WO2012014597A1 - 電源設計システム、電源設計方法、及び電源設計用プログラム - Google Patents

電源設計システム、電源設計方法、及び電源設計用プログラム Download PDF

Info

Publication number
WO2012014597A1
WO2012014597A1 PCT/JP2011/064039 JP2011064039W WO2012014597A1 WO 2012014597 A1 WO2012014597 A1 WO 2012014597A1 JP 2011064039 W JP2011064039 W JP 2011064039W WO 2012014597 A1 WO2012014597 A1 WO 2012014597A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
impedance
circuit information
current
electronic device
Prior art date
Application number
PCT/JP2011/064039
Other languages
English (en)
French (fr)
Inventor
学 楠本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/811,886 priority Critical patent/US8667453B2/en
Priority to JP2012526377A priority patent/JP5895843B2/ja
Publication of WO2012014597A1 publication Critical patent/WO2012014597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the present invention relates to a power supply design system and the like used as a tool for designing a power supply of an electronic device device, and in particular, applies a random model according to an outline of an operation circuit in an upstream process in a design stage, and calculates a statistical power fluctuation value.
  • the present invention relates to a power supply design system that supports power supply design by outputting, a power supply design method, and a power supply design program.
  • Various techniques for supporting the design of the power supply of the electronic device by performing simulation are also disclosed. For example, in order to eliminate the multipath fading phenomenon that multiple waves passing through multiple propagation paths interfere with each other and degrade the received waves, the impedance of the power supply is obtained in advance by simulation and the presence or absence of power supply resonance is determined.
  • a technology for supporting design is disclosed (for example, see Patent Document 1).
  • a technique for providing design support by adjusting a simulation model by measuring a power supply circuit of an electronic device see, for example, Patent Document 2.
  • an analysis model is generated from a lot of design information of electronic equipment, and the decoupling capacitance for locating the capacitor in the power supply circuit, which is one of the important elements for power supply design, is determined.
  • a technique for appropriately providing support is also disclosed (see Patent Document 3).
  • the operation unit of the electronic device apparatus is composed of an LSI and many other electronic components, and various circuits of the electronic device apparatus move or stop according to the operation state of each electronic component.
  • the current flowing through the operating portion varies depending on the number of circuits operating at each timing. Therefore, the power supply voltage fluctuates due to this change in current. Therefore, an optimal power supply design that can realize a stable power supply voltage by analyzing fluctuations in the power supply voltage due to a change in current is performed.
  • the present invention has been made in view of such problems, and in an upstream process of the design stage, a power supply design system, a power supply design method, which supports a power supply design by outputting a target impedance that is a target by simulation, And to provide a power supply design program.
  • the present invention is a power supply design system for designing a power supply for an electronic device, an input device for inputting circuit information relating to the power supply of the electronic device, and an input from the input device
  • a current deviation calculation unit for calculating a current deviation indicating a current variation of the electronic device device based on the distribution information indicating the distribution of the current variation corresponding to the circuit information and the circuit information; and the current deviation calculation unit
  • a target impedance calculation unit that calculates a target impedance that is a target of the power source indicated by the circuit information
  • the target impedance calculation unit calculates
  • a power supply design system including an output device that outputs the target impedance is provided.
  • the present invention is also a power supply design system for designing a power supply for an electronic apparatus device, the input device for inputting circuit information relating to the power supply of the electronic device apparatus, and the occurrence probability of a current within a range in which the current varies.
  • a current deviation indicating current fluctuation of the electronic device is calculated based on the dispersion information storing the dispersion information indicating the current, the current generation range indicated by the circuit information input from the input device, and the dispersion information.
  • Power supply design comprising an impedance calculator and an output device that outputs the target impedance calculated by the target impedance calculator The stem is also provided.
  • Each of the power supply design systems described above includes an impedance calculation unit that calculates a power supply impedance characteristic of the power supply of the electronic device device based on the circuit information input by the input device, and the target impedance calculated by the target impedance calculation unit. And a determination unit that determines whether or not a power supply impedance calculated based on the power supply impedance characteristic is within an allowable range indicated by the target impedance. Depending on the result, information on whether or not the power supply impedance is within an allowable range of the circuit information may be output.
  • the output device further includes a component addition / change unit that performs an adjustment to add or change the power supply impedance, and the output device is necessary for the power supply impedance to fall within an allowable range of the circuit information according to an adjustment result of the component addition / change unit.
  • Power supply design information indicating design adjustment may be output.
  • the present invention is also a power supply design method for designing a power supply for an electronic device apparatus, the first step of inputting circuit information relating to the power supply of the electronic device apparatus, and a distribution of current fluctuations corresponding to the circuit information.
  • a power supply design method including a third step of calculating a target impedance that is a target of the power supply indicated by the circuit information and a fourth step of outputting the target impedance is also provided.
  • the present invention is also a power supply design method for designing a power supply for an electronic apparatus device, the first step of inputting circuit information relating to the power supply of the electronic apparatus device, and a current in a range where the current varies.
  • a power supply design method comprising a third step of calculating a target impedance that is a target of the power supply based on an allowable range of voltage fluctuation and a current deviation, and a fourth step of outputting the target impedance.
  • the present invention also provides a power supply design program for executing the first to fourth steps related to each of the power supply design methods described above.
  • the current deviation can be obtained from a statistical current range defined by the assumed maximum current and minimum current. Therefore, the target impedance value can be calculated based on the current deviation and the target voltage fluctuation tolerance. Furthermore, since the target impedance to be targeted becomes clear, power supply design can be performed at an appropriate cost, and the design cost of the power supply in the electronic device apparatus can be reduced.
  • FIG. 1 is a block diagram showing an example of the configuration of the power supply design system according to the first embodiment of the present invention.
  • the power supply design system includes an input device 101 realized by a keyboard, a mouse, and the like, a data processing device 102 operated by various program controls, a storage device 103 storing various information, and a display device And an output device 104 realized by a printing device or the like.
  • the input device 101 indicates circuit information, for example, the type of circuit in the electronic device that is the object of circuit simulation, the maximum and minimum currents of the circuit power supply, the allowable range of power supply voltage fluctuation, the probability of not exceeding the allowable range, and the like.
  • the storage device 103 is a database that stores various data, and includes a distributed pattern storage unit 301.
  • the distribution pattern storage unit 301 is a database that stores in advance data of a distribution pattern (details will be described later) according to circuit information input from the input device 101.
  • the data processing apparatus 102 includes a current deviation calculation unit 201 and a target impedance calculation unit 202.
  • the current deviation calculation unit 201 reads a dispersion pattern corresponding to the circuit information from the dispersion pattern storage unit 301 based on circuit information (for example, the circuit type and the maximum current, the minimum current) input from the input device 101, Calculate the standard deviation of the variation.
  • the target impedance calculation unit 202 inputs the standard deviation (hereinafter referred to as current deviation) of the current fluctuation calculated by the current deviation calculation unit 201 from the current deviation calculation unit 201 and circuit information from the input device 101.
  • the target impedance calculation unit 202 calculates the target impedance based on the allowable voltage range indicated by the circuit information, the probability not exceeding the allowable range, and the current deviation, and outputs the target impedance to the output unit 104.
  • the output unit 104 outputs the target impedance calculated by the target impedance calculation unit 202.
  • Circuit information relating to the power supply in a predetermined electronic device that is a target of circuit simulation input from the input device 101 is output to the current deviation calculation unit 201 and the impedance calculation unit 202 of the data processing device 102. Then, based on the circuit information input from the input device 101, the current deviation calculation unit 201 reads a dispersion pattern corresponding to the circuit information from the dispersion pattern storage unit 301, and applies the dispersion pattern to the standard deviation ( The current deviation ⁇ i ) is calculated. For example, the current deviation calculation unit 201 reads a pattern as shown in FIG. 2A or FIG.
  • This dispersion pattern represents the probability that the current of the current value flows through the circuit according to each current.
  • the current value of the current flowing through the circuit varies in a range between the maximum current and the minimum current. At this time, if there is information on what probability the current value during that time will occur, the deviation of the current can be obtained by the following equation (1).
  • the current deviation calculation unit 201 can obtain the current deviation based on the input maximum current and minimum current data and the dispersion pattern data using Equation 1.
  • the current deviation calculation unit 201 may read out a predetermined dispersion pattern from the dispersion pattern storage unit 301 or may selectively read out a predetermined dispersion pattern according to circuit information. Good. That is, the current deviation calculation unit 201 may select a distribution pattern corresponding to the circuit information in which the distribution pattern is determined in advance according to the current fluctuation range, the maximum current, or the minimum current. For this circuit information (information such as current fluctuation range, maximum current, or minimum current) and the dispersion pattern, it is preferable to determine an optimal combination in advance and store the combination in the dispersion pattern storage unit 301 in association with each other. .
  • the target impedance calculation unit 202 calculates a target impedance as a target.
  • the target impedance calculation unit 202 determines a target voltage deviation ⁇ v based on an allowable voltage fluctuation range and a probability not exceeding the range. For example, the target impedance calculator 202 assumes the variance of the voltage fluctuation as the standard deviation, and obtains the voltage deviation ⁇ v that has a probability that the designated fluctuation range does not exceed the designated fluctuation range. Then, the target impedance calculation unit 202 calculates the target impedance by dividing (dividing) the voltage deviation ⁇ v by the current deviation ⁇ i obtained by the current deviation calculation unit 201.
  • the output device 104 informs a user such as a designer by displaying the information on the target impedance calculated by the target impedance calculation unit 202 on, for example, a display device or printing the information using a printing device. That is, according to the power supply design system of the present invention, the current deviation can be obtained based on the circuit information, and thus the target impedance target can be obtained by calculation from the deviation which is one of the statistical indicators.
  • the design criteria will be clear.
  • the design method is based on the standard deviation using a statistical method, unlike the design method centered on the voltage fluctuation value. Yes.
  • the impedance of the power supply and the information on the current change in the operating part of the electronic device are important.
  • This current flows when various circuits operate in the operation unit of the electronic device.
  • the change in the current is caused by a temporal change in operation / non-operation of various circuits.
  • the operation / non-operation of various circuits is a very complicated mode because a plurality of circuits are entangled and determined. Therefore, an enormous amount of calculation is required to obtain a change in current by the operation of various circuits.
  • the circuit operation cannot be obtained in the upstream process of the design in which the detailed circuit operation is not determined, the current change cannot be obtained by the circuit operation.
  • the dispersion pattern of the current fluctuation is stored in the database in advance, and the current deviation is derived by applying the pattern to the circuit to be designed. Yes. Further, when the relationship between the standard deviation ⁇ v of the voltage fluctuation, the standard deviation ⁇ i of the current fluctuation, and the impedance characteristic z (f) at the frequency f was examined, it was found that the relational expression was obtained by the following formula. It was.
  • f 0 is a resonance frequency
  • f a is a frequency value corresponding to half the frequency at which the current periodically changes due to the current fluctuation.
  • the standard deviation ⁇ v of the voltage fluctuation is a product of the standard deviation ⁇ i of the current fluctuation and the square of the frequency characteristic of the square of the impedance characteristic z (f) that is 1 ⁇ 2 power.
  • FIG. 3 is a block diagram showing an example of the configuration of the power supply design system according to the second embodiment of the present invention.
  • the power supply design system of the second embodiment determines that the data processing device 102b has an impedance calculation unit 203 as shown in FIG. The difference is that a part 204 is added.
  • symbol is attached
  • the impedance calculation unit 203 calculates power supply impedance characteristics from the circuit information of the power supply circuit input from the input device 101, using a method similar to a general circuit simulator or electromagnetic field simulator.
  • the determination unit 204 compares the target impedance input from the target impedance calculation unit 202 with the power supply impedance calculated from the power supply impedance characteristic of the power supply circuit input from the impedance calculation unit 203, and the power supply impedance of the power supply circuit is the target impedance. Determine if it is in range. Then, the determination unit 204 outputs the determination result to the output device 104.
  • the output device 104 outputs the determination result input from the determination unit 204.
  • the power supply design system can obtain a more direct determination result as to whether the impedance of the power supply circuit is within the allowable range of the design. it can. That is, based on the target impedance calculated by the target impedance calculation unit 202, for example, a designer or the like saves the trouble of determining whether the impedance of the power supply circuit is within the allowable range of the design based on the circuit information. And you can get
  • FIG. 4 is a block diagram showing an example of the configuration of a power supply design system according to the third embodiment of the present invention.
  • the power supply design system of the third embodiment has a component addition / change unit 205 in the data processing apparatus 102c as shown in FIG. The difference is that a storage device 103 c is added, and a countermeasure component storage unit 302 is added in addition to the distributed pattern storage unit 301 in place of the storage device 103.
  • symbol is attached
  • the determination unit 204 is information indicating that fact. (NG information) is output to the component addition change unit 205.
  • the component addition / change unit 205 selects a predetermined component from the countermeasure component storage unit 302 of the storage device 103c based on the calculation result of the impedance characteristic of the impedance calculation unit 203, and the power supply circuit A predetermined part is added.
  • the component addition / change unit 205 searches for the frequency at which the power source impedance is peak from the calculation result of the impedance characteristic by the impedance calculation unit 203, and adds a capacitor suitable for the frequency from the countermeasure component storage unit 303. Execute. That is, the component addition / change unit 205 adds a capacitor suitable for the frequency at which the power source impedance is peaked to the circuit included in the predetermined electronic device apparatus that is the object of simulation. To change. The component addition / change unit 205 outputs the changed circuit information to the impedance calculation unit 203.
  • the impedance calculation unit 203 calculates the power supply impedance characteristic again based on the circuit information of the power supply circuit to which the component (capacitor) is added, and outputs it to the determination unit 204.
  • the determination unit 204 again determines whether or not the voltage fluctuation range is within a predetermined range based on the power supply impedance calculated based on the changed power supply impedance characteristic. That is, for example, the determination unit 204 determines whether the power supply impedance is within the allowable range of the design, the voltage fluctuation corresponding to the changed power supply impedance is within the predetermined voltage fluctuation range indicated by the target impedance. Judge whether or not. When the voltage variation does not fall within the predetermined range of the voltage variation indicated by the target impedance, the determination unit 204 outputs NG information indicating that fact to the component addition changing unit 205 and repeats the above recalculation.
  • the determination unit 204 causes the output device 104 to output the power supply circuit information of the electronic device device that satisfies the OK condition.
  • the power supply design support can be automatically provided to the designer. That is, information on the power supply circuit of the electronic device apparatus in which the voltage fluctuation range is within a predetermined allowable range can be provided to a user such as a designer via the output device 104.
  • a statistical method can be applied according to the outline of the operation of the electronic device device, the current deviation can be calculated, and the target impedance is notified to the designers by simulation, Power supply design can be supported.
  • FIG. 5 is a block diagram of the fourth embodiment when the power supply design system according to the present invention is configured by a program. That is, in the power supply design system of the fourth embodiment shown in FIG. 5, the power supply design system of any of the first, second, and third embodiments shown in FIGS. 1, 3, and 4 is configured by a program. It is a figure for demonstrating the structure of the computer operated by the program and the program in the case of having performed.
  • the power supply design system shown in FIG. 5 includes an input device 141, a computer 142, a storage device 143, an output device 144, and an electronic circuit analysis program storage area 145.
  • the program input from the input device 141 is read into, for example, a computer (central processing unit or processor) 142 that realizes the functions of the data processing device 102 in FIG. 1, and the operation of the computer 142 is controlled.
  • a computer central processing unit or processor
  • the computer 142 installs a predetermined program input from the input device 141, the program is stored in the electronic circuit analysis program storage area 145.
  • the electronic circuit analysis program stored in the electronic circuit analysis program storage area 145 is read into the computer 142, and the same as the storage device 103 or 103c in the first to third embodiments described above while operating the storage device 143. Generate information content. Further, the computer 142 executes the same processing as the processing by the data processing apparatus 102, 102b, or 102c in the first to third embodiments described above under the control of the electronic circuit analysis program 145. That is, the computer 142 operates in accordance with the electronic circuit analysis program, thereby executing the same processing as the processing by the data processing devices 102, 102b, and 102c in the first to third embodiments described above. Further, the storage device 143 stores the same information as the storage device 103 or 103c described above. Further, the input device 141 and the output device 144 have the same configuration as the input device 101 and the output device 104 described above.
  • FIG. 6 is a flowchart illustrating an example of a specific operation performed by the current deviation calculation unit 201
  • FIG. 7 is a flowchart illustrating an example of a specific operation performed by the target impedance calculation unit 202.
  • 8 is an impedance characteristic diagram obtained in one embodiment of the present invention
  • FIG. 9 is an impedance characteristic diagram recalculated based on the impedance characteristic of FIG. (Hz), and the vertical axis represents impedance ( ⁇ ).
  • the input device 101 has circuit information, for example, a maximum current (100 mA) and a minimum current (75 mA) during operation in an LSI, ⁇ 5% of an input voltage 1.2 V as an allowable voltage, and an allowable range A probability 10 ⁇ 9 that is out of the range (to make an error) is input.
  • the circuit information includes information about capacitors connected to the power source, that is, five 0.1 ⁇ F capacitors and two 100 ⁇ F capacitors.
  • the current deviation calculation unit 201 calculates a current deviation ⁇ i from the fluctuation range of the current (step S603).
  • the current deviation is 1 / ⁇ 6 times the fluctuation range, and thus is calculated as 10 mA.
  • the target impedance calculation unit 202 calculates a target impedance that is a target based on the current deviation ⁇ i calculated by the current deviation calculation unit 201 and the circuit information input from the input device 101.
  • the target impedance calculation unit 202 calculates the target impedance assuming that the voltage variation follows a normal distribution.
  • the target impedance calculation unit 202 obtains a standard deviation such that the probability of exceeding the allowable range (erroring) is the input probability. For example, when the voltage fluctuation is a normal distribution, the probability of exceeding ⁇ 6.1 ⁇ is the above-mentioned input probability of 10 ⁇ 9 (step S701).
  • target impedance calculation unit 202 obtains a 9.8mV as voltage deviation sigma v as a target (step S702). That is, the target impedance calculation unit 202 calculates the target impedance as 0.98 ⁇ from the value of the current deviation ⁇ i and the value of the voltage deviation ⁇ v (step S703).
  • the impedance calculator 203 calculates the power supply impedance characteristic.
  • the impedance calculation unit 203 uses the characteristics (hereinafter referred to as component data) and connection information of each power supply component (component included in the electronic circuit of the circuit information) included in the circuit information input from the input device 101.
  • Equivalent circuit model data (hereinafter referred to as an equivalent circuit model) represented based on the circuit information is created.
  • the impedance calculation unit 203 performs circuit simulation based on the created equivalent circuit model, and calculates power supply impedance characteristics.
  • FIG. 8 shows the result of the circuit simulation (obtained impedance characteristics) obtained by the impedance calculation unit 203 based on the input circuit information.
  • the determination unit 204 determines whether or not the power supply impedance is within an allowable range indicated by the target impedance. Determine whether. That is, the determination unit 204 obtains a power supply impedance that is ⁇ v / ⁇ i using the above formula (2) based on the power supply impedance characteristic calculated by the impedance calculation unit 203. This impedance is 1.14 ⁇ .
  • the determination unit 204 outputs NG information.
  • the allowable range indicated by the target impedance is, for example, a range in which the power source impedance is equal to or less than the target impedance.
  • the components addition change part 205 adds or changes the components which comprise a power supply circuit.
  • the component addition / change unit 205 is, for example, 320 MHz (3.2 ⁇ 10 6 Hz), which has a higher impedance, than the impedance characteristic diagram of FIG. A part that is effective in the vicinity (for example, a 1 ⁇ F capacitor) is selected and added to the power supply circuit.
  • the impedance calculation unit 203 calculates the power supply impedance characteristic again based on the changed power supply circuit. The calculation result of the power supply impedance characteristic is shown in FIG. At this time, when the determination unit 204 obtains the power supply impedance that is ⁇ v / ⁇ i using the equation (2), it is 0.89 ⁇ .
  • the determination unit 204 performs determination again. Based on the power supply impedance characteristic calculated by the impedance calculation unit 203, the determination unit 204 obtains an impedance of ⁇ v / ⁇ i using the equation (2), which is 0.89 ⁇ . When the target impedance is 0.98 ⁇ , the power supply impedance of the input power supply circuit is 1.14 ⁇ , which is smaller than the target impedance, so that OK information is output. Then, the output device 104 outputs circuit information (for example, information on capacitors having 5 pieces of 0.1 ⁇ F, 1 piece of 1 ⁇ F, and 2 pieces of 100 ⁇ F) whose determination result is OK.
  • circuit information for example, information on capacitors having 5 pieces of 0.1 ⁇ F, 1 piece of 1 ⁇ F, and 2 pieces of 100 ⁇ F
  • the output device 104 When a component is added or changed by the component addition / change unit 205, the output device 104 outputs circuit information including the added or changed component. Therefore, the power supply design system according to the present embodiment can perform appropriate design support for the designer based on such circuit information of the power supply.
  • the conventional power supply design system is designed by performing simulation with detailed design data. Therefore, information necessary for the simulation cannot be collected upstream of the design where the operation of the electronic device apparatus is undecided. Also, when designing a power supply in simulation upstream of an undecided operation, a clear target cannot be obtained, so more parts are added than necessary, or the power supply impedance becomes high and it operates normally. There was not.
  • the standard deviation of statistics is applied to the design of the electronic device, and the design is performed based on the relationship between the current deviation, the voltage deviation, and the impedance of the power supply. As a result, the target impedance can be obtained based on simple data, and the target value of the power supply impedance becomes clear even in the upstream process of the design without detailed information, and the power supply design is appropriately It can be carried out.
  • the power supply design method described above is realized by a computer reading a program. Therefore, each process of the power supply design method described above is stored in a computer-readable recording medium in the form of a program, and each process described above is performed by the computer reading and executing this program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the program may be distributed to an external computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions of the power supply design method described above. Furthermore, what can implement
  • the power supply design system of the present invention when designing the power supply of an electronic device, it can be effectively used for a program for causing a computer to implement a power supply design auxiliary device and an automatic design device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

 電子機器装置の電源を設計するための電源設計システム。前記電子機器装置の電源に関する回路情報を入力する入力装置と、前記入力装置から入力する前記回路情報に対応する電流変動の分散を示す分散情報と前記回路情報とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する電流偏差計算部と、前記電流偏差計算部が計算した前記電流偏差と、前記回路情報が示す電圧変動の許容範囲に基づいて、当該回路情報が示す電源の目標となるターゲットインピーダンスを計算するターゲットインピーダンス計算部と、前記ターゲットインピーダンス計算部が計算した前記ターゲットインピーダンスを出力する出力装置とを備える。

Description

電源設計システム、電源設計方法、及び電源設計用プログラム
 本発明は、電子機器装置の電源を設計するためのツールとして用いられる電源設計システムなどに関し、特に、設計段階の上流工程において動作回路の概要によりランダムモデルを適用し、統計的な電源変動値を出力することで電源設計を支援する電源設計システム、電源設計方法、及び電源設計用プログラムに関する。
 本願は、2010年7月30日に出願された特願2010-172596号に基づき優先権を主張し、その内容をここに援用する。
 近年、半導体技術の飛躍的な進歩によって、LSI(Large Scale Integration)などを含む電子機器装置の高性能化及び高速動作化が進んでいる。そのため、電子機器装置の電源の設計や検証などに要するコストも高騰化してきている。
 そこで、電子機器装置の電源の設計コストを低減化させるために、設計の段階において電子機器装置のシミュレーションによる検証が盛んに行われている。このようなシミュレーションによる検証を解析することによって、電子機器装置における電源の設計の良し悪しや問題点などを判断することができる。これによって、電子機器装置の試作後に電源の再設計を行わなければならないといった問題を解決することができるので、電子機器装置における電源の設計コストの低減化を図ることが可能となる。
 また、シミュレーションを行うことによって電子機器装置の電源の設計を支援する技術も種々開示されている。
 例えば、複数の伝搬路を経由した多重波が相互に干渉を起こして受信波を劣化させるマルチパスフェージング現象を解消するために、あらかじめ電源のインピーダンスをシミュレーションによって求め、電源の共振の有無を判定して設計支援を行う技術が開示されている(例えば、特許文献1参照)。
 また、電子機器装置の電源回路の測定により、シミュレーションのモデルを調整することで設計支援を行う技術も開示されている(例えば、特許文献2参照)。
 さらに、電子機器装置の多くの設計情報より解析モデルを生成し、電源設計を行うための重要な要素の一つである電源回路にコンデンサを配置するためのデカップリング容量を決定することで、設計支援を適切に行う技術も開示されている(特許文献3参照)。
 また、電子機器装置の電源設計においては、電源電圧の変動を抑えることが極めて重要である。
 すなわち、電子機器装置の動作部が様々に動作するときに電源から電流が流れる。このとき、電子機器装置の動作部はLSIやその他多くの電子部品から構成されていて、各電子部品の動作状態に合わせて、電子機器装置の各種の回路が動いたり止まったりしている。これによって、各タイミングで動作する回路の個数によって動作部に流れる電流が変化する。したがって、この電流の変化によって電源電圧の変動が発生する。そのため、電流の変化による電源電圧の変動を解析して、安定した電源電圧が実現できるような最適な電源設計が行われている。
特許第3609305号公報 特開2007-133484号公報 特開2008-70924号公報
 しかしながら、電子機器装置の詳細な動作状態が決定されていない設計の上流工程においては、シミュレーションの利用によって設計を行うことは極めて困難である。
 従来は、詳細な設計データに基づいてシミュレーションを行ったり、上記特許文献2の技術のように、一度、実際の電子機器装置により測定データを得てからシミュレーションを行ったりしているが、設計の上流工程ではシミュレーションに必要な情報を集めることができない。そのため、シミュレーションによる設計が有効な設計の上流工程において適切なシミュレーションが行えないのが現状である。
 また、実際の電子機器装置は複雑な動作を行うため、電子機器装置の動作を忠実に模擬するようなシミュレーションを行うことは極めて困難である。
 すなわち、電子機器装置における実際の複雑な動作による電流の変化状態をシミュレーションするためには、モデル自身がかなり複雑になるので、シミュレーションを解析するためには膨大な計算量が必要となる。
 そこで、現状では、単純な動作の繰り返しなどを仮定することでシミュレーションを行っている。そのため、電子機器装置におけるごく一部の動作しか考慮することができないので、電子機器装置に低い頻度で発生する現象などについては考慮されない状態で電源の設計がなされている。従って、高品質な電源を設計することができない。
 尚、前記の特許文献1,2,3の技術においても、電子機器装置の全ての動作を考慮したシミュレーションを行っているわけではないので、高品質な電源を設計することはできない。
 本発明は、このような問題点に鑑みてなされたものであり、設計段階の上流工程において、シミュレーションによって目標となるターゲットインピーダンスを出力して電源の設計を支援する電源設計システム、電源設計方法、及び電源設計用プログラムを提供することを目的とする。
 上記問題を解決するために、本発明は、電子機器装置の電源を設計するための電源設計システムであって、前記電子機器装置の電源に関する回路情報を入力する入力装置と、前記入力装置から入力する前記回路情報に対応する電流変動の分散を示す分散情報と前記回路情報とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する電流偏差計算部と、前記電流偏差計算部が計算した前記電流偏差と、前記回路情報が示す電圧変動の許容範囲に基づいて、当該回路情報が示す電源の目標となるターゲットインピーダンスを計算するターゲットインピーダンス計算部と、前記ターゲットインピーダンス計算部が計算した前記ターゲットインピーダンスを出力する出力装置とを備える電源設計システムを提供する。
 本発明はまた、電子機器装置の電源を設計するための電源設計システムであって、前記電子機器装置の電源に関する回路情報を入力する入力装置と、電流が変動する範囲内での電流の発生確率を示す分散情報を記憶する分散記憶部と、前記入力装置から入力する前記回路情報が示す電流の発生範囲と、前記分散情報とに基づいて当該電子機器装置の電流変動を示す電流偏差を計算する電流偏差計算部と、前記電流偏差計算部が計算した前記電流偏差と、前記回路情報が示す前記電子機器装置の電圧変動の許容範囲に基づいて、その電源の目標となるターゲットインピーダンスを計算するターゲットインピーダンス計算部と、前記ターゲットインピーダンス計算部が計算したターゲットインピーダンスを出力する出力装置とを備える電源設計システムも提供する。
 上述の各電源設計システムは、前記入力装置が入力する前記回路情報に基づいて前記電子機器装置の電源の電源インピーダンス特性を計算するインピーダンス計算部と、前記ターゲットインピーダンス計算部が計算した前記ターゲットインピーダンスに基づいて、前記電源インピーダンス特性に基づいて算出される電源インピーダンスが前記ターゲットインピーダンスの示す許容範囲内に入っているか否かを判定する判定部とをさらに備え、前記出力装置は、前記判定部の判定結果に応じて、前記電源インピーダンスが前記回路情報の許容範囲内に入っているか否かの情報を出力するようにしても良い。
 この場合、前記電源インピーダンスが前記回路情報の許容範囲内に入っていない場合、前記電源インピーダンスが前記回路情報の許容範囲内に入るように、前記回路情報に対応する前記電子機器装置を構成する部品を追加又は変更する調整を行う部品追加変更部をさらに備え、前記出力装置は、前記部品追加変更部の調整結果に応じて、前記電源インピーダンスが前記回路情報の許容範囲内に入るために必要な設計調整を示す電源設計情報を出力するようにしても良い。
 本発明はまた、電子機器装置の電源を設計するための電源設計方法であって、前記電子機器装置の電源に関する回路情報を入力する第1のステップと、前記回路情報に対応する電流変動の分散を示す分散情報と前記回路情報とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する第2のステップと、前記電流偏差と、前記回路情報が示す電圧変動の許容範囲に基づいて、当該回路情報が示す電源の目標となるターゲットインピーダンスを計算する第3のステップと、前記ターゲットインピーダンスを出力する第4のステップとを備える電源設計方法も提供する。
 本発明はまた、電子機器装置の電源を設計するための電源設計方法であって、前記電子機器装置の電源に関する回路情報を入力する第1のステップと、電流が変動する範囲内での電流の発生確率を示す分散情報と、前記回路情報が示す電流の発生範囲とに基づいて当該電子機器装置の電流変動を示す電流偏差を計算する第2のステップと、前記回路情報が示す前記電子機器装置の電圧変動の許容範囲と、前記電流偏差とに基づいて、当該電源の目標となるターゲットインピーダンスを計算する第3のステップと、前記ターゲットインピーダンスを出力する第4のステップとを備える電源設計方法も提供する。
 本発明はまた、上述の各電源設計方法に係る第1~4のステップを実行させるための電源設計プログラムも提供する。
 本発明によれば、想定される最大電流と最小電流によって規定される統計的な電流範囲から電流偏差を求めることができる。よって、電流偏差と目標となる電圧変動の許容値によって、目標となるターゲットインピーダンスの値が算出できる。
 さらに、目標となるターゲットインピーダンスが明確となるため、適切なコストで電源設計を行うことができ、電子機器装置における電源の設計コストの低減化を図ることができる。
本発明に係る第1実施形態の電源設計システムの構成を示すブロック図である。 本実施形態に係る電流変動の分散のパターンを示す図である。 本実施形態に係る電流変動の、別の分散のパターンを示す図である。 本発明に係る第2実施形態の電源設計システムの構成を示すブロック図である。 本発明に係る第3実施形態の電源設計システムの構成を示すブロック図である。 本発明に係る電源設計プログラムについて説明するための図である。 本発明に係る電流偏差の計算処理フローの一例を示すフローチャートである。 本発明に係るターゲットインピーダンスの計算処理フローの一例を示すフローチャートである。 本発明の一実施例において得られたインピーダンス特性を示す図である。 本発明の一実施例において再計算されたインピーダンス特性を示す図である。
 以下、本発明に係る電源設計システムの幾つかの実施形態について、図面を参照しながら詳細に説明する。なお、各実施形態を説明するための全図において、同一要素は原則として同一の符号を付し、その繰り返しの説明は省略する。
<第1実施形態>
 図1は、本発明の第1実施形態に係る電源設計システムの構成の一例を示すブロック図である。
 図1に示すように、電源設計システムは、キーボードやマウスなどによって実現される入力装置101と、各種のプログラム制御によって動作するデータ処理装置102と、各種情報を記憶する記憶装置103と、ディスプレイ装置や印刷装置などによって実現される出力装置104とを備えて構成される。
 入力装置101は、回路情報、例えば、回路シミュレーションの対象である電子機器装置における回路の種類、回路の電源の最大電流や最小電流、電源電圧変動の許容範囲、許容範囲を超えない確率等を示す情報を入力する装置である。
 記憶装置103は、各種データを格納するデータベースであって分散パターン記憶部301を備えている。この分散パターン記憶部301は、入力装置101から入力される回路情報に応じた分散パターン(詳細は後述)のデータをあらかじめ記憶しているデータベースである。
 データ処理装置102は、電流偏差計算部201とターゲットインピーダンス計算部202とを備えている。
 この電流偏差計算部201は、入力装置101から入力される回路情報(例えば、回路の種類と最大電流、最小電流)に基づき、分散パターン記憶部301から回路情報に応じた分散パターンを読み出し、電流変動の標準偏差を計算する。
 ターゲットインピーダンス計算部202は、電流偏差計算部201によって計算された電流変動の標準偏差(以下、電流偏差という)を電流偏差計算部201から入力するとともに、入力装置101から回路情報を入力する。このターゲットインピーダンス計算部202は、回路情報が示す許容電圧範囲と当該許容範囲を超えない確率、および電流偏差に基づいて、ターゲットインピーダンスを計算し、出力部104に出力する。
 出力部104は、ターゲットインピーダンス計算部202で計算されたターゲットインピーダンスを出力する。
 次に、図1を参照しながら本実施形態に係る電源設計システムの全体の動作について詳細に説明する。
 入力装置101から入力される回路シミュレーションの対象である所定の電子機器装置における電源に関する回路情報は、データ処理装置102の電流偏差計算部201とインピーダンス計算部202とに出力される。
 そして、電流偏差計算部201は、入力装置101から入力された回路情報に基づき、当該回路情報に応じた分散パターンを分散パターン記憶部301から読み出し、当該分散パターンを当てはめて電流変動の標準偏差(電流偏差σ)を計算する。
 例えば、電流偏差計算部201は、入力された回路情報より、分散パターンとして図2Aや図2Bに示すようなパターンを分散パターン記憶部301から読み出す。この分散パターンは、各電流に応じて当該電流値の電流が回路を流れる確率を表している。回路を流れる電流の電流値は、最大電流と最小電流の間の範囲で変動する。このとき、その間の電流値がどの確率で発生するかの情報があれば、次の式1で電流の偏差が求まる。
Figure JPOXMLDOC01-appb-M000001
 ただし、各電流値iに対し、σは電流偏差、iに上線が付いたものは平均電流、p(i)は電流値iの発生確率である。
 したがって、電流偏差計算部201では、式1により、入力された最大電流や最小電流のデータと分散パターンのデータに基づき、電流偏差を求めることができる。
 なお、電流偏差計算部201は、予め決められている分散パターンを分散パターン記憶部301から読み出すものであってもよく、回路情報に応じて所定の分散パターンを選択的に読み出すものであってもよい。
 つまり、電流偏差計算部201は、電流の変動範囲や最大電流あるいは最小電流に応じて分散パターンが予め決められており、回路情報に対応する分散パターンを選択するものであってもよい。この回路情報(電流の変動範囲や最大電流あるいは最小電流等の情報)と分散パターンとは、最適となる組み合わせを予め決めておき、対応付けて分散パターン記憶部301に記憶させておくことが好ましい。
 次に、ターゲットインピーダンス計算部202は、目標となるターゲットインピーダンスを計算する。このターゲットインピーダンス計算部202は、許容された電圧変動範囲と、それを超えない確率を元に、目標の電圧偏差σを決定する。
 例えば、ターゲットインピーダンス計算部202は、電圧変動の分散を標準偏差と仮定し、指定された変動範囲を指定された超えない確率になるような電圧偏差σを求める。そして、ターゲットインピーダンス計算部202は、電圧偏差σを電流偏差計算部201で求めた電流偏差σで割る(除算する)ことで、ターゲットインピーダンスを計算する。
 そして、出力装置104は、ターゲットインピーダンス計算部202で計算されたターゲットインピーダンスの情報を、例えば、ディスプレイ装置に表示すること、あるいは、印刷装置により印刷することによって設計者等のユーザに報知する。
 すなわち、本発明の電源設計システムによれば、回路情報に基づき電流偏差を求めることができ、これにより統計的な指標の一つである偏差からの計算によって、目標となるターゲットインピーダンスが求められるので、設計の基準が明確となる。言い換えると、本発明の電源設計システムにおいては、従来の電源設計システムのような電圧変動の値を中心とした設計方法とは異なり、統計的手法を用いた標準偏差を基準とした設計を行っている。
 電源設計を行なう際には、シミュレーションによる検証の解析によって電源の電圧変動を求めるには、電源のインピーダンスと電子機器装置の動作部における電流の変化の情報とが重要となる。この電流は、電子機器装置の動作部において各種回路が動作することによって流れる。その電流の変化は、各種回路の動作/非動作の時間的変化によって発生する。
 しかし、各種回路の動作/非動作は、複数の回路が絡み合って決定されるために極めて複雑なモードとなる。そのため、各種回路の動作により電流の変化を求めるためには莫大な計算量が必要となる。また、詳細な回路動作が決定していない設計の上流工程においては回路動作を求めることができないため、回路動作によって電流の変化を得ることができない。
 そこで、本発明の電源設計システムにおいては、電流の変動の分散パターンをあらかじめデータベースに記憶しておき、設計する回路に対し、そのパターンを当てはめることで、電流の偏差を導きだし、設計を行なっている。
 また、電圧変動の標準偏差σと、電流変動の標準偏差σと、周波数fにおけるインピーダンス特性z(f)との関係を調べたところ、その関係式は、次式で得られることが分かった。
Figure JPOXMLDOC01-appb-M000002
 ただし、fは共振周波数、fは当該電流変動で電流が周期的に変化する周波数の半分に相当する周波数の値である。
 つまり、電圧変動の標準偏差σは、電流変動の標準偏差σと、インピーダンス特性z(f)の2乗の周波数平均をとって1/2乗したものとの積となる。この電圧偏差σ、電流偏差σとインピーダンスの関係式と求めたターゲットインピーダンスZにより、次式の条件に当てはまるように電源インピーダンスを設計することで、安定した設計が行なえる。
Figure JPOXMLDOC01-appb-M000003
<第2実施形態>
 図3は、本発明の第2実施形態に係る電源設計システムの構成の一例を示すブロック図である。
 なお、前述の図1に示した第1実施形態の電源設計システムと比較して、第2実施形態の電源設計システムは、図3に示すように、データ処理装置102bにインピーダンス計算部203と判定部204が追加されている点で異なる。
 その他、第1実施形態と同様の構成については、同一の符号を付して、詳細な説明は省略する。
 インピーダンス計算部203は、入力装置101から入力される電源回路の回路情報より、一般的な回路シミュレータや電磁界シミュレータと同様の方法を用い、電源インピーダンス特性を計算する。
 判定部204は、ターゲットインピーダンス計算部202から入力されるターゲットインピーダンスと、インピーダンス計算部203から入力する電源回路の電源インピーダンス特性により算出される電源インピーダンスとを比較し、電源回路の電源インピーダンスが目標の範囲に入っているかどうかを判定する。そして、判定部204は、判定結果を出力装置104に出力する。
 出力装置104は、判定部204から入力する判定結果を出力する。
 これにより、本実施形態に係る電源設計システムは、電源回路のインピーダンスが設計の許容範囲に入っているかどうかという、より直接的な判定結果が得られるため、さらに効果的な設計支援を行うことができる。
 つまり、ターゲットインピーダンス計算部202が計算するターゲットインピーダンスに基づき、例えば設計者等が、回路情報に基づき電源回路のインピーダンスが設計の許容範囲内か否かを判断する手間が省け、ターゲットインピーダンスと判定結果とを得ることができる。
<第3実施形態>
 図4は、本発明の第3実施形態に係る電源設計システムの構成の一例を示すブロック図である。
 なお、前述の図3に示した第2実施形態の電源設計システムと比較して、第3実施形態の電源設計システムは、図4に示すように、データ処理装置102cに部品追加変更部205が追加され、かつ、記憶装置103に換えて、分散パターン記憶部301に加えて対策部品記憶部302が追加されている記憶装置103cを備える点で異なる。
 その他、第2実施形態と同様の構成については、同一の符号を付して、詳細な説明は省略する。
 判定部204は、電源インピーダンスが所定の範囲内に入っているか否かの判定結果がNGのとき(すなわち、電源インピーダンスが所定の設計の許容範囲内に入っていないとき)、その旨を示す情報(NG情報)を部品追加変更部205へ出力する。
 部品追加変更部205は、判定部204からNG情報を入力すると、インピーダンス計算部203のインピーダンス特性の計算結果に基づいて、記憶装置103cの対策部品記憶部302から所定の部品を選択し、電源回路に所定の部品を追加する。
 例えば、部品追加変更部205は、インピーダンス計算部203によるインピーダンス特性の計算結果より、電源インピーダンスのピークとなっている周波数を検索し、対策部品記憶部303よりその周波数に適したコンデンサを追加することを実行する。つまり、部品追加変更部205は、シミュレーションの対象である所定の電子機器装置に含まれる回路に対して、その電源インピーダンスのピークとなっている周波数に適したコンデンサを設計上追加して、回路情報を変更する。
 この部品追加変更部205は、変更した回路情報をインピーダンス計算部203に出力する。
 そして、インピーダンス計算部203は、部品(コンデンサ)が追加された電源回路の回路情報に基づいて、電源インピーダンス特性を再度計算して、判定部204に出力する。
 この判定部204は、再度、変更された電源インピーダンス特性に基づいて算出された電源インピーダンスに基づき、電圧変動の範囲が所定の範囲内に入っているか否かの判定を行う。つまり、判定部204は、例えば、電源インピーダンスが設計の許容範囲内に入っているか否かについて、変更された電源インピーダンスに対応する電圧変動が、ターゲットインピーダンスが示す電圧変動の所定の範囲内に入っているか否かを判断する。
 判定部204は、この電圧変動がターゲットインピーダンスの示す電圧変動の所定の範囲内に入っていない場合、その旨を示すNG情報を部品追加変更部205へ出力し、上述の再計算を繰り返す。
 一方、電圧レベル判定部204の判定結果がOKのとき(すなわち、電圧変動範囲が所定の範囲内に入っているとき、例えば、電圧変動がターゲットインピーダンスの示す電圧変動の所定の範囲内に入っている場合)、判定部204は、OKの条件に該当する電子機器装置の電源回路情報を出力装置104より出力させる。これによって、設計者に対して自動的に電源の設計支援を行うことができる。
 つまり、電圧変動範囲が所定の許容範囲内となる電子機器装置の電源回路の情報を出力装置104を介して設計者等のユーザに提供することができる。
 これにより、設計段階の上流過程において、電子機器装置の動作の概要によって統計的な手法を適用し、電流偏差の計算を行うことができ、シミュレーションによって目標となるインピーダンスを設計者等に通知し、電源設計を支援することができる。
<第4実施形態>
 図5は、本発明の係る電源設計システムをプログラムによって構成した場合の第4実施形態のブロック図である。すなわち、図5に示す第4実施形態の電源設計システムは、前述の図1、図3、図4で示した第1、第2、第3実施形態のいずれかの電源設計システムをプログラムによって構成した場合の、プログラムとそのプログラムによって動作されるコンピュータの構成を説明するための図である。
 図5に示す電源設計システムは、入力装置141、コンピュータ142、記憶装置143、出力装置144、及び電子回路解析プログラム記憶領域145によって構成されている。
 すなわち、入力装置141から入力されたプログラムは、例えば、図1のデータ処理装置102の機能を実現するコンピュータ(中央演算処理装置又はプロセッサ)142に読み込まれて、そのコンピュータ142の動作が制御される。
 例えば、コンピュータ142が、入力装置141から入力する所定のプログラムをインストールすることにより、このプログラムを電子回路解析プログラム記憶領域145に格納する。
 さらに、電子回路解析プログラム記憶領域145に記憶されている電子回路解析プログラムがコンピュータ142に読み込まれて、記憶装置143を操作しながら前述の第1~3実施形態における記憶装置103もしくは103cと同様の情報内容を生成する。
 また、コンピュータ142は、電子回路解析プログラム145の制御により、前述の第1~3実施形態におけるデータ処理装置102、102b、もしくは102cによる処理と同一の処理を実行する。
 すなわち、コンピュータ142は、電子回路解析プログラムに従って動作することにより、前述の第1~3実施形態におけるデータ処理装置102、102b、102cによる処理と同一の処理を実行する。また、記憶装置143は、上述の記憶装置103もしくは103cと同様の情報を記憶する。さらに、入力装置141、出力装置144は、上述の入力装置101、出力装置104と同様の構成を有する。
 次に、一例として図4を参照しながら、図6、図7、図8、及び図9を用いて、電源設計システムの具体的な動作の実施例を説明する。
 尚、図6は、電流偏差計算部201が行う具体的な動作の実施例を示すフローチャートであり、図7は、ターゲットインピーダンス計算部202が行う具体的な動作の実施例を示すフローチャートである。また、図8は、本発明の一実施例において得られたインピーダンス特性図であり、図9は、図8のインピーダンス特性に基づいて再計算されたインピーダンス特性図であり、何れも横軸に周波数(Hz)、縦軸にインピーダンス(Ω)を示している。
 まず、図4において、入力装置101が、回路情報として、例えば、LSIにおける動作時の最大電流(100mA)、最小電流(75mA)、許容電圧としての入力電圧1.2Vの±5%、許容範囲を外れる(エラーをする)確率10-9が入力される。また、回路情報として、0.1μFのコンデンサが5個、100μのコンデンサが2個との、電源に接続されているコンデンサについての情報が含まれている。
 次に、図6のフローチャートに示すように、入力装置101から入力する回路情報に基づき、電流偏差計算部201が電流偏差σを計算する。
 例えば、電流偏差計算部201は、入力される回路情報に含まれる最大電流(100mA)と最小電流(75mA)の値より、電流の変動幅を計算(100mA-75mA=25mA)する(ステップS601)。
 そして、電流偏差計算部201は、分散パターン記憶部301から、この最大電流、最小電流、および電流の変動幅に応じた分散パターンを呼び出す(ステップS602)。本実施例においては、電流偏差計算部201は、この分散パターンとして、図2Aに示したような分散パターンを読み出す。
 次いで、電流偏差計算部201は、この電流の変動幅より電流偏差σを計算する(ステップS603)。例えば、図2Aの分散パターンの場合、電流偏差は変動幅の1/√6倍となるため、10mAと計算される。
 次に、ターゲットインピーダンス計算部202が、電流偏差計算部201によって計算された電流偏差σと、入力装置101から入力する回路情報に基づき、目標となるターゲットインピーダンスを計算する。
 このターゲットインピーダンス計算部202は、電圧変動が正規分布に従うとして、ターゲットインピーダンスを計算する。このとき、ターゲットインピーダンス計算部202は、許容範囲を超える(エラーする)確率が入力された確率となるような標準偏差を求める。
 例えば、電圧変動が正規分布の場合、±6.1σを超える確率が、上述の入力された確率10-9となる(ステップS701)。ここで、1.2V×±5%=60mVが6.1σであるため、ターゲットインピーダンス計算部202は、目標となる電圧偏差σとして9.8mVを求める(ステップS702)。
 すなわち、このターゲットインピーダンス計算部202は、電流偏差σの値と電圧偏差σの値より、ターゲットインピーダンスを0.98Ωと計算する(ステップS703)。
 次に、インピーダンス計算部203が電源インピーダンス特性を計算する。すなわち、インピーダンス計算部203は、入力装置101から入力される回路情報に含まれる各電源部品(当該回路情報の電子回路に含まれる部品)の特性(以下、部品データという)や接続情報から、これら回路情報に基づき表わされる等価回路のモデルデータ(以下、等価回路モデルという)を作成する。
 このインピーダンス計算部203は、作成した等価回路モデルに基づいて回路シミュレーションを行い、電源インピーダンス特性を計算する。このインピーダンス計算部203が、入力する回路情報に基づき、回路シミュレーションした結果(得られたインピーダンス特性)を図8に示す。
 次に、判定部204は、ターゲットインピーダンス計算部202により計算されたターゲットインピーダンスと、インピーダンス計算部203により計算された電源インピーダンス特性に基づき、電源インピーダンスがターゲットインピーダンスの示す許容範囲内に入っているか否かを判定する。
 つまり、判定部204は、インピーダンス計算部203が計算した電源インピーダンス特性を元に、上記式(2)を用いてσ/σとなる電源インピーダンスを求める。このインピーダンスは、1.14Ωとなる。
 このように、ターゲットインピーダンスが0.98Ωに対し、入力された電源回路の回路情報に対応する電源インピーダンスは、1.14Ωであり、ターゲットインピーダンスより大きいため、判定部204は、NG情報を出力する。
 つまり、ターゲットインピーダンスの示す許容範囲内とは、例えば、この電源インピーダンスが、ターゲットインピーダンス以下となる範囲である。
 そして、判定部204による判定結果がNGのため、部品追加変更部205が、電源回路を構成する部品を追加あるいは変更する。
 この部品追加変更部205は、インピーダンス計算部203が計算した電源インピーダンスの計算結果に基づいて、図8のインピーダンス特性図より、例えば、インピーダンスの高い周波数である320MHz(3.2×10Hz)付近で効果のある部品(例えば、1μFのコンデンサ)を選択して電源回路に追加する。
 次に、変更された電源回路を元に、再度、インピーダンス計算部203は、電源インピーダンス特性を計算する。その電源インピーダンス特性の計算結果を図9に示す。
 このとき、判定部204が、式(2)を用いてσ/σとなる電源インピーダンスを求めると0.89Ωとなった。
 次に、再度、判定部204で判定をおこなう。インピーダンス計算部203で計算した電源インピーダンス特性を元に、判定部204は、式(2)を用いてσ/σとなるインピーダンスを求めると0.89Ωとなった。ターゲットインピーダンスが0.98Ωに対し、入力された電源回路の電源インピーダンスが1.14Ωであり、ターゲットインピーダンスより小さいため、OK情報を出力する。
 そして、出力装置104は、判定結果がOKであった回路情報(例えば、0.1μFが5個、1μFが1個、及び100μFが2個のコンデンサの情報)を出力する。
 なお、部品追加変更部205により部品が追加又は変更された場合、追加又は変更された部品を含む回路情報を、出力装置104が出力する。
 従って、本実施形態に係る電源設計システムは、このような電源の回路情報に基づいて、設計者に対して適切な設計支援を行うことができる。
 以上、本発明の電源設計システムについて幾つかの実施形態と具体的な実施例を説明したが、本発明は前記の各実施形態並びに実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能である。
 以上説明したように、従来の電源設計システムは詳細な設計データによりシミュレーションを実施して設計を行っていた。そのため、電子機器装置の動作が未定な設計の上流ではシミュレーションに必要な情報を収集することができなかった。また、動作が未定の設計の上流で、シミュレーションで電源設計を行なう際に、明確な目標が得られないため、必要以上に多くの部品を追加したり、電源インピーダンスが高くなって正常に動作しなかったりしていた。
 一方、本発明の電源設計システムでは、電子機器装置の設計に統計の標準偏差を適用し、電流偏差や電圧偏差、電源のインピーダンスとの関係より、設計を行なっていく。
 これによって、簡易的なデータを元に、目標となるインピーダンスを求めることができ、詳細な情報のない設計の上流工程においても、電源のインピーダンスの目標値が明確になり、電源の設計を適切に行うことができる。
 なお、前述した電源設計方法は、コンピュータがプログラムを読み込むことによって実現される。したがって、前述した電源設計方法の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、前述した各処理が行われる。
 ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリなどをいう。また、このプログラムを通信回線によって外部のコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 また、上記プログラムは、前述した電源設計方法の機能の一部を実現するためのものであってもよい。さらに、前述した電源設計方法の機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 本発明の電源設計システムによれば、電子機器装置の電源を設計する際に、電源設計の補助装置や自動設計装置をコンピュータに実現させるためのプログラムなどに有効に利用することができる。
 101・・・入力装置、102・・・データ処理装置、103・・・記憶装置、104・・・出力装置、201・・・電流偏差計算部、202・・・ターゲットインピーダンス計算部、203・・・インピーダンス計算部、204・・・判定部、205・・・部品追加変更部

Claims (10)

  1.  電子機器装置の電源を設計するための電源設計システムであって、
     前記電子機器装置の電源に関する回路情報を入力する入力装置と、
     前記入力装置から入力する前記回路情報に対応する電流変動の分散を示す分散情報と前記回路情報とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する電流偏差計算部と、
     前記電流偏差計算部が計算した前記電流偏差と、前記回路情報が示す電圧変動の許容範囲に基づいて、当該回路情報が示す電源の目標となるターゲットインピーダンスを計算するターゲットインピーダンス計算部と、
     前記ターゲットインピーダンス計算部が計算した前記ターゲットインピーダンスを出力する出力装置と
     を備えることを特徴とする電源設計システム。
  2.  電子機器装置の電源を設計するための電源設計システムであって、
     前記電子機器装置の電源に関する回路情報を入力する入力装置と、
     電流が変動する範囲内での電流の発生確率を示す分散情報を記憶する分散記憶部と
     前記入力装置から入力する前記回路情報が示す電流の発生範囲と、前記分散情報とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する電流偏差計算部と、
     前記電流偏差計算部が計算した前記電流偏差と、前記回路情報が示す前記電子機器装置の電圧変動の許容範囲に基づいて、その電源の目標となるターゲットインピーダンスを計算するターゲットインピーダンス計算部と、
     前記ターゲットインピーダンス計算部が計算したターゲットインピーダンスを出力する出力装置と
     を備えることを特徴とする電源設計システム。
  3.  前記入力装置が入力する前記回路情報に基づいて前記電子機器装置の電源の電源インピーダンス特性を計算するインピーダンス計算部と、
     前記ターゲットインピーダンス計算部が計算した前記ターゲットインピーダンスに基づいて、前記電源インピーダンス特性に基づいて算出される電源インピーダンスが前記ターゲットインピーダンスの示す許容範囲内に入っているか否かを判定する判定部と、をさらに備え、
     前記出力装置は、前記判定部の判定結果に応じて、前記電源インピーダンスが前記回路情報の許容範囲内に入っているか否かの情報を出力する
     ことを特徴とする請求項1に記載の電源設計システム。
  4.  前記電源インピーダンスが前記回路情報の許容範囲内に入っていない場合、前記電源インピーダンスが前記回路情報の許容範囲内に入るように、前記回路情報に対応する前記電子機器装置を構成する部品を追加又は変更する調整を行う部品追加変更部をさらに備え、
     前記出力装置は、前記部品追加変更部の調整結果に応じて、前記電源インピーダンスが前記回路情報の許容範囲内に入るために必要な設計調整を示す電源設計情報を出力することを特徴とする請求項3に記載の電源設計システム。
  5.  前記入力装置が入力する前記回路情報に基づいて前記電子機器装置の電源の電源インピーダンス特性を計算するインピーダンス計算部と、
     前記ターゲットインピーダンス計算部が計算した前記ターゲットインピーダンスに基づいて、前記電源インピーダンス特性に基づいて算出される電源インピーダンスが前記ターゲットインピーダンスの示す許容範囲内に入っているか否かを判定する判定部と、をさらに備え、
     前記出力装置は、前記判定部の判定結果に応じて、前記電源インピーダンスが前記回路情報の許容範囲内に入っているか否かの情報を出力する
     ことを特徴とする請求項2に記載の電源設計システム。
  6.  前記電源インピーダンスが前記回路情報の許容範囲内に入っていない場合、前記電源インピーダンスが前記回路情報の許容範囲内に入るように、前記回路情報に対応する前記電子機器装置を構成する部品を追加又は変更する調整を行う部品追加変更部をさらに備え、
     前記出力装置は、前記部品追加変更部の調整結果に応じて、前記電源インピーダンスが前記回路情報の許容範囲内に入るために必要な設計調整を示す電源設計情報を出力することを特徴とする請求項5に記載の電源設計システム。
  7.  電子機器装置の電源を設計するための電源設計方法であって、
     前記電子機器装置の電源に関する回路情報を入力する第1のステップと、
     前記回路情報に対応する電流変動の分散を示す分散情報と前記回路情報とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する第2のステップと、
     前記電流偏差と、前記回路情報が示す電圧変動の許容範囲に基づいて、当該回路情報が示す電源の目標となるターゲットインピーダンスを計算する第3のステップと、
     前記ターゲットインピーダンスを出力する第4のステップと
     を備えることを特徴とする電源設計方法。
  8.  電子機器装置の電源を設計するための電源設計方法であって、
     前記電子機器装置の電源に関する回路情報を入力する第1のステップと、
     電流が変動する範囲内での電流の発生確率を示す分散情報と、前記回路情報が示す電流の発生範囲とに基づいて、当該電子機器装置の電流変動を示す電流偏差を計算する第2のステップと、
     前記回路情報が示す前記電子機器装置の電圧変動の許容範囲と、前記電流偏差とに基づいて、当該電源の目標となるターゲットインピーダンスを計算する第3のステップと、
     前記ターゲットインピーダンスを出力する第4のステップと
     を備えることを特徴とする電源設計方法。
  9.  コンピュータに、請求項7に記載の第1~4のステップを実行させるための電源設計プログラム。
  10.  コンピュータに、請求項8に記載の第1~4のステップを実行させるための電源設計プログラム。
PCT/JP2011/064039 2010-07-30 2011-06-20 電源設計システム、電源設計方法、及び電源設計用プログラム WO2012014597A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/811,886 US8667453B2 (en) 2010-07-30 2011-06-20 Power-supply design system, power-supply design method, and program for power-supply design
JP2012526377A JP5895843B2 (ja) 2010-07-30 2011-06-20 電源設計システム、電源設計方法、及び電源設計プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-172596 2010-07-30
JP2010172596 2010-07-30

Publications (1)

Publication Number Publication Date
WO2012014597A1 true WO2012014597A1 (ja) 2012-02-02

Family

ID=45529817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064039 WO2012014597A1 (ja) 2010-07-30 2011-06-20 電源設計システム、電源設計方法、及び電源設計用プログラム

Country Status (3)

Country Link
US (1) US8667453B2 (ja)
JP (1) JP5895843B2 (ja)
WO (1) WO2012014597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112469A1 (ja) * 2013-01-17 2014-07-24 日本電気株式会社 設計支援装置、設計支援方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646114B2 (en) * 2013-07-10 2017-05-09 The Boeing Company Electrical power system stability
CN109948250A (zh) * 2019-03-19 2019-06-28 浪潮商用机器有限公司 一种目标阻抗确定方法及相关设备
CN116539960B (zh) * 2023-07-06 2023-10-13 西安智多晶微电子有限公司 一种电源完整性pdn目标阻抗获取方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230694A (ja) * 2008-03-25 2009-10-08 Nec Corp 電子回路基板の電源雑音抑制に関する設計妥当性検証装置と方法並びにプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609305B2 (ja) 1999-12-02 2005-01-12 営電株式会社 フェージングシミュレータ
US20020120906A1 (en) * 2000-07-17 2002-08-29 Lei Xia Behavioral modeling and analysis of galvanic devices
DE102005016459A1 (de) * 2005-04-11 2006-10-12 Atmel Germany Gmbh Verfahren zum Entwurf einer Schaltung, insbesondere mit einem aktiven Bauelement
JP4169755B2 (ja) 2005-11-08 2008-10-22 三菱電機株式会社 電子基板の発生雑音模擬測定装置及び発生雑音模擬測定方法
JP2008070924A (ja) 2006-09-12 2008-03-27 Nec Electronics Corp 半導体集積回路設計方法、半導体集積回路設計プログラム、及び半導体集積回路設計装置
US20090033389A1 (en) * 2007-08-03 2009-02-05 Abadeer Wagdi W Micro-phase adjusting and micro-phase adjusting mixer circuits designed with standard field effect transistor structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230694A (ja) * 2008-03-25 2009-10-08 Nec Corp 電子回路基板の電源雑音抑制に関する設計妥当性検証装置と方法並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SMITH, L.D. ET AL.: "Power distribution system design methodology and capacitor selection for modern CMOS technology", IEEE TRANSACTIONS ON ADVANCED PACKAGING, vol. 22, no. 3, August 1999 (1999-08-01), pages 284 - 291, XP000858412, DOI: doi:10.1109/6040.784476 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112469A1 (ja) * 2013-01-17 2014-07-24 日本電気株式会社 設計支援装置、設計支援方法及びプログラム
JPWO2014112469A1 (ja) * 2013-01-17 2017-01-19 日本電気株式会社 設計支援装置、設計支援方法及びプログラム
US9830420B2 (en) 2013-01-17 2017-11-28 Nec Corporation Support device, design support method, and program

Also Published As

Publication number Publication date
US8667453B2 (en) 2014-03-04
JPWO2012014597A1 (ja) 2013-09-12
JP5895843B2 (ja) 2016-03-30
US20130125083A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
Liu et al. Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques
US20070136705A1 (en) Timing analysis method and device
JP5895843B2 (ja) 電源設計システム、電源設計方法、及び電源設計プログラム
US8271921B2 (en) Automatic circuit design technique using pareto optimal solutions
US10275553B2 (en) Custom circuit power analysis
JP4946573B2 (ja) デカップリングセル配置方法及びデカップリングセル配置装置
EP3239865A1 (en) Method for analyzing ir drop and electromigration of ic
JP5561274B2 (ja) 電源設計システム、電源設計方法、及び電源設計用プログラム
US20100131249A1 (en) Method and apparatus for supporting verification of leakage current distribution
JP2006215987A (ja) 電圧降下量計算方法及び電圧降下量計算装置、回路検証方法及び回路検証装置、並びに回路設計方法及び回路設計装置
US10503841B2 (en) Integrated circuit buffering solutions considering sink delays
US20110125480A1 (en) Computer product, analysis support apparatus, and analysis support method
US9607118B1 (en) Evaluating on-chip voltage regulation
US8407642B2 (en) Leak current calculation apparatus and method for calculating leak current
JP2011242825A (ja) 消費電力情報算出プログラム、消費電力情報算出方法、及び消費電力情報算出装置
JP2009276822A (ja) 半導体デバイス設計支援装置及び半導体デバイス設計支援方法
JP5287523B2 (ja) プリント基板電源回路設計装置、およびプリント基板電源回路設計方法、及びプログラム
JP2001222573A (ja) Emiシミュレーション用半導体集積回路の電源モデル及びその設計方法
JP2009140216A (ja) 回路解析方法、回路解析プログラム、及び回路解析装置
Akkouche et al. Minimization of functional tests by statistical modelling of analogue circuits
JP7117253B2 (ja) パラメータ設定支援装置、パラメータ設定支援方法及びプログラム
US9390387B2 (en) Visualization technique of feasible regions
US20080270089A1 (en) Through-current power table, method of generating thereof and method of calculating power consumption
JP2013167960A (ja) 電子機器設計システム、電子機器設計方法、及び電子機器設計用プログラム
JP4862695B2 (ja) 回路基板の設計システム、回路基板の設計方法および回路基板設計用のコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526377

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13811886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812190

Country of ref document: EP

Kind code of ref document: A1