation state) ⁇ M Red-Ox (low oxidation state) + O 2 (endothermic reaction) M Red-Ox (low oxidation state) + H 2 O ⁇ M Red-Ox (high oxidation state) + H 2 (exothermic reaction) Total reaction H 2 O ⁇ H 2 + 1 / 2O 2
  • thermochemical water splitting method the redox material is divided into a plurality of parts, and while a reduction reaction is performed on a part of the redox material, an oxidation reaction is performed on another part of the redox material.
  • a reduction reaction is performed on a part of the redox material
  • an oxidation reaction is performed on another part of the redox material.
  • the redox material is divided into a plurality of parts, and these are attached to a rotating mechanism, and while a reduction reaction is performed on a part of the redox material, an oxidation reaction is performed on another part of the redox material. It is proposed to make it.
  • the redox material is divided into two parts and one redox material is subjected to a reduction reaction while the other redox material It is proposed that the oxidation reaction be carried out.
  • thermochemical water splitting method it is possible to use a redox reaction between metal oxides having different oxidation states or a redox reaction between a metal oxide and a metal. It is generally known as shown in the literature.
  • water is reduced by a metal to generate hydrogen, and the resulting metal oxide is reduced by a reducing agent generated by an endothermic chemical reaction to newly react.
  • the endothermic reaction for generating the reducing agent is performed while supplying solar energy.
  • a hydrogen generation facility proposed in Japanese Patent Application Laid-Open No. 07-144901 includes a reduction device that reduces iron-based oxides, and a hydrogen generation device that generates hydrogen by bringing activated oxide or metallic iron into contact with water vapor.
  • the reduction device is provided with a cooling device, and the hydrogen generation device is provided with a heating device.
  • a hydrogen production apparatus proposed in Japanese Patent Application Laid-Open No. 2005-289680 includes a reduction means for reacting hydrogen with a metal oxide to separate it into metal and water vapor, and a storage for storing the metal separated by the reduction means. Means, and an oxidizing means for reacting water vapor and the metal stored in the storage means to separate into hydrogen and metal oxide.
  • the present invention provides a method and apparatus for producing hydrogen by thermochemical water splitting.
  • thermochemical water splitting involves heating a highly oxidized redox material in an inert atmosphere to desorb oxygen from the highly oxidized redox material, thereby reducing the low oxidized redox material.
  • Reduction step to obtain material and oxygen, and hydrogen to contact low oxidation state redox material with water to oxidize low oxidation state redox material and reduce water, thereby obtaining high oxidation state redox material and hydrogen Including a generation step.
  • the reduction step and the hydrogen generation step are performed by switching in the same reaction vessel.
  • the hydrogen production method of the present invention by performing the reduction step and the hydrogen generation step in the same reaction vessel, either the reduction step or the hydrogen generation step can be always performed in the reaction vessel.
  • the period of the reduction step and the hydrogen generation step can be flexibly adjusted according to the time required for the reaction in each step. Therefore, according to the hydrogen generation method of the present invention, the thermal energy supplied to the reaction vessel can be used effectively.
  • the reaction time required in the reduction step is significantly longer than the reaction time required in the hydrogen generation step. Therefore, in the hydrogen production method of the present invention, the time used for the reduction step is the same as the hydrogen generation time. It can be longer than the time used for the process.
  • the period of the reduction step and the hydrogen generation step can be flexibly adjusted according to the time required for the reaction in each step. It is particularly preferable when energy adjustment is difficult, for example, when at least part of the thermal energy required for at least one of the reduction step and the hydrogen generation step is supplied by solar energy.
  • switching between the reduction step and the hydrogen generation step is performed based on the output value of an oxygen concentration sensor that evaluates the outflow gas from the reaction vessel.
  • M Red-Ox is a redox material
  • M Red-Ox (high oxidation state) M Red-Ox (low oxidation state) + O 2 (endothermic reaction)
  • the outflow gas from the reaction vessel contains oxygen, and this outflow gas becomes oxygen excess.
  • the oxygen concentration in the effluent gas from the reaction vessel is lowered, and finally the effluent gas does not substantially contain oxygen. Therefore, the progress and completion of the reduction reaction in the reduction process can be detected by evaluating the oxygen concentration of the outflow gas from the reaction vessel with the oxygen concentration sensor.
  • the output value of the oxygen concentration sensor indicates that the outflow gas from the reaction vessel is in a reducing atmosphere, or that the outflow gas does not contain oxygen. .
  • the hydrogen concentration in the effluent gas from the reaction vessel is lowered, thereby reducing the degree of reducing the effluent gas, and in some cases, the redox material in a highly oxidized state. Some decompose and release oxygen.
  • Such a decrease in the degree of reducing the effluent gas and an optional increase in oxygen concentration can be detected by an oxygen sensor. Therefore, by evaluating the outflow gas from the reaction vessel with an oxygen concentration sensor, it is possible to detect the progress and completion of the hydrogen generation reaction in the hydrogen generation step.
  • the progress and completion of the reduction reaction in the reduction process and the progress and completion of the hydrogen generation reaction in the hydrogen generation process can be detected by the output value of the oxygen concentration sensor that evaluates the outflow gas from the reaction vessel. . Therefore, by performing switching between the reduction process and the hydrogen production process based on the output value of the oxygen concentration sensor that evaluates the outflow gas from the reaction vessel, this switching can be performed at an appropriate timing. Note that this switching need not be performed after the reduction reaction or the hydrogen generation reaction has completely progressed, and it may be preferable in terms of the reaction rate to be performed at the stage where the reduction reaction or the hydrogen generation reaction has proceeded.
  • an inert gas is supplied to the reaction vessel, the inert gas is separated from the effluent gas from the reaction vessel, and the inert gas is reduced. Recirculate for use in.
  • the oxygen obtained from the effluent gas from the reaction vessel can be optionally recovered, discarded, and the like.
  • the amount of additional inert gas required is reduced by recirculating the inert gas for use in the reduction step.
  • water is supplied to the reaction vessel, water is separated from the effluent gas from the reaction vessel, and this water is used in the hydrogen generation step.
  • the hydrogen obtained from the effluent gas from the reaction vessel can be directly recovered, recovered after further purification, or the like.
  • the amount of additional water required is reduced by recirculating the water for use in the hydrogen production step.
  • a combination of water and nitrogen as an inert gas is supplied to the reaction vessel, and the outflow gas from the reaction vessel is converted into a combination of hydrogen and nitrogen and water. Separating and adjusting the hydrogen and nitrogen combination by removing part of the nitrogen or adding nitrogen so that the molar ratio of hydrogen to nitrogen is 3: 1 and adjusting the molar ratio of hydrogen And a combination of nitrogen is supplied to the ammonia production process.
  • the energy required for the separation of hydrogen and nitrogen can be reduced by supplying hydrogen and nitrogen in a mixture state to the ammonia production process.
  • the effluent gas from the reaction vessel is exchanged with the effluent gas from the reaction vessel and at least one of the inert gas and water supplied to the reaction vessel. And at least one of an inert gas and water supplied to the reaction vessel is heated.
  • the cooling of the effluent gas from the reaction vessel can facilitate the separation of components in the effluent gas in the subsequent processing, and the inert gas supplied to the reaction vessel.
  • the amount of thermal energy that needs to be supplied to the reaction vessel for the oxidation / reduction reaction of the redox material can be reduced.
  • the hydrogen production apparatus of the present invention has the following configuration: a reaction vessel holding a redox material; an inert gas supply unit for supplying an inert gas to the reaction vessel; and water for the reaction vessel.
  • Supply, water supply unit; oxygen is separated from the reducing process effluent gas containing inert gas and oxygen from the reaction vessel; oxygen separation unit; from the hydrogen generation step effluent gas containing water vapor and hydrogen from the reaction vessel
  • a water separation unit that separates water vapor; and a switching valve that supplies the reduction process outflow gas and the hydrogen generation process outflow gas from the reaction vessel to the oxygen separation unit and the water vapor separation unit.
  • the hydrogen production apparatus of the present invention can optionally have the following configuration: an oxygen concentration sensor for measuring the oxygen concentration of the reduction process effluent gas and the hydrogen generation process effluent gas; obtained by separation in the oxygen separation unit An inert gas recirculation path for recirculating the generated inert gas to the inert gas supply section; a water recirculation path for recirculating the water obtained by the separation in the water separation section to the water supply section; A solar concentrator for supplying solar energy to the reaction vessel; and / or at least one of the inert gas supplied from the inert gas supply unit to the reaction vessel and the water supplied from the water supply unit to the reaction vessel and the reaction vessel Heat exchanger that exchanges heat with effluent gas.
  • the hydrogen production method of the present invention can be carried out.
  • nitrogen and oxygen-containing gas (N 2 + O 2 ) is supplied to the oxygen separator (22), and oxygen is removed in the oxygen separator (22) to obtain the obtained nitrogen Is optionally further purified and supplied again to the inert gas supply source (21).
  • the reaction vessel (10) can be heated by a heat source (15), for example, a solar concentrator, and the heat from the heat source (15) is converted into a reaction vessel (15a) as indicated by an arrow (15a). In addition to being fed to 10), it can optionally be fed to the heat exchanger (11) as indicated by the arrow (15b).
  • a heat source for example, a solar concentrator
  • the hydrogen (H 2 ) generated in the reaction vessel (10) in this manner is discharged from the reaction vessel (10) together with water vapor (H 2 O) and optional nitrogen (N 2 ) (H 2 O + O 2 (+ N 2 )), cooled through heat exchanger (11) and fed to switching valve (12).
  • a gas (H 2 O + O 2 (+ N 2 )) containing hydrogen, water vapor and optional nitrogen is supplied to the water separation section (32), and water in the water separation section (32) is supplied. Water is removed by condensation or the like, and the obtained water is further purified optionally and supplied again to the water supply source (31).
  • hydrogen and optional nitrogen (H 2 (+ N 2 )) obtained in the water separation unit (32) are removed from the nitrogen separation unit (33) as necessary to remove hydrogen (H 2 ).
  • the nitrogen (N 2 ) separated here can be discarded, optionally purified, and supplied to the inert gas supply source (21) again.
  • the amount of nitrogen to be removed is adjusted, and the resulting product may be a mixed gas containing hydrogen and nitrogen in a ratio of 3: 1 (H 2 + N 2 ).
  • the obtained mixed gas of hydrogen and nitrogen can be directly supplied to an ammonia synthesis process, particularly an ammonia synthesis process by the Harbor Bosch method. Further, if necessary, nitrogen may be added to obtain a mixed gas containing hydrogen and nitrogen in a ratio of 3: 1 (H 2 + N 2 ).
  • the oxygen concentration sensor can be arranged near the outlet (13a) from the reaction vessel (10) and / or near the inlet (13b) of the switching valve (12).
  • thermochemical water splitting a material that is oxidized and reduced for thermochemical water splitting
  • a redox material a material that is oxidized and reduced for thermochemical water splitting
  • a redox reaction for thermochemical water splitting a redox reaction between a metal and a metal oxide or a redox reaction between metal oxides having different oxidation states can be used.
  • a redox reaction is a method using a redox reaction between a metal such as magnesium (Mg), aluminum (Al), iron (Fe), and the metal oxide in the following reaction formula.
  • M is a metal element
  • m is the valence of the metal element M
  • M 2 / m 2 O ⁇ M + 1 / 2O 2 (Formula 3)
  • oxidation-reduction reaction is a method using an oxidation-reduction reaction between iron oxides having different oxidation states in the following reaction formula: 3FeO + H 2 O ⁇ Fe 3 O 4 + H 2 (Formula 4) Fe 3 O 4 ⁇ 3FeO + 1 / 2O 2 (Formula 5) Total reaction H 2 O ⁇ H 2 + 1 / 2O 2
  • the metal and / or metal oxide used in this thermochemical decomposition method utilizing the oxidation-reduction reaction of metal and / or metal oxide is supported as fine powder on a carrier of fin type structure, honeycomb type structure, pellet type structure, etc. can do. In this case, it is possible to suppress the sintering of the metal and / or metal oxide used and thereby maintain a relatively large surface area.
  • inert gas In the present invention, as the inert gas, a rare gas such as argon or helium can be used along with nitrogen, and particularly nitrogen obtained by cryogenic air separation can be used.
  • oxygen concentration sensor examples include an electromotive force type oxygen concentration sensor, particularly an electromotive force type oxygen concentration sensor used for exhaust gas stoichiometric control in exhaust gas purification applications such as automobiles. Can do.
  • this electromotive force type oxygen concentration sensor generally has a sensor part in which platinum is coated on the surface of a test tubular zirconia element, and the inner surface of the sensor part is exposed to the atmosphere, and the outer surface is exposed to exhaust.
  • an electromotive force is generated when the difference in oxygen concentration between the inner side surface and the outer side surface of the zirconia element of the sensor unit is large.
  • the electromotive force generated in the electromotive force type oxygen concentration sensor is small or no electromotive force is generated.
  • the electromotive force generated in this electromotive force type oxygen concentration sensor becomes large.
  • an oxygen concentration sensor can be used in combination with a hydrogen concentration sensor.
  • solar light collector examples of the solar light collecting device that can be used in the present invention include a parabolic dish type light collecting device, a solar tower type light collecting device, and a parabolic trough type light collecting device.
  • the parabolic dish type condensing device is a condensing device having a dish-like reflecting portion that reflects sunlight and condensing the light and a light receiving portion that receives the condensed light, and has a high degree of condensing and therefore high temperature. A heat source is obtained.
  • the solar tower type condensing device is a condensing device having a plurality of heliostats (reflecting portions) for reflecting sunlight and condensing, and a light receiving portion arranged on the upper portion of the light receiving tower, Therefore, a high temperature heat source is obtained.
  • the parabolic trough type condensing device is a condensing device having a trough type reflecting portion for reflecting sunlight and collecting the light and a light receiving portion for receiving the condensed light, and is obtained with a relatively low concentration.
  • the heat source is a low-temperature heat source, the cost is low compared to the above two light collecting devices.
  • the reflecting portion may be covered with a reflective material such as aluminum.
  • the reaction vessel used in the present invention may be any vessel that can hold a redox material.
  • the inert gas supply part and water supply part used by this invention may be like a tank which can hold
  • the oxygen separation unit, the water separation unit, and the nitrogen separation unit used in the present invention may be arbitrary portions that can separate oxygen, water, and nitrogen, respectively. Therefore, these separation parts can have a separation membrane suitable for separation of these substances, perform condensation that enables separation of these substances, perform cryogenic separation, and the like.
  • the switching valve used in the present invention may be any switching valve capable of switching and supplying the reduction process outflow gas and the hydrogen generation process outflow gas from the reaction vessel to the oxygen separation unit and the water vapor separation unit.
  • the inert gas recirculation path used in the present invention may be any flow path that can recirculate the inert gas obtained in the oxygen separation section to the inert gas supply section.
  • the water recirculation path used in the present invention may be any flow path that can recirculate the water obtained in the water separation section to the water supply section.
  • the heat exchanger used in the present invention may be any heat exchanger that enables heat exchange between the inert gas and / or water supplied to the reaction vessel and the effluent gas from the reaction vessel. Therefore, it may be a countercurrent type heat exchanger or a cocurrent type heat exchanger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Fuel Cell (AREA)

Abstract

本発明では、熱化学水分解によって水素を製造する方法及び装置を提供する。本発明の水素製造方法は、高酸化状態のレドックス材料を不活性雰囲気において加熱して、高酸化状態のレドックス材料から酸素を脱離させ、それによって低酸化状態のレドックス材料及び酸素を得る還元工程、及び低酸化状態のレドックス材料に水を接触させて、低酸化状態のレドックス材料を酸化し且つ水を還元し、それによって高酸化状態のレドックス材料及び水素を得る水素生成工程を含み、且つ還元工程及び水素生成工程を同一の反応容器において切り替えて行う。また、本発明の水素製造装置は、本発明の水素製造方法を実施するために用いられるものである。

Description

水素製造方法及び装置
 本発明は、水素製造方法及び装置、特に熱化学水分解によって水素を製造する方法及び装置に関する。
〈関連技術〉
 近年、クリーンエネルギーである水素をエネルギー源として用いることが多く提案されている。水素の製造のためには、炭化水素燃料を用いた水蒸気改質が一般的に行われている。また、近年では、水の分解、特に熱化学水分解によって、水から水素を得ることも考慮されている。
 熱化学水分解法は、化学反応を組み合わせることによって水の直接熱分解の場合よりも低い温度で水の分解を行わせる方法である。具体的には例えば、熱化学水分解法では、下記のように酸化状態の異なるレドックス材料の酸化還元反応を用いて、水を水素と酸素とに分解する(MRed−Oxはレドックス材料):
 MRed−Ox(高酸化状態)
        → MRed−Ox(低酸化状態) + O (吸熱反応)
 MRed−Ox(低酸化状態) + H
        → MRed−Ox(高酸化状態) + H (発熱反応)
 全反応 HO→H+1/2O
 このような熱化学水分解法では、レドックス材料を複数の部分に分割して、レドックス材料の一部について還元反応を行わせている間に、レドックス材料の他の一部について酸化反応を行わせることが提案されている。
 これに関して例えば、H.Kaneko等の“Rotary−Type Solar Reactor for Solar Hydrogen Production with Two−step Water Splitting Process.”、Energy & Fuel(2007)、21、pp.2287−2293では、レドックス材料を複数の部分に分け、これらを回転機構に取り付けて、レドックス材料の一部について還元反応を行わせている間に、レドックス材料の他の一部について酸化反応を行わせることを提案している。
 また、これに関して例えば、DLR方式(Deutsches Zentrum fuer Luft−und Raumfahrt)と呼ばれる方式では、レドックス材料を2つの部分に分け、一方のレドックス材料について還元反応を行わせている間に、他方のレドックス材料について酸化反応を行わせることを提案している。
 なお、熱化学水分解法を用いる水素の製造及び貯蔵に関しては、酸化状態が異なる金属酸化物間の酸化還元反応、又は金属酸化物と金属との間の酸化還元反応等を用いることが、下記の文献に示されるように一般に知られている。
 特開2001−270701号公報で提案されている水分解方法では、金属亜鉛及びマグネタイトを水と反応させ、反応生成物として水素を発生させ、またこの反応で得られた鉄酸化物を分解し、分解反応の生成物として酸素を発生させている。
 特開平07−267601号公報で提案されている水素発生方法では、水を金属によって還元して水素を生成し、生じた金属酸化物を吸熱化学反応で発生した還元剤によって還元し、新たに反応プロセスに入れられるようにし、且つ還元剤の発生のための吸熱反応を、太陽エネルギーを供給しながら行っている。
 特開平07−144901号公報で提案されている水素発生設備は、鉄系酸化物の還元を行う還元装置と、活性酸化物又は金属鉄を水蒸気と接触させて水素を発生させる水素発生装置とを包含してなり、還元装置に冷却装置を設けると共に、水素発生装置に加熱装置を設けている。
 特開2005−289680号公報で提案されている水素製造装置は、水素と金属酸化物とを反応させて、金属と水蒸気とに分離する還元手段と、還元手段によって分離された金属を貯蔵する貯蔵手段と、水蒸気と貯蔵手段に貯蔵された金属とを反応させて、水素と金属酸化物とに分離する酸化手段とを有する。
 本発明では、熱化学水分解によって水素を製造する方法及び装置を提供する。
 (水素製造方法)
 熱化学水分解によって水素を製造する本発明の方法は、高酸化状態のレドックス材料を不活性雰囲気において加熱して、高酸化状態のレドックス材料から酸素を脱離させ、それによって低酸化状態のレドックス材料及び酸素を得る還元工程、並びに低酸化状態のレドックス材料に水を接触させて、低酸化状態のレドックス材料を酸化し且つ水を還元し、それによって高酸化状態のレドックス材料及び水素を得る水素生成工程を含む。また、この本発明の方法では、還元工程及び水素生成工程を同一の反応容器において切り替えて行う。
 本発明の水素製造方法によれば、還元工程及び水素生成工程を同一の反応容器において切り替えて行うことによって、還元工程及び水素生成工程のいずれかを、反応容器において常に行わせることができ、また還元工程及び水素生成工程の期間を、それぞれの工程における反応に必要とされる時間に応じて柔軟に調節することができる。したがって、この本発明の水素生成方法によれば、反応容器に供給される熱エネルギーを有効に利用することができる。
 なお、一般に、還元工程で必要とされる反応時間は、水素生成工程において必要とされる反応時間よりも有意に長く、したがって本発明の水素製造方法では、還元工程に使用する時間を、水素生成工程に使用する時間よりも長くすることができる。
 また、本発明の水素製造方法でのように、還元工程及び水素生成工程の期間を、それぞれの工程における反応に必要とされる時間に応じて柔軟に調節できることは、反応容器に供給される熱エネルギーの調節が難しい場合、例えば還元工程及び水素生成工程の少なくとも一方に必要とされる熱エネルギーの少なくとも一部を太陽光エネルギーによって供給する場合に特に好ましい。
 本発明の水素製造方法の1つの態様では、還元工程と水素生成工程との間の切替を、反応容器からの流出ガスを評価する酸素濃度センサーの出力値に基づいて行う。
 上記記載のように、還元工程におけるレドックス材料の還元反応では、下記の反応によって反応容器内のレドックス材料から酸素が発生する(MRed−Oxはレドックス材料):
 MRed−Ox(高酸化状態)
        → MRed−Ox(低酸化状態) + O (吸熱反応)
 したがって、還元工程における還元反応が進行している間には、反応容器からの流出ガスが酸素を含有して、この流出ガスが酸素過剰になる。そしてその後、還元工程における還元反応が完了すると、反応容器からの流出ガスにおける酸素濃度が低下して、最終的にはこの流出ガスが実質的に酸素を含有しなくなる。よって反応容器からの流出ガスの酸素濃度を酸素濃度センサーで評価することによって、還元工程における還元反応の進行及び完了を検知することができる。
 また、上記記載のように、水素生成工程における水素生成反応では、下記の反応によって反応容器内のレドックス材料から水素が発生する(MRed−Oxはレドックス材料):
 MRed−Ox(低酸化状態) + H
        → MRed−Ox(高酸化状態) + H (発熱反応)
 したがって、還元工程における還元反応が進行している間には、酸素濃度センサーの出力値が、反応容器からの流出ガスが還元雰囲気であること、又は流出ガスが酸素を含有していないことを示す。そしてその後、水素生成工程における水素生成反応が完了すると、反応容器からの流出ガスにおける水素濃度が低下し、それによって流出ガスの還元性の程度が低下し、また場合によって高酸化状態のレドックス材料の一部が分解して酸素を放出する。このような流出ガスの還元性の程度の低下、及び随意の酸素濃度の増加は、酸素センサーによって検知することができる。よって反応容器からの流出ガスを酸素濃度センサーで評価することによって、水素生成工程における水素生成反応の進行及び完了を検知することができる。
 上記のように、反応容器からの流出ガスを評価する酸素濃度センサーの出力値によって、還元工程における還元反応の進行及び完了、並びに水素生成工程における水素生成反応の進行及び完了を検知することができる。したがって還元工程と水素生成工程との間の切替を、反応容器からの流出ガスを評価する酸素濃度センサーの出力値に基づいて行うことによって、この切替を適切なタイミングで行うことができる。なお、この切替は、還元反応又は水素生成反応が完全に進行するのを待ってから行う必要はなく、還元反応又は水素生成反応が進行した段階で行うことが、反応速度に関して好ましいことがある。
 また、本発明の水素製造方法の1つの態様では、還元工程において、反応容器に不活性ガスを供給し、反応容器からの流出ガスから不活性ガスを分離し、そしてこの不活性ガスを還元工程での使用のために再循環させる。ここで、反応容器からの流出ガスから得られた酸素は、随意に回収すること、廃棄すること等ができる。
 本発明の水素製造方法のこの態様によれば、不活性ガスを還元工程での使用のために再循環させることによって、追加で必要とされる不活性ガスの量が少なくなる。
 また、本発明の水素製造方法の1つの態様では、水素生成工程において、反応容器に水を供給し、反応容器からの流出ガスから水を分離し、そしてこの水を水素生成工程での使用のために再循環させる。ここで、反応容器からの流出ガスから得られた水素は、直接に回収すること、更なる純化を行った後で回収すること等ができる。
 本発明の水素製造方法のこの態様によれば、水を水素生成工程での使用のために再循環させることによって、追加で必要とされる水の量が少なくなる。
 本発明の水素製造方法の1つの態様では、水素生成工程において、反応容器に水と不活性ガスとしての窒素の組み合わせを供給し、反応容器からの流出ガスを水素及び窒素の組み合わせと水とに分離し、そして水素及び窒素の組み合わせを、水素と窒素とのモル比を3:1がになるように窒素の一部を除去し又は窒素を添加して調節し、そしてモル比を調節した水素及び窒素の組み合わせを、アンモニア製造工程に供給する。
 本発明の水素製造方法のこの態様によれば、水素と窒素とを混合物の状態でアンモニア製造工程に供給することによって、水素と窒素との分離に必要とされるエネルギーを少なくすることができる。
 また、本発明の水素製造方法の1つの態様では、反応容器からの流出ガスと、反応容器に供給される不活性ガス及び水の少なくとも一方との熱交換を行って、反応容器からの流出ガスを冷却し、且つ反応容器に供給される不活性ガス及び水の少なくとも一方を加熱する。
 本発明の水素製造方法のこの態様によれば、反応容器からの流出ガスの冷却によって、その後の処理において流出ガス中の成分の分離を促進することができ、また反応容器に供給される不活性ガス及び水の少なくとも一方の加熱によって、レドックス材料の酸化・還元反応のために反応容器に供給する必要がある熱エネルギーの量を少なくすることができる。
 (水素製造装置)
 本発明の水素製造装置は、下記の構成を有する:レドックス材料を保持している、反応容器;反応容器に対して不活性ガスを供給する、不活性ガス供給部;反応容器に対して水を供給する、水供給部;反応容器からの不活性ガス及び酸素を含有する還元工程流出ガスから、酸素を分離する、酸素分離部;反応容器からの水蒸気及び水素を含有する水素生成工程流出ガスから、水蒸気を分離する、水分離部;並びに反応容器からの還元工程流出ガス及び水素生成工程流出ガスを、酸素分離部及び水蒸気分離部に切り替えて供給する、切替弁。
 また、本発明の水素製造装置は、下記の構成を随意に有することができる:還元工程流出ガス及び水素生成工程流出ガスの酸素濃度を測定する、酸素濃度センサー;酸素分離部での分離で得られた不活性ガスを不活性ガス供給部に再循環させる、不活性ガス再循環路;水分離部での分離で得られた水を水供給部に再循環させる、水再循環路;反応容器に太陽光エネルギーを供給する、太陽光集光装置;及び/又は不活性ガス供給部から反応容器に供給される不活性ガス及び水供給部から反応容器に供給される水の少なくとも一方と反応容器からの流出ガスとの熱交換を行う、熱交換器。
 本発明の水素製造装置によれば、本発明の水素製造方法を実施することができる。
本発明の水素製造方法及び装置による水素製造の具体的例について説明するための図である。
 本発明の水素製造方法及び装置による水素製造の具体的例について、図1を用いて下記で説明する。
 (還元工程)
 本発明の水素製造方法及び装置による水素製造の還元工程では、不活性ガスとしての窒素(N)を、不活性ガス供給源(21)から弁(21a)を通して、熱交換器(11)に供給して加熱し、そして反応容器(10)に供給する。この窒素(N)の供給と併せて、反応容器(10)内の高酸化状態のレドックス材料を加熱して、高酸化状態のレドックス材料から酸素を脱離させ、それによって低酸化状態のレドックス材料及び酸素を得る。このようにして反応容器(10)において発生した酸素(O)は、不活性ガス供給源(21)から反応容器(10)に供給された窒素(N)と共に反応容器(10)から流出させ(N+O)、熱交換器(11)を通して冷却し、そして切替弁(12)に供給する。
 切替弁(12)では、窒素及び酸素を含有するガス(N+O)を、酸素分離部(22)に供給し、そして酸素分離部(22)において酸素を除去して、得られた窒素を随意に更に純化して、再び不活性ガス供給源(21)に供給する。
 なお、反応容器(10)の加熱は、熱源(15)、例えば太陽光集光装置によって行うことができ、この熱源(15)からの熱は、矢印(15a)で示すように、反応容器(10)に供給するだけでなく、矢印(15b)で示すように、随意に熱交換器(11)に供給することもできる。
 (水素生成工程)
 本発明の水素製造方法及び装置による水素製造の水素生成工程では、水(HO)を、水供給源(31)から、弁(31a)を通して熱交換器(11)に供給し、加熱して水蒸気にし、そして反応容器(10)に供給する。ここでは随意に、水供給源(31)からの水(HO)と併せて、不活性ガス供給部からの窒素(N)を、反応容器(10)に供給する。この水(HO)を低酸化状態のレドックス材料と接触させ、低酸化状態のレドックス材料を酸化し且つ水を還元し、それによって高酸化状態のレドックス材料及び水素(H)を得る。このようにして反応容器(10)において発生した水素(H)は、水蒸気(HO)及び随意の窒素(N)と共に、反応容器(10)から流出させ(HO+O(+N))、熱交換器(11)を通して冷却し、そして切替弁(12)に供給する。
 切替弁(12)では、水素、水蒸気及び随意の窒素を含有するガス(HO+O(+N))を、水分離部(32)に供給し、そして水分離部(32)における水の凝縮等によって水を除去して、得られた水を随意に更に純化して、再び水供給源(31)に供給する。また、水分離部(32)において得られた水素及び随意の窒素(H(+N))は、必要に応じて窒素分離部(33)において窒素を除去して、水素(H)を得ることができる。なお、ここで分離された窒素(N)は廃棄すること、随意の純化を行って再び不活性ガス供給源(21)に供給すること等ができる。
 また、窒素分離部(33)における窒素の除去においては、除去する窒素の量を調節して、得られる生成物が、水素及び窒素を3:1の割合で含有する混合ガスとしてもよい(H+N)。この場合には、得られた水素及び窒素の混合ガスを直接にアンモニア合成プロセス、特にハーバーボッシュ法によるアンモニア合成プロセスに供給することができる。また、必要に応じて、窒素を添加して、水素及び窒素を3:1の割合で含有する混合ガスを得てもよい(H+N)。
 (還元工程と水素生成工程との切り替え)
 本発明の水素製造方法及び装置による水素製造では、還元工程と水素生成工程との間の切替を、反応容器からの流出ガスを評価する酸素濃度センサーの出力値に基づいて行う場合、酸素濃度センサーは、反応容器(10)からの出口付近(13a)、及び/又は切替弁(12)の入口付近(13b)等に配置することができる。
 (レドックス材料)
 本発明では、熱化学水分解のために酸化及び還元される材料を「レドックス材料」として言及する。このような熱化学水分解のための酸化還元反応としては、金属と金属酸化物との間の酸化還元反応、又は酸化状態の異なる金属酸化物間の酸化還元反応を用いることができる。
 このような酸化還元反応の例は、下記の反応式で、マグネシウム(Mg)、アルミニウム(Al)、鉄(Fe)等の金属とその金属酸化物との間の酸化還元反応を利用する方法である(Mは金属元素、mは金属元素Mの原子価):
 M+HO → M2/mO+H      (式2)
 M2/mO → M+1/2O       (式3)
 全反応 HO → H+1/2O
 また、酸化還元反応の他の例は、下記の反応式で酸化状態の異なる酸化鉄間の酸化還元反応を利用する方法である:
 3FeO+HO → Fe+H       (式4)
 Fe → 3FeO+1/2O        (式5)
 全反応 HO→H+1/2O
 金属及び/又は金属酸化物の酸化還元反応を利用するこの熱化学分解法で用いられる金属及び/又は金属酸化物は、フィン型構造、ハニカム型構造、ペレット型構造等の担体に、微粉として担持することができる。この場合には、使用される金属及び/又は金属酸化物の焼結を抑制し、それによって比較的大きい表面積を維持することが可能になる。
 (不活性ガス)
 本発明においては、不活性ガスとして、窒素と並んで、アルゴン、ヘリウム等の希ガスを用いることができ、特に極低温空気分離によって得られた窒素を用いることができる。
 (酸素濃度センサー)
 本発明で用いられる酸素濃度センサーとしては、起電力式の酸素濃度センサー、特に自動車等の排ガス浄化の用途で排ガスのストイキ制御を行うために用いられている起電力式の酸素濃度センサーを挙げることができる。ここで、この起電力式の酸素濃度センサーは一般的に、試験管状のジルコニア素子表面に白金をコーティングしたセンサー部を有しており、このセンサー部の内面を大気に曝し、外面を排気に曝すことによって、センサー部のジルコニア素子の内側面と外面側面との酸素濃度差が大きいときに起電力を発生するものである。
 すなわち、本発明の水素製造方法及び装置では、反応容器からの流出ガス中に酸素が含有されているときには、この起電力式の酸素濃度センサーにおいて発生する起電力が小さく又は起電力が発生せず、また反応容器からの流出ガス中に酸素が実質的に含有されていないときには、この起電力式の酸素濃度センサーにおいて発生する起電力が大きくなる。
 ただし、本発明の水素製造方法においては、酸素濃度センサーとして、起電力式の酸素濃度センサーだけでなく、限界電流式の酸素濃度センサーを用いることもできる。また、本発明の水素製造方法及び装置においては、酸素濃度センサーを、水素濃度センサーと組み合わせて用いることもできる。
 (太陽光集光装置)
 本発明において使用できる太陽光集光装置としては、パラボリックディッシュ型集光装置、ソーラータワー型集光装置、パラボリックトラフ型集光装置等を挙げることができる。
 具体的には、パラボリックディッシュ型集光装置は、太陽光を反射させて集光する皿状反射部と集光した光を受け取る受光部を有する集光装置であり、集光度が高く、したがって高温熱源が得られる。また、ソーラータワー型集光装置は、太陽光を反射させて集光する複数のヘリオスタット(反射部)と、受光タワーの上部に配置されている受光部を有する集光装置であり、集光度が大きく、したがって高温熱源が得られる。また更に、パラボリックトラフ型集光装置は、太陽光を反射させて集光するトラフ型反射部と集光した光を受け取る受光部を有する集光装置であり、集光度が比較的低く、得られる熱源は低温熱源であるものの、上記の2つの集光装置と比較してコストが安い。
 これらの集光装置では、いずれも、反射部がアルミニウム等の反射性の材料によって被覆されていてよい。
 (その他)
 本発明で用いられる反応容器は、レドックス材料を保持することができる任意の容器であってよい。また、本発明で用いられる不活性ガス供給部及び水供給部は、それぞれ不活性ガス及び水を保持することができるタンクのようなものであってよい。また、本発明で用いられる酸素分離部、水分離部、及び窒素分離部は、それぞれ酸素、水及び窒素を分離できる任意の部分であってよい。したがってこれらの分離部は、これらの物質の分離に適した分離膜を有すること、これらの物質の分離を可能にする凝縮を行うこと、深冷分離を行うこと等ができる。
 また、本発明で用いられる切替弁は、反応容器からの還元工程流出ガス及び水素生成工程流出ガスを、酸素分離部及び水蒸気分離部に切り替えて供給することができる任意の切替弁であってよい。また、本発明で用いられる不活性ガス再循環路は、酸素分離部で得られた不活性ガスを不活性ガス供給部に再循環させることができる任意の流路であってよい。また、本発明で用いられる水再循環路は、水分離部で得られた水を水供給部に再循環させることができる任意の流路であってよい。また、本発明で用いられる熱交換器は、反応容器に供給される不活性ガス及び/又は水と、反応容器からの流出ガスとの熱交換を可能にする任意の熱交換器であってよく、したがって向流式の熱交換器であっても、並流式の熱交換器であってもよい。

Claims (13)

  1.  高酸化状態のレドックス材料を不活性雰囲気において加熱して、高酸化状態の前記レドックス材料から酸素を脱離させ、それによって低酸化状態の前記レドックス材料及び酸素を得る還元工程、並びに
     低酸化状態の前記レドックス材料に水を接触させて、低酸化状態の前記レドックス材料を酸化し且つ水を還元し、それによって高酸化状態の前記レドックス材料及び水素を得る水素生成工程
    を含み、且つ前記還元工程及び水素生成工程を同一の反応容器において切り替えて行う、水素製造方法。
  2.  前記還元工程と水素生成工程との間の切替を、前記反応容器からの流出ガスを評価する酸素濃度センサーの出力値に基づいて行う、請求項1に記載の方法。
  3.  前記還元工程において、前記反応容器に不活性ガスを供給し、前記反応容器からの流出ガスから前記不活性ガスを分離し、そして前記不活性ガスを前記還元工程での使用のために再循環させる、請求項1又は2に記載の方法。
  4.  前記水素生成工程において、前記反応容器に水を供給し、前記反応容器からの流出ガスから水を分離し、そして前記水を前記水素生成工程での使用のために再循環させる、請求項1~3のいずれかに記載の方法。
  5.  前記水素生成工程において、前記反応容器に水と不活性ガスとしての窒素の組み合わせを供給し、前記反応容器からの流出ガスを水素及び窒素の組み合わせと水とに分離し、そして水素及び窒素の組み合わせを、水素と窒素とのモル比が3:1になるように窒素の一部を除去し又は窒素を添加して調節し、そして水素と窒素とのモル比を調節した水素及び窒素の組み合わせを、アンモニア製造工程に供給する、請求項1~4のいずれかに記載の方法。
  6.  前記還元工程及び水素生成工程の少なくとも一方に必要とされる熱エネルギーの少なくとも一部を、太陽熱エネルギーによって供給する、請求項1~5のいずれかに記載の方法。
  7.  前記反応容器からの流出ガスと、前記反応容器に供給される前記不活性ガス及び水の少なくとも一方との熱交換を行って、前記反応容器からの流出ガスを冷却し、且つ前記反応容器に供給される前記不活性ガス及び水の少なくとも一方を加熱する、請求項1~6のいずれかに記載の方法。
  8.  レドックス材料を保持している、反応容器、
     前記反応容器に対して不活性ガスを供給する、不活性ガス供給部、
     前記反応容器に対して水を供給する、水供給部、
     前記反応容器からの前記不活性ガス及び酸素を含有する還元工程流出ガスから、酸素を分離する、酸素分離部、
     前記反応容器からの水蒸気及び水素を含有する水素生成工程流出ガスから、水蒸気を分離する、水分離部、並びに
     前記反応容器からの前記還元工程流出ガス及び水素生成工程流出ガスを、前記酸素分離部及び前記水蒸気分離部に切り替えて供給する、切替弁、
    を有する、水素製造装置。
  9.  前記還元工程流出ガス及び水素生成工程流出ガスの酸素濃度を測定する酸素濃度センサーを更に有する、請求項8に記載の装置。
  10.  前記酸素分離部での分離で得られた前記不活性ガスを前記不活性ガス供給部に再循環させる不活性ガス再循環路を更に有する、請求項8又は9に記載の装置。
  11.  前記水分離部での分離で得られた水を前記水供給部に再循環させる水再循環路を更に有する、請求項8~10のいずれかに記載の装置。
  12.  前記反応容器に太陽光エネルギーを供給する太陽光集光装置を更に有する、請求項8~11のいずれかに記載の装置。
  13.  前記不活性ガス供給部から前記反応容器に供給される不活性ガス及び前記水供給部から前記反応容器に供給される水の少なくとも一方と、前記反応容器からの流出ガスとの熱交換を行う熱交換器を更に有する、請求項8~12のいずれかに記載の装置。
PCT/JP2011/068405 2010-08-12 2011-08-05 水素製造方法及び装置 WO2012020834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180039128.3A CN103140435B (zh) 2010-08-12 2011-08-05 氢气制造方法和装置
DE112011102702.8T DE112011102702B4 (de) 2010-08-12 2011-08-05 Verfahren und Apparat zum Herstellen von Wasserstoff
JP2012528715A JP5549732B2 (ja) 2010-08-12 2011-08-05 水素製造方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/855,236 2010-08-12
US12/855,236 US8951497B2 (en) 2010-08-12 2010-08-12 Method and apparatus for producing hydrogen

Publications (1)

Publication Number Publication Date
WO2012020834A1 true WO2012020834A1 (ja) 2012-02-16

Family

ID=45564955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068405 WO2012020834A1 (ja) 2010-08-12 2011-08-05 水素製造方法及び装置

Country Status (5)

Country Link
US (1) US8951497B2 (ja)
JP (1) JP5549732B2 (ja)
CN (1) CN103140435B (ja)
DE (1) DE112011102702B4 (ja)
WO (1) WO2012020834A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234077A (ja) * 2012-05-02 2013-11-21 Toyota Industries Corp 水素製造装置、及びそれを用いた水素製造方法
WO2015155848A1 (ja) * 2014-04-09 2015-10-15 フレンド株式会社 水素ガス発生装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879928A (zh) * 2015-04-21 2015-09-02 任立峰 一种聚热能器以及生产氢气和氧气的方法及其装置
CN107758614B (zh) * 2016-08-19 2020-12-25 江苏天一超细金属粉末有限公司 一种太阳能光热化学分解水制氢的方法及设备
WO2019234922A1 (ja) 2018-06-08 2019-12-12 フレンド株式会社 水素混合ガスの生成方法
CN111302302B (zh) * 2020-02-14 2021-10-15 山东大学 一种基于微波加热的热化学制氢系统及其制氢方法与应用
JP7485287B2 (ja) * 2020-10-05 2024-05-16 株式会社デンソー 水素発生装置
CN116573609A (zh) * 2023-07-14 2023-08-11 中国电建集团西北勘测设计研究院有限公司 太阳能热化学制氢发电系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144901A (ja) * 1993-11-17 1995-06-06 Mitsubishi Heavy Ind Ltd 水素発生設備
JPH1087303A (ja) * 1996-09-12 1998-04-07 Agency Of Ind Science & Technol 光エネルギーの変換方法
JP2001270701A (ja) * 2000-03-28 2001-10-02 Yutaka Tamaura 水の分解方法
JP2005199187A (ja) * 2004-01-16 2005-07-28 Tokyo Univ Of Science 新規z−スキーム型可視光活性な水の完全分解用光触媒系及び前記触媒を用いた水の完全分解方法
JP2005289680A (ja) * 2004-03-31 2005-10-20 Toho Gas Co Ltd 水素製造装置および水素製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4410915A1 (de) 1994-03-29 1995-10-12 Erno Raumfahrttechnik Gmbh Verfahren zur Erzeugung von Wasserstoff
WO2000025898A2 (en) * 1998-11-02 2000-05-11 Arizona Board Of Regents Compositions, methods and devices for the production of oxygen and hydrogen
US20060188433A1 (en) * 2000-05-08 2006-08-24 Weimer Alan W Metal-oxide based process for the generation of hydrogen from water splitting utilizing a high temperature solar aerosol flow reactor
JP4829471B2 (ja) * 2003-05-09 2011-12-07 大塚 潔 水素製造方法
US7824574B2 (en) * 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
US8397508B2 (en) * 2007-11-05 2013-03-19 The Regents Of The University Of Colorado Metal ferrite spinel energy storage devices and methods for making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144901A (ja) * 1993-11-17 1995-06-06 Mitsubishi Heavy Ind Ltd 水素発生設備
JPH1087303A (ja) * 1996-09-12 1998-04-07 Agency Of Ind Science & Technol 光エネルギーの変換方法
JP2001270701A (ja) * 2000-03-28 2001-10-02 Yutaka Tamaura 水の分解方法
JP2005199187A (ja) * 2004-01-16 2005-07-28 Tokyo Univ Of Science 新規z−スキーム型可視光活性な水の完全分解用光触媒系及び前記触媒を用いた水の完全分解方法
JP2005289680A (ja) * 2004-03-31 2005-10-20 Toho Gas Co Ltd 水素製造装置および水素製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234077A (ja) * 2012-05-02 2013-11-21 Toyota Industries Corp 水素製造装置、及びそれを用いた水素製造方法
WO2015155848A1 (ja) * 2014-04-09 2015-10-15 フレンド株式会社 水素ガス発生装置
JPWO2015155848A1 (ja) * 2014-04-09 2017-04-13 フレンド株式会社 水素ガス発生装置

Also Published As

Publication number Publication date
DE112011102702T5 (de) 2013-05-16
JP5549732B2 (ja) 2014-07-16
DE112011102702B4 (de) 2020-11-05
JPWO2012020834A1 (ja) 2013-10-28
CN103140435B (zh) 2015-07-08
CN103140435A (zh) 2013-06-05
US8951497B2 (en) 2015-02-10
US20120039793A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5549732B2 (ja) 水素製造方法及び装置
JP5373410B2 (ja) アンモニア合成方法
AU2002338422B2 (en) Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal
Chaubey et al. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources
US8075869B2 (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
EP2543743B1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP2020531388A (ja) 自己熱アンモニア分解方法
AU2002338422A1 (en) Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal
WO2008054230A1 (en) Process for producing carbon dioxide and methane by catalytic gas reaction
JP5465913B2 (ja) アンモニア合成装置及び方法
JP4557849B2 (ja) エタノールからの水素製造方法
KR102091689B1 (ko) 폐자원 순환 공정을 통한 이산화탄소 전환 시스템 및 그 방법
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
JP4334577B2 (ja) 吸収材の再生方法
US8974699B2 (en) Method for producing synthesis gases
JP4399636B2 (ja) 複合熱及び電力プラント、並びにその操作方法
Xiaoping et al. Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor
JP2007254238A (ja) 水素の製造方法
JP2005255505A (ja) 水素供給方法
Krenzke Solar synthesis gas production via the thermochemical cerium oxide redox cycle: Inert-swept and methane-hybridized reduction
JPS5815002A (ja) 沃化メチルを循環物質として用いる熱化学水素製造サイクル
Xia et al. High selectivity syngas generation by double perovskite oxygen carriers La2Fe2-xCoxO6 for chemical looping steam methane reforming
JPH0656706A (ja) 炭素質燃料の製造方法および炭酸ガスの資源化方法
JP2001226116A (ja) アンモニア水溶液の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039128.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816496

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012528715

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111027028

Country of ref document: DE

Ref document number: 112011102702

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816496

Country of ref document: EP

Kind code of ref document: A1