WO2012020834A1 - 水素製造方法及び装置 - Google Patents
水素製造方法及び装置 Download PDFInfo
- Publication number
- WO2012020834A1 WO2012020834A1 PCT/JP2011/068405 JP2011068405W WO2012020834A1 WO 2012020834 A1 WO2012020834 A1 WO 2012020834A1 JP 2011068405 W JP2011068405 W JP 2011068405W WO 2012020834 A1 WO2012020834 A1 WO 2012020834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction vessel
- water
- hydrogen
- inert gas
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0203—Preparation of oxygen from inorganic compounds
- C01B13/0207—Water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0251—Physical processing only by making use of membranes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0046—Nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the present invention relates to a hydrogen production method and apparatus, and more particularly to a method and apparatus for producing hydrogen by thermochemical water splitting. ⁇ Related technologies>
- thermochemical water splitting method is a method in which water is split at a lower temperature than in the case of direct water splitting by combining chemical reactions.
- water is decomposed into hydrogen and oxygen using a redox reaction of redox materials having different oxidation states as described below (M Red-Ox is a redox material): M Red-Ox (high oxidation state) ⁇ M Red-Ox (low oxidation state) + O 2 (endothermic reaction) M Red-Ox (low oxidation state) + H 2 O ⁇ M Red-Ox (high oxidation state) + H 2 (exothermic reaction) Total reaction H 2 O ⁇ H 2 + 1 / 2O 2
- thermochemical water splitting method the redox material is divided into a plurality of parts, and while a reduction reaction is performed on a part of the redox material, an oxidation reaction is performed on another part of the redox material.
- a reduction reaction is performed on a part of the redox material
- an oxidation reaction is performed on another part of the redox material.
- the redox material is divided into a plurality of parts, and these are attached to a rotating mechanism, and while a reduction reaction is performed on a part of the redox material, an oxidation reaction is performed on another part of the redox material. It is proposed to make it.
- the redox material is divided into two parts and one redox material is subjected to a reduction reaction while the other redox material It is proposed that the oxidation reaction be carried out.
- thermochemical water splitting method it is possible to use a redox reaction between metal oxides having different oxidation states or a redox reaction between a metal oxide and a metal. It is generally known as shown in the literature.
- water is reduced by a metal to generate hydrogen, and the resulting metal oxide is reduced by a reducing agent generated by an endothermic chemical reaction to newly react.
- the endothermic reaction for generating the reducing agent is performed while supplying solar energy.
- a hydrogen generation facility proposed in Japanese Patent Application Laid-Open No. 07-144901 includes a reduction device that reduces iron-based oxides, and a hydrogen generation device that generates hydrogen by bringing activated oxide or metallic iron into contact with water vapor.
- the reduction device is provided with a cooling device, and the hydrogen generation device is provided with a heating device.
- a hydrogen production apparatus proposed in Japanese Patent Application Laid-Open No. 2005-289680 includes a reduction means for reacting hydrogen with a metal oxide to separate it into metal and water vapor, and a storage for storing the metal separated by the reduction means. Means, and an oxidizing means for reacting water vapor and the metal stored in the storage means to separate into hydrogen and metal oxide.
- the present invention provides a method and apparatus for producing hydrogen by thermochemical water splitting.
- thermochemical water splitting involves heating a highly oxidized redox material in an inert atmosphere to desorb oxygen from the highly oxidized redox material, thereby reducing the low oxidized redox material.
- Reduction step to obtain material and oxygen, and hydrogen to contact low oxidation state redox material with water to oxidize low oxidation state redox material and reduce water, thereby obtaining high oxidation state redox material and hydrogen Including a generation step.
- the reduction step and the hydrogen generation step are performed by switching in the same reaction vessel.
- the hydrogen production method of the present invention by performing the reduction step and the hydrogen generation step in the same reaction vessel, either the reduction step or the hydrogen generation step can be always performed in the reaction vessel.
- the period of the reduction step and the hydrogen generation step can be flexibly adjusted according to the time required for the reaction in each step. Therefore, according to the hydrogen generation method of the present invention, the thermal energy supplied to the reaction vessel can be used effectively.
- the reaction time required in the reduction step is significantly longer than the reaction time required in the hydrogen generation step. Therefore, in the hydrogen production method of the present invention, the time used for the reduction step is the same as the hydrogen generation time. It can be longer than the time used for the process.
- the period of the reduction step and the hydrogen generation step can be flexibly adjusted according to the time required for the reaction in each step. It is particularly preferable when energy adjustment is difficult, for example, when at least part of the thermal energy required for at least one of the reduction step and the hydrogen generation step is supplied by solar energy.
- switching between the reduction step and the hydrogen generation step is performed based on the output value of an oxygen concentration sensor that evaluates the outflow gas from the reaction vessel.
- M Red-Ox is a redox material
- M Red-Ox (high oxidation state) M Red-Ox (low oxidation state) + O 2 (endothermic reaction)
- the outflow gas from the reaction vessel contains oxygen, and this outflow gas becomes oxygen excess.
- the oxygen concentration in the effluent gas from the reaction vessel is lowered, and finally the effluent gas does not substantially contain oxygen. Therefore, the progress and completion of the reduction reaction in the reduction process can be detected by evaluating the oxygen concentration of the outflow gas from the reaction vessel with the oxygen concentration sensor.
- the output value of the oxygen concentration sensor indicates that the outflow gas from the reaction vessel is in a reducing atmosphere, or that the outflow gas does not contain oxygen. .
- the hydrogen concentration in the effluent gas from the reaction vessel is lowered, thereby reducing the degree of reducing the effluent gas, and in some cases, the redox material in a highly oxidized state. Some decompose and release oxygen.
- Such a decrease in the degree of reducing the effluent gas and an optional increase in oxygen concentration can be detected by an oxygen sensor. Therefore, by evaluating the outflow gas from the reaction vessel with an oxygen concentration sensor, it is possible to detect the progress and completion of the hydrogen generation reaction in the hydrogen generation step.
- the progress and completion of the reduction reaction in the reduction process and the progress and completion of the hydrogen generation reaction in the hydrogen generation process can be detected by the output value of the oxygen concentration sensor that evaluates the outflow gas from the reaction vessel. . Therefore, by performing switching between the reduction process and the hydrogen production process based on the output value of the oxygen concentration sensor that evaluates the outflow gas from the reaction vessel, this switching can be performed at an appropriate timing. Note that this switching need not be performed after the reduction reaction or the hydrogen generation reaction has completely progressed, and it may be preferable in terms of the reaction rate to be performed at the stage where the reduction reaction or the hydrogen generation reaction has proceeded.
- an inert gas is supplied to the reaction vessel, the inert gas is separated from the effluent gas from the reaction vessel, and the inert gas is reduced. Recirculate for use in.
- the oxygen obtained from the effluent gas from the reaction vessel can be optionally recovered, discarded, and the like.
- the amount of additional inert gas required is reduced by recirculating the inert gas for use in the reduction step.
- water is supplied to the reaction vessel, water is separated from the effluent gas from the reaction vessel, and this water is used in the hydrogen generation step.
- the hydrogen obtained from the effluent gas from the reaction vessel can be directly recovered, recovered after further purification, or the like.
- the amount of additional water required is reduced by recirculating the water for use in the hydrogen production step.
- a combination of water and nitrogen as an inert gas is supplied to the reaction vessel, and the outflow gas from the reaction vessel is converted into a combination of hydrogen and nitrogen and water. Separating and adjusting the hydrogen and nitrogen combination by removing part of the nitrogen or adding nitrogen so that the molar ratio of hydrogen to nitrogen is 3: 1 and adjusting the molar ratio of hydrogen And a combination of nitrogen is supplied to the ammonia production process.
- the energy required for the separation of hydrogen and nitrogen can be reduced by supplying hydrogen and nitrogen in a mixture state to the ammonia production process.
- the effluent gas from the reaction vessel is exchanged with the effluent gas from the reaction vessel and at least one of the inert gas and water supplied to the reaction vessel. And at least one of an inert gas and water supplied to the reaction vessel is heated.
- the cooling of the effluent gas from the reaction vessel can facilitate the separation of components in the effluent gas in the subsequent processing, and the inert gas supplied to the reaction vessel.
- the amount of thermal energy that needs to be supplied to the reaction vessel for the oxidation / reduction reaction of the redox material can be reduced.
- the hydrogen production apparatus of the present invention has the following configuration: a reaction vessel holding a redox material; an inert gas supply unit for supplying an inert gas to the reaction vessel; and water for the reaction vessel.
- Supply, water supply unit; oxygen is separated from the reducing process effluent gas containing inert gas and oxygen from the reaction vessel; oxygen separation unit; from the hydrogen generation step effluent gas containing water vapor and hydrogen from the reaction vessel
- a water separation unit that separates water vapor; and a switching valve that supplies the reduction process outflow gas and the hydrogen generation process outflow gas from the reaction vessel to the oxygen separation unit and the water vapor separation unit.
- the hydrogen production apparatus of the present invention can optionally have the following configuration: an oxygen concentration sensor for measuring the oxygen concentration of the reduction process effluent gas and the hydrogen generation process effluent gas; obtained by separation in the oxygen separation unit An inert gas recirculation path for recirculating the generated inert gas to the inert gas supply section; a water recirculation path for recirculating the water obtained by the separation in the water separation section to the water supply section; A solar concentrator for supplying solar energy to the reaction vessel; and / or at least one of the inert gas supplied from the inert gas supply unit to the reaction vessel and the water supplied from the water supply unit to the reaction vessel and the reaction vessel Heat exchanger that exchanges heat with effluent gas.
- the hydrogen production method of the present invention can be carried out.
- nitrogen and oxygen-containing gas (N 2 + O 2 ) is supplied to the oxygen separator (22), and oxygen is removed in the oxygen separator (22) to obtain the obtained nitrogen Is optionally further purified and supplied again to the inert gas supply source (21).
- the reaction vessel (10) can be heated by a heat source (15), for example, a solar concentrator, and the heat from the heat source (15) is converted into a reaction vessel (15a) as indicated by an arrow (15a). In addition to being fed to 10), it can optionally be fed to the heat exchanger (11) as indicated by the arrow (15b).
- a heat source for example, a solar concentrator
- the hydrogen (H 2 ) generated in the reaction vessel (10) in this manner is discharged from the reaction vessel (10) together with water vapor (H 2 O) and optional nitrogen (N 2 ) (H 2 O + O 2 (+ N 2 )), cooled through heat exchanger (11) and fed to switching valve (12).
- a gas (H 2 O + O 2 (+ N 2 )) containing hydrogen, water vapor and optional nitrogen is supplied to the water separation section (32), and water in the water separation section (32) is supplied. Water is removed by condensation or the like, and the obtained water is further purified optionally and supplied again to the water supply source (31).
- hydrogen and optional nitrogen (H 2 (+ N 2 )) obtained in the water separation unit (32) are removed from the nitrogen separation unit (33) as necessary to remove hydrogen (H 2 ).
- the nitrogen (N 2 ) separated here can be discarded, optionally purified, and supplied to the inert gas supply source (21) again.
- the amount of nitrogen to be removed is adjusted, and the resulting product may be a mixed gas containing hydrogen and nitrogen in a ratio of 3: 1 (H 2 + N 2 ).
- the obtained mixed gas of hydrogen and nitrogen can be directly supplied to an ammonia synthesis process, particularly an ammonia synthesis process by the Harbor Bosch method. Further, if necessary, nitrogen may be added to obtain a mixed gas containing hydrogen and nitrogen in a ratio of 3: 1 (H 2 + N 2 ).
- the oxygen concentration sensor can be arranged near the outlet (13a) from the reaction vessel (10) and / or near the inlet (13b) of the switching valve (12).
- thermochemical water splitting a material that is oxidized and reduced for thermochemical water splitting
- a redox material a material that is oxidized and reduced for thermochemical water splitting
- a redox reaction for thermochemical water splitting a redox reaction between a metal and a metal oxide or a redox reaction between metal oxides having different oxidation states can be used.
- a redox reaction is a method using a redox reaction between a metal such as magnesium (Mg), aluminum (Al), iron (Fe), and the metal oxide in the following reaction formula.
- M is a metal element
- m is the valence of the metal element M
- M 2 / m 2 O ⁇ M + 1 / 2O 2 (Formula 3)
- oxidation-reduction reaction is a method using an oxidation-reduction reaction between iron oxides having different oxidation states in the following reaction formula: 3FeO + H 2 O ⁇ Fe 3 O 4 + H 2 (Formula 4) Fe 3 O 4 ⁇ 3FeO + 1 / 2O 2 (Formula 5) Total reaction H 2 O ⁇ H 2 + 1 / 2O 2
- the metal and / or metal oxide used in this thermochemical decomposition method utilizing the oxidation-reduction reaction of metal and / or metal oxide is supported as fine powder on a carrier of fin type structure, honeycomb type structure, pellet type structure, etc. can do. In this case, it is possible to suppress the sintering of the metal and / or metal oxide used and thereby maintain a relatively large surface area.
- inert gas In the present invention, as the inert gas, a rare gas such as argon or helium can be used along with nitrogen, and particularly nitrogen obtained by cryogenic air separation can be used.
- oxygen concentration sensor examples include an electromotive force type oxygen concentration sensor, particularly an electromotive force type oxygen concentration sensor used for exhaust gas stoichiometric control in exhaust gas purification applications such as automobiles. Can do.
- this electromotive force type oxygen concentration sensor generally has a sensor part in which platinum is coated on the surface of a test tubular zirconia element, and the inner surface of the sensor part is exposed to the atmosphere, and the outer surface is exposed to exhaust.
- an electromotive force is generated when the difference in oxygen concentration between the inner side surface and the outer side surface of the zirconia element of the sensor unit is large.
- the electromotive force generated in the electromotive force type oxygen concentration sensor is small or no electromotive force is generated.
- the electromotive force generated in this electromotive force type oxygen concentration sensor becomes large.
- an oxygen concentration sensor can be used in combination with a hydrogen concentration sensor.
- solar light collector examples of the solar light collecting device that can be used in the present invention include a parabolic dish type light collecting device, a solar tower type light collecting device, and a parabolic trough type light collecting device.
- the parabolic dish type condensing device is a condensing device having a dish-like reflecting portion that reflects sunlight and condensing the light and a light receiving portion that receives the condensed light, and has a high degree of condensing and therefore high temperature. A heat source is obtained.
- the solar tower type condensing device is a condensing device having a plurality of heliostats (reflecting portions) for reflecting sunlight and condensing, and a light receiving portion arranged on the upper portion of the light receiving tower, Therefore, a high temperature heat source is obtained.
- the parabolic trough type condensing device is a condensing device having a trough type reflecting portion for reflecting sunlight and collecting the light and a light receiving portion for receiving the condensed light, and is obtained with a relatively low concentration.
- the heat source is a low-temperature heat source, the cost is low compared to the above two light collecting devices.
- the reflecting portion may be covered with a reflective material such as aluminum.
- the reaction vessel used in the present invention may be any vessel that can hold a redox material.
- the inert gas supply part and water supply part used by this invention may be like a tank which can hold
- the oxygen separation unit, the water separation unit, and the nitrogen separation unit used in the present invention may be arbitrary portions that can separate oxygen, water, and nitrogen, respectively. Therefore, these separation parts can have a separation membrane suitable for separation of these substances, perform condensation that enables separation of these substances, perform cryogenic separation, and the like.
- the switching valve used in the present invention may be any switching valve capable of switching and supplying the reduction process outflow gas and the hydrogen generation process outflow gas from the reaction vessel to the oxygen separation unit and the water vapor separation unit.
- the inert gas recirculation path used in the present invention may be any flow path that can recirculate the inert gas obtained in the oxygen separation section to the inert gas supply section.
- the water recirculation path used in the present invention may be any flow path that can recirculate the water obtained in the water separation section to the water supply section.
- the heat exchanger used in the present invention may be any heat exchanger that enables heat exchange between the inert gas and / or water supplied to the reaction vessel and the effluent gas from the reaction vessel. Therefore, it may be a countercurrent type heat exchanger or a cocurrent type heat exchanger.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Fuel Cell (AREA)
Abstract
Description
〈関連技術〉
MRed−Ox(高酸化状態)
→ MRed−Ox(低酸化状態) + O2 (吸熱反応)
MRed−Ox(低酸化状態) + H2O
→ MRed−Ox(高酸化状態) + H2 (発熱反応)
全反応 H2O→H2+1/2O2
熱化学水分解によって水素を製造する本発明の方法は、高酸化状態のレドックス材料を不活性雰囲気において加熱して、高酸化状態のレドックス材料から酸素を脱離させ、それによって低酸化状態のレドックス材料及び酸素を得る還元工程、並びに低酸化状態のレドックス材料に水を接触させて、低酸化状態のレドックス材料を酸化し且つ水を還元し、それによって高酸化状態のレドックス材料及び水素を得る水素生成工程を含む。また、この本発明の方法では、還元工程及び水素生成工程を同一の反応容器において切り替えて行う。
MRed−Ox(高酸化状態)
→ MRed−Ox(低酸化状態) + O2 (吸熱反応)
MRed−Ox(低酸化状態) + H2O
→ MRed−Ox(高酸化状態) + H2 (発熱反応)
本発明の水素製造装置は、下記の構成を有する:レドックス材料を保持している、反応容器;反応容器に対して不活性ガスを供給する、不活性ガス供給部;反応容器に対して水を供給する、水供給部;反応容器からの不活性ガス及び酸素を含有する還元工程流出ガスから、酸素を分離する、酸素分離部;反応容器からの水蒸気及び水素を含有する水素生成工程流出ガスから、水蒸気を分離する、水分離部;並びに反応容器からの還元工程流出ガス及び水素生成工程流出ガスを、酸素分離部及び水蒸気分離部に切り替えて供給する、切替弁。
本発明の水素製造方法及び装置による水素製造の還元工程では、不活性ガスとしての窒素(N2)を、不活性ガス供給源(21)から弁(21a)を通して、熱交換器(11)に供給して加熱し、そして反応容器(10)に供給する。この窒素(N2)の供給と併せて、反応容器(10)内の高酸化状態のレドックス材料を加熱して、高酸化状態のレドックス材料から酸素を脱離させ、それによって低酸化状態のレドックス材料及び酸素を得る。このようにして反応容器(10)において発生した酸素(O2)は、不活性ガス供給源(21)から反応容器(10)に供給された窒素(N2)と共に反応容器(10)から流出させ(N2+O2)、熱交換器(11)を通して冷却し、そして切替弁(12)に供給する。
本発明の水素製造方法及び装置による水素製造の水素生成工程では、水(H2O)を、水供給源(31)から、弁(31a)を通して熱交換器(11)に供給し、加熱して水蒸気にし、そして反応容器(10)に供給する。ここでは随意に、水供給源(31)からの水(H2O)と併せて、不活性ガス供給部からの窒素(N2)を、反応容器(10)に供給する。この水(H2O)を低酸化状態のレドックス材料と接触させ、低酸化状態のレドックス材料を酸化し且つ水を還元し、それによって高酸化状態のレドックス材料及び水素(H2)を得る。このようにして反応容器(10)において発生した水素(H2)は、水蒸気(H2O)及び随意の窒素(N2)と共に、反応容器(10)から流出させ(H2O+O2(+N2))、熱交換器(11)を通して冷却し、そして切替弁(12)に供給する。
本発明の水素製造方法及び装置による水素製造では、還元工程と水素生成工程との間の切替を、反応容器からの流出ガスを評価する酸素濃度センサーの出力値に基づいて行う場合、酸素濃度センサーは、反応容器(10)からの出口付近(13a)、及び/又は切替弁(12)の入口付近(13b)等に配置することができる。
本発明では、熱化学水分解のために酸化及び還元される材料を「レドックス材料」として言及する。このような熱化学水分解のための酸化還元反応としては、金属と金属酸化物との間の酸化還元反応、又は酸化状態の異なる金属酸化物間の酸化還元反応を用いることができる。
M+H2O → M2/mO+H2 (式2)
M2/mO → M+1/2O2 (式3)
全反応 H2O → H2+1/2O2
3FeO+H2O → Fe3O4+H2 (式4)
Fe3O4 → 3FeO+1/2O2 (式5)
全反応 H2O→H2+1/2O2
本発明においては、不活性ガスとして、窒素と並んで、アルゴン、ヘリウム等の希ガスを用いることができ、特に極低温空気分離によって得られた窒素を用いることができる。
本発明で用いられる酸素濃度センサーとしては、起電力式の酸素濃度センサー、特に自動車等の排ガス浄化の用途で排ガスのストイキ制御を行うために用いられている起電力式の酸素濃度センサーを挙げることができる。ここで、この起電力式の酸素濃度センサーは一般的に、試験管状のジルコニア素子表面に白金をコーティングしたセンサー部を有しており、このセンサー部の内面を大気に曝し、外面を排気に曝すことによって、センサー部のジルコニア素子の内側面と外面側面との酸素濃度差が大きいときに起電力を発生するものである。
本発明において使用できる太陽光集光装置としては、パラボリックディッシュ型集光装置、ソーラータワー型集光装置、パラボリックトラフ型集光装置等を挙げることができる。
本発明で用いられる反応容器は、レドックス材料を保持することができる任意の容器であってよい。また、本発明で用いられる不活性ガス供給部及び水供給部は、それぞれ不活性ガス及び水を保持することができるタンクのようなものであってよい。また、本発明で用いられる酸素分離部、水分離部、及び窒素分離部は、それぞれ酸素、水及び窒素を分離できる任意の部分であってよい。したがってこれらの分離部は、これらの物質の分離に適した分離膜を有すること、これらの物質の分離を可能にする凝縮を行うこと、深冷分離を行うこと等ができる。
Claims (13)
- 高酸化状態のレドックス材料を不活性雰囲気において加熱して、高酸化状態の前記レドックス材料から酸素を脱離させ、それによって低酸化状態の前記レドックス材料及び酸素を得る還元工程、並びに
低酸化状態の前記レドックス材料に水を接触させて、低酸化状態の前記レドックス材料を酸化し且つ水を還元し、それによって高酸化状態の前記レドックス材料及び水素を得る水素生成工程
を含み、且つ前記還元工程及び水素生成工程を同一の反応容器において切り替えて行う、水素製造方法。 - 前記還元工程と水素生成工程との間の切替を、前記反応容器からの流出ガスを評価する酸素濃度センサーの出力値に基づいて行う、請求項1に記載の方法。
- 前記還元工程において、前記反応容器に不活性ガスを供給し、前記反応容器からの流出ガスから前記不活性ガスを分離し、そして前記不活性ガスを前記還元工程での使用のために再循環させる、請求項1又は2に記載の方法。
- 前記水素生成工程において、前記反応容器に水を供給し、前記反応容器からの流出ガスから水を分離し、そして前記水を前記水素生成工程での使用のために再循環させる、請求項1~3のいずれかに記載の方法。
- 前記水素生成工程において、前記反応容器に水と不活性ガスとしての窒素の組み合わせを供給し、前記反応容器からの流出ガスを水素及び窒素の組み合わせと水とに分離し、そして水素及び窒素の組み合わせを、水素と窒素とのモル比が3:1になるように窒素の一部を除去し又は窒素を添加して調節し、そして水素と窒素とのモル比を調節した水素及び窒素の組み合わせを、アンモニア製造工程に供給する、請求項1~4のいずれかに記載の方法。
- 前記還元工程及び水素生成工程の少なくとも一方に必要とされる熱エネルギーの少なくとも一部を、太陽熱エネルギーによって供給する、請求項1~5のいずれかに記載の方法。
- 前記反応容器からの流出ガスと、前記反応容器に供給される前記不活性ガス及び水の少なくとも一方との熱交換を行って、前記反応容器からの流出ガスを冷却し、且つ前記反応容器に供給される前記不活性ガス及び水の少なくとも一方を加熱する、請求項1~6のいずれかに記載の方法。
- レドックス材料を保持している、反応容器、
前記反応容器に対して不活性ガスを供給する、不活性ガス供給部、
前記反応容器に対して水を供給する、水供給部、
前記反応容器からの前記不活性ガス及び酸素を含有する還元工程流出ガスから、酸素を分離する、酸素分離部、
前記反応容器からの水蒸気及び水素を含有する水素生成工程流出ガスから、水蒸気を分離する、水分離部、並びに
前記反応容器からの前記還元工程流出ガス及び水素生成工程流出ガスを、前記酸素分離部及び前記水蒸気分離部に切り替えて供給する、切替弁、
を有する、水素製造装置。 - 前記還元工程流出ガス及び水素生成工程流出ガスの酸素濃度を測定する酸素濃度センサーを更に有する、請求項8に記載の装置。
- 前記酸素分離部での分離で得られた前記不活性ガスを前記不活性ガス供給部に再循環させる不活性ガス再循環路を更に有する、請求項8又は9に記載の装置。
- 前記水分離部での分離で得られた水を前記水供給部に再循環させる水再循環路を更に有する、請求項8~10のいずれかに記載の装置。
- 前記反応容器に太陽光エネルギーを供給する太陽光集光装置を更に有する、請求項8~11のいずれかに記載の装置。
- 前記不活性ガス供給部から前記反応容器に供給される不活性ガス及び前記水供給部から前記反応容器に供給される水の少なくとも一方と、前記反応容器からの流出ガスとの熱交換を行う熱交換器を更に有する、請求項8~12のいずれかに記載の装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180039128.3A CN103140435B (zh) | 2010-08-12 | 2011-08-05 | 氢气制造方法和装置 |
DE112011102702.8T DE112011102702B4 (de) | 2010-08-12 | 2011-08-05 | Verfahren und Apparat zum Herstellen von Wasserstoff |
JP2012528715A JP5549732B2 (ja) | 2010-08-12 | 2011-08-05 | 水素製造方法及び装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/855,236 | 2010-08-12 | ||
US12/855,236 US8951497B2 (en) | 2010-08-12 | 2010-08-12 | Method and apparatus for producing hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012020834A1 true WO2012020834A1 (ja) | 2012-02-16 |
Family
ID=45564955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068405 WO2012020834A1 (ja) | 2010-08-12 | 2011-08-05 | 水素製造方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8951497B2 (ja) |
JP (1) | JP5549732B2 (ja) |
CN (1) | CN103140435B (ja) |
DE (1) | DE112011102702B4 (ja) |
WO (1) | WO2012020834A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013234077A (ja) * | 2012-05-02 | 2013-11-21 | Toyota Industries Corp | 水素製造装置、及びそれを用いた水素製造方法 |
WO2015155848A1 (ja) * | 2014-04-09 | 2015-10-15 | フレンド株式会社 | 水素ガス発生装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104879928A (zh) * | 2015-04-21 | 2015-09-02 | 任立峰 | 一种聚热能器以及生产氢气和氧气的方法及其装置 |
CN107758614B (zh) * | 2016-08-19 | 2020-12-25 | 江苏天一超细金属粉末有限公司 | 一种太阳能光热化学分解水制氢的方法及设备 |
WO2019234922A1 (ja) | 2018-06-08 | 2019-12-12 | フレンド株式会社 | 水素混合ガスの生成方法 |
CN111302302B (zh) * | 2020-02-14 | 2021-10-15 | 山东大学 | 一种基于微波加热的热化学制氢系统及其制氢方法与应用 |
JP7485287B2 (ja) * | 2020-10-05 | 2024-05-16 | 株式会社デンソー | 水素発生装置 |
CN116573609A (zh) * | 2023-07-14 | 2023-08-11 | 中国电建集团西北勘测设计研究院有限公司 | 太阳能热化学制氢发电系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07144901A (ja) * | 1993-11-17 | 1995-06-06 | Mitsubishi Heavy Ind Ltd | 水素発生設備 |
JPH1087303A (ja) * | 1996-09-12 | 1998-04-07 | Agency Of Ind Science & Technol | 光エネルギーの変換方法 |
JP2001270701A (ja) * | 2000-03-28 | 2001-10-02 | Yutaka Tamaura | 水の分解方法 |
JP2005199187A (ja) * | 2004-01-16 | 2005-07-28 | Tokyo Univ Of Science | 新規z−スキーム型可視光活性な水の完全分解用光触媒系及び前記触媒を用いた水の完全分解方法 |
JP2005289680A (ja) * | 2004-03-31 | 2005-10-20 | Toho Gas Co Ltd | 水素製造装置および水素製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4410915A1 (de) | 1994-03-29 | 1995-10-12 | Erno Raumfahrttechnik Gmbh | Verfahren zur Erzeugung von Wasserstoff |
WO2000025898A2 (en) * | 1998-11-02 | 2000-05-11 | Arizona Board Of Regents | Compositions, methods and devices for the production of oxygen and hydrogen |
US20060188433A1 (en) * | 2000-05-08 | 2006-08-24 | Weimer Alan W | Metal-oxide based process for the generation of hydrogen from water splitting utilizing a high temperature solar aerosol flow reactor |
JP4829471B2 (ja) * | 2003-05-09 | 2011-12-07 | 大塚 潔 | 水素製造方法 |
US7824574B2 (en) * | 2006-09-21 | 2010-11-02 | Eltron Research & Development | Cyclic catalytic upgrading of chemical species using metal oxide materials |
US8397508B2 (en) * | 2007-11-05 | 2013-03-19 | The Regents Of The University Of Colorado | Metal ferrite spinel energy storage devices and methods for making and using same |
-
2010
- 2010-08-12 US US12/855,236 patent/US8951497B2/en active Active
-
2011
- 2011-08-05 DE DE112011102702.8T patent/DE112011102702B4/de not_active Expired - Fee Related
- 2011-08-05 WO PCT/JP2011/068405 patent/WO2012020834A1/ja active Application Filing
- 2011-08-05 CN CN201180039128.3A patent/CN103140435B/zh active Active
- 2011-08-05 JP JP2012528715A patent/JP5549732B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07144901A (ja) * | 1993-11-17 | 1995-06-06 | Mitsubishi Heavy Ind Ltd | 水素発生設備 |
JPH1087303A (ja) * | 1996-09-12 | 1998-04-07 | Agency Of Ind Science & Technol | 光エネルギーの変換方法 |
JP2001270701A (ja) * | 2000-03-28 | 2001-10-02 | Yutaka Tamaura | 水の分解方法 |
JP2005199187A (ja) * | 2004-01-16 | 2005-07-28 | Tokyo Univ Of Science | 新規z−スキーム型可視光活性な水の完全分解用光触媒系及び前記触媒を用いた水の完全分解方法 |
JP2005289680A (ja) * | 2004-03-31 | 2005-10-20 | Toho Gas Co Ltd | 水素製造装置および水素製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013234077A (ja) * | 2012-05-02 | 2013-11-21 | Toyota Industries Corp | 水素製造装置、及びそれを用いた水素製造方法 |
WO2015155848A1 (ja) * | 2014-04-09 | 2015-10-15 | フレンド株式会社 | 水素ガス発生装置 |
JPWO2015155848A1 (ja) * | 2014-04-09 | 2017-04-13 | フレンド株式会社 | 水素ガス発生装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112011102702T5 (de) | 2013-05-16 |
JP5549732B2 (ja) | 2014-07-16 |
DE112011102702B4 (de) | 2020-11-05 |
JPWO2012020834A1 (ja) | 2013-10-28 |
CN103140435B (zh) | 2015-07-08 |
CN103140435A (zh) | 2013-06-05 |
US8951497B2 (en) | 2015-02-10 |
US20120039793A1 (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549732B2 (ja) | 水素製造方法及び装置 | |
JP5373410B2 (ja) | アンモニア合成方法 | |
AU2002338422B2 (en) | Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal | |
Chaubey et al. | A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources | |
US8075869B2 (en) | Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst | |
EP2543743B1 (en) | Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides | |
JP2020531388A (ja) | 自己熱アンモニア分解方法 | |
AU2002338422A1 (en) | Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal | |
WO2008054230A1 (en) | Process for producing carbon dioxide and methane by catalytic gas reaction | |
JP5465913B2 (ja) | アンモニア合成装置及び方法 | |
JP4557849B2 (ja) | エタノールからの水素製造方法 | |
KR102091689B1 (ko) | 폐자원 순환 공정을 통한 이산화탄소 전환 시스템 및 그 방법 | |
US20080241038A1 (en) | Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same | |
JP4334577B2 (ja) | 吸収材の再生方法 | |
US8974699B2 (en) | Method for producing synthesis gases | |
JP4399636B2 (ja) | 複合熱及び電力プラント、並びにその操作方法 | |
Xiaoping et al. | Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor | |
JP2007254238A (ja) | 水素の製造方法 | |
JP2005255505A (ja) | 水素供給方法 | |
Krenzke | Solar synthesis gas production via the thermochemical cerium oxide redox cycle: Inert-swept and methane-hybridized reduction | |
JPS5815002A (ja) | 沃化メチルを循環物質として用いる熱化学水素製造サイクル | |
Xia et al. | High selectivity syngas generation by double perovskite oxygen carriers La2Fe2-xCoxO6 for chemical looping steam methane reforming | |
JPH0656706A (ja) | 炭素質燃料の製造方法および炭酸ガスの資源化方法 | |
JP2001226116A (ja) | アンモニア水溶液の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180039128.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11816496 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2012528715 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111027028 Country of ref document: DE Ref document number: 112011102702 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11816496 Country of ref document: EP Kind code of ref document: A1 |