WO2012014474A1 - 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法 - Google Patents

電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法 Download PDF

Info

Publication number
WO2012014474A1
WO2012014474A1 PCT/JP2011/004266 JP2011004266W WO2012014474A1 WO 2012014474 A1 WO2012014474 A1 WO 2012014474A1 JP 2011004266 W JP2011004266 W JP 2011004266W WO 2012014474 A1 WO2012014474 A1 WO 2012014474A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
supply system
power generation
control device
power supply
Prior art date
Application number
PCT/JP2011/004266
Other languages
English (en)
French (fr)
Inventor
鵜飼 邦弘
広明 金子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/695,753 priority Critical patent/US9246345B2/en
Priority to CN201180022516.0A priority patent/CN102884700B/zh
Priority to EP11812076.5A priority patent/EP2557649A4/en
Priority to JP2012526327A priority patent/JP5184718B2/ja
Publication of WO2012014474A1 publication Critical patent/WO2012014474A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Definitions

  • the present invention relates to a power supply system including a power generation system and a storage battery that supplies power to the power generation system and an external power load, a method for operating the power supply system, and a method for controlling the power supply system.
  • the breaker falls if the startup power required for starting the power generation system and the power consumption of the external power load of the power generation system exceed the contract power. After all, the power generation system is forced to start and stop.
  • a power generation system that does not start is proposed when the sum of the starting power of the power generation system and the power consumption of the external power load exceeds the contracted power. (For example, refer to Patent Document 1).
  • the present invention solves at least one of the first to fourth problems of the prior art, and at least one of startability and stopability is improved as compared with the prior art.
  • a power supply system and a power supply system control device are provided.
  • a power supply system includes a power generation system, a power storage unit that supplies power to the power generation system and an external power load, and the power generation system when the power generation system is activated.
  • a power generation system When the sum of the startup power and the power consumption of the external power load is predicted to exceed the upper limit power that can be received from the power system, so that the power supplied from the power system does not exceed the upper limit power, A first control for controlling the power of the power storage unit to be supplied to at least one of the power generation system and the external power load; and a stop power of the power generation system when power generation of the power generation system is stopped.
  • a control device configured to execute.
  • a control device for a power supply system controls a power supply system that controls a power supply system including a power generation system, an external power load, and the power generation system and a power storage unit that supplies power to the external power load.
  • the control device of the power supply system when starting up the power generation system, the sum of the start power of the power generation system and the power consumption of the external power load exceeds the upper limit power that can be received from the power system.
  • the power supplied from the power system is supplied to at least one of the power generation system and the external power load so that the power supplied from the power system does not exceed the upper limit power.
  • the first control to control, and the stop power of the power generation system and the external when the power generation of the power generation system is stopped When the total power consumption of the power load is predicted to exceed the upper limit power that can be received from the power system, the power of the power storage unit is set so that the power supplied from the power system does not exceed the upper limit power. Is configured to execute at least one of second control for controlling to supply at least one of the power generation system and the external power load.
  • the operation method of the power supply system determines whether or not the sum of the starting power of the power generation system and the power consumption of the external power load exceeds the upper limit power that can be received from the power system when starting the power generation system. Predicting, and when the total is predicted to exceed the upper limit power, the power of the power storage unit is supplied to the power generation system and the external so that the power supplied from the power system does not exceed the upper limit power.
  • a first control comprising a step of supplying to at least one of the power loads, and a sum of the stop power of the power generation system and the power consumption of the external power load when power generation of the power generation system is stopped Predicting whether or not the upper limit power that can be received from the power source is exceeded, and if the total is predicted to exceed the upper limit power, Supplying at least one of the power generation system and the external power load so that the supplied power does not exceed the upper limit power.
  • At least one of the second controls Execute.
  • the power supply system control method determines whether or not the sum of the starting power of the power generation system and the power consumption of the external power load exceeds the upper limit power that can be received from the power system when the power generation system is started. Predicting, and when the total is predicted to exceed the upper limit power, the power of the power storage unit is supplied to the power generation system and the external so that the power supplied from the power system does not exceed the upper limit power.
  • a first control comprising a step of supplying to at least one of the power loads, and a sum of the stop power of the power generation system and the power consumption of the external power load when power generation of the power generation system is stopped Predicting whether or not the upper limit power that can be received from the power source is exceeded, and if the total is predicted to exceed the upper limit power, Supplying at least one of the power generation system and the external power load so that the supplied power does not exceed the upper limit power.
  • At least one of the second controls Execute.
  • the startability and the stopability of the power generation system can be improved as compared with the conventional power generation system. Exceeding the upper limit power from the power system is suppressed while improving at least one of them.
  • FIG. 1 is an example of a block diagram schematically showing a schematic configuration of a power supply system and a control device of the power supply system according to the first embodiment.
  • FIG. 2A is an example of a flowchart schematically showing a start-up operation of the power generation system in the power supply system according to the first embodiment.
  • FIG. 2B is an example of a flowchart schematically showing an operation when power generation of the power generation system in the power supply system according to Embodiment 1 is stopped.
  • FIG. 3A is an example of a block diagram schematically showing a schematic configuration of the power generation system of Modification 1 in the power supply system according to Embodiment 1.
  • FIG. 3B is an example of a block diagram schematically showing a schematic configuration of the power generation system of Modification 2 in the power supply system according to Embodiment 1.
  • FIG. 4 is an example of a block diagram schematically showing a schematic configuration of the power supply system according to the second embodiment.
  • FIG. 5A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the second embodiment.
  • FIG. 5B is an example of a flowchart schematically showing an operation when power generation of the power generation system in the power supply system according to Embodiment 2 is stopped.
  • FIG. 6A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the modification of the power supply system according to the second embodiment.
  • FIG. 6B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the present modification.
  • FIG. 7A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 3.
  • FIG. 7B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 3.
  • FIG. 8A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the first modification.
  • FIG. 8B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the first modification.
  • FIG. 9A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the second modification.
  • FIG. 9B is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the second modification.
  • FIG. 9C is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the second modification.
  • FIG. 9D is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the second modification.
  • FIG. 10A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the third modification.
  • FIG. 10B is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the third modification.
  • FIG. 10C is an example of a flowchart schematically illustrating an operation when power generation of the power generation system is stopped in the power supply system according to the third modification.
  • FIG. 10D is an example of a flowchart schematically illustrating an operation when power generation of the power generation system is stopped in the power supply system according to the third modification.
  • FIG. 11A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 4.
  • FIG. 11B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 4.
  • FIG. 11A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 4.
  • FIG. 11B is an example of a flowchart schematically showing
  • FIG. 12A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 5.
  • FIG. 12B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 5.
  • FIG. 13A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 6.
  • FIG. 13B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 6.
  • FIG. 14A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the seventh embodiment.
  • FIG. 14A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the seventh embodiment.
  • FIG. 14B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 7.
  • FIG. 15A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the eighth embodiment.
  • FIG. 15B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 8.
  • FIG. 16A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of Modification 1 of the power supply system according to Embodiment 8.
  • FIG. 16B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the first modification.
  • FIG. 17A is an example of a flowchart schematically showing an operation when starting the power generation system in the second modification of the power supply system according to the eighth embodiment.
  • FIG. 17B is an example of a flowchart schematically showing an operation when starting the power generation system in Modification Example 2 of the power supply system according to Embodiment 8.
  • FIG. 17C is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the second modification.
  • FIG. 17A is an example of a flowchart schematically showing an operation when starting the power generation system in the second modification of the power supply system according to the eighth embodiment.
  • FIG. 17B is an example of a flowchart schematically showing an operation when starting the power generation system in Modification Example 2 of the power supply system according to Embodiment 8.
  • FIG. 17C is an
  • FIG. 17D is an example of a flowchart schematically illustrating an operation when power generation of the power generation system is stopped in the power supply system of the second modification.
  • FIG. 18A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 9.
  • FIG. 18B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 9.
  • FIG. 19A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the present modification.
  • FIG. 19B is an example of a flowchart schematically illustrating an operation when power generation of the power generation system is stopped in the power supply system of the present modification.
  • FIG. 20 is an example of a block diagram schematically showing a schematic configuration of the power supply system and the control device of the power supply system according to the tenth embodiment.
  • the power supply system includes a power generation system, a power storage unit that supplies power to the power generation system and an external power load, and a control device (a control device for the power supply system).
  • a control device a control device for the power supply system.
  • the power supplied from the power system is First control for controlling the power of the power storage unit to be supplied to at least one of the power generation system and the external power load so as not to exceed the upper limit power, and when the power generation of the power generation system is stopped
  • the power supply unit is configured to execute at least one of the second control for controlling to supply the power of the power storage unit to at least one of the power generation system and the external power load so as not to exceed the upper limit power. Yes.
  • time when the power generation system is activated means at least one of the time when the power generation system is refraining from starting and the time when the power generation system is activated. I will explain mainly when I'm refraining.
  • stopping the power generation of the power generation system means at least one of when the power generation system is stopped from stopping power generation and when the processing operation after power generation stop of the power generation system is performed, In the following, the case where the power generation system is stopped is mainly described.
  • FIG. 1 is an example of a block diagram schematically showing a schematic configuration of a power supply system and a control device of the power supply system according to the first embodiment.
  • the power supply system 100 includes a power generation system 101, a power storage unit 107, and a control device (control device for the power supply system) 110.
  • the control device 110 is predicted that the sum of the activation power of the power generation system 101 and the power consumption of the external power load 105 exceeds the upper limit power that can be received from the power system 104.
  • Control is performed so that the power supplied from the power system 104 does not exceed the upper limit power, and the power of the power storage unit 107 is supplied to at least one of the power generation system 101 and the external power load 105.
  • the upper limit power that can be received from the power system 104 may be, for example, contract power that is the maximum power that can be used in a contract with an electric power company, and is set by a breaker contract. May be the power that falls.
  • the power generation system 101 includes an internal power load 102 that is a device for operating the power generation system 101 and a controller 103 that controls the power generation system 101.
  • the power generation system 101 may have any form as long as it is configured to generate electric power and supply the generated electric power to the external power load 105.
  • a gas turbine or a fuel cell system may be used.
  • the fuel cell used in the fuel cell system any type of fuel cell may be used, and examples include a polymer electrolyte fuel cell, a solid oxide fuel cell, and a phosphoric acid fuel cell.
  • As the internal power load 102 for example, when the power generation system 101 is a fuel cell system, an electric heater for raising the temperature in the fuel cell can be used.
  • controller 103 may be in any form as long as it is a device that controls each device constituting the power generation system 101, and can be configured by, for example, a microprocessor, a CPU, or the like.
  • controller 103 may include not only an arithmetic processing unit exemplified by a microprocessor, a CPU, and the like, but also a storage unit including a memory and a timer unit.
  • the power storage unit 107 includes a power controller 108 that controls output power from the power storage unit 107.
  • the power storage unit 107 may have any form as long as it is configured to supply power to the power generation system 101 and the external power load 105.
  • Secondary batteries As these secondary batteries, assembled batteries in which a plurality of single cells are connected in series may be used, or a plurality of single batteries and / or assembled batteries may be connected in parallel.
  • the amount of power stored in the power storage unit 107 is equal to or greater than the amount of power, and the larger the amount of stored electricity, the more preferable.
  • the power controller 108 may be in any form as long as it is a device that controls the output power from the power storage unit 107, and may be configured by, for example, a DC / AC converter.
  • the power storage unit 107 has a built-in power detector (not shown) that detects the output power (discharge power) of the power storage unit 107, and the control device 110 is detected by the power detector (not shown). It is comprised so that the output electric power of the electrical storage unit 107 may be acquired.
  • the power system 104 is connected to the power generation system 101 and the power storage unit 107 via the wiring 203 at the connection point 109. Further, the power detector 106 is provided on the electric circuit (wiring 203) closer to the power system 104 than the interconnection point 109. The power detector 106 detects a current value supplied to at least one of the external power load 105 and the internal power load 102 of the power generation system 101. The control device 110 is configured to acquire a current value detected by the power detector 106. Examples of the external power load 105 include an electric device used at home.
  • the control device 110 includes a calculation unit configured by a CPU or a microprocessor, a storage unit configured by a semiconductor memory, a communication unit, and a clock unit (all not shown).
  • the predictor 110a is realized by predetermined software stored in the storage unit.
  • the predictor 110 a receives the sum of the activation power of the power generation system 101 and the power consumption of the external power load 105 from the power system 104. Predict whether the upper limit power possible is exceeded.
  • each apparatus which comprises the power supply system 100 may be controlled as the control apparatus 110, as shown in FIG. 1, the electric power generation system 101 and the electrical storage unit 107 may be sufficient as it.
  • the power supply system 101 or the power storage unit 107 may be built in, or the power generation system 101 and the power storage unit 107 may be separately built in. Also good.
  • FIG. 2A is an example of a flowchart schematically showing an operation (first control) when starting the power generation system in the power supply system according to the first embodiment.
  • the control device 110 acquires the power (power consumption) used by the external power load 105 from the power detector 106 (step S101).
  • “when the start-up of the power generation system 101 is refrained” means at least one of when a start-up request for the power generation system 101 is generated and when a start-up schedule is refrained.
  • the case where the activation request is generated includes, for example, a case where a preset activation start time of the power generation system 101 is reached, or a case where the user operates the remote controller to instruct the activation start of the power generation system 101. Is mentioned.
  • the case where the startup schedule is refrained includes, for example, a case where a preset startup start time of the power generation system 101 is approaching.
  • the power detector 106 detects the power consumption of the external power load 105 when a predetermined time (for example, one minute) before the operation start time, and the control device 110 (predictor 110a). ) Predicts whether the sum of the starting power of the power generation system 101 and the power consumption of the external power load 105 exceeds the upper limit power that can be received from the power system 104.
  • the predetermined time is set as a time during which the power consumption of the external power load 105 when starting is predictable.
  • control device 110 predicts whether the sum of the starting power of the power generation system 101 and the power consumption of the external power load 105 exceeds the upper limit power that can be received from the power system 104, for example, The prediction may be performed from the past usage history, and any mode may be used as long as it can be predicted whether or not the upper limit power is exceeded.
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S101 and the startup power of the power generation system 101 exceeds the upper limit power P1 that can be used from the power system 104. (Step S102). If the sum of the power consumption and the startup power exceeds the upper limit power P1 (Yes in step S102), the process proceeds to step S103, and if it is equal to or less than the upper limit power P1 (No in step S102), the process proceeds to step S104.
  • the starting power means the power required for starting the power generation system 101. Specifically, it is the power consumption of the internal power load 102 in the startup operation of the power generation system 101, and the value is set as appropriate.
  • the startup power may be, for example, the maximum power consumption of the internal power load 102 during startup of the power generation system 101, or may be the power consumption of the internal power load 102 that operates in the initial stage of startup.
  • the upper limit power P1 may be, for example, the contract power that is the maximum power that can be used in a contract with the power company, or may be the power at which the breaker set by the breaker contract falls.
  • step S103 the control device 110 controls the power controller 108 to output power from the power storage unit 107.
  • the power storage unit 107 supplies power to the external power load 105 and the power generation system 101 (specifically, the internal power load 102) after start-up by the power controller 108.
  • the power controller 108 subtracts the power supplied to at least one of the external power load 105 and the power generation system 101 from the power obtained by adding the power consumption of the external power load 105 and the startup power of the power generation system 101.
  • the output power of the power storage unit 107 is controlled so that (ie, power consumption + startup power ⁇ supply power) is equal to or lower than the upper limit power P1.
  • the power controller 108 may control the power storage unit 107 to supply power to at least the external power load 105.
  • control device 110 proceeds to step S104 and outputs a start permission signal (start command signal) of the power generation system 101 to the controller 103.
  • start command signal a start permission signal of the power generation system 101
  • controller 103 starts activation of the power generation system 101.
  • the power supply system 100 according to the first embodiment and the control device 110 of the power supply system 100 have large power consumption of the external power load 105, and when the power generation system 101 is activated, the upper limit power from the power system 104 is Even if it is predicted that P1 will be exceeded, the power generation system 101 can be started. Thereby, in the power supply system 100 and the control device 110 of the power supply system 100 according to the first embodiment, the startability is improved as compared with the conventional power generation system.
  • the power supply system 100 is configured such that the power supply from the power system 104 is cut off when the power consumption of the external power load 105 exceeds the upper limit power P1. There may be. In this form, for example, the breaker falls and the power supply is cut off. Moreover, even if the power consumption of the external power load 105 increases, the power supply from the power system 104 may be continued in a range that does not exceed the upper limit power P1. In this form, for example, even if the power consumption of the external power load 105 exceeds the upper limit power P1, the power supply from the power system 104 is continued in a range not exceeding the upper limit power P1.
  • FIG. 2B is an example of a flowchart schematically showing an operation when power generation of the power generation system in the power supply system according to Embodiment 1 is stopped.
  • the control device 110 acquires the power (power consumption) used by the external power load 105 from the power detector 106 (step S101B).
  • the time when the power generation system 101 is suspending power generation means at least one of the time when a power generation system stop request is generated and the time when power generation is scheduled to be stopped.
  • the power generation system stop request is generated, for example, when the power generation stop start time of the power generation system set in advance is reached or the user operates the remote controller to instruct the power generation stop of the power generation system 101 Such a case is mentioned.
  • the case where the power generation stop schedule is refrained includes, for example, a case where a preset power generation stop time of the power generation system is approaching.
  • control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S101B and the stop power of the power generation system 101 exceeds the usable upper limit power P1B from the power system 104. (Ie, predict) (step S102B). If the sum of the power consumption and the starting power exceeds the upper limit power P1B (Yes in step S102B), the process proceeds to step S103B, and if it is equal to or lower than the upper limit power P1B (No in step S102B), the process proceeds to step S104B.
  • the stop electric power means electric power necessary for the processing operation after the electric power generation system 101 stops generating electric power. Specifically, it is the power consumption of the internal power load 102 that operates in the processing operation after the power generation stop of the power generation system 101, and the value is appropriately set.
  • the stop power may be, for example, the maximum power consumption of the internal power load 102 in the processing operation after the power generation stop of the power generation system 101.
  • the processing operation after the power generation stop of the power generation system 101 can arbitrarily adopt the processing operation after the power generation stop of the known power generation system 101.
  • step S103B the control device 110 controls the power controller 108 to output power from the power storage unit 107.
  • the power storage unit 107 supplies power to the external power load 105 and the power generation system 101 (specifically, the internal power load 102) by the power controller 108.
  • the power controller 108 subtracts the power supplied to the external power load 105 and the power generation system 101 from the power obtained by adding the power consumption of the external power load 105 and the stop power of the power generation system 101 (that is, power consumption).
  • the output power of the power storage unit 107 is controlled such that (+ stop power ⁇ supply power) is equal to or lower than the upper limit power P1B.
  • the power controller 108 may control the power storage unit 107 to supply power to at least the external power load 105.
  • control device 110 proceeds to step S104B, and outputs a signal (power generation stop command signal) for permitting the power generation system 101 to stop power generation to the controller 103.
  • the controller 103 starts the power generation stop of the power generation system 101. Specifically, the supply of power from the power generation system 101 to the external power load 105 is stopped, and the power generation system 101 stops power generation. Thereafter, the operation of each device constituting the power generation system 101 is stopped (processing operation after the power generation system 101 stops generating power).
  • the power supply system 100 according to the first embodiment and the control device 110 of the power supply system 100 consume a large amount of power from the external power load 105, and when the operation of the power generation system 101 is stopped, Even if it is predicted that the upper limit power P1B will be exceeded, it is possible to start the power generation stop of the power generation system 101.
  • the power supply system 100 is configured such that the power supply from the power system 104 is interrupted when the power consumption of the external power load 105 exceeds the upper limit power P1B. There may be. In this form, for example, the breaker falls and the power supply is cut off. Moreover, even if the power consumption of the external power load 105 increases, the power supply from the power system 104 may be continued in a range not exceeding the upper limit power P1B. In this form, for example, even if the power consumption of the external power load 105 exceeds the upper limit power P1B, the power supply from the power system 104 is continued in a range not exceeding the upper limit power P1B.
  • control device 119 In the power supply system 100, the control operation to the power storage unit 107 when the control device 110 starts the power generation system 101 and stops the power generation of the power generation system 101 has been described.
  • the control device 119 In the first power supply system 100, the control device 119 only needs to be configured to execute at least one of these control operations (first control and second control). That is, the control device 110 may be configured to execute only one of the first control and the second control, or may be configured to execute both the first control and the second control. May be.
  • the power supply system of the first modification exemplifies a mode in which the power generation system is a fuel cell system.
  • FIG. 3A is an example of a block diagram schematically illustrating a schematic configuration of a power generation system of a modification example of the power supply system according to the first embodiment.
  • the power generation system 101 of Modification 1 is a fuel cell system, and an internal heater is provided with an electric heater for raising the temperature of the constituent devices of the fuel cell system when the fuel cell system is activated.
  • the power generation system (fuel cell system) 101 of the first modification includes a hydrogen generator 11, an oxidant gas supplier 12, a fuel cell 13, a cooling medium tank 14, an electric heater 15, A cooling medium feeder 16 and a controller 103 are provided.
  • the hydrogen generator 11 includes a reformer 1, a CO reducer 2, and an electric heater 3, generates hydrogen-rich fuel gas, and supplies the generated fuel gas to the fuel cell 13. It is configured.
  • the reformer 1 has a reforming catalyst, and generates a hydrogen-containing gas by performing a reforming reaction between a raw material and water.
  • the raw material should just be a thing which can produce
  • the raw material for example, a material containing an organic compound containing at least carbon and hydrogen as constituent elements, such as a hydrocarbon such as ethane or propane, or an alcohol-based raw material such as methanol can be used.
  • the CO reducer 2 is configured to reduce carbon monoxide in the hydrogen-containing gas generated by the reformer 1.
  • Examples of the CO reducer 2 include a converter that reduces carbon monoxide by a shift reaction and a CO remover that reduces by an oxidation reaction or a methanation reaction.
  • the electric heater 3 is configured to raise the temperature of the CO reducer 2, for example, when the fuel cell system is started. Note that the electric heater 3 may be configured not only to raise the temperature of the CO reducer 2 but also to raise the temperature of the reformer 1, or to raise only the temperature of the reformer 1. May be.
  • the hydrogen-containing gas whose carbon monoxide has been reduced by the CO reducer 2 is supplied as a fuel gas to the anode of the fuel cell 13 via the fuel gas supply path 31.
  • the carbon monoxide in the hydrogen-containing gas generated by the reformer 1 is reduced by the CO reducer 2 and supplied to the fuel cell 13.
  • the present invention is not limited to this.
  • a form without the CO reducer 2 may be adopted.
  • the electric heater 3 may be configured to raise the temperature of the reformer 1 or may not be provided.
  • the fuel cell system 101 includes an oxidant gas supply path 32 through which an oxidant gas flows and an oxidant gas supply device 12 for supplying the oxidant gas.
  • an oxidant gas supply device 12 for example, fans such as a blower and a sirocco fan can be used.
  • the oxidant gas (for example, air) supplied from the oxidant gas supply device 12 is supplied to the cathode of the fuel cell 13.
  • the fuel gas supplied to the anode and the oxidant gas supplied to the cathode react electrochemically to generate electricity and heat.
  • the fuel cell may be of any type, and examples include a polymer electrolyte fuel cell, a solid oxide fuel cell, and a phosphoric acid fuel cell.
  • the fuel cell system 101 is not provided with the CO reducer 2 so that the reformer 1 and the fuel cell 13 are built in one container. Composed.
  • the fuel cell system 101 includes a cooling medium path 33, a cooling medium tank 14, an electric heater 15, and a cooling medium feeder 16.
  • the cooling medium path 33 is a path through which the cooling medium that recovers the heat generated by the fuel cell 13 flows.
  • the cooling medium tank 14 is a tank that is provided in the cooling medium path 33 and stores the cooling medium.
  • the electric heater 15 heats the cooling medium in the cooling medium path 33 and may be provided at any location as long as it is on the cooling medium path 33. For example, as shown in FIG. 3A, the electric heater 15 may be provided on the cooling medium path 33 outside the fuel cell 13 and the cooling medium tank 14, or may be provided in the cooling medium tank 14.
  • the electric heater 15 operates at the time of starting the fuel cell system, heats the cooling medium, and the heated cooling medium circulates through the cooling medium path 33, whereby the temperature of the fuel cell 13 is increased.
  • the cooling medium delivery device 16 is a device for circulating the cooling medium in the cooling medium path 33, and for example, a pump can be used.
  • a pump can be used.
  • water, an antifreeze liquid (for example, ethylene glycol containing liquid) etc. can be used as a cooling medium.
  • the control operation (first operation) to the power storage unit 107 is performed in the same manner as the power supply system 100 according to the first embodiment. Control) is executed. Therefore, the power supply system 100 according to the first modification has the same effects as the power supply system 100 according to the first embodiment.
  • the electric heater 15 in the start-up operation, is configured to raise the temperature of the devices constituting the fuel cell system 101, so the start-up power is increased.
  • the effect of improving the startability obtained by the control of the control device 110 of the power supply system 100 is particularly remarkable as compared with the conventional power generation system.
  • the electric heater 3 and the electric heater 15 are provided as electric heaters for raising the temperature of the constituent devices of the fuel cell system at the time of startup, but the present invention is not limited to this. Absent.
  • the fuel cell system 101 may be provided with one of the electric heater 3 and the electric heater 15 or may be provided with other electric heaters.
  • various known processing operations can be adopted as processing operations after the power generation stop of the fuel cell system 101 in the power supply system 100 of the first modification.
  • the processing operation after the power generation stop of the fuel cell system 101 for example, the cooling medium circulation operation by the cooling medium delivery device 16 in the cooling medium path 33, the inside of the hydrogen generator 11 by the raw material gas supply device (not shown), and the like.
  • the raw material gas purge operation for at least one of the gas flow path and the gas flow path in the fuel cell 13 and the operation of the electric heater 15 can be exemplified.
  • the electric heater 15 may be operated in the circulation operation of the cooling medium.
  • the power supply system 100 according to the first modification configured as described above controls the power storage unit 107 when the power generation system 101 is stopped, as with the power supply system 100 according to the first embodiment (second operation). Control) is executed. Therefore, the power supply system 100 according to the first modification has the same effects as the power supply system 100 according to the first embodiment.
  • the stop power becomes large.
  • the effect of improving the stopping performance obtained by the control of the control device 110 of the power supply system 100 is particularly remarkable as compared with the conventional power generation system.
  • the power supply system 100 includes a control device 110 that controls the power storage unit 107 when the power generation system 101 is activated and controls the power storage unit 107 when the power generation system 101 stops power generation. It may be configured to execute at least one of the operations.
  • the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • Modification 2 The power supply system of Modification 2 illustrates another aspect in which the power generation system is a fuel cell system.
  • FIG. 3B is an example of a block diagram schematically showing a schematic configuration of the power generation system of Modification 2 in the power supply system according to Embodiment 1.
  • FIG. 3B is an example of a block diagram schematically showing a schematic configuration of the power generation system of Modification 2 in the power supply system according to Embodiment 1.
  • the power generation system 101 of the second modification has the same basic configuration as the fuel cell system of the first modification, but further includes a recovered water tank 17 and a transmitter 18. Different.
  • the electric heater 15 may be provided in the recovered water tank 17.
  • the recovered water tank 17 is a tank that stores water recovered from the exhaust gas discharged from the fuel cell system 101.
  • the exhaust gas may be any exhaust gas.
  • at least one of the fuel gas and the oxidant gas discharged from the fuel cell 13 or the combustion exhaust gas discharged from the combustor that heats the reformer 1 Etc. are exemplified.
  • the fuel cell system 101 is provided with a circulation path 34 that connects the cooling medium tank 14 and the recovered water tank 17. Therefore, in this example, water is used as the cooling medium, and the circulation path 34 is configured so that the cooling water in the cooling medium tank 14 and the recovered water in the recovered water tank 17 circulate. Further, in the middle of the circulation path 34, a delivery device 18 for delivering water in the circulation path 34 is provided. As the delivery device 18, for example, a pump can be used.
  • the cooling medium path 33 is not a flow path through which the cooling medium for cooling the fuel cell 13 flows, but combustion obtained by burning the fuel gas discharged from the fuel cell 13 It is configured as a flow path through which a cooling medium for cooling the exhaust gas flows.
  • the processing operation after power generation stop of the fuel cell system 101 includes, for example, the cooling medium circulation operation in the cooling medium path 33 by the cooling medium delivery device 16, and the cooling medium tank 14 and the recovered water tank 17 by the delivery device 18.
  • the electric heater 15 may be operated in at least one of the cooling medium circulation operation and the water circulation operation between the cooling medium tank 14 and the recovered water tank 14.
  • the power supply system 100 of the second modification configured as described above controls the power storage unit 107 at the time of starting and stopping the power generation system 101, similarly to the power supply system of the first embodiment. Operations (first control and second control) are performed. Therefore, the power supply system 100 according to the second modification performs the same operation as the power supply system 100 according to the first embodiment, but has the same effects as the power supply system 100 according to the first modification.
  • the power supply system 100 has the control device 110 controlling the power storage unit 107 when starting the fuel cell system 101 and the power storage unit 107 when stopping the power generation of the fuel cell system 101. It is only necessary to be configured to execute at least one of the control operations. That is, the control device 110 executes only one of the control operation for the power storage unit 107 when starting the fuel cell system 101 and the control operation for the power storage unit 107 when stopping the power generation of the fuel cell system 101.
  • the control operation to the power storage unit 107 when starting the fuel cell system 101 and the control operation to the power storage unit 107 when stopping the power generation of the fuel cell system 101 may be executed together. May be.
  • the power supply system according to the second embodiment is configured such that the control device determines whether or not to start the power generation system based on the amount of power stored in the power storage unit.
  • control device may be configured to determine whether or not to stop the power generation of the power generation system based on the amount of power stored in the power storage unit.
  • FIG. 4 is an example of a block diagram schematically showing a schematic configuration of the power supply system according to the second embodiment.
  • the power supply system 100 includes a storage amount detector 111 that detects a storage amount of the storage unit 107. Since other configurations are the same as those of the power supply system 100 according to the first embodiment, detailed description thereof is omitted.
  • FIG. 5A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the second embodiment.
  • the control device 110 is used by the external power load 105 from the power detector 106. Obtained power (power consumption) is acquired (step S201).
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S201 and the startup power of the power generation system 101 exceeds the upper limit power P1 that can be used from the power system 104. (Step S202). If the sum of the power consumption and the starting power exceeds the upper limit power P1 (Yes in step S202), the process proceeds to step S203, and if it is equal to or lower than the upper limit power P1 (No in step S202), the process proceeds to step S205.
  • step S203 the control device 110 determines whether or not the amount of power stored in the power storage unit 107 is equal to or greater than a predetermined power amount Q1. If the power storage amount of the power storage unit 107 is equal to or greater than the predetermined power amount Q1 (Yes in step S203), the process proceeds to step S204, and if it is smaller than the predetermined power amount Q1 (No in step S203), the process proceeds to step S206. move on.
  • the predetermined power amount Q1 can be arbitrarily set, and may be, for example, the power amount necessary for starting the power generation system 101.
  • the amount of power required for startup may be, for example, the cumulative power consumption consumed by the internal power load from the start to the completion of the startup operation.
  • step S204 the control device 110 controls the power controller 108 to output power from the power storage unit 107.
  • the power storage unit 107 supplies power to the external power load 105 and the power generation system 101 after start-up by the power controller 108.
  • the power controller 108 subtracts the power supplied to the external power load 105 and the power generation system 101 from the power obtained by adding the power consumption of the external power load 105 and the startup power of the power generation system 101 (that is, power consumption).
  • the power storage unit 107 is controlled so that (+ starting power ⁇ supplied power) is equal to or lower than the upper limit power P1.
  • the power controller 108 may control the power storage unit 107 to supply power to at least the external power load 105.
  • control device 110 proceeds to step S205, and outputs a start permission signal for the power generation system 101 to the controller 103.
  • the controller 103 starts activation of the power generation system 101.
  • step S206 the control device 110 rejects activation of the power generation system 101 and outputs a start rejection signal to the controller 103 or does not output a start permission signal so as not to start the power generation system 101. To do. In this case, it is preferable that the control device 110 is configured to notify the user that the power generation system 101 cannot be activated.
  • the transmission method include a method of displaying an error on a remote controller and a method of generating a warning sound indicating an error.
  • the amount of electricity stored in the electricity storage unit 107 is determined by the electricity amount detector 111 from the power detector (not shown) of the electricity storage unit 107 and the output power (discharge power) of the electricity storage unit 107 and the input power (charge power) to the electricity storage unit. ) And is determined based on the acquired value.
  • the control device 110 of the power supply system 100 refuses to start the power generation system 101 in step S206, the process returns to step S201, and in step S205, the power generation system A form in which the above-described flow is repeatedly executed until the power generation is started (that is, a form in which the power generation system 101 is kept on standby) may be employed.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the second embodiment configured as described above, the power supply system 100 (the control device 110 of the power supply system 100) according to the first embodiment.
  • the power supply system 100 according to the second embodiment when the power storage amount of the power storage unit 107 is relatively small, the power generation system 101 is not started, so that the start operation is prevented from being interrupted. That is, the power supply system 100 according to the second embodiment (the control device 110 of the power supply system 100) is activated compared to the power supply system 100 according to the first embodiment (the control device 110 of the power supply system 100). More improved.
  • FIG. 5B is an example of a flowchart schematically illustrating an operation when power generation of the power generation system in the power supply system according to Embodiment 2 is stopped.
  • step S203B and step S206B the step in which the operation
  • control device 110 determines whether or not the amount of power stored in power storage unit 107 is equal to or greater than a predetermined amount of power Q1B.
  • the predetermined power amount Q1B can be set arbitrarily, and may be, for example, the power amount necessary for the operation when the power generation of the power generation system 101 is stopped.
  • step S ⁇ b> 206 ⁇ / b> B the control device 110 rejects the power generation stop of the power generation system 101 and outputs a signal rejecting the power generation stop to the controller 103 or does not output a signal permitting the power generation stop. To prevent power generation from stopping. In this case, it is preferable that the control device 110 is configured to notify the user that the power generation system 101 cannot be stopped.
  • step S206B If the power generation stop of the power generation system 101 is rejected in step S206B, the flow returns to step S201B, and the above-described flow is repeatedly executed until the power generation of the power generation system 101 is stopped in step S205B (that is, the power generation of the power generation system 101). May be employed.
  • the power generation of the power generation system 101 is not stopped, and thus the processing operation after the power generation stop is interrupted. It is suppressed. That is, in the power supply system 100 according to the second embodiment, the stopping performance is further improved as compared with the power supply system 100 according to the first embodiment.
  • the power supply system 100 has the control device 110 controlling the power storage unit 107 when starting the power generation system 101 and the power storage unit 107 when stopping the power generation of the power generation system 101. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • FIG. 6A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the modification of the power supply system according to the second embodiment.
  • the operation of starting the power generation system 101 in the power supply system 100 of the present modification is the same as that in the second embodiment when the power storage amount of the power storage unit 107 is smaller than the predetermined power amount Q1. This is different from the power generation system 101 of the power supply system 100.
  • control device 110 rejects activation of power generation system 101 (step S206), and performs power control. Control is performed so that the battery 108 is charged by the power from the power system 104 (step S207). As a result, the power controller 108 supplies power to the single battery or the assembled battery of the storage battery constituting the power storage unit 107 within a range not exceeding the upper limit power P ⁇ b> 1 from the power system 104 to charge the power storage unit 107.
  • the storage unit 107 can be charged by, for example, placing a capacitor in the storage unit 107, storing the power from the power system 104 with the capacitor, and supplying the stored power to a single battery or an assembled battery of the storage battery. Then, charging may be performed.
  • the power supply system 100 (control device 110 of the power supply system 100) of the present modification configured as described above, the power supply system 100 (the control device 110 of the power supply system 100) according to the second embodiment and The same effect is obtained. Further, in the power supply system 100 of this modification (the control device 110 of the power supply system 100), even when the power storage unit 107 has a small amount of stored power and the start-up is rejected, Since it is suppressed that a starting is refused for the reason, the starting property of the electric power generation system 101 improves more.
  • step S206 when the activation of the power generation system 101 is rejected in step S206, the process returns to step S201, and until the power generation system is activated in step S205.
  • a form in which the above-described flow is repeatedly executed that is, a form in which activation of the power generation system 101 is waited
  • the process returns to step S203 until the power generation system is activated in step S205.
  • a form in which the above-described flow is repeatedly executed that is, a form in which activation of the power generation system 101 is waited
  • FIG. 6B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the present modification.
  • the operation when stopping the power generation of the power generation system 101 in the power supply system 100 of the present modification is the operation when the amount of power stored in the power storage unit 107 is smaller than a predetermined power amount Q1B. Different from the power generation system 101 of the power supply system 100 according to the second embodiment.
  • control device 110 rejects power generation stop of power generation system 101 (step S206B),
  • the controller 108 is controlled to be charged with the power from the power system 104 (step S207B).
  • the power controller 108 supplies power to the single battery or the assembled battery of the storage battery constituting the power storage unit 107 within a range not exceeding the upper limit power P ⁇ b> 1 from the power system 104 to charge the power storage unit 107.
  • the storage unit 107 can be charged by, for example, placing a capacitor in the storage unit 107, storing the power from the power system 104 with the capacitor, and supplying the stored power to a single battery or an assembled battery of the storage battery. Then, charging may be performed.
  • step S203B returns to step S203B again and repeats the said step until the electrical storage amount of the electrical storage unit 107 becomes more than predetermined electric energy Q1B.
  • the power supply system 100 (the control device 110 of the power supply system 100) of the present modification, even if the power storage amount of the power storage unit 107 is small and the stop of power generation is rejected, the power storage unit 107 By charging the battery, the stopping performance is further improved as compared with the power supply system 100 according to the second embodiment (the control device 110 of the power supply system 100).
  • the power supply system 100 of the present modification includes a control operation for the power storage unit 107 when the control device 110 starts the power generation system 101 and a control operation for the power storage unit 107 when the power generation system 101 stops power generation. It is only necessary to be configured to execute at least one of the above. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the control device sets the start mode of the power generation system based on the amount of power stored in the power storage unit, the first start mode in which the start power of the power generation system is relatively large, and the start power It is configured to switch between a relatively small second activation mode.
  • the control device sets the stop mode of the power generation system based on the amount of power stored in the power storage unit to the first stop mode in which the stop power of the power generation system is relatively large, and the stop You may be comprised so that it may switch between 2nd stop modes with electric power relatively small.
  • the power supply system 100 according to the third embodiment has the same basic configuration as the power supply system 100 according to the second embodiment, but is different in the startup operation of the power generation system 101.
  • a description will be given with reference to FIG. 7A.
  • FIG. 7A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 3.
  • the control device 110 is used by the external power load 105 from the power detector 106. Obtained power (power consumption) is acquired (step S301).
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S301 and the startup power of the power generation system 101 exceeds the upper limit power P1 that can be used from the power system 104. (Step S302). If the sum of the power consumption and the startup power exceeds the upper limit power P1 (Yes in step S302), the process proceeds to step S303, and if it is equal to or lower than the upper limit power P1 (No in step S302), the process proceeds to step S304.
  • the startup power in step S302 is the startup power when the power generation system 101 is started in the first startup mode.
  • step S303 the control device 110 determines whether or not the power storage amount of the power storage unit 107 is equal to or greater than a predetermined power amount Q2. If the amount of power stored in the power storage unit 107 is equal to or greater than the predetermined power amount Q2 (Yes in step S303), the process proceeds to step S304, and if it is smaller than the predetermined power amount Q2 (No in step S303), step S306 is performed.
  • the predetermined power amount Q2 can be arbitrarily set, and may be, for example, the power amount necessary for starting the power generation system 101 in the first start mode.
  • the amount of power required for the first startup mode may be, for example, the cumulative power consumption consumed by the internal power load from the start to the completion of the startup operation in the first startup mode.
  • step S304 the control device 110 selects the first activation mode and proceeds to step S305.
  • step S306 the control device 110 selects the second activation mode, and proceeds to step S305.
  • the first startup mode refers to the startup mode (startup method) of the power generation system 101 in which the startup power of the power generation system 101 is relatively large
  • the second startup mode refers to the startup power of the power generation system 101. It refers to a relatively small power generation system 101 start-up mode (start-up method).
  • the first startup mode is a startup mode for completing the startup operation of the power generation system 101 more quickly by increasing the power supplied to the internal power load 102 than in the second startup mode. .
  • the internal power load is an electric auxiliary machine such as a pump or a fan
  • the first starting mode increases the operation amount of the electric auxiliary machine compared to the second starting mode and the starting operation is performed. Executed.
  • step S 305 the control device 110 outputs a start permission signal for the power generation system 101 to the controller 103. As a result, the controller 103 starts activation of the power generation system 101.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the third embodiment configured as described above, the power supply system 100 (control device of the power supply system 100) according to the second embodiment. 110).
  • power supply system 100 (control device 110 of power supply system 100) according to Embodiment 3
  • startability improves more.
  • FIG. 7B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 3.
  • step S303B the step in which the operation
  • control device 110 determines whether or not the amount of power stored in power storage unit 107 is equal to or greater than a predetermined amount of power Q2B.
  • the predetermined power amount Q2B can be set arbitrarily, and may be, for example, the power amount necessary to stop the power generation system 101 in the first stop mode.
  • the amount of power required for the first stop mode is consumed, for example, by the internal power load between the start of the processing operation after the power generation stop of the power generation system 101 in the first stop mode and the completion of the processing operation. It may be the accumulated power consumption.
  • step S304B the control device 110 selects the first stop mode and proceeds to step S305B.
  • step S306B control device 110 selects the second stop mode, and proceeds to step S305B.
  • the first stop mode refers to the stop mode (stop method) of the power generation system 101 in which the stop power of the power generation system 101 is relatively large
  • the second stop mode refers to the stop power of the power generation system 101. This is a relatively small power generation system 101 stop mode.
  • the power supplied to the internal power load 102 is increased, and the processing operation after the power generation stop of the power generation system 101 is completed more quickly.
  • It is a stop mode.
  • the internal power load is an electric auxiliary machine such as a pump or a fan
  • the operation amount of the electric auxiliary machine is larger in the first stop mode than in the second stop mode, Processing operation after power generation is stopped is executed.
  • the second stop mode is temporarily interrupted and / or when the following operation is included as a processing operation after the power generation stop of the fuel cell system. Or the mode which suppresses the supply amount of the electric power to the apparatus which performs the said operation is illustrated.
  • a cooling medium circulation operation in the cooling medium path 33 by the cooling medium delivery device 16 a water circulation operation between the cooling medium tank 14 and the recovered water tank 17 by the delivery device 18, and a raw material gas supply
  • operations such as a raw material gas purge operation for at least one of a gas flow path in the hydrogen generator 11 and a gas flow path in the fuel cell 13 and an operation of the electric heater 15 by the generator (deformation of the first embodiment) Example 1 and Modification 2).
  • step S305B the control apparatus 110 outputs the signal which permits the electric power generation stop of the electric power generation system 101 to the controller 103.
  • the controller 103 stops the power generation of the power generation system 101, and thereafter, the processing operation after the power generation stop of the predetermined power generation system 101 is executed.
  • the power supply system 100 has the control device 110 control to the power storage unit 107 when starting the power generation system 101 and the power storage unit 107 when stopping power generation of the power generation system 101. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the power supply system of the first modification may be controlled such that the control device charges the power storage unit from the power system during the second stop mode.
  • FIG. 8A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the first modification.
  • the operation of starting the power generation system 101 in the power supply system 100 of the first modification is the same as that in the case where the second start mode is selected, and the power generation in the power supply system 100 according to the third embodiment. This is different from the startup operation of the system 101.
  • control device 110 selects the second activation mode when the amount of power stored in the power storage unit 107 is smaller than the predetermined power amount Q2 (No in step S303) (step S306).
  • control device 110 controls the power controller 108 of the power storage unit 107 to perform charging (step S307).
  • the power controller 108 supplies power to the single battery or the assembled battery of the storage battery constituting the power storage unit 107 within a range not exceeding the upper limit power P ⁇ b> 1 from the power system 104 to charge the power storage unit 107.
  • control apparatus 110 outputs the starting permission signal of the electric power generation system 101 to the controller 103, and the controller 103 starts the starting of the electric power generation system 101 (step S305).
  • FIG. 8B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the first modification.
  • the operation when stopping the power generation of the power generation system 101 in the power supply system 100 according to the first modification is the same as the operation when the second stop mode is selected. This is different from the operation when power generation of the power generation system 101 in the supply system 100 is stopped.
  • step S306B when the second stop mode is selected (step S306B), the control device 110 controls the power controller 108 of the power storage unit 107 to perform charging (step S307B).
  • the power controller 108 supplies power to the single battery or the assembled battery of the storage battery constituting the power storage unit 107 within a range not exceeding the upper limit power P1B from the power system 104, and charges the power storage unit 107.
  • the power supply system 100 according to the first modification configured as described above has the same effects as the power supply system 100 according to the third embodiment.
  • the power supply system 100 includes a control device 110 that controls the power storage unit 107 when the power generation system 101 is activated and controls the power storage unit 107 when the power generation system 101 stops power generation. It may be configured to execute at least one of the operations.
  • the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • Modification 2 The power supply system of Modification 2 of the power supply system according to Embodiment 3 is configured such that the control device switches to the first activation mode when the amount of power stored in the power storage unit increases due to charging.
  • control device may be configured to switch to the first stop mode when the amount of power stored in the power storage unit increases due to charging.
  • 9A and 9B are an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the second modification.
  • the power supply system 101 according to the second modification has a power supply system 101 according to the third embodiment in which the power generation system 101 is activated when the second activation mode is selected. This is different from the startup operation of the power generation system 101 in 100. Specifically, until the control device 110 outputs a start permission signal for the power generation system 101 and starts the power generation system 101 (step S308), the start operation of the power generation system 101 in the power supply system 100 of the first modification example is described. The same.
  • control device 110 determines that the power storage amount of the power storage unit 107 is equal to or greater than the predetermined power amount Q3. It is determined whether or not (step S309).
  • control device 110 shifts the startup mode of power generation system 101 to the first startup mode.
  • the controller 103 is instructed to do so (step S310).
  • the controller 103 shifts the power generation system 101 from the second activation mode to the first activation mode.
  • the controller 103 can increase the amount of operation of the electric auxiliary machine that is an internal power load.
  • the predetermined power amount Q3 can be arbitrarily set. For example, even if the power amount is necessary to continue the start-up operation by switching the start-up mode of the power generation system 101 to the first start-up mode. Good.
  • the amount of power necessary to continue the startup operation in the first startup mode is consumed by the internal power load until the startup operation is completed by continuing the startup operation in the first startup mode, for example. It may be a cumulative power consumption.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the second modification configured as described above, the power supply system 100 (control device 110 of the power supply system 100) according to the third embodiment.
  • the power supply system 100 of the second modification when the power storage unit 107 is charged and the power storage amount of the power storage unit 107 exceeds a predetermined power amount, the first activation is performed. Since the mode is shifted, the start-up time of the power generation system 101 can be shortened compared to the power supply system 100 according to the third embodiment (the control device 110 of the power supply system 100).
  • FIG. 9C and FIG. 9D are examples of flowcharts schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the second modification.
  • the operation when stopping the power generation of the power generation system 101 in the power supply system 100 of the second modification is the same as the operation when the second stop mode is selected. This is different from the operation of stopping the power generation of the power generation system 101 in the power supply system 100 according to the above.
  • step S308B the power generation system in the power supply system 100 of the first modification example.
  • the operation is the same as when the power generation of 101 is stopped.
  • the control device 110 determines that the power storage amount of the power storage unit 107 is a predetermined power amount. It is determined whether or not QB3 or more (step S309B).
  • control apparatus 110 transfers the stop mode of the electric power generation system 101 to 1st stop mode, when the electrical storage amount of the electrical storage unit 107 is more than predetermined electric energy Q3B (it is Yes at step S309B).
  • the controller 103 is instructed to do so (step S310B).
  • the controller 103 shifts the power generation system 101 from the second stop mode to the first stop mode.
  • the controller 103 increases the operation amount of the electric auxiliary machine that is an internal power load.
  • the predetermined power amount Q3B can be arbitrarily set.
  • the amount of electric power necessary to continue the processing operation after stopping the power generation in the first stop mode is, for example, completed by completing the processing operation after stopping the power generation in the first stop mode. It may be the accumulated power consumption consumed by the internal power load until it is done.
  • the control device 110 of the power supply system 100 when the power storage unit 107 is charged and the power storage amount of the power storage unit 107 becomes equal to or greater than a predetermined power amount, the first Therefore, compared with the power supply system 100 according to the third embodiment (the control device 110 of the power supply system 100), the time for performing the processing operation after the power generation stop of the power generation system 101 is shortened. can do.
  • the power supply system 100 includes a control device 110 that controls the power storage unit 107 when the power generation system 101 is activated and controls the power storage unit 107 when the power generation system 101 stops power generation. It may be configured to execute at least one of the operations.
  • the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • Modification 3 The power supply system of Modification 3 of the power supply system according to Embodiment 3 is configured such that the control device switches to the first activation mode when the power consumption of the external power load decreases.
  • control device may be configured to switch to the first stop mode when the power consumption of the external power load decreases.
  • FIG. 10A and FIG. 10B are examples of a flowchart schematically showing an operation when starting the power generation system in the power supply system of the third modification.
  • the power supply system 101 in the power supply system 100 according to the third modification is activated when the second activation mode is selected. This is different from the startup operation of the power generation system 101 in 100. Specifically, until the control device 110 outputs a start permission signal for the power generation system 101 and starts the power generation system 101 (step S308), the power generation system 101 is started in the power supply system 100 according to the third embodiment. Same as operation.
  • the control device 110 outputs the power generation system 101 start start command in step S308, and then the power used by the power generation system 101 and the external power load 105 from the power detector 106. (Power consumption) is acquired. Next, the control device 110 determines whether or not the power consumption of the external power load 105 out of the acquired power consumption is equal to or higher than the startup mode change power P2 (step S309A).
  • the startup mode change power P2 is set as the power consumption value of the external power load 105 that does not exceed the upper limit power P1 even if the startup operation is switched to the first startup mode. Specifically, a power value smaller than the value obtained by subtracting the starting power in the first starting mode from the upper limit power P1 is set.
  • the startup power in the first startup mode is preferably the maximum value of power consumed by the internal power load 102 after switching to the first startup mode.
  • the power consumption of the external power load 105 is obtained by calculating by subtracting the power consumption of the internal power load 102 of the power generation system 101 from the power consumption acquired by the power detector 106.
  • the method of grasping electric power is arbitrary.
  • the control device 110 may calculate the power consumption of the internal power load 102 based on the control value for the internal power load 102 acquired from the controller 103 of the power generation system 101. Further, the control device 110 may acquire input power to the internal power load 102 from a power detector (not shown) built in the power generation system 101.
  • Step S309A when the power consumption of the external power load 105 becomes equal to or less than the activation mode change power P2 (Yes in Step S309A), the control device 110 controls the controller 103 so as to shift to the first activation mode (Step S309). S310).
  • the power supply system 100 (control device 110 of the power supply system 100) of the third modification configured as described above, the power supply system 100 (control device 110 of the power supply system 100) according to the third embodiment.
  • the power supply system 100 of the third modification when the power consumption of the external power load 105 decreases, the power supply system 100 according to the third embodiment is switched to the first activation mode.
  • the startup time of the power generation system 101 can be shortened.
  • FIG. 10C and FIG. 10D are examples of flowcharts schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the third modification.
  • the operation when stopping the power generation of the power generation system 101 in the power supply system 100 of the third modification is the same as the operation when the second stop mode is selected, as in the third embodiment. This is different from the operation of stopping the power generation of the power generation system 101 in the power supply system 100 according to the above.
  • control device 110 outputs a signal permitting power generation stop of the power generation system 101 and stops the power generation of the power generation system 101 (step S308B) in the power supply system 100 according to the third embodiment.
  • the operation is the same as when the power generation of the power generation system 101 is stopped.
  • the control device 110 outputs a command for permitting the power generation stop of the power generation system 101 in step S308B, and then is used by the power generation system 101 and the external power load 105 from the power detector 106. Get the power (power consumption).
  • the control device 110 determines whether or not the power consumption of the external power load 105 out of the acquired power consumption is equal to or higher than the stop mode change power P2B (step S309C).
  • the stop mode change power P2B is set as a power consumption value of the external power load 105 that does not exceed the upper limit power P1B even if the processing operation after power generation stop is switched to the first stop mode. Specifically, a power value smaller than the value obtained by subtracting the stop power in the first stop mode from the upper limit power P1B is set. Note that the stop power in the first stop mode is preferably the maximum value of power consumed by the internal power load 102 after switching to the first stop mode.
  • Step S309C when the power consumption of the external power load 105 becomes equal to or less than the stop mode change power P2B (Yes in Step S309C), the control device 110 controls the controller 103 so as to shift to the first stop mode (Step S309). S310B).
  • the control device 110 of the power supply system 100 when the power storage unit 107 is charged and the power storage amount of the power storage unit 107 exceeds a predetermined power amount, the first Therefore, compared with the power supply system 100 according to the third embodiment (the control device 110 of the power supply system 100), the time for executing the processing operation after the power generation stop of the power generation system 101 is shortened. be able to.
  • the power supply system 100 includes a control device 110 that controls the power storage unit 107 when the power generation system 101 is activated and controls the power storage unit 107 when the power generation system 101 stops power generation. It may be configured to execute at least one of the operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the power supply system is configured such that the control device determines whether to start the power generation system based on the power that can be supplied from the power storage unit.
  • “based on the power that can be supplied from the power storage unit” means that the power obtained by subtracting the power that can be supplied by the power storage unit from the power obtained by adding the power consumption of the external power load and the starting power of the power generation system is the upper limit. It is based on whether or not it is less than or equal to electric power.
  • the power supply system according to Embodiment 4 may be configured such that the control device determines whether to stop the power generation of the power generation system based on the power that can be supplied from the power storage unit.
  • FIG. 11A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the fourth embodiment.
  • step S203A is performed.
  • control device 110 adds the power consumption of the external power load 105 and the startup power of the power generation system 101 when the sum of the power consumption and the startup power exceeds the upper limit power P1 (Yes in step S202). It is determined whether or not the power obtained by subtracting the power that can be supplied by the power storage unit 107 from the generated power (that is, power consumption + startup power ⁇ suppliable power) is equal to or lower than the upper limit power P1 (step S203A). Further, the power that can be supplied from the power storage unit 107 is held in advance by the storage unit in the control device 200.
  • step S203A When the power obtained by subtracting the suppliable power from the power obtained by adding the power consumption and the starting power is equal to or lower than the upper limit power P1 (Yes in step S203A), the control device 110 connects the power controller 108 of the power storage unit 107 to the power controller 108. Control is performed so that power is output from the power storage unit 107 (step S204). On the other hand, when the power obtained by subtracting the suppliable power from the power obtained by adding the power consumption and the startup power is larger than the upper limit power P1 (No in step S203A), the startup of the power generation system 101 is rejected (step S206).
  • step S206 when the activation of the power generation system 101 is rejected in step S206, the flow illustrated in FIG. 10 is stopped.
  • the present invention is not limited to this, and a mode in which the flow returns to step S201 and the above-described flow is repeatedly executed until the power generation system is activated in step S205 (that is, a mode in which activation of the power generation system 101 is waited) may be employed.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the fourth embodiment configured as described above is the same as the power supply system 100 (control device 110 of the power supply system 100) according to the second embodiment. The same effect is obtained.
  • the power supply system 100 according to the fourth embodiment (the control device 110 of the power supply system 100) is more easily activated than the power supply system 100 according to the second embodiment (the control device 110 of the power supply system 100). Will be improved.
  • FIG. 11B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to the fourth embodiment.
  • the operation when power generation of power generation system 101 in power supply system 100 according to Embodiment 4 is stopped is the power generation of power generation system 101 in power supply system 100 according to Embodiment 2.
  • the basic operation is the same as the operation when the power supply system 100 is operated, but step S203C is performed instead of step S203B of the operation when the power generation system 101 in the power supply system 100 according to the second embodiment stops power generation. Different.
  • control device 110 subtracts power that can be supplied by power storage unit 107 from power obtained by adding power consumption of external power load 105 and stop power of power generation system 101 (that is, power consumption). It is determined whether or not (power + stop power ⁇ suppliable power) is equal to or lower than the upper limit power P1B. Thus, when the output power from the power storage unit 107 can be set to the upper limit power P1B or less, the power generation of the power generation system 101 is stopped, and the subsequent processing operation is executed.
  • the control device 110 of the power supply system 100 when the output power from the power storage unit 107 can reduce the upper limit power P1B or less, the power generation system Since the power generation of 101 is stopped and the subsequent processing operation is executed, the stopping performance is further improved as compared with the power supply system 100 according to the second embodiment (the control device 110 of the power supply system 100).
  • the power supply system 100 has the control device 110 control to the power storage unit 107 when starting the power generation system 101 and the power storage unit 107 when stopping power generation of the power generation system 101. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the control device uses a first start mode in which the start power is relatively large based on the power that can be supplied from the power storage unit, and the start power is relatively high. It is configured to switch between a relatively small second activation mode.
  • the control device changes the stop mode of the power generation system based on the power that can be supplied from the power storage unit to the first stop mode in which the stop power is relatively large, You may be comprised so that it may switch between 2nd stop modes with electric power relatively small.
  • FIG. 12A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to Embodiment 5.
  • the control device 110 is used by the external power load 105 from the power detector 106.
  • the obtained power (power consumption) is acquired (step S301).
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S301 and the startup power of the power generation system 101 exceeds the upper limit power P1 that can be used from the power system 104. (Step S302). Then, when the sum of the power consumption and the startup power exceeds the upper limit power P1 (Yes in step S302), the control device 110 uses the power obtained by adding the power consumption of the external power load 105 and the startup power of the power generation system 101. It is determined whether or not the power obtained by subtracting the power that can be supplied by power storage unit 107 (that is, power consumption + startup power ⁇ suppliable power) is equal to or lower than upper limit power P1 (step S303A). Note that the startup power used in step S303A is the startup power when the power generation system 101 is started in the first startup mode, as in step S302.
  • step S304 When the power obtained by subtracting the power that can be supplied by the power storage unit 107 from the power obtained by adding the power consumption of the external power load 105 and the startup power of the power generation system 101 is equal to or lower than the upper limit power P1 (Yes in step S303A), The control device 110 selects the first activation mode (step S304). On the other hand, when the power obtained by subtracting the power that can be supplied by the power storage unit 107 from the power obtained by adding the power consumption of the external power load 105 and the startup power of the power generation system 101 is greater than the upper limit power P1 (step 110). In No in S303A, the second activation mode is selected (Step S305).
  • the power supply system 100 (control device 110 of the power supply system 100) according to the fifth embodiment configured as described above, the power supply system 100 (control device of the power supply system 100) according to the fourth embodiment. 110).
  • the power supply system 100 according to Embodiment 5 (control device 110 of power supply system 100)
  • even if the output power from power storage unit 107 is used or not lower than upper limit power P1 it is relatively Since it is configured to start in the second start-up mode with low start-up power, the startability is further improved as compared with the power supply system 100 according to the fourth embodiment (the control device 110 of the power supply system 100).
  • FIG. 12B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 5.
  • the operation when power generation of power generation system 101 in power supply system 100 according to Embodiment 5 is stopped is the power generation of power generation system 101 in power supply system 100 according to Embodiment 3.
  • the basic operation is the same as that when the power supply system is turned on, but step S303C is performed instead of step S303B of the operation when stopping the power generation of the power generation system 101 in the power supply system 100 according to the third embodiment. Different.
  • control device 110 subtracts power that can be supplied by power storage unit 107 from power obtained by adding power consumption of external power load 105 and stop power of power generation system 101 (that is, power consumption). It is determined whether or not (power + stop power ⁇ suppliable power) is equal to or lower than the upper limit power P1B.
  • the processing operation after the power generation stop of the power generation system 101 is executed in the first stop mode, and the output from the power storage unit 107
  • the processing operation after the power generation stop of the power generation system 101 is executed in the second stop mode.
  • the power supply system 100 is configured such that the control device 110 controls the power storage unit 107 when the power generation system 101 is activated and the power storage unit 107 when the power generation system 101 stops power generation. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the case where “when the power generation system is started” is when the power generation system is starting up will be described.
  • a case where “when the power generation system stops” is when the processing operation after the power generation stop of the power generation system is being performed will be described.
  • the prediction as to whether or not the sum of the start power of the power generation system and the power consumption of the external power load exceeds the upper limit power that can be received from the power system is done as follows.
  • the power detector detects the power consumption of the power generation system and the external power load when the power generation system is starting up, and the control device consumes the power generation system and the external power load detected by the power detector. This is done by determining whether or not the sum of the power (the sum of the starting power of the power generation system and the power consumption of the external power load) exceeds the upper limit power that can be received from the power system.
  • the power detector detects the power consumption of the power generation system and the external power load when the processing operation of the power generation system is stopped
  • the control device detects the power generation system detected by the power detector and the external This is performed by determining whether or not the sum of the power consumption of the power load (the sum of the stop power of the power generation system and the power consumption of the external power load) exceeds the upper limit power that can be received from the power system.
  • the power consumption of the power generation system is specifically the power consumption of the internal power load of the power generation system.
  • the prediction of whether the sum of the starting power of the power generation system and the power consumption of the external power load by the control device exceeds the upper limit power that can be received from the power system is, for example, the consumption of the internal power load and the external power load.
  • the prediction may be performed based on the amount of increase in power, or may be predicted from the past use history, and any mode can be used as long as it can predict whether or not the upper limit power is exceeded. Also good.
  • whether or not the total of the stop power of the power generation system and the power consumption of the external power load by the control device exceeds the upper limit power that can be received from the power system is determined by, for example, the internal power load and the external power load.
  • the prediction may be performed based on the increase in power consumption, or may be predicted from the past usage history, and if it can be predicted whether or not the upper limit power is exceeded, it is in any manner. May be.
  • FIG. 13A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the sixth embodiment.
  • the control device 110 starts from the power detector 106 to the power generation system 101 (specifically, the internal power load 102), as shown in FIG. 13A.
  • the power (power consumption) used by the external power load 105 is acquired (step S401).
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S401 and the power consumption of the power generation system 101 exceeds the upper limit power P3 that can be used from the power system 104. (Step S402).
  • the process proceeds to step S403, and when it is less than the upper limit power P3 (No in step S402), the process proceeds to step S404.
  • the upper limit power P3 is preferably lower than the upper limit power P1, from the viewpoint of not interrupting (continuing) the start-up operation of the power generation system 101.
  • step S403 the control device 110 controls the power controller 108 of the power storage unit 107 to output power from the power storage unit 107.
  • the power controller 108 supplies power from the power storage unit 107 to the external power load 105 and the power generation system 101 (specifically, the internal power load 102).
  • the power controller 108 controls the power storage unit 107 so that the power used by the power generation system 101 and the external power load 105 detected by the power detector 106 is less than the upper limit power P3.
  • the power controller 108 may control the power storage unit 107 to supply power to at least the external power load 105.
  • control device 110 proceeds to step S404, and outputs a startup continuation signal of the power generation system 101 to the controller 103. Thereby, the controller 103 continues the activation of the power generation system 101.
  • the power consumption of the external power load 105 increases during the start-up operation of the power generation system 101, and the power grid 104 Even if it is predicted that the upper limit electric power P3 from the power generation system P3 will be exceeded, the start-up operation of the power generation system 101 can be continued. As a result, the power supply system 100 according to the sixth embodiment (the control device 110 of the power supply system 100) exceeds the upper limit power from the power system 104 while improving the startability as compared with the conventional power generation system. It is suppressed.
  • FIG. 13B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to the sixth embodiment.
  • the control device 110 receives the power generation system 101 (from the power detector 106 as shown in FIG. 13B. Specifically, the power (power consumption) used by the internal power load 102) and the external power load 105 is acquired (step S401B).
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S401B and the power consumption of the power generation system 101 exceeds the upper limit power P3B that can be used from the power system 104. (Step S402B).
  • the process proceeds to Step S403B, and when it is less than the upper limit power P3B (No in Step S402B), the process proceeds to Step S404B.
  • the upper limit power P3B is preferably lower than the upper limit power P1B from the viewpoint of not interrupting (continuing) the processing operation after the power generation system 101 stops generating power.
  • step S403B the control device 110 controls the power controller 108 of the power storage unit 107 to output power from the power storage unit 107.
  • the power controller 108 supplies power from the power storage unit 107 to the external power load 105 and the power generation system 101 (specifically, the internal power load 102).
  • the power controller 108 controls the power storage unit 107 so that the power used by the power generation system 101 and the external power load 105 detected by the power detector 106 is less than the upper limit power P3B.
  • the power controller 108 may control the power storage unit 107 to supply power to at least the external power load 105.
  • control device 110 proceeds to step S404B and outputs a signal to the controller 103 to continue the processing operation after the power generation stop of the power generation system 101.
  • controller 103 continues the processing operation after the power generation system 101 stops generating power.
  • the power consumption of the external power load 105 increases in the processing operation after the power generation system 101 stops generating power. Even if it is predicted that the upper limit power P3B from the power system 104 will be exceeded, the processing operation after the power generation stop of the power generation system 101 can be continued. Thereby, in the power supply system 100 according to the sixth embodiment (the control device 110 of the power supply system 100), compared with the conventional power generation system, while suppressing exceeding the upper limit power from the power system 104, The processing operation after power generation stop of the power generation system 101 can be executed.
  • the upper limit power P3 is set as the threshold value in step S402 and step S403 from the viewpoint of stably starting the power generation system 101, but is not limited thereto. As long as the power received from the power system 104 reaches the upper limit power P1, the upper limit power P1 may be set as the threshold value in step S402 and step S403 as long as the power supply from the power system 104 is not interrupted. .
  • the upper limit power P3B is set as the threshold value in step S402B and step S403B from the viewpoint of continuing the processing operation after stopping the power generation stably in the power generation system 101, the upper limit power P3B is not limited thereto, and power is received from the power system 104. Even if the power reaches the upper limit power P1B, the upper limit power P1B may be set as a threshold value in step S402B and step S403B as long as the power supply from the power system 104 is not interrupted.
  • the power supply system 100 is configured such that the control device 110 controls the power storage unit 107 when the power generation system 101 is activated and the power storage unit 107 when the power generation system 101 stops power generation. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101. The control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the control device is configured such that the startup power is relatively relative to the first startup mode in which the startup power of the power generation system is relatively large based on the power that can be supplied from the power storage unit. It is configured to switch between a small second activation mode.
  • the control device changes the stop mode of the power generation system based on the suppliable power from the power storage unit to the first stop mode in which the stop power is relatively large, and the stop power It may be configured to switch between the second stop mode with a relatively small.
  • FIG. 14A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the seventh embodiment.
  • the control device 110 starts from the power detector 106 to the power generation system 101 (specifically, the internal power load 102), and The power (power consumption) used by the external power load 105 is acquired (step S501).
  • step S502 determines whether or not the power consumption acquired in step S501 is equal to or higher than the upper limit power P3 (step S502).
  • the control device 110 proceeds to step S503, and when smaller than the upper limit power P3 (No in step S502), The process proceeds to step S507.
  • step S503 the control device 110 subtracts the power supplied to the power external power load 105 and the power generation system 101 from the sum of the power consumption of the external power load 105 acquired in step S501 and the power consumption of the power generation system 101 ( That is, it is determined whether or not (power consumption + startup power ⁇ supply power) is equal to or lower than the upper limit power P1 that can be used from the power system 104.
  • the control device 110 proceeds to step S507 when the power consumption + startup power ⁇ supplied power is equal to or lower than the upper limit power P1 (Yes in step S503), and if larger than the upper limit power P1 (No in step S503).
  • the process proceeds to step S508.
  • the power controller 108 may control the power storage unit 107 to supply power to at least the external power load 105.
  • step S508 the control device 110 controls the controller 103 so as to select the second activation mode. And the control apparatus 110 outputs the starting continuation signal of the electric power generation system 101 to the controller 103 (step S509). Thereby, the controller 103 continues the start-up of the power generation system 101 in the second start-up mode.
  • step S507 when the power consumption of the power generation system 101 and the external power load 105 is smaller than the upper limit power P3 in step S502, or the power consumption of the power generation system 101 and the external power load 105 is the upper limit in step S503. If the power is equal to or lower than P3, the controller 103 is controlled to select the first activation mode (step S507).
  • control apparatus 110 outputs the starting continuation signal of the electric power generation system 101 to the controller 103 (step S509).
  • the controller 103 continues the activation of the power generation system 101 in the first activation mode.
  • the power controller 108 causes the power consumption to be equal to or lower than the upper limit power P1.
  • the output power from the power storage unit 107 is controlled.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the seventh embodiment configured as described above, the power supply system 100 (the control device of the power supply system 100) according to the sixth embodiment. 110).
  • the power supply system 100 according to the seventh embodiment (the control device 110 of the power supply system 100)
  • FIG. 14B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to the seventh embodiment.
  • step S503B the step in which the operation
  • step S503B the control device 110 subtracts the power supplied to the power external power load 105 and the power generation system 101 from the sum of the power consumption of the external power load 105 acquired in step S501B and the power consumption of the power generation system 101 ( That is, it is determined whether or not (power consumption + startup power ⁇ supply power) is equal to or lower than the upper limit power P1B that can be used from the power system 104.
  • the control device 110 proceeds to step S507B when the power consumption + startup power ⁇ supplied power is equal to or lower than the upper limit power P1B (Yes in step S503B), and if larger than the upper limit power P1B (No in step S503B).
  • the process proceeds to step S508B.
  • step S508B the control device 110 controls the controller 103 so as to select the second stop mode.
  • the control device 110 controls the controller 103 so as to select the second stop mode.
  • the controller 103 is controlled to select the first stop mode (step S507B).
  • the power supply system 100 according to the seventh embodiment the control device 110 of the power supply system 100
  • the power supply system 100 according to the sixth embodiment control of the power supply system 100
  • the stopping performance is further improved.
  • the power supply system 100 according to the seventh embodiment adopts a mode in which the power generation system 101 is continuously activated after the second activation mode is selected (step S508).
  • the present invention is not limited to this, and a mode is adopted in which the start-up of the power generation system 101 is continued after the control signal is output to the power controller 108 to charge the power storage unit 107 together with the selection of the second start-up mode. May be.
  • step S508B processing operation after power generation stop of power generation system 101 is performed.
  • the present invention is not limited to this, and the second stop mode is selected and a control signal is output to the power controller 108 so as to charge the power storage unit 107. You may employ
  • the power supply system 100 is configured such that the control device 110 controls the power storage unit 107 when starting the power generation system 101 and the power storage unit 107 when stopping the power generation of the power generation system 101. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the control device makes the startup power relative to the first startup mode in which the startup power of the power generation system is relatively large based on the amount of power stored in the power storage unit. It is configured to switch between a small second activation mode.
  • the control device changes the stop mode of the power generation system based on the amount of power stored in the power storage unit to the first stop mode in which the stop power of the power generation system is relatively large, and the stop power It may be configured to switch between the second stop mode with a relatively small.
  • the power supply system 100 according to the eighth embodiment has the same basic configuration as the power supply system 100 according to the first embodiment, the description of the configuration is omitted.
  • FIG. 15A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the eighth embodiment.
  • the control device 110 receives the power generation system 101 (specifically, from the power detector 106 as shown in FIG. 15A). Acquires the power (power consumption) used by the internal power load 102) and the external power load 105 (step S601).
  • the control device 110 determines whether or not the sum of the power consumption of the external power load 105 acquired in step S601 acquired in step S601 and the power consumption of the power generation system 101 is equal to or higher than the upper limit power P3 (Ste S602).
  • the process proceeds to step S603, and is smaller than the upper limit power P3 (in step S602). In No), it progresses to step S606.
  • step S603 the control device 110 determines whether or not the power storage amount of the power storage unit 107 is equal to or greater than a predetermined power amount Q3. If the amount of power stored in the power storage unit 107 is equal to or greater than the predetermined power amount Q3 (Yes in step S603), the process proceeds to step S604, and if smaller than the predetermined power amount Q3 (No in step S603), step S605 is performed.
  • the predetermined power amount Q3 can be set arbitrarily, and may be, for example, the power amount necessary to continue the start-up operation of the power generation system 101 in the first start-up mode. The amount of power necessary to continue the startup operation in the first startup mode is consumed by the internal power load until the startup operation is completed by continuing the startup operation in the first startup mode, for example. It may be a cumulative power consumption.
  • step S604 the control device 110 selects the first activation mode and proceeds to step S606.
  • step S605 the control device 110 selects the second activation mode, and proceeds to step S606.
  • step S606 the control apparatus 110 outputs the starting continuation signal of the electric power generation system 101 to the controller 103.
  • the controller 103 continues the activation of the power generation system 101.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the eighth embodiment configured as described above, the power supply system 100 (control device of the power supply system 100) according to the sixth embodiment. 110). Further, in the power supply system 100 according to the eighth embodiment (the control device 110 of the power supply system 100), even if the power storage amount of the power storage unit 107 is not an amount capable of continuing the first activation mode, the relative The power supply system 100 according to the sixth embodiment (the control device 110 of the power supply system 100) is configured to suppress interruption of the start operation by changing to the second start mode with a small start power. Compared with, startability is further improved.
  • FIG. 15B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 8.
  • step S603B in which processing different from the operation described in the sixth embodiment and the operation when starting the power generation system 101 described above is performed will be described.
  • control device 110 determines whether or not the amount of power stored in power storage unit 107 is equal to or greater than a predetermined amount of power Q3B. If the amount of power stored in the power storage unit 107 is equal to or greater than the predetermined power amount Q3B (Yes in step S603B), the process proceeds to step S604B, and if it is smaller than the predetermined power amount Q3B (No in step S603B), step S605B. Proceed to Note that the predetermined power amount Q3B can be arbitrarily set, and may be, for example, the power amount necessary for the power generation system 101 to continue the processing operation after power generation is stopped in the first stop mode.
  • the amount of electric power required to continue the processing operation after stopping the power generation in the first stop mode is, for example, the processing operation after stopping the power generation by continuing the processing operation after stopping the power generation in the first stop mode. It may be the accumulated power consumption consumed by the internal power load until the completion.
  • the power supply system 100 has the control device 110 control to the power storage unit 107 when starting the power generation system 101 and the power storage unit 107 when stopping power generation of the power generation system 101. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • FIG. 16A is an example of a flowchart schematically showing an operation when starting the power generation system in Modification 1 of the power supply system according to Embodiment 8.
  • the power generation system 101 in the power supply system 100 according to the first modification is activated when the second activation mode is selected, and the power generation in the power supply system 100 according to the eighth embodiment is performed. This is different from the startup operation of the system 101.
  • control device 110 selects the second start mode and sets the start mode of power generation system 101.
  • the first start mode is switched to the second start mode (step S605).
  • the control apparatus 110 outputs a control signal so that the electric power controller 108 of the electrical storage unit 107 may be charged (step S607).
  • the power controller 108 supplies power in a range not exceeding the upper limit power P ⁇ b> 3 from the power system 104 to the single battery or the assembled battery of the storage battery constituting the power storage unit 107 to charge the power storage unit 107.
  • the control device 110 continues the activation of the power generation system 101 in the second activation mode (step S608), and returns to step S603.
  • Step S603, Step S605, Step S607, and Step S608 are repeated until the amount of power stored in the power storage unit 107 becomes equal to or greater than the predetermined power amount Q3. Then, when the amount of power stored in power storage unit 107 becomes equal to or greater than predetermined power amount Q3, control device 110 selects the first start mode and changes the start mode of power generation system 101 from the second start mode to the first start mode. The mode is switched to the start mode (step S604). Then, the activation of the power generation system 101 is continued in the first activation mode (step S606).
  • the power supply system 100 (control device 110 of the power supply system 100) of the first modification configured as described above, the power supply system 100 according to the eighth embodiment (the control device 110 of the power supply system 100).
  • the power supply system 100 of the first modification shifts to the second activation mode, when the power storage amount of the power storage unit 107 becomes equal to or greater than the predetermined power amount Q3, Since it is switched to the first activation mode, the activation time of the power generation system 101 can be further shortened compared to the power supply system 100 of Embodiment 8 (the control device 110 of the power supply system 100).
  • FIG. 16B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the first modification.
  • the operation when stopping the power generation of the power generation system 101 in the power supply system 100 of the first modification is the same as the operation when the second stop mode is selected according to the power according to the eighth embodiment. This is different from the operation when power generation of the power generation system 101 in the supply system 100 is stopped.
  • control device 110 selects the second stop mode and sets the power generation system 101 stop mode. Switching from the first stop mode to the second stop mode (step S605B). Then, control device 110 outputs a control signal so as to charge power controller 108 of power storage unit 107 (step S607B). Thereby, the power controller 108 supplies power in a range not exceeding the upper limit power P ⁇ b> 3 ⁇ / b> B from the power system 104 to the single battery or the assembled battery of the storage battery constituting the power storage unit 107 to charge the power storage unit 107. Next, the control device 110 continues the processing operation after the power generation stop of the power generation system 101 in the second stop mode (step S608B), and returns to step S603B.
  • Step S603B, Step S605B, Step S607B, and Step S608B are repeated until the amount of power stored in the power storage unit 107 becomes equal to or greater than the predetermined power amount Q3B. Then, when the amount of power stored in power storage unit 107 becomes equal to or greater than predetermined power amount Q3B, control device 110 selects the first stop mode, and changes the stop mode of power generation system 101 from the second stop mode to the first stop mode. The mode is switched to the stop mode (step S604B). Then, the processing operation after the power generation stop of the power generation system 101 is continued in the first stop mode (step S606B).
  • the power storage amount of the power storage unit 107 becomes equal to or higher than the predetermined power amount Q3. Then, since it is switched to the first stop mode, compared with the power supply system 100 of Embodiment 8 (the control device 110 of the power supply system 100), the time for executing the processing operation after the power generation stop of the power generation system 101 is increased. It can be shortened more.
  • the power supply system 100 includes a control device 110 that controls the power storage unit 107 when the power generation system 101 is activated and controls the power storage unit 107 when the power generation system 101 stops power generation. It may be configured to execute at least one of the operations.
  • the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • [Modification 2] 17A and 17B are an example of a flowchart schematically showing an operation when starting the power generation system in the second modification of the power supply system according to the eighth embodiment.
  • the power supply system 101 according to the second modification 2 has a start-up operation of the power generation system 101 when the second start-up mode is selected. This is different from the startup operation of the power generation system 101 in 100.
  • control device 110 selects the second activation mode (step S605), and outputs the activation continuation signal of the power generation system 101 to the controller 103 (step S607).
  • the control device 110 acquires the power (power consumption) used by the power generation system 101 and the external power load 105 acquired from the power detector 106.
  • the control device 110 determines whether or not the power consumption of the external power load 105 out of the acquired power consumption is equal to or higher than the startup mode change power P2 (step S608). Then, when the power consumption of the external power load 105 becomes less than the startup mode change power P2 (Yes in step S608), the control device 110 controls the controller 103 so as to shift to the first startup mode (step S609).
  • the power supply system 100 (control device 110 of the power supply system 100) of the second modification configured as described above, the power supply system 100 (control device 110 of the power supply system 100) according to the eighth embodiment.
  • the power supply system 100 of the second modification when the power consumption of the external power load 105 decreases, the power supply system 100 according to the eighth embodiment is switched to the first activation mode.
  • the startup time of the power generation system 101 can be further shortened.
  • FIG. 17C and FIG. 17D are examples of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the second modification.
  • the operation when stopping the power generation of the power generation system 101 in the power supply system 100 of the second modification is the same as the operation when the second stop mode is selected in the eighth embodiment. This is different from the operation of stopping the power generation of the power generation system 101 in the power supply system 100 according to the above.
  • control device 110 selects the second stop mode (step S605B), and outputs a signal that causes the controller 103 to continue the processing operation after the power generation stop of the power generation system 101 (step S607B).
  • the control device 110 acquires the power (power consumption) used by the power generation system 101 and the external power load 105 acquired from the power detector 106.
  • the control device 110 determines whether or not the power consumption of the external power load 105 out of the acquired power consumption is equal to or greater than the stop mode change power P2B (step S608B). Then, when the power consumption of the external power load 105 becomes less than the stop mode change power P2B (Yes in Step S608B), the control device 110 controls the controller 103 so as to shift to the first stop mode (Step S608). S609B).
  • the second stop mode is switched to the eighth embodiment.
  • the time for executing the processing operation after the power generation stop of the power generation system 101 can be further shortened.
  • the power supply system 100 includes a control device 110 that controls the power storage unit 107 when the power generation system 101 is activated and controls the power storage unit 107 when the power generation system 101 stops power generation. It may be configured to execute at least one of the operations.
  • the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the control device controls the power storage unit to be charged from the power system before the scheduled start-up time of the power generation system.
  • control device may control the power storage unit to be charged from at least one of the power system and the power generation system before the scheduled power generation stop time of the power generation system.
  • FIG. 18A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the ninth embodiment.
  • the control device 110 acquires the scheduled activation time (step S701). Specifically, the control device 110 acquires scheduled start time information from the controller 103.
  • the control device 110 calculates a standby time from the scheduled activation time acquired in step S701 and the current time to the scheduled activation time, and whether or not the calculated waiting time is equal to or less than a predetermined time T1. Is determined (step S702).
  • the predetermined time T1 is an arbitrarily set time, but before the determination as to whether or not the power supply from the power storage unit is executed in the first to fifth embodiments (including modifications), It is preferable to set so that charging control to the power storage unit is executed.
  • step S702 When the standby time is longer than the predetermined time T1 (No in step S702), the control device 110 returns to step S701 and repeats steps S701 and S702 until the standby time becomes equal to or shorter than the predetermined time T1. On the other hand, when the standby time becomes equal to or shorter than the predetermined time T1 (Yes in step S702), the control device 110 proceeds to step S703.
  • step S703 the control device 110 outputs a control signal so as to charge the power controller 108 of the power storage unit 107.
  • the power controller 108 supplies power from the power system 104 to the storage battery cells or the assembled battery constituting the power storage unit 107 to charge the power storage unit 107.
  • the control shown in the flow of steps S701 to S703 may be applied to any power supply system 100 (control device 110 of the power supply system 100) of the first to fifth embodiments (including the modified example). Absent.
  • control device 110 of power supply system 100 As described above, in power supply system 100 according to Embodiment 9 (control device 110 of power supply system 100), power storage unit 107 is charged before power generation system 101 is started. Therefore, the startability is further improved as compared with the power supply system 100 according to the first embodiment (the control device 110 of the power supply system 100).
  • control device 110 determines whether or not it is necessary to output power from power storage unit 107 that is executed in any of Embodiments 1 to 5 (including modifications). If the activation is permitted, the activation of the power generation system 101 is started (step S704).
  • FIG. 18B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system according to Embodiment 9.
  • the control device 110 acquires the scheduled power generation stop time of the power generation system 101 as shown in FIG. 18B (step S701B). Specifically, the control device 110 acquires the scheduled power generation stop time information from the controller 103.
  • the control device 110 calculates the time from the scheduled power generation stop time acquired in step S701B to the scheduled power generation stop time from the current time, and the calculated time (hereinafter referred to as “calculated time”) is a predetermined time. It is determined whether it is T1B or less (step S702B).
  • the predetermined time T1B is an arbitrarily set time, but before the necessity determination of the power supply from the power storage unit 107 executed in the first to fifth embodiments (including the modified example) is performed. It is preferable that the charging control for the power storage unit 107 is performed.
  • step S702B When the calculation time is longer than the predetermined time T1 (No in step S702B), the control device 110 returns to step S701 and repeats step S701B and step S702B until the calculation time becomes equal to or less than the predetermined time T1B. On the other hand, when the calculation time becomes equal to or shorter than the predetermined time T1B (Yes in step S702B), control device 110 proceeds to step S703B.
  • step S703B the control device 110 outputs a control signal so that the power controller 108 of the power storage unit 107 is charged.
  • the power controller 108 supplies power from at least one of the power system 104 and the power generation system 101 to the storage battery cells or the assembled battery constituting the power storage unit 107 to charge the power storage unit 107.
  • the control shown in the flow of steps S701B to S703B may be applied to any power supply system 100 (the control device 110 of the power supply system 100) in the first to fifth embodiments (including modifications). Absent.
  • the control device 110 performs power from the power storage unit 107 that is executed in any of Embodiments 1 to 5 (including modifications). If it is determined whether or not output is necessary and whether or not to stop the power generation of the power generation system 101 is permitted, and the stop of the power generation is permitted, the power generation system 101 stops the power generation (step S704B).
  • the power storage unit 107 is charged before the power generation of the power generation system 101 is started. Since the power replenishment power from 107 is improved, the stopping performance is further improved as compared with the conventional power generation system.
  • the power supply system 100 has the control device 110 control to the power storage unit 107 when starting the power generation system 101 and the power storage unit 107 when stopping power generation of the power generation system 101. It is only necessary to be configured to execute at least one of the control operations. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • the power supply system is configured such that, in the charging control described in the ninth embodiment, the control device determines whether to permit charging of the power storage unit based on the amount of power stored in the power storage unit.
  • FIG. 19A is an example of a flowchart schematically showing an operation when starting the power generation system in the power supply system according to the present modification.
  • the control device 110 acquires the scheduled activation time (step S801), and waits for the same time as the power supply system 100 according to the ninth embodiment. Is less than or equal to a predetermined time T1 (step S802). Then, the control device 110 proceeds to step S803 when the standby time becomes equal to or shorter than the predetermined time T1 (Yes in step S802).
  • step S803 the control device 110 determines whether or not the power storage amount of the power storage unit 107 is equal to or greater than a predetermined power amount Q4. If the amount of power stored in power storage unit 107 is equal to or greater than predetermined power amount Q4 (Yes in step S803), control device 110 proceeds to step S805, and if smaller than predetermined power amount Q4 (No in step S803). The process proceeds to step S804.
  • the predetermined power amount Q4 can be set arbitrarily, but is preferably the power amount required for starting up the power generation system 101, for example.
  • the amount of power required for startup may be, for example, the cumulative power consumption consumed by the internal power load from the start to the completion of the startup operation.
  • step S804 the control device 110 outputs a control signal so as to charge the power controller 108 of the power storage unit 107.
  • the power controller 108 supplies power from the power system 104 to the storage battery cells or the assembled battery constituting the power storage unit 107 to charge the power storage unit 107. Then, the control device 110 proceeds to step S805.
  • step S805 the control device 110 determines whether or not the current time is the scheduled start time.
  • control device 110 repeats steps S803 to S805 until the current time reaches the scheduled activation time, and the power storage unit 107 stores the power by the scheduled activation time.
  • the amount is controlled so as to be equal to or greater than the predetermined power amount Q4.
  • control device 110 outputs the power output from power storage unit 107 executed in any of Embodiments 1 to 5 (including the modified example). If the necessity determination and the permission determination of the start of starting the power generation system 101 are performed and the start is permitted, the process proceeds to step S806.
  • step S806 the control apparatus 110 starts starting of the electric power generation system 101.
  • the power supply system 100 (control device 110 of the power supply system 100) of the present modification configured as described above, the power supply system 100 (control device 110 of the power supply system 100) according to the ninth embodiment and The same effect is obtained.
  • the power supply system 100 (the control device 110 of the power supply system 100) of the present modification controls charging of the power storage unit 107 until the scheduled start-up time based on the power storage amount of the power storage unit 107.
  • the power storage unit 107 is suppressed from being charged more than necessary, or the power storage unit 107 is prevented from being insufficiently charged.
  • FIG. 19B is an example of a flowchart schematically showing an operation when power generation of the power generation system is stopped in the power supply system of the present modification.
  • the control device 110 acquires the scheduled power generation stop time (step S801B), similarly to the power supply system 100 according to the ninth embodiment.
  • the time until the scheduled power generation stop time is calculated from the planned power stoppage time acquired in S801B and the current time, and it is determined whether or not the calculated time (hereinafter referred to as a calculation time) is equal to or shorter than a predetermined time T1B. (Step S802B). Then, when the calculation time becomes equal to or shorter than the predetermined time T1B (Yes in step S802B), control device 110 proceeds to step S803B.
  • control device 110 determines whether or not the amount of power stored in power storage unit 107 is equal to or greater than a predetermined amount of power Q4B. If the amount of power stored in power storage unit 107 is equal to or greater than predetermined power amount Q4B (Yes in step S803B), control device 110 proceeds to step S805B, and if smaller than predetermined power amount Q4B (No in step S803B). The process proceeds to step S804B.
  • the predetermined power amount Q4B can be set arbitrarily, but is preferably the power amount necessary for the operation when the power generation system 101 stops power generation, for example.
  • the amount of power required for the operation when power generation is stopped is, for example, the cumulative consumption consumed by the internal power load between the start of the processing operation after power generation stop and the completion of the processing operation after power generation stop. The amount of power may be used.
  • step S804B the control device 110 outputs a control signal so as to charge the power controller 108 of the power storage unit 107.
  • the power controller 108 supplies power from at least one of the power system 104 and the power generation system 101 to the storage battery cells or the assembled battery constituting the power storage unit 107 to charge the power storage unit 107.
  • control device 110 proceeds to step S805B.
  • step S805B the control device 110 determines whether or not the current time is a scheduled power generation stop time. If the current time is not the scheduled power generation stop time (No in step S805B), control device 110 repeats steps S803B to S805B until the current time reaches the planned power generation stop time, and the power storage unit until the planned power generation stop time is reached.
  • the power storage amount 107 is controlled to be equal to or greater than a predetermined power amount Q4B.
  • control device 110 outputs power from power storage unit 107 that is executed in any of Embodiments 1 to 5 (including modifications) when the current time becomes the scheduled power generation stop time (Yes in step S805B). If it is determined whether or not to stop power generation and the power generation stop of the power generation system 101 is permitted, the process proceeds to step S806B.
  • step S806B the control apparatus 110 starts the electric power generation stop of the electric power generation system 101, and performs the processing operation after an electric power generation stop after that.
  • the power supply system 100 controls the charging of the power storage unit 107 until the scheduled power generation stop time based on the power storage amount of the power storage unit 107. Therefore, compared to the power supply system 100 according to the ninth embodiment (the control device 110 of the power supply system 100), the power storage unit 107 is prevented from being charged more than necessary, or the power storage unit 107 is insufficiently charged. Is suppressed.
  • the power supply system 100 of the present modification includes a control operation for the power storage unit 107 when the control device 110 starts the power generation system 101 and a control operation for the power storage unit 107 when the power generation system 101 stops power generation. It is only necessary to be configured to execute at least one of the above. In other words, the control device 110 is configured to execute only one of the control operation for the power storage unit 107 when starting the power generation system 101 and the control operation for the power storage unit 107 when stopping power generation of the power generation system 101.
  • the control operation for the power storage unit 107 when the power generation system 101 is started up and the control operation for the power storage unit 107 when the power generation of the power generation system 101 is stopped may be performed together. Good.
  • Embodiment 10 By the way, in the power supply system 100 according to Embodiments 1 to 9 (including modifications), when power is output from the power storage unit 107 when the power generation system 101 is started and / or power generation is stopped, Electric power is supplied to both the electric power load and the external electric power load.
  • the power supply system exemplifies a configuration in which output power from the power storage unit is configured to be supplied to at least one of an external power load and an internal power load.
  • FIG. 20 is an example of a block diagram schematically showing a schematic configuration of the power supply system and the control device of the power supply system according to the tenth embodiment.
  • the power supply system 100 according to the tenth embodiment has the same basic configuration as the power supply system 100 according to the first embodiment, but the output power from the power storage unit 107 is external power. It is configured to be supplied to at least one of the load 105 and the internal power load 102 of the power generation system 101.
  • a wiring 202 is provided for electrically connecting the power storage unit 107 and the electric circuit (wiring 201) between the interconnection point 109 and the external power load 105 at the connection point A.
  • a wiring 204 is provided to electrically connect the power storage unit 107 to the electrical path (wiring 205) between the interconnection point 109 and the internal power load 102 at the connection point B.
  • a relay (relay) 213 is provided in the middle of the wiring 202. Further, a relay 212 is provided in the wiring 204. In addition, a relay 214 is provided in the electric circuit (wiring 201) between the interconnection point 109 and the connection point A. Further, a relay 211 is provided on the electric circuit (wiring 205) between the interconnection point 109 and the connection point B.
  • control device 110 can control the power supply from the power storage unit 107 to at least one of the internal power load 102 and the external power load 105 by controlling the relay 211 to the relay 214. Further, the control device 110 can control the supply of power from the power system 104 to at least one of the internal power load 102 and the external power load 105 by controlling the relays 211 to 214. Specifically, the control device 110 controls the relays 211 to 214 as follows.
  • the control device 110 When supplying power to both the internal power load 102 and the external power load 105 for both the power system 104 and the power storage unit 107
  • the control device 110 closes the relay 211, the relay 212, and the relay 214, and sets the relay 213 to Control to open.
  • power can be supplied from the power system 104 to both the internal power load 102 and the external power load 105 via the wiring 203 and the wiring 201.
  • power can be supplied from the power storage unit 107 to both the internal power load 102 and the external power load 105 via the wiring 204 and the wiring 201.
  • the control device 110 may control to close the relay 211, the relay 213, and the relay 214 and open the relay 212, and to close the relay 211, the relay 212, the relay 213, and the relay 214. You may control.
  • the power supply system 100 (control device 110 of the power supply system 100) according to the tenth embodiment configured as described above is the power supply system 100 (power) according to the first to ninth embodiments (including modifications).
  • the same control operation as that of the control device 110 of the supply system 100 the same operation as that of the power supply system 100 (the control device 110 of the power supply system 100) according to Embodiments 1 to 9 (including the modified example) is performed. Has an effect.
  • the power supply from the power storage unit 107 is controlled using the relays 211 to 214.
  • the present embodiment is not limited to this, and the power from the power storage unit 107 is externally supplied. Any configuration may be adopted as long as it is configured to be supplied to at least one of the power load 105 and the internal power load 102.
  • the power detector 106 is provided between the power system 104 and the interconnection point 109.
  • a form in which the detector 106 is provided between the interconnection point 109 and the external power load 105 may be adopted.
  • the power detector 106 detects the power consumption of the external power load 105.
  • the total power consumption of the power generation system 101 (internal power load 102) and the external power load 105 is the power detector (not shown) that detects the detected value of the power detector 106 and the power consumption of the internal power load 102. This is the sum of the detected values.
  • a power supply system, a power supply system control device, a power supply system operation method, and a power supply system control method according to the present invention include at least one of a start-up property and a stop property of a power generation system as compared with a conventional power generation system Since it is suppressed, exceeding the upper limit electric power from an electric power grid

Abstract

 本発明の電力供給システムは、発電システム(101)と、発電システム(101)及び外部電力負荷(105)へ電力供給を行う蓄電ユニット(107)と、発電システム(101)を起動するときに発電システム(101)の起動電力と外部電力負荷(105)の消費電力との合計、及び発電システム(101)の発電を停止するときに発電システム(101)の停止電力と外部電力負荷(105)の消費電力との合計の少なくともいずれか一方の合計が電力系統(104)から受電可能な上限電力を超えると予測される場合に、電力系統(104)から供給される電力量が、上限電力を超えないように、蓄電ユニット(107)の電力を発電システム(101)及び外部電力負荷(105)の少なくともいずれか一方に供給するように制御する制御装置(110)と、を備える。

Description

電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法
 本発明は、発電システムと、発電システムと外部電力負荷に電力を供給する蓄電池と、を備える電力供給システム、電力供給システムの運転方法、及び電力供給システムの制御方法に関する。
 従来、燃料電池やガスエンジン等に例示される発電システムにおいて、発電システムの起動に必要となる起動電力と発電システムの外部電力負荷の消費電力が、契約電力を超えてしまうとブレーカーが落ちてしまい、結局、発電システムの起動停止を余儀なくされる。このような発電システムの起動時にブレーカーが落ちることを抑制するため、発電システムの起動電力と外部電力負荷の消費電力の合計が契約電力を超えてしまう場合には、起動を実行しない発電システムが提案されている(例えば、特許文献1参照)。
特開2006-019169号公報
 しかしながら、上記特許文献1記載に開示されている発電システムでは、発電システムを起動すると電力系統から供給される電力の上限値(例えば、契約電力)を超えるおそれがあるような、外部電力負荷の消費電力が大きい状態が継続すると、発電システムは、その間、起動できないという第1の課題がある。
 また、上記従来の発電システムにおいて、発電システムの起動前に電力系統からの上限電力を超えるおそれがないと判断して、発電システムの起動を開始しても、その後、外部電力負荷の消費電力量が増加して上限電力を超えてしまった場合、発電システムの起動が停止されるという第2の課題がある。
 また、発電システムの発電を停止するときにおいても、起動するときと同様の課題が生じる。
 例えば、発電システムの発電を停止すると発電システムからの電力が得られないため、外部電力負荷の消費電力が大きいときに発電システムの発電を停止すると、電力系統から供給される電力の上限値(例えば、契約電力)を超えるおそれがあるという第3の課題がある。
 また、発電システムの発電停止前に電力系統からの上限電力を超えるおそれがないと判断して、発電システムの発電を停止しても、その後、外部電力負荷の消費電力量が増加して上限電力を超えてしまった場合、発電システムの発電停止後の処理動作が中断されるという第4の課題がある。
 また、本発明は、前記従来の第1の課題―第4の課題のうち、少なくともいずれか一つの課題を解決するもので、従来よりも起動性及び停止性の少なくともいずれか一方が向上する、電力供給システム及び電力供給システム制御装置を提供する。
 従来の課題を解決するために、本発明に係る電力供給システムは、発電システムと、前記発電システム及び外部電力負荷へ電力供給を行う蓄電ユニットと、前記発電システムを起動するときに前記発電システムの起動電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第1の制御、及び、前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第2の制御、の少なくともいずれか一方を実行するように構成されている制御装置と、を備える。
 これにより、従来の発電システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら電力系統からの上限電力を超えることが抑制される。
 本発明に係る電力供給システムの制御装置は、発電システムと、外部電力負荷及び前記発電システム及び前記外部電力負荷に電力を供給する蓄電ユニットと、を備える電力供給システムを制御する電力供給システムの制御装置であって、前記電力供給システムの制御装置は、前記発電システムを起動するときに前記発電システムの起動電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第1の制御、及び、前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第2の制御、の少なくともいずれか一方を実行するように構成されている。
 これにより、従来の発電システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら電力系統からの上限電力を超えることが抑制される。
 本発明に係る電力供給システムの運転方法は、発電システムを起動するときに前記発電システムの起動電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するステップとを備える第1の制御と、前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するステップとを備える第2の制御の少なくともいずれか一方を実行する。
 これにより、従来の発電システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら電力系統からの上限電力を超えることが抑制される。
 本発明に係る電力供給システムの制御方法は、発電システムを起動するときに前記発電システムの起動電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するステップとを備える第1の制御と、前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するステップとを備える第2の制御の少なくともいずれか一方を実行する。
 これにより、従来の発電システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら電力系統からの上限電力を超えることが抑制される。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施形態の詳細な説明から明らかにされる。
 本発明の電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御装置によれば、従来の発電システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら、電力系統からの上限電力を超えることが抑制される。
図1は、本実施の形態1に係る電力供給システム及び電力供給システムの制御装置の概略構成を模式的に示すブロック図の一例である。 図2Aは、本実施の形態1に係る電力供給システムにおける発電システムの起動動作を模式的に示すフローチャートの一例である。 図2Bは、本実施の形態1に係る電力供給システムにおける発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図3Aは、本実施の形態1に係る電力供給システムにおける変形例1の発電システムの概略構成を模式的に示すブロック図の一例である。 図3Bは、本実施の形態1に係る電力供給システムにおける変形例2の発電システムの概略構成を模式的に示すブロック図の一例である。 図4は、本実施の形態2に係る電力供給システムの概略構成を模式的に示すブロック図の一例である。 図5Aは、本実施の形態2に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図5Bは、本実施の形態2に係る電力供給システムにおける発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図6Aは、本実施の形態2に係る電力供給システムの変形例の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図6Bは、本変形例の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図7Aは、本実施の形態3に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図7Bは、本実施の形態3に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図8Aは、本変形例1の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図8Bは、本変形例1の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図9Aは、本変形例2の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図9Bは、本変形例2の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図9Cは、本変形例2の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図9Dは、本変形例2の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図10Aは、本変形例3の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図10Bは、本変形例3の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図10Cは、本変形例3の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図10Dは、本変形例3の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図11Aは、本実施の形態4に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図11Bは、本実施の形態4に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図12Aは、本実施の形態5に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図12Bは、本実施の形態5に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図13Aは、本実施の形態6に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図13Bは、本実施の形態6に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図14Aは、本実施の形態7に係る電力供給システムにおいて発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図14Bは、本実施の形態7に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図15Aは、本実施の形態8に係る電力供給システムにおいて発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図15Bは、本実施の形態8に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図16Aは、本実施の形態8に係る電力供給システムの変形例1の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図16Bは、本変形例1の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図17Aは、本実施の形態8に係る電力供給システムの変形例2において、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図17Bは、本実施の形態8に係る電力供給システムの変形例2において、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図17Cは、本変形例2の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図17Dは、本変形例2の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図18Aは、本実施の形態9に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図18Bは、本実施の形態9に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図19Aは、本変形例に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。 図19Bは、本変形例の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。 図20は、本実施の形態10に係る電力供給システム及び電力供給システムの制御装置の概略構成を模式的に示すブロック図の一例である。
 以下、本発明の実施の形態を、具体的に図面を参照しながら例示する。なお、全ての図面において、同一または相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するための構成要素を抜粋して図示しており、その他の構成要素については図示を省略する場合がある。さらに、本発明は以下の実施の形態に限定されない。
 (実施の形態1)
 本実施の形態1に係る電力供給システムは、発電システムと、発電システム及び外部電力負荷へ電力供給を行う蓄電ユニットと、制御装置(電力供給システムの制御装置)と、を備え、制御装置が、発電システムを起動するときに、発電システムの起動電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、電力系統から供給される電力が、上限電力を超えないように、蓄電ユニットの電力を発電システム及び外部電力負荷の少なくともいずれか一方に供給するように制御する第1の制御、及び、発電システムの発電を停止するときに発電システムの停止電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、電力系統から供給される電力が、上限電力を超えないように、蓄電ユニットの電力を発電システム及び外部電力負荷の少なくともいずれか一方に供給するように制御する第2の制御、の少なくともいずれか一方を実行するように構成されている。
 これにより、従来の電力供給システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら、電力系統からの上限電力を超えることが抑制される。
 なお、発電システムが起動するときとは、発電システムの起動を控えているとき、及び発電システムの起動動作を行っているときの少なくともいずれか一方を意味するが、以下では、発電システムの起動を控えているときについて主に説明する。
 また、発電システムの発電を停止するときとは、発電システムの発電の停止を控えているとき、及び発電システムの発電停止後の処理動作を行っているときの少なくともいずれか一方を意味するが、以下では、発電システムの停止を控えているときについて主に説明する。
 [電力供給システムの構成]
 図1は、本実施の形態1に係る電力供給システム及び電力供給システムの制御装置の概略構成を模式的に示すブロック図の一例である。
 図1に示すように、本実施の形態1に係る電力供給システム100は、発電システム101と、蓄電ユニット107と、制御装置(電力供給システムの制御装置)110と、を備えている。制御装置110は、発電システム101の起動するときに、発電システム101の起動電力及び外部電力負荷105の消費電力との合計が電力系統104から受電可能な上限電力を超えると予測される場合に、電力系統104から供給される電力が、上限電力を超えないように、蓄電ユニット107の電力を発電システム101及び外部電力負荷105の少なくともいずれか一方に供給するように制御する。
 ここで、電力系統104から受電可能な上限電力は、例えば、電力会社との契約上使用できる最大電力である契約電力であってもよく、また、ブレーカー契約により設定され、この電力を超えるとブレーカーが落ちる電力であってもよい。
 発電システム101は、発電システム101を動作させるための機器である内部電力負荷102と発電システム101を制御する制御器103を有している。発電システム101としては、電力を発生させて、発生させた電力を外部電力負荷105へ供給するように構成されていれば、どのような形態あってもよく、例えば、ガスタービンや燃料電池システムが挙げられる。燃料電池システムに用いられる燃料電池としては、燃料電池としては、いずれの種類であっても良く、高分子電解質形燃料電池、固体酸化物形燃料電池、及びリン酸形燃料電池等が例示される。内部電力負荷102としては、例えば、発電システム101が燃料電池システムである場合、燃料電池内の温度を昇温するための電気ヒータが挙げられる。
 また、制御器103は、発電システム101を構成する各機器を制御する機器であればどのような形態であってもよく、例えば、マイクロプロセッサ、CPU等で構成することができる。なお、制御器103は、マイクロプロセッサ、CPU等に例示される演算処理部だけでなく、メモリ等からなる記憶部及び計時部を有していてもよい。
 蓄電ユニット107は、蓄電ユニット107からの出力電力を制御する電力制御器108を備えている。蓄電ユニット107としては、発電システム101及び外部電力負荷105に電力を供給するように構成されていれば、どのような形態であってもよく、例えば、鉛電池、リチウム電池、ニッケル-水素電池等の二次電池が挙げられる。これらの二次電池は、複数の単電池を直列に接続した組電池を使用してもよく、また、複数の単電池及び/又は組電池を並列に接続して使用してもよい。
 また、蓄電ユニット107の蓄電量は、発電システム101の起動動作の途中で、電力系統104から受電可能な上限電力を超えることを抑制するため、発電システム101の起動動作における内部電力負荷102の消費電力量以上あることが好ましく、蓄電量は大きければ大きいほど好ましい。
 電力制御器108は、蓄電ユニット107からの出力電力を制御する機器であればどのような形態であってもよく、例えば、DC/AC変換器等で構成することができる。
 また、蓄電ユニット107には、蓄電ユニット107の出力電力(放電電力)を検知する電力検知器(図示せず)が内蔵され、制御装置110は、電力検知器(図示せず)で検知された蓄電ユニット107の出力電力を取得するように構成されている。
 電力系統104は、連系点109において、発電システム101及び蓄電ユニット107と配線203を介して接続されている。また、電力検知器106は、連系点109よりも電力系統104側の電路(配線203)に設けられている。電力検知器106は、外部電力負荷105及び発電システム101の内部電力負荷102の少なくともいずれか一方に供給される電流値を検知する。制御装置110は、電力検知器106で検知された電流値を取得するように構成されている。なお、外部電力負荷105としては、例えば、家庭で使用する電気機器が挙げられる。
 制御装置110は、CPUまたはマイクロプロセッサから構成される演算部、半導体メモリから構成される記憶部、通信部、及び時計部(いずれも図示せず)を備えている。そして、記憶部に格納された所定のソフトウェアによって、予測器110aが実現されている。予測器110aは、発電システムを起動するとき(本実施の形態では、起動を控えているとき)に、発電システム101の起動電力及び外部電力負荷105の消費電力との合計が電力系統104から受電可能な上限電力を超えるか否かを予測する。
 制御装置110としては、電力供給システム100を構成する各機器を制御するように構成されていれば、どのような形態であってもよく、図1に示すように、発電システム101及び蓄電ユニット107の外部に設ける形態であってもよく、発電システム101又は蓄電ユニット107のいずれかに内蔵される形態であってもよく、また、発電システム101及び蓄電ユニット107に分離内蔵される形態であってもよい。
 [電力供給システムの動作]
 図2Aは、本実施の形態1に係る電力供給システムにおいて発電システムを起動するときの動作(第1の制御)を模式的に示すフローチャートの一例である。
 まず、発電システム101が起動しておらず、外部電力負荷105への電力の供給は、電力系統104から行われているとする。そして、発電システム101の起動を控えているとき、制御装置110は、電力検知器106から外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS101)。
 ここで、発電システム101の起動を控えているときとは、発電システム101の起動要求が発生したとき及び起動予定を控えているときの少なくともいずれか一方を意味する。また、起動要求が発生した場合とは、例えば、予め設定された発電システム101の起動開始時刻になった場合や使用者がリモコンを操作して発電システム101の起動開始を指示したような場合等が挙げられる。さらに、起動予定を控えている場合とは、例えば、予め設定された発電システム101の起動開始時刻が近づいている場合等が挙げられる。
 また、本実施の形態1では、運転開始時刻の所定時間前(例えば、1分前)になると、電力検知器106が外部電力負荷105の消費電力を検知して、制御装置110(予測器110a)が、発電システム101の起動電力及び外部電力負荷105の消費電力との合計が電力系統104から受電可能な上限電力を超えるか否かを予測する。上記所定時間は、起動を開始した時の外部電力負荷105の消費電力が予測可能な時間として設定される。なお、制御装置110(予測器110a)による、発電システム101の起動電力及び外部電力負荷105の消費電力との合計が電力系統104から受電可能な上限電力を超えるか否かの予測は、例えば、過去の使用履歴から予測を行ってもよく、上限電力を超えるか否かの予測を行うことができれば、どのような態様であってもよい。
 次に、制御装置110は、ステップS101で取得した外部電力負荷105の消費電力と発電システム101の起動電力との合計が、電力系統104からの使用可能な上限電力P1を超えるか否かを判定する(ステップS102)。消費電力と起動電力の合計が、上限電力P1を超える場合(ステップS102でYes)には、ステップS103に進み、上限電力P1以下である場合(ステップS102でNo)には、ステップS104に進む。
 ここで、起動電力とは、発電システム101の起動に必要な電力を意味する。具体的には、発電システム101の起動動作における内部電力負荷102の消費電力であり、その値は、適宜設定される。起動電力は、例えば、発電システム101の起動中における内部電力負荷102の最大消費電力であってもよく、起動初期に動作する内部電力負荷102の消費電力であってもよい。また、上限電力P1としては、例えば、電力会社との契約上使用できる最大電力である契約電力であってもよく、また、ブレーカー契約により設定されたブレーカーが落ちる電力であってもよい。
 ステップS103では、制御装置110は、電力制御器108に蓄電ユニット107から電力を出力させるように制御する。これにより、蓄電ユニット107は、電力制御器108により外部電力負荷105及び起動開始後の発電システム101(具体的には、内部電力負荷102)に電力を供給する。このとき、電力制御器108は、外部電力負荷105の消費電力と発電システム101の起動電力とを加算した電力から外部電力負荷105及び発電システム101の少なくともいずれか一方に供給する電力を減算した電力(すなわち、消費電力+起動電力-供給電力)が、上限電力P1以下となるように、蓄電ユニット107の出力電力を制御する。なお、この蓄電ユニット107の制御において、電力制御器108は、蓄電ユニット107が、少なくとも外部電力負荷105に電力を供給するよう制御してもよい。
 次に、制御装置110は、ステップS104に進み、制御器103に発電システム101の起動許可信号(起動指令信号)を出力する。これにより、制御器103は、発電システム101の起動を開始させる。
 このように、本実施の形態1に係る電力供給システム100及び電力供給システム100の制御装置110は、外部電力負荷105の消費電力が大きく、発電システム101を起動すると、電力系統104からの上限電力P1を超えると予測されるような場合であっても、発電システム101の起動を開始することが可能となる。これにより、本実施の形態1に係る電力供給システム100及び電力供給システム100の制御装置110では、従来の発電システムに比して起動性が向上する。
 なお、本実施の形態1に係る電力供給システム100は、上述したように、外部電力負荷105の消費電力が上限電力P1を超えた場合に、電力系統104からの電力供給が遮断される形態であってもよい。この形態では、例えば、ブレーカーが落ちて電力供給が遮断される。また、外部電力負荷105の消費電力が増加しても、電力系統104からの電力供給が上限電力P1を超えない範囲で継続される形態であってもよい。この形態では、例えば、外部電力負荷105の消費電力が上限電力P1を超えても、電力系統104からの電力供給が上限電力P1を超えない範囲で継続される。
 次に、本実施の形態1に係る電力供給システム100の発電を停止するときの動作(第2の制御)の一例について、説明する。
 図2Bは、本実施の形態1に係る電力供給システムにおける発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 まず、発電システム101は発電運転を行っており、発電の停止は行っていないとする。そして、発電システムが、発電の停止を控えているとき、制御装置110は、電力検知器106から外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS101B)。
 ここで、発電システム101の発電の停止を控えているときとは、発電システムの停止要求が発生したとき及び発電の停止予定を控えているときの少なくともいずれか一方を意味する。ここで、発電システムの停止要求が発生したときとは、例えば、予め設定された発電システムの発電停止開始時刻になった場合や使用者がリモコンを操作して発電システム101の発電停止を指示したような場合等が挙げられる。また、発電の停止予定を控えている場合とは、例えば、予め設定された発電システムの発電停止開始時刻が近づいている場合等が挙げられる。
 次に、制御装置110は、ステップS101Bで取得した外部電力負荷105の消費電力と発電システム101の停止電力との合計が、電力系統104からの使用可能な上限電力P1Bを超えるか否かを判定する(すなわち、予測する)(ステップS102B)。消費電力と起動電力の合計が、上限電力P1Bを超える場合(ステップS102BでYes)には、ステップS103Bに進み、上限電力P1B以下である場合(ステップS102BでNo)には、ステップS104Bに進む。
 ここで、停止電力とは、発電システム101の発電停止後の処理動作に必要な電力を意味する。具体的には、発電システム101の発電停止後の処理動作において作動する内部電力負荷102の消費電力であり、その値は、適宜設定される。停止電力は、例えば、発電システム101の発電停止後の処理動作における内部電力負荷102の最大消費電力であってもよい。なお、発電システム101の発電停止後の処理動作は、公知の発電システム101の発電停止後の処理動作を任意に採用することができる。
 ステップS103Bでは、制御装置110は、電力制御器108に蓄電ユニット107から電力を出力させるように制御する。これにより、蓄電ユニット107は、電力制御器108により外部電力負荷105及び発電システム101(具体的には、内部電力負荷102)に電力を供給する。
 このとき、電力制御器108は、外部電力負荷105の消費電力と発電システム101の停止電力とを加算した電力から外部電力負荷105及び発電システム101に供給する電力を減算した電力(すなわち、消費電力+停止電力-供給電力)が、上限電力P1B以下となるように、蓄電ユニット107の出力電力を制御する。なお、この蓄電ユニット107の制御において、電力制御器108は、蓄電ユニット107が、少なくとも外部電力負荷105に電力を供給するよう制御してもよい。
 次に、制御装置110は、ステップS104Bに進み、制御器103に発電システム101の発電停止を許可する信号(発電停止指令信号)を出力する。これにより、制御器103は、発電システム101の発電停止を開始させる。具体的には、発電システム101から外部電力負荷105への電力の供給が停止されて、発電システム101が発電を停止する。その後、発電システム101を構成する各機器の作動停止(発電システム101の発電停止後の処理動作)が行われる。
 このように、本実施の形態1に係る電力供給システム100及び電力供給システム100の制御装置110は、外部電力負荷105の消費電力が大きく、発電システム101の運転を停止すると、電力系統104からの上限電力P1Bを超えると予測されるような場合であっても、発電システム101の発電停止を開始することが可能となる。
 なお、本実施の形態1に係る電力供給システム100は、上述したように、外部電力負荷105の消費電力が上限電力P1Bを超えた場合に、電力系統104からの電力供給が遮断される形態であってもよい。この形態では、例えば、ブレーカーが落ちて電力供給が遮断される。また、外部電力負荷105の消費電力が増加しても、電力系統104からの電力供給が上限電力P1Bを超えない範囲で継続される形態であってもよい。この形態では、例えば、外部電力負荷105の消費電力が上限電力P1Bを超えても、電力系統104からの電力供給が上限電力P1Bを超えない範囲で継続される。
 また、上記電力供給システム100では、制御装置110が、発電システム101を起動するとき及び発電システム101の発電を停止するときのそれぞれにおける蓄電ユニット107への制御動作について説明したが、本実施の形態1の電力供給システム100では、制御装置119がこれらの制御動作(第1の制御及び第2の制御)の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、第1の制御及び第2の制御のいずれか一方のみを実行するよう構成されていてもよいし、第1の制御及び第2の制御を共に実行するよう構成されていてもよい。
 [変形例1]
 本変形例1の電力供給システムは、発電システムが燃料電池システムである態様を例示する。
 図3Aは、本実施の形態1に係る電力供給システムにおける変形例の発電システムの概略構成を模式的に示すブロック図の一例である。
 図3Aに示すように、本変形例1の発電システム101は、燃料電池システムであり、内部電力負荷として、燃料電池システムの起動時に該燃料電池システムの構成機器を昇温するための電気ヒータを備える。具体的には、本変形例1の発電システム(燃料電池システム)101は、水素生成装置11と、酸化剤ガス供給器12と、燃料電池13と、冷却媒体タンク14と、電気ヒータ15と、冷却媒体送出器16と、制御器103と、を備える。
 水素生成装置11は、改質器1と、CO低減器2と、電気ヒータ3と、を備えていて、水素リッチな燃料ガスを生成し、生成した燃料ガスを燃料電池13に供給するように構成されている。改質器1は、改質触媒を有しており、原料と水とを改質反応させて水素含有ガスを生成する。なお、原料は、当該原料と水蒸気とを用いて改質反応により水素含有ガスを生成できるものであればよい。原料として、例えば、エタン、プロパン等の炭化水素やメタノール等のアルコール系原料といった、少なくとも炭素及び水素を構成元素とする有機化合物を含むものを使用することができる。
 CO低減器2は、改質器1で生成された水素含有ガス中の一酸化炭素を低減するように構成されている。CO低減器2としては、例えば、シフト反応により一酸化炭素を低減する変成器や酸化反応又はメタン化反応により低減するCO除去器が挙げられる。また、電気ヒータ3は、燃料電池システムの起動時に、例えば、CO低減器2を昇温するように構成されている。なお、電気ヒータ3は、CO低減器2を昇温するだけでなく、改質器1を昇温するように構成されていてもよく、改質器1のみを昇温するように構成されていてもよい。
 そして、CO低減器2で一酸化炭素が低減された水素含有ガスは、燃料ガスとして、燃料ガス供給経路31を介して、燃料電池13のアノードに供給される。なお、本変形例では、改質器1で生成された水素含有ガス中の一酸化炭素をCO低減器2で低減して、燃料電池13に供給する形態を採用したが、これに限定されず、CO低減器2を有しない形態を採用してもよい。この場合、電気ヒータ3は、改質器1を昇温するように構成されるか、または、設けなくてもよい。
 また、燃料電池システム101は、酸化剤ガスが流れる酸化剤ガス供給経路32と酸化剤ガスを供給するための酸化剤ガス供給器12とを備えている。酸化剤ガス供給器12としては、例えば、ブロワやシロッコファン等のファン類を用いることができる。酸化剤ガス供給器12より供給された酸化剤ガス(例えば、空気)は燃料電池13のカソードに供給される。
 燃料電池13では、アノードに供給された燃料ガスと、カソードに供給された酸化剤ガスと、が電気化学的に反応して、電気と熱が発生する。燃料電池としては、いずれの種類であっても良く、高分子電解質形燃料電池、固体酸化物形燃料電池、及び燐酸形燃料電池等が例示される。なお、燃料電池が、固体酸化物形燃料電池の場合は、燃料電池システム101は、CO低減器2が設けられず、改質器1と燃料電池13とが1つの容器内に内蔵されるよう構成される。
 また、燃料電池システム101は、冷却媒体経路33、冷却媒体タンク14、電気ヒータ15、及び冷却媒体送出器16を備える。冷却媒体経路33は、燃料電池13が発生した熱を回収する冷却媒体が流れる経路である。冷却媒体タンク14は、上記冷却媒体経路33に設けられ、冷却媒体を貯えるタンクである。電気ヒータ15は、冷却媒体経路33内の冷却媒体を加熱し、冷却媒体経路33上であれば、いずれの箇所に設けても構わない。例えば、図3Aに示すように、電気ヒータ15は、燃料電池13外及び冷却媒体タンク14外の冷却媒体経路33上に設けてもよいし、冷却媒体タンク14内に設けてもよい。電気ヒータ15は、燃料電池システムの起動時に動作し、冷却媒体を加熱するとともに、加熱された冷却媒体が冷却媒体経路33を循環することにより、燃料電池13が昇温される。
 また、冷却媒体送出器16は、冷却媒体経路33内の冷却媒体を循環させるための機器であり、例えば、ポンプを使用することができる。なお、冷却媒体としては、水や不凍液(例えば、エチレングリーコール含有液)等を用いることができる。
 このように構成された本変形例1の電力供給システム100は、発電システム101を起動するときに、実施の形態1に係る電力供給システム100と同様に、蓄電ユニット107への制御動作(第1の制御)が実行される。従って、本変形例1の電力供給システム100は、実施の形態1の電力供給システム100と同様の作用効果を奏する。
 特に、本変形例1では、起動動作において、電気ヒータ15が、燃料電池システム101を構成する機器を昇温するよう構成されているので、起動電力が大きくなる。このため、本変形例1の燃料電池システム101は、従来の発電システムに比べ、電力供給システム100の制御装置110の制御により得られる起動性向上の効果が、特に顕著となる。
 なお、本例の燃料電池システム101では、起動時に該燃料電池システムの構成機器を昇温するための電気ヒータとして、電気ヒータ3及び電気ヒータ15を備えているが、これに限定されるものではない。例えば、燃料電池システム101は、電気ヒータ3及び電気ヒータ15のいずれか一方を備える形態であってもよいし、これ以外の電気ヒータを備える形態であってもよい。
 また、本変形例1の電力供給システム100における燃料電池システム101の発電停止後の処理動作は、公知の種々の処理動作を採用することができる。燃料電池システム101の発電停止後の処理動作としては、例えば、冷却媒体送出器16による冷却媒体経路33内での冷却媒体の循環動作、原料ガス供給器(図示せず)による水素生成装置11内のガス流路及び燃料電池13内のガス流路の少なくともいずれか一方に対する原料ガスパージ動作、及び電気ヒータ15の作動等の動作を挙げることができる。なお、上記冷却媒体の循環動作において電気ヒータ15を作動させても構わない。
 このように構成された本変形例1の電力供給システム100は、発電システム101を停止するときに、実施の形態1に係る電力供給システム100と同様に、蓄電ユニット107への制御動作(第2の制御)が実行される。従って、本変形例1の電力供給システム100は、実施の形態1の電力供給システム100と同様の作用効果を奏する。
 特に、本変形例1では、燃料電池システム101の発電停止後の処理動作において、電気ヒータ15が、燃料電池システム101を構成する機器を昇温するよう構成されているとき、停止電力が大きくなる。このため、本変形例1の燃料電池システム101は、従来の発電システムに比べ、電力供給システム100の制御装置110の制御により得られる停止性向上の効果が、特に顕著となる。
 なお、本変形例1の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例2]
 本変形例2の電力供給システムは、発電システムが燃料電池システムである他の態様を例示する。
 図3Bは、本実施の形態1に係る電力供給システムにおける変形例2の発電システムの概略構成を模式的に示すブロック図の一例である。
 図3Bに示すように、本変形例2の発電システム101は、変形例1の燃料電池システムと基本的構成は同じであるが、回収水タンク17と、送出器18と、をさらに備える点が異なる。なお、電気ヒータ15は、回収水タンク17に設けても構わない。
 回収水タンク17は、燃料電池システム101において排出される排ガスから回収した水を貯えるタンクである。上記排ガスは、いずれの排ガスであってもよいが、例えば、燃料電池13から排出された燃料ガス及び酸化剤ガスの少なくとも一方のガス、改質器1を加熱する燃焼器から排出された燃焼排ガス等が例示される。
 また、燃料電池システム101には、冷却媒体タンク14と回収水タンク17を接続する循環経路34が設けられている。従って、本例では、冷却媒体として水が用いられ、循環経路34は、冷却媒体タンク14内の冷却水と回収水タンク17内の回収水とが循環するように構成されている。また、循環経路34の途中には、循環経路34内の水を送出するための送出器18が設けられている。送出器18としては、例えば、ポンプを使用することができる。
 なお、燃料電池13が、固体酸化物燃料電池であるとき、冷却媒体経路33は、燃料電池13を冷却する冷却媒体が流れる流路でなく、燃料電池13から排出された燃料ガスを燃焼した燃焼排ガスを冷却する冷却媒体が流れる流路として構成される。
 また、本変形例2の電力供給システム100における燃料電池システム101の発電停止後の処理動作は、公知の種々の処理動作を採用することができる。燃料電池システム101の発電停止後の処理動作としては、例えば、冷却媒体送出器16による冷却媒体経路33内での冷却媒体の循環動作、送出器18による冷却媒体タンク14と回収水タンク17との間での水の循環動作、原料ガス供給器(図示せず)による水素生成装置11内のガス流路及び燃料電池13内のガス流路の少なくともいずれか一方に対する原料ガスパージ動作、及び電気ヒータ15の作動等の動作を挙げることができる。なお、上記冷却媒体の循環動作及び冷却媒体タンク14と回収水タンク14との間の水の循環動作の少なくともいずれか一方において電気ヒータ15を作動させても構わない。
 このように構成された本変形例2の電力供給システム100は、発電システム101を起動するとき及び停止するときのそれぞれにおいて、実施の形態1の電力供給システムと同様に、蓄電ユニット107への制御動作(第1の制御及び第2の制御)が実行される。従って、本変形例2の電力供給システム100は、実施の形態1の電力供給システム100と同様の動作を行うが、変形例1の電力供給システム100と同様の作用効果を奏する。
 なお、本変形例2の電力供給システム100は、制御装置110が、燃料電池システム101を起動するときにおける蓄電ユニット107への制御動作及び燃料電池システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、燃料電池システム101を起動するときにおける蓄電ユニット107への制御動作及び燃料電池システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、燃料電池システム101を起動するときにおける蓄電ユニット107への制御動作及び燃料電池システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態2)
 本実施の形態2に係る電力供給システムは、制御装置が、蓄電ユニットの蓄電量に基づいて発電システムの起動の許否を決定するように構成されている。
 また、本実施の形態2に係る電力供給システムでは、制御装置が、蓄電ユニットの蓄電量に基づいて発電システムの発電の停止の許否を決定するように構成されていてもよい。
 図4は、本実施の形態2に係る電力供給システムの概略構成を模式的に示すブロック図の一例である。
 図4に示すように、本実施の形態2に係る電力供給システム100は、蓄電ユニット107の蓄電量を検知する蓄電量検知器111を備えている。その他の構成については、実施の形態1に係る電力供給システム100と同じであるので、詳細な説明を省略する。
 次に、本実施の形態2に係る電力供給システム100の発電システム101の起動動作について、図5Aを参照しながら説明する。
 図5Aは、本実施の形態2に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 まず、図5Aに示すように、実施の形態1に係る電力供給システム100と同様に、発電システム101が起動を控えているとき、制御装置110は、電力検知器106から外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS201)。
 次に、制御装置110は、ステップS201で取得した外部電力負荷105の消費電力と発電システム101の起動電力との合計が、電力系統104からの使用可能な上限電力P1を超えるか否かを判定する(ステップS202)。消費電力と起動電力の合計が、上限電力P1を超える場合(ステップS202でYes)には、ステップS203に進み、上限電力P1以下である場合(ステップS202でNo)には、ステップS205に進む。
 ステップS203では、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q1以上か否かを判定する。蓄電ユニット107の蓄電量が、所定の電力量Q1以上の場合(ステップS203でYes)には、ステップS204に進み、所定の電力量Q1より小さい場合(ステップS203でNo)には、ステップS206に進む。なお、所定の電力量Q1は、任意に設定することができ、例えば、発電システム101の起動に必要な電力量であってもよい。起動に必要な電力量は、例えば、起動動作が開始してから完了するまでの間に内部電力負荷により消費される累積消費電力量でもよい。
 ステップS204では、制御装置110は、電力制御器108に蓄電ユニット107から電力を出力させるように制御する。これにより、蓄電ユニット107は、電力制御器108により外部電力負荷105及び起動開始後の発電システム101に電力を供給する。
 このとき、電力制御器108は、外部電力負荷105の消費電力と発電システム101の起動電力とを加算した電力から外部電力負荷105及び発電システム101に供給する電力を減算した電力(すなわち、消費電力+起動電力-供給電力)が、上限電力P1以下となるように、蓄電ユニット107を制御する。なお、この蓄電ユニット107の制御において、電力制御器108は、蓄電ユニット107が、少なくとも外部電力負荷105に電力を供給するよう制御してもよい。
 次に、制御装置110は、ステップS205に進み、制御器103に発電システム101の起動許可信号を出力する。これにより、制御器103は、発電システム101の起動を開始させる。
 一方、ステップS206では、制御装置110は、発電システム101の起動を拒否して、制御器103への起動拒否信号を出力する、または起動許可信号を出力しないことで発電システム101を起動させないよう制御する。この場合、制御装置110は、使用者に、発電システム101の起動を行えないことを伝達するように構成されていることが好ましい。伝達方法としては、例えば、リモコンにエラー表示する方法やエラーを表す警告音を発する方法等が挙げられる。
 なお、蓄電ユニット107の蓄電量は、蓄電量検知器111が、蓄電ユニット107の電力検知器(図示せず)より蓄電ユニット107の出力電力(放電電力)及び蓄電ユニットへの入力電力(充電電力)を取得し、この取得した値に基づき決定する。
 なお、本実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)は、ステップS206で発電システム101の起動が拒否されると、ステップS201に戻り、ステップS205で発電システムが起動するまで、上記フローを繰り返し実行する形態(すなわち、発電システム101の起動を待機させる形態)を採用してもよい。
 このように構成された本実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)においても、実施の形態1に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本実施の形態2に係る電力供給システム100では、蓄電ユニット107の蓄電量が相対的に少ないときには、発電システム101が起動されないので、起動動作が中断されることが抑制される。つまり、本実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)では、実施の形態1に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、起動性がより向上する。
 次に、本実施の形態2に係る電力供給システム100の発電システムの発電を停止するときの動作について、図5Bを参照しながら説明する。
 図5Bは、本実施の形態2に係る電力供給システムにおける発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図5Bに示すように、本実施の形態2に係る電力供給システムにおいても、実施の形態1と同様に、発電システム101の発電を停止するときの動作が行われ、また、発電を停止するときの動作の各ステップは、上述した発電システム101の起動するときの動作と同様の動作が行われる場合がある。このため、以下においては、実施の形態1で説明した動作及び上述した発電システム101の起動するときの動作と異なる動作が行われるステップについて説明する。具体的には、ステップS203B及びステップS206Bである。
 ステップS203Bでは、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q1B以上か否かを判定する。なお、所定の電力量Q1Bは、任意に設定することができ、例えば、発電システム101の発電を停止するときの動作に必要な電力量であってもよい。
 ステップS206Bでは、制御装置110は、発電システム101の発電停止を拒否して、制御器103への発電停止を拒否する信号を出力する、または発電停止を許可する信号を出力しないことで発電システム101を発電停止させないよう制御する。この場合、制御装置110は、使用者に、発電システム101の発電停止を行えないことを伝達するように構成されていることが好ましい。
 なお、ステップS206Bで発電システム101の発電停止が拒否されると、ステップS201Bに戻り、ステップS205Bで発電システム101の発電を停止させるまで、上記フローを繰り返し実行する形態(すなわち、発電システム101の発電の停止を待機させる形態)を採用してもよい。
 このように、本実施の形態2に係る電力供給システム100では、蓄電ユニット107の蓄電量が相対的に少ないときには、発電システム101の発電が停止されないので、発電停止後の処理動作が中断されることが抑制される。つまり、本実施の形態2に係る電力供給システム100では、実施の形態1に係る電力供給システム100に比べて、停止性がより向上する。
 なお、本実施の形態2に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例]
 図6Aは、本実施の形態2に係る電力供給システムの変形例の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図6Aに示すように、本変形例の電力供給システム100における発電システム101の起動動作は、蓄電ユニット107の蓄電量が所定の電力量Q1より小さいであるときの動作が、実施の形態2に係る電力供給システム100の発電システム101と異なる。
 具体的には、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q1より小さい場合(ステップS203でNo)には、発電システム101の起動を拒否し(ステップS206)、電力制御器108に電力系統104からの電力により充電を行うように制御する(ステップS207)。これにより、電力制御器108は、電力系統104から上限電力P1を超えない範囲内で電力を、蓄電ユニット107を構成する蓄電池の単電池や組電池に供給して、蓄電ユニット107を充電させる。なお、蓄電ユニット107への充電は、例えば、キャパシタを蓄電ユニット107内に配置しておき、キャパシタで電力系統104からの電力を貯えて、その貯えた電力を蓄電池の単電池や組電池に供給して充電を行わせてもよい。
 このように構成された本変形例の電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本変形例の電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107の蓄電量が少なく起動が拒否された場合であっても、次に起動するときに、同様の理由で起動が拒否されることが抑制されるので、発電システム101の起動性がより向上する。
 なお、本変形例の電力供給システム100(電力供給システム100の制御装置110)では、ステップS206で発電システム101の起動が拒否されると、ステップS201に戻り、ステップS205で発電システムが起動するまで、上記フローを繰り返し実行する形態(すなわち、発電システム101の起動を待機させる形態)を採用してもよい。また、本変形例の電力供給システム100(電力供給システム100の制御装置110)では、ステップS206で発電システム101の起動が拒否されると、ステップS205で発電システムが起動するまで、ステップS203に戻り、上記フローを繰り返し実行する形態(すなわち、発電システム101の起動を待機させる形態)を採用してもよい。
 次に、本変形例の電力供給システム100の発電を停止するときの動作について、図6Bを参照しながら説明する。
 図6Bは、本変形例の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図6Bに示すように、本変形例の電力供給システム100における発電システム101の発電を停止するときの動作は、蓄電ユニット107の蓄電量が所定の電力量Q1Bより小さいであるときの動作が、実施の形態2に係る電力供給システム100の発電システム101と異なる。
 具体的には、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q1より小さい場合(ステップS203BでNo)には、発電システム101の発電停止を拒否し(ステップS206B)、電力制御器108に電力系統104からの電力により充電を行うように制御する(ステップS207B)。これにより、電力制御器108は、電力系統104から上限電力P1を超えない範囲内で電力を、蓄電ユニット107を構成する蓄電池の単電池や組電池に供給して、蓄電ユニット107を充電させる。なお、蓄電ユニット107への充電は、例えば、キャパシタを蓄電ユニット107内に配置しておき、キャパシタで電力系統104からの電力を貯えて、その貯えた電力を蓄電池の単電池や組電池に供給して充電を行わせてもよい。
 そして、再び、ステップS203Bに戻り、蓄電ユニット107の蓄電量が所定の電力量Q1B以上になるまで、上記ステップを繰り返す。
 このように、本変形例の電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107の蓄電量が少なく、発電の停止が拒否された場合であっても、蓄電ユニット107に充電させることにより、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)に比して、停止性がより向上する。
 なお、本変形例の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態3)
 本実施の形態3に係る電力供給システムは、制御装置が、蓄電ユニットの蓄電量に基づいて発電システムの起動モードを発電システムの起動電力が相対的に大きい第1の起動モードと、起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている。
 また、本実施の形態3に係る電力供給システムでは、制御装置が、蓄電ユニットの蓄電量に基づいて発電システムの停止モードを発電システムの停止電力が相対的に大きい第1の停止モードと、停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されていてもよい。
 本実施の形態3に係る電力供給システム100は、実施の形態2に係る電力供給システム100と基本的構成は同じであるが、発電システム101の起動動作が異なる。以下、図7Aを参照しながら説明する。
 図7Aは、本実施の形態3に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 まず、図7Aに示すように、実施の形態1に係る電力供給システム100と同様に、発電システム101が起動を控えているとき、制御装置110は、電力検知器106から外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS301)。
 次に、制御装置110は、ステップS301で取得した外部電力負荷105の消費電力と発電システム101の起動電力との合計が、電力系統104からの使用可能な上限電力P1を超えるか否かを判定する(ステップS302)。消費電力と起動電力の合計が、上限電力P1を超える場合(ステップS302でYes)には、ステップS303に進み、上限電力P1以下である場合(ステップS302でNo)には、ステップS304に進む。なお、ステップS302における起動電力は、発電システム101を第1の起動モードで起動したときの起動電力が用いられる。
 ステップS303では、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q2以上であるか否かを判定する。蓄電ユニット107の蓄電量が、所定の電力量Q2以上である場合(ステップS303でYes)には、ステップS304に進み、所定の電力量Q2より小さい場合(ステップS303でNo)には、ステップS306に進む。なお、所定の電力量Q2は、任意に設定することができ、例えば、発電システム101を第1の起動モードで起動するのに必要な電力量であってもよい。第1の起動モードに必要な電力量は、例えば、第1の起動モードで起動動作が開始してから完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 ステップS304では、制御装置110は、第1の起動モードを選択し、ステップS305に進む。一方、ステップS306では、制御装置110は、第2の起動モードを選択し、ステップS305に進む。ここで、第1の起動モードとは、発電システム101の起動電力が相対的に大きい発電システム101の起動モード(起動方法)をいい、第2の起動モードとは、発電システム101の起動電力が相対的に小さい発電システム101の起動モード(起動方法)をいう。例えば、第1の起動モードは、第2の起動モードに比して、内部電力負荷102に供給する電力を大きくして、より速やかに発電システム101の起動動作を完了するための起動モードである。具体的には、内部電力負荷が、ポンプやファン等の電動補機である場合、第1の起動モードの方が第2の起動モードに比べ電動補機の操作量を大きくして起動動作が実行される。
 そして、ステップS305では、制御装置110は、制御器103に発電システム101の起動許可信号を出力する。これにより、制御器103は、発電システム101の起動を開始させる。
 このように構成された本実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107の蓄電量が多くなくても、相対的に起動電力の小さい第2の起動モードで起動させるよう構成されているため、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)に比して、起動性がより向上する。
 次に、本実施の形態3に係る電力供給システム100の発電を停止するときの動作について、図7Bを参照しながら説明する。
 図7Bは、本実施の形態3に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図7Bに示すように、本実施の形態3に係る電力供給システムにおいても、実施の形態2と同様に、発電システム101の発電を停止するときの動作が行われ、また、発電を停止するときの動作の各ステップは、上述した発電システム101の起動するときの動作と同様の動作が行われる場合がある。このため、以下においては、実施の形態2で説明した動作及び上述した発電システム101の起動するときの動作と異なる動作が行われるステップについて説明する。具体的には、ステップS303B乃至ステップS306Bである。
 ステップS303Bでは、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q2B以上であるか否かを判定する。蓄電ユニット107の蓄電量が、所定の電力量Q2B以上である場合(ステップS303BでYes)には、ステップS304Bに進み、所定の電力量Q2Bより小さい場合(ステップS303BでNo)には、ステップS306Bに進む。なお、所定の電力量Q2Bは、任意に設定することができ、例えば、発電システム101を第1の停止モードで停止するのに必要な電力量であってもよい。第1の停止モードに必要な電力量は、例えば、第1の停止モードで発電システム101の発電停止後の処理動作を開始してから処理動作を完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 ステップS304Bでは、制御装置110は、第1の停止モードを選択し、ステップS305Bに進む。一方、ステップS306Bでは、制御装置110は、第2の停止モードを選択し、ステップS305Bに進む。ここで、第1の停止モードとは、発電システム101の停止電力が相対的に大きい発電システム101の停止モード(停止方法)をいい、第2の停止モードとは、発電システム101の停止電力が相対的に小さい発電システム101の停止モードをいう。
 例えば、第1の停止モードは、第2の停止モードに比して、内部電力負荷102に供給する電力を大きくして、より速やかに発電システム101の発電停止後の処理動作を完了するための停止モードである。具体的には、例えば、内部電力負荷が、ポンプやファン等の電動補機である場合、第1の停止モードの方が第2の停止モードに比べ電動補機の操作量を大きくして、発電停止後の処理動作が実行される。
 また、発電システム101が燃料電池システムである場合に、第2の停止モードは、燃料電池システムの発電停止後の処理動作として、以下の動作が含まれている場合、当該動作を一時中断及び/又は当該動作を行う機器への電力の供給量を抑制するモードが例示される。その動作としては、冷却媒体送出器16による冷却媒体経路33内での冷却媒体の循環動作、送出器18による冷却媒体タンク14と回収水タンク17との間での水の循環動作、原料ガス供給器による水素生成装置11内のガス流路及び燃料電池13内のガス流路の少なくともいずれか一方に対する原料ガスパージ動作、及び電気ヒータ15の作動等の動作が例示される(実施の形態1の変形例1及び変形例2参照)。
 そして、ステップS305Bでは、制御装置110は、制御器103に発電システム101の発電停止を許可する信号を出力する。これにより、制御器103は、発電システム101の発電を停止させ、その後、所定の発電システム101の発電停止後の処理動作が実行される。
 このように、本実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107の蓄電量が多くなくても、相対的に停止電力の小さい第2の停止モードで発電システム101の発電を停止させ、発電停止後の処理動作をさせるよう構成されているため、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)に比して、停止性がより向上する。
 なお、本実施の形態3に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例1]
 本実施の形態3に係る電力供給システムの変形例1の電力供給システムは、制御装置が、第2の起動モード中において、電力系統より蓄電ユニットに充電するように制御する。
 また、本変形例1の電力供給システムは、制御装置が、第2の停止モード中において、電力系統より蓄電ユニットに充電するように制御してもよい。
 図8Aは、本変形例1の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図8Aに示すように、本変形例1の電力供給システム100における発電システム101の起動動作は、第2の起動モードを選択した場合の動作が、実施の形態3に係る電力供給システム100における発電システム101の起動動作と異なる。
 具体的には、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q2より小さい場合(ステップS303でNo)に、第2の起動モードを選択する(ステップS306)。次に、制御装置110は、蓄電ユニット107の電力制御器108が充電を行うように制御する(ステップS307)。これにより、電力制御器108は、電力系統104から上限電力P1を超えない範囲内で電力を、蓄電ユニット107を構成する蓄電池の単電池や組電池に供給して、蓄電ユニット107を充電させる。
 そして、制御装置110は、制御器103に発電システム101の起動許可信号を出力し、制御器103は、発電システム101の起動を開始させる(ステップS305)。
 次に、本変形例1の電力供給システム100の発電を停止するときの動作について、図8Bを参照しながら説明する。
 図8Bは、本変形例1の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図8Bに示すように、本変形例1の電力供給システム100における発電システム101の発電を停止するときの動作は、第2の停止モードを選択した場合の動作が、実施の形態3に係る電力供給システム100における発電システム101の発電を停止するときの動作と異なる。
 具体的には、制御装置110は、第2の停止モードを選択する(ステップS306B)と、蓄電ユニット107の電力制御器108が充電を行うように制御する(ステップS307B)。これにより、電力制御器108は、電力系統104から上限電力P1Bを超えない範囲内で電力を、蓄電ユニット107を構成する蓄電池の単電池や組電池に供給して、蓄電ユニット107を充電させる。
 このように構成された本変形例1の電力供給システム100であっても、実施の形態3に係る電力供給システム100と同様の作用効果を奏する。
 なお、本変形例1の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例2]
 本実施の形態3に係る電力供給システムの変形例2の電力供給システムは、制御装置が、充電により蓄電ユニットの蓄電量が増加すると、第1の起動モードに切替えるように構成されている。
 また、本変形例2の電力供給システムでは、制御装置が、充電により蓄電ユニットの蓄電量が増加すると、第1の停止モードに切替えるように構成されていてもよい。
 図9A及び図9Bは、本変形例2の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図9A及び図9Bに示すように、本変形例2の電力供給システム100における発電システム101の起動動作は、第2の起動モードを選択した場合の動作が、実施の形態3に係る電力供給システム100における発電システム101の起動動作と異なる。具体的には、制御装置110が、発電システム101の起動許可信号を出力し、発電システム101を起動させる(ステップS308)までは、変形例1の電力供給システム100における発電システム101の起動動作と同じである。
 本変形例2の電力供給システム100では、制御装置110は、ステップS308で発電システム101の起動開始指令を出力した後、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3以上であるか否かを判定する(ステップS309)。
 そして、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3以上であると(ステップS309でYes)、制御装置110は、発電システム101の起動モードを第1の起動モードに移行するように、制御器103に指令する(ステップS310)。
 これにより、制御器103は、発電システム101を第2の起動モードから第1の起動モードに移行する。第1の起動モードに移行すると、例えば、制御器103により内部電力負荷である電動補機の操作量が増加され得る。
 なお、所定の電力量Q3は、任意に設定することができ、例えば、発電システム101の起動モードを第1の起動モードに切替えて、起動動作を継続するのに必要な電力量であってもよい。第1の起動モードで起動動作を継続するのに必要な電力量は、例えば、第1の起動モードで起動動作を継続することで起動動作が完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 このように構成された本変形例2の電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本変形例2の電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107を充電して、蓄電ユニット107の蓄電量が所定の電力量以上になると、第1の起動モードに移行されるので、実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、発電システム101の起動時間を短縮することができる。
 次に、本変形例2の電力供給システム100の発電を停止するときの動作について、図9C及び図9Dを参照しながら説明する。
 図9C及び図9Dは、本変形例2の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図9C及び図9Dに示すように、本変形例2の電力供給システム100における発電システム101の発電を停止するときの動作は、第2の停止モードを選択した場合の動作が、実施の形態3に係る電力供給システム100における発電システム101の発電を停止するときの動作と異なる。
 具体的には、制御装置110が、発電システム101の発電停止を許可する信号を出力し、発電システム101の発電を停止させる(ステップS308B)までは、変形例1の電力供給システム100における発電システム101の発電を停止するときの動作と同じである。
 本変形例2の電力供給システム100では、制御装置110は、ステップS308Bで発電システム101の発電を停止する指令を出力した後、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量QB3以上であるか否かを判定する(ステップS309B)。
 そして、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3B以上であると(ステップS309BでYes)、制御装置110は、発電システム101の停止モードを第1の停止モードに移行するように、制御器103に指令する(ステップS310B)。
 これにより、制御器103は、発電システム101を第2の停止モードから第1の停止モードに移行する。第1の停止モードに移行すると、例えば、制御器103により内部電力負荷である電動補機の操作量が増加される。
 なお、所定の電力量Q3Bは、任意に設定することができ、例えば、発電システム101の停止モードを第1の停止モードに切替えて、発電停止後の処理動作を継続するのに必要な電力量であってもよい。第1の停止モードで発電停止後の処理動作を継続するのに必要な電力量は、例えば、第1の停止モードで発電停止後の処理動作を継続することで発電停止後の処理動作が完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 このように、本変形例2の電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107を充電して、蓄電ユニット107の蓄電量が所定の電力量以上になると、第1の停止モードに移行されるので、実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、発電システム101の発電停止後の処理動作が実行される時間を短縮することができる。
 なお、本変形例2の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例3]
 本実施の形態3に係る電力供給システムの変形例3の電力供給システムは、制御装置が、外部電力負荷の消費電力が減少すると、第1の起動モードに切替えるように構成されている。
 また、本変形例3の電力供給システムでは、制御装置が、外部電力負荷の消費電力が減少すると、第1の停止モードに切替えるように構成されていてもよい。
 図10A及び図10Bは、本変形例3の電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図10A及び図10Bに示すように、本変形例3の電力供給システム100における発電システム101の起動動作は、第2の起動モードを選択した場合の動作が、実施の形態3に係る電力供給システム100における発電システム101の起動動作と異なる。具体的には、制御装置110が、発電システム101の起動許可信号を出力し、発電システム101を起動させる(ステップS308)までは、実施の形態3に係る電力供給システム100における発電システム101の起動動作と同じである。
 本変形例3の電力供給システム100では、制御装置110は、ステップS308で発電システム101の起動開始指令を出力した後、電力検知器106から発電システム101及び外部電力負荷105で使用されている電力(消費電力)を取得する。ついで、制御装置110は、取得した上記消費電力のうち外部電力負荷105の消費電力が、起動モード変更電力P2以上であるか否かを判定する(ステップS309A)。
 ここで、起動モード変更電力P2は、第1の起動モードに起動動作を切替えても、上限電力P1を超えることのない外部電力負荷105の消費電力値として設定される。具体的には、上限電力P1から第1の起動モードでの起動電力を減算した値よりも小さい電力値が設定される。
 なお、第1の起動モードでの起動電力は、第1の起動モードに切替えた後に、内部電力負荷102で消費する電力の最大値であることが好ましい。また、外部電力負荷105の消費電力は、電力検知器106より取得された消費電力から発電システム101の内部電力負荷102の消費電力を減算して算出して求められるが、内部電力負荷102の消費電力の把握の方法は任意である。例えば、制御装置110が、発電システム101の制御器103より取得した内部電力負荷102への制御値に基づき、内部電力負荷102の消費電力を算出する形態であってもよい。また、制御装置110が、発電システム101に内蔵される図示されない電力検知器より、内部電力負荷102への入力電力を取得する形態であってもよい。
 そして、制御装置110は、外部電力負荷105の消費電力が、起動モード変更電力P2以下になると(ステップS309AでYes)、第1の起動モードに移行するように、制御器103を制御する(ステップS310)。
 このように構成された本変形例3の電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本変形例3の電力供給システム100(電力供給システム100の制御装置110)では、外部電力負荷105の消費電力が減少すると、第1の起動モードに切替えることにより、実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)に比べ、発電システム101の起動時間を短縮することができる。
 次に、本変形例3の電力供給システム100の発電を停止するときの動作について、図10C及び図10Dを参照しながら説明する。
 図10C及び図10Dは、本変形例3の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図10C及び図10Dに示すように、本変形例3の電力供給システム100における発電システム101の発電を停止するときの動作は、第2の停止モードを選択した場合の動作が、実施の形態3に係る電力供給システム100における発電システム101の発電を停止するときの動作と異なる。
 具体的には、制御装置110が、発電システム101の発電停止を許可する信号を出力し、発電システム101の発電を停止させる(ステップS308B)までは、実施の形態3に係る電力供給システム100における発電システム101の発電を停止するときの動作と同じである。
 本変形例3の電力供給システム100では、制御装置110は、ステップS308Bで発電システム101の発電停止を許可する指令を出力した後、電力検知器106から発電システム101及び外部電力負荷105で使用されている電力(消費電力)を取得する。ついで、制御装置110は、取得した上記消費電力のうち外部電力負荷105の消費電力が、停止モード変更電力P2B以上であるか否かを判定する(ステップS309C)。
 ここで、停止モード変更電力P2Bは、第1の停止モードに発電停止後の処理動作を切替えても、上限電力P1Bを超えることのない外部電力負荷105の消費電力値として設定される。具体的には、上限電力P1Bから第1の停止モードでの停止電力を減算した値よりも小さい電力値が設定される。なお、第1の停止モードでの停止電力は、第1の停止モードに切替えた後に、内部電力負荷102で消費する電力の最大値であることが好ましい。
 そして、制御装置110は、外部電力負荷105の消費電力が、停止モード変更電力P2B以下になると(ステップS309CでYes)、第1の停止モードに移行するように、制御器103を制御する(ステップS310B)。
 このように、本変形例3の電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107を充電して、蓄電ユニット107の蓄電量が所定の電力量以上になると、第1の停止モードに移行されるので、実施の形態3に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、発電システム101の発電停止後の処理動作を実行する時間を短縮することができる。
 なお、本変形例3の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
(実施の形態4)
 本実施の形態4に係る電力供給システムは、制御装置が、蓄電ユニットからの供給可能電力に基づいて発電システムの起動の許否を決定するように構成されている。ここで、「蓄電ユニットからの供給可能電力に基づいて」とは、外部電力負荷の消費電力と発電システムの起動電力とを加算した電力から蓄電ユニットが供給可能な電力を減算した電力が、上限電力以下であるか否かを基準にすることをいう。
 また、本実施の形態4に係る電力供給システムは、制御装置が、蓄電ユニットからの供給可能電力に基づいて発電システムの発電の停止の許否を決定するように構成されていてもよい。
 本実施の形態4に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図11Aは、本実施の形態4に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図11Aに示すように、本実施の形態4に係る電力供給システム100における発電システム101の起動動作は、実施の形態2に係る電力供給システム100における発電システム101の起動動作のステップS203に代えて、ステップS203Aが行われる。
 具体的には、制御装置110は、消費電力と起動電力の合計が、上限電力P1を超える場合(ステップS202でYes)に、外部電力負荷105の消費電力と発電システム101の起動電力とを加算した電力から蓄電ユニット107が供給可能な電力を減算した電力(すなわち、消費電力+起動電力-供給可能電力)が、上限電力P1以下であるか否かを判断する(ステップS203A)。また、蓄電ユニット107からの供給可能電力は、制御装置200内の記憶部によって予め保持されている。
 消費電力と起動電力を加算した電力から供給可能電力を減算した電力が、上限電力P1以下である場合(ステップS203AでYes)には、制御装置110は、蓄電ユニット107の電力制御器108に、蓄電ユニット107より電力を出力させるように制御する(ステップS204)。一方、消費電力と起動電力を加算した電力から供給可能電力を減算した電力が、上限電力P1よりも大きい場合(ステップS203AでNo)には、発電システム101の起動を拒否する(ステップS206)。
 なお、本実施の形態4に係る電力供給システム100(電力供給システム100の制御装置110)では、ステップS206で発電システム101の起動が拒否されると、図10に示すフローを停止する形態としたが、これに限定されず、ステップS205で発電システムが起動するまで、ステップS201に戻り、上記フローを繰り返し実行する形態(すなわち、発電システム101の起動を待機させる形態)を採用してもよい。
 このように構成された本実施の形態4に係る電力供給システム100(電力供給システム100の制御装置110)は、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、蓄電ユニット107からの出力電力では、上限電力P1以下にすることができないときには、発電システム101が起動されないので、発電システム101の起動動作が中断されることが抑制される。つまり、本実施の形態4に係る電力供給システム100(電力供給システム100の制御装置110)は、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)に比べ、起動性がより向上する。
 次に、本実施の形態4に係る電力供給システム100の発電を停止するときの動作について、図11Bを参照しながら説明する。
 図11Bは、本実施の形態4に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図11Bに示すように、本実施の形態4に係る電力供給システム100における発電システム101の発電を停止するときの動作は、実施の形態2に係る電力供給システム100における発電システム101の発電を停止するときの動作と基本的動作は同じであるが、実施の形態2に係る電力供給システム100における発電システム101の発電を停止するときの動作のステップS203Bに代えて、ステップS203Cが行われる点が異なる。
 具体的には、ステップS203Cでは、制御装置110は、外部電力負荷105の消費電力と発電システム101の停止電力とを加算した電力から蓄電ユニット107が供給可能な電力を減算した電力(すなわち、消費電力+停止電力-供給可能電力)が、上限電力P1B以下であるか否かを判断する。これにより、蓄電ユニット107からの出力電力によって、上限電力P1B以下にすることができるときに、発電システム101の発電が停止され、その後の処理動作が実行される。
 このように、本実施の形態4に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107からの出力電力によって、上限電力P1B以下にすることができるときに、発電システム101の発電が停止され、その後の処理動作が実行されるため、実施の形態2に係る電力供給システム100(電力供給システム100の制御装置110)に比べ、停止性がより向上する。
 なお、本実施の形態4に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態5)
 本実施の形態5に係る電力供給システムは、制御装置が、蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動モードを起動電力が相対的に大きい第1の起動モードと、起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている。
 また、本実施の形態5に係る電力供給システムでは、制御装置が、蓄電ユニットからの供給可能電力に基づいて前記発電システムの停止モードを停止電力が相対的に大きい第1の停止モードと、停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されていてもよい。
 本実施の形態5に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図12Aは、本実施の形態5に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図12Aに示すように、実施の形態3に係る電力供給システム100と同様に、発電システム101が起動を控えているとき、制御装置110は、電力検知器106から外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS301)。
 次に、制御装置110は、ステップS301で取得した外部電力負荷105の消費電力と発電システム101の起動電力との合計が、電力系統104からの使用可能な上限電力P1を超えるか否かを判定する(ステップS302)。そして、制御装置110は、消費電力と起動電力の合計が、上限電力P1を超える場合(ステップS302でYes)に、外部電力負荷105の消費電力と発電システム101の起動電力とを加算した電力から蓄電ユニット107が供給可能な電力を減算した電力(すなわち、消費電力+起動電力-供給可能電力)が、上限電力P1以下であるか否かを判断する(ステップS303A)。なお、ステップS303Aで用いられる起動電力は、ステップS302と同様に、発電システム101を第1の起動モードで起動したときの起動電力が用いられる。
 外部電力負荷105の消費電力と発電システム101の起動電力とを加算した電力から蓄電ユニット107が供給可能な電力を減算した電力が、上限電力P1以下である場合(ステップS303AでYes)には、制御装置110は、第1の起動モードを選択する(ステップS304)。一方、制御装置110は、外部電力負荷105の消費電力と発電システム101の起動電力とを加算した電力から蓄電ユニット107が供給可能な電力を減算した電力が、上限電力P1よりも大きい場合(ステップS303AでNo)には、第2の起動モードを選択する(ステップS305)。
 このように構成された本実施の形態5に係る電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態4に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本実施の形態5に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107からの出力電力を利用しても上限電力P1以下にならなくても、相対的に起動電力の小さい第2の起動モードで起動させるよう構成されているため、実施の形態4に係る電力供給システム100(電力供給システム100の制御装置110)に比べ、起動性がより向上する。
 次に、本実施の形態5に係る電力供給システム100の発電を停止するときの動作について、図12Bを参照しながら説明する。
 図12Bは、本実施の形態5に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図12Bに示すように、本実施の形態5に係る電力供給システム100における発電システム101の発電を停止するときの動作は、実施の形態3に係る電力供給システム100における発電システム101の発電を停止するときの動作と基本的動作は同じであるが、実施の形態3に係る電力供給システム100における発電システム101の発電を停止するときの動作のステップS303Bに代えて、ステップS303Cが行われる点が異なる。
 具体的には、ステップS303Cでは、制御装置110は、外部電力負荷105の消費電力と発電システム101の停止電力とを加算した電力から蓄電ユニット107が供給可能な電力を減算した電力(すなわち、消費電力+停止電力-供給可能電力)が、上限電力P1B以下であるか否かを判断する。これにより、蓄電ユニット107からの出力電力によって、上限電力P1B以下にすることができるときに、第1の停止モードで発電システム101の発電停止後の処理動作が実行され、蓄電ユニット107からの出力電力によって、上限電力P1B以下にすることができないときには、第2の停止モードで発電システム101の発電停止後の処理動作が実行される。
 このように、本実施の形態5に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107からの出力電力を利用しても上限電力P1B以下にならなくても、相対的に停止電力の小さい第2の停止モードで発電停止後の処理動作をするよう構成されているため、実施の形態4に係る電力供給システム100に比べ、停止性がより向上する。
 なお、本実施の形態5に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態6)
 本実施の形態6に係る電力供給システムは、制御装置が、発電システムを起動するときに、発電システムの起動電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、電力系統から供給される電力が、上限電力を超えないように、蓄電ユニットの電力を発電システム及び外部電力負荷の少なくともいずれか一方に供給するように制御する第1の制御、及び、発電システムの発電を停止するときに発電システムの停止電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、電力系統から供給される電力が、上限電力を超えないように、蓄電ユニットの電力を発電システム及び外部電力負荷の少なくともいずれか一方に供給するように制御する第2の制御、の少なくともいずれか一方を実行するように構成されている。
 なお、本実施の形態6においては、「発電システムが起動するとき」が、発電システムの起動動作を行っているときである場合について説明する。同様に、本実施の形態6においては、「発電システムが停止するとき」が、発電システムの発電停止後の処理動作を行っているときである場合について説明する。
 また、本実施の形態6においては、発電システムの起動するときに、発電システムの起動電力及び外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かの予測は、以下のようにして行う。
 すなわち、発電システムの起動動作を行っているときに、電力検知器が、発電システム及び外部電力負荷の消費電力を検知し、制御装置が、電力検知器が検知した発電システム及び外部電力負荷の消費電力との合計(発電システムの起動電力及び外部電力負荷の消費電力との合計)が、電力系統から受電可能な上限電力を超えるか否かを判断することで行う。
 同様に、本実施の形態6においては、発電システムの停止するときに、発電システムの起動電力及び外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かの予測は、以下のようにして行う。
 すなわち、発電システムの発電停止後の処理動作を行っているときに、電力検知器が、発電システム及び外部電力負荷の消費電力を検知し、制御装置が、電力検知器が検知した発電システム及び外部電力負荷の消費電力との合計(発電システムの停止電力及び外部電力負荷の消費電力との合計)が、電力系統から受電可能な上限電力を超えるか否かを判断することで行う。
 なお、上記発電システムの消費電力は、具体的には、発電システムの内部電力負荷の消費電力となる。また、制御装置による、発電システムの起動電力及び外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かの予測は、例えば、内部電力負荷及び外部電力負荷の消費電力の増加量に基づいて予測を行ってもよく、また、過去の使用履歴から予測を行ってもよく、上限電力を超えるか否かの予測を行うことができれば、どのような態様であってもよい。
 同様に、制御装置による、発電システムの停止電力及び外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かの予測は、例えば、内部電力負荷及び外部電力負荷の消費電力の増加量に基づいて予測を行ってもよく、また、過去の使用履歴から予測を行ってもよく、上限電力を超えるか否かの予測を行うことができれば、どのような態様であってもよい。
 本実施の形態6に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図13Aは、本実施の形態6に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 まず、発電システム101が起動を開始して起動動作中であるとき、制御装置110は、図13Aに示すように、電力検知器106から発電システム101(具体的には、内部電力負荷102)及び外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS401)。
 次に、制御装置110は、ステップS401で取得した外部電力負荷105の消費電力と発電システム101の消費電力との合計が、電力系統104からの使用可能な上限電力P3を超えるか否かを判定する(ステップS402)。消費電力と起動電力の合計が、上限電力P3以上である場合(ステップS402でYes)には、ステップS403に進み、上限電力P3未満である場合(ステップS402でNo)には、ステップS404に進む。ここで、上限電力P3は、発電システム101の起動動作を中断させない(継続させる)観点から、上限電力P1よりも低い電力であることが好ましい。
 ステップS403では、制御装置110は、蓄電ユニット107の電力制御器108に蓄電ユニット107から電力を出力させるように制御する。これにより、電力制御器108は、蓄電ユニット107から外部電力負荷105及び発電システム101(具体的には、内部電力負荷102)に電力を供給させる。このとき、電力制御器108は、電力検知器106で検知された発電システム101及び外部電力負荷105で使用されている電力が、上限電力P3未満となるように、蓄電ユニット107を制御する。なお、この蓄電ユニット107の制御において、電力制御器108は、蓄電ユニット107が、少なくとも外部電力負荷105に電力を供給するよう制御してもよい。
 次に、制御装置110は、ステップS404に進み、制御器103に発電システム101の起動継続信号を出力する。これにより、制御器103は、発電システム101の起動を継続させる。
 このように、本実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)では、発電システム101の起動動作中において、外部電力負荷105の消費電力が大きくなり、電力系統104からの上限電力P3を超えると予測されるような場合であっても、発電システム101の起動動作を継続することが可能となる。これにより、本実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)では、従来の発電システムに比して起動性を向上しながら、電力系統104からの上限電力を超えることが抑制される。
 次に、本実施の形態6に係る電力供給システム100の発電を停止するときの動作について、図13Bを参照しながら説明する。
 図13Bは、本実施の形態6に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 まず、発電システム101が発電を停止して、その後、発電システム101の発電停止後の処理動作中であるとき、制御装置110は、図13Bに示すように、電力検知器106から発電システム101(具体的には、内部電力負荷102)及び外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS401B)。
 次に、制御装置110は、ステップS401Bで取得した外部電力負荷105の消費電力と発電システム101の消費電力との合計が、電力系統104からの使用可能な上限電力P3Bを超えるか否かを判定する(ステップS402B)。消費電力と起動電力の合計が、上限電力P3B以上である場合(ステップS402BでYes)には、ステップS403Bに進み、上限電力P3B未満である場合(ステップS402BでNo)には、ステップS404Bに進む。ここで、上限電力P3Bは、発電システム101の発電停止後の処理動作を中断させない(継続させる)観点から、上限電力P1Bよりも低い電力であることが好ましい。
 ステップS403Bでは、制御装置110は、蓄電ユニット107の電力制御器108に蓄電ユニット107から電力を出力させるように制御する。これにより、電力制御器108は、蓄電ユニット107から外部電力負荷105及び発電システム101(具体的には、内部電力負荷102)に電力を供給させる。このとき、電力制御器108は、電力検知器106で検知された発電システム101及び外部電力負荷105で使用されている電力が、上限電力P3B未満となるように、蓄電ユニット107を制御する。なお、この蓄電ユニット107の制御において、電力制御器108は、蓄電ユニット107が、少なくとも外部電力負荷105に電力を供給するよう制御してもよい。
 次に、制御装置110は、ステップS404Bに進み、制御器103に発電システム101の発電停止後の処理動作を継続させる信号を出力する。これにより、制御器103は、発電システム101の発電停止後の処理動作を継続させる。
 このように、本実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)では、発電システム101の発電停止後の処理動作において、外部電力負荷105の消費電力が大きくなり、電力系統104からの上限電力P3Bを超えると予測されるような場合であっても、発電システム101の発電停止後の処理動作を継続することが可能となる。これにより、本実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)では、従来の発電システムに比して、電力系統104からの上限電力を超えることを抑制しつつ、発電システム101の発電停止後の処理動作を実行することができる。
 なお、本実施の形態6に係る電力供給システム100では、発電システム101を安定して起動動作を継続させる観点から、ステップS402及びステップS403の閾値として上限電力P3を設定したが、これに限定されず、電力系統104から受電する電力が上限電力P1に達しても、電力系統104からの電力供給が遮断されない形態であれば、ステップS402及びステップS403の閾値として上限電力P1を設定してもよい。
 同様に、発電システム101を安定して発電停止後の処理動作を継続させる観点から、ステップS402B及びステップS403Bの閾値として上限電力P3Bを設定したが、これに限定されず、電力系統104から受電する電力が上限電力P1Bに達しても、電力系統104からの電力供給が遮断されない形態であれば、ステップS402B及びステップS403Bの閾値として上限電力P1Bを設定してもよい。
 また、本実施の形態6に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態7)
 本実施の形態7に係る電力供給システムは、制御装置が、蓄電ユニットからの供給可能電力に基づいて発電システムの起動モードを起動電力が相対的に大きい第1の起動モードと、起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている。
 また、本実施の形態7に係る電力供給システムでは、制御装置が、蓄電ユニットからの供給可能電力に基づいて発電システムの停止モードを停止電力が相対的に大きい第1の停止モードと、停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されていてもよい。
 本実施の形態7に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図14Aは、本実施の形態7に係る電力供給システムにおいて発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 まず、発電システム101が起動を開始して起動動作中であるとき、制御装置110は、図14Aに示すように、電力検知器106から発電システム101(具体的には、内部電力負荷102)及び外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS501)。
 次に、制御装置110は、ステップS501で取得した消費電力が、上限電力P3以上であるか否かを判定する(ステップS502)。制御装置110は、外部電力負荷105の消費電力が、上限電力P3以上である場合には(ステップS502でYes)、ステップS503に進み、上限電力P3より小さい場合には(ステップS502でNo)、ステップS507に進む。
 ステップS503では、制御装置110は、ステップS501で取得した外部電力負荷105の消費電力と発電システム101の消費電力との合計から電力外部電力負荷105及び発電システム101に供給する電力を減算した電力(すなわち、消費電力+起動電力-供給電力)が、電力系統104からの使用可能な上限電力P1以下になるか否かを判定する。制御装置110は、消費電力+起動電力-供給電力が、上限電力P1以下である場合(ステップS503でYes)には、ステップS507に進み、上限電力P1より大きい場合(ステップS503でNo)には、ステップS508に進む。なお、この蓄電ユニット107の制御において、電力制御器108は、蓄電ユニット107が、少なくとも外部電力負荷105に電力を供給するよう制御してもよい。
 ステップS508では、制御装置110は、第2の起動モードを選択するように、制御器103を制御する。そして、制御装置110は、制御器103に発電システム101の起動継続信号を出力する(ステップS509)。これにより、制御器103は、発電システム101の起動を第2の起動モードで継続させる。
 一方、制御装置110は、ステップS502で、発電システム101及び外部電力負荷105の消費電力が、上限電力P3より小さい場合や、ステップS503で、発電システム101及び外部電力負荷105の消費電力が、上限電力P3以下である場合には、第1の起動モードを選択するように、制御器103を制御する(ステップS507)。
 そして、制御装置110は、制御器103に発電システム101の起動継続信号を出力する(ステップS509)。これにより、制御器103は、発電システム101の起動を第1の起動モードで継続させる。なお、ステップS501で取得した消費電力が、上限電力P3以上となっても、発電システム101の起動を継続する場合には、電力制御器108は、上記消費電力が上限電力P1以下になるように蓄電ユニット107からの出力電力を制御する。
 このように構成された本実施の形態7に係る電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本実施の形態7に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107からの出力電力を利用しても上限電力P1以下にならなくても、相対的に起動電力の小さい第2の起動モードを選択し、起動動作の中断を抑制するよう構成されているため、実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、起動性がより向上する。
 次に、本実施の形態7に係る電力供給システム100の発電を停止するときの動作について、図14Bを参照しながら説明する。
 図14Bは、本実施の形態7に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図14Bに示すように、本実施の形態7に係る電力供給システムにおいても、実施の形態6と同様に、発電システム101の発電を停止するときの動作が行われ、また、発電を停止するときの動作の各ステップは、上述した発電システム101の起動するときの動作と同様の動作が行われる場合がある。このため、以下においては、実施の形態6で説明した動作及び上述した発電システム101の起動するときの動作と異なる動作が行われるステップについて説明する。具体的には、ステップS503B、ステップS507B、及びステップS508Bである。
 ステップS503Bでは、制御装置110は、ステップS501Bで取得した外部電力負荷105の消費電力と発電システム101の消費電力との合計から電力外部電力負荷105及び発電システム101に供給する電力を減算した電力(すなわち、消費電力+起動電力-供給電力)が、電力系統104からの使用可能な上限電力P1B以下になるか否かを判定する。制御装置110は、消費電力+起動電力-供給電力が、上限電力P1B以下である場合(ステップS503BでYes)には、ステップS507Bに進み、上限電力P1Bより大きい場合(ステップS503BでNo)には、ステップS508Bに進む。
 ステップS508Bでは、制御装置110は、第2の停止モードを選択するように、制御器103を制御する。一方、制御装置110は、ステップS502Bで、発電システム101及び外部電力負荷105の消費電力が、上限電力P3Bより小さい場合や、ステップS503Bで、発電システム101及び外部電力負荷105の消費電力が、上限電力P3B以下である場合には、第1の停止モードを選択するように、制御器103を制御する(ステップS507B)。
 このように、本実施の形態7に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107からの出力電力を利用しても上限電力P1B以下にならなくても、相対的に停止電力の小さい第2の停止モードを選択し、発電停止後の処理動作の中断を抑制するよう構成されているため、実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、停止性がより向上する。
 なお、本実施の形態7に係る電力供給システム100(電力供給システム100の制御装置110)では、第2の起動モードを選択した(ステップS508)後、発電システム101の起動を継続させる形態を採用したが、これに限定されず、第2の起動モードの選択とともに、電力制御器108に蓄電ユニット107を充電するように制御信号を出力してから、発電システム101の起動を継続させる形態を採用してもよい。
 同様に、本実施の形態7に係る電力供給システム100(電力供給システム100の制御装置110)では、第2の停止モードを選択した(ステップS508B)後、発電システム101の発電停止後の処理動作を継続させる形態を採用したが、これに限定されず、第2の停止モードの選択とともに、電力制御器108に蓄電ユニット107を充電するように制御信号を出力してから、発電システム101の発電停止後の処理動作を継続させる形態を採用してもよい。
 また、本実施の形態7に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態8)
 本実施の形態8に係る電力供給システムは、制御装置が蓄電ユニットの蓄電量に基づいて発電システムの起動モードを発電システムの起動電力が相対的に大きい第1の起動モードと、起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている。
 また、本実施の形態8に係る電力供給システムは、制御装置が蓄電ユニットの蓄電量に基づいて発電システムの停止モードを発電システムの停止電力が相対的に大きい第1の停止モードと、停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されていてもよい。
 本実施の形態8に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図15Aは、本実施の形態8に係る電力供給システムにおいて発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 まず、実施の形態7と同様に、発電システム101が起動を開始して起動動作中であるとき、制御装置110は、図15Aに示すように、電力検知器106から発電システム101(具体的には、内部電力負荷102)及び外部電力負荷105で使用されている電力(消費電力)を取得する(ステップS601)。
 次に、制御装置110は、ステップS601で取得したステップS601で取得した外部電力負荷105の消費電力と発電システム101の消費電力との合計が、上限電力P3以上であるか否かを判定する(ステップS602)。外部電力負荷105の消費電力と発電システム101の消費電力との合計が、上限電力P3以上である場合(ステップS602でYes)には、ステップS603に進み、上限電力P3より小さい場合(ステップS602でNo)には、ステップS606に進む。
 ステップS603では、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3以上であるか否かを判定する。蓄電ユニット107の蓄電量が、所定の電力量Q3以上である場合(ステップS603でYes)には、ステップS604に進み、所定の電力量Q3より小さい場合(ステップS603でNo)には、ステップS605に進む。なお、所定の電力量Q3は、任意に設定することができ、例えば、発電システム101を第1の起動モードで起動動作を継続するのに必要な電力量であってもよい。第1の起動モードで起動動作を継続するのに必要な電力量は、例えば、第1の起動モードで起動動作を継続することで起動動作が完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 ステップS604では、制御装置110は、第1の起動モードを選択し、ステップS606に進む。一方、ステップS605では、制御装置110は、第2の起動モードを選択し、ステップS606に進む。
 そして、ステップS606では、制御装置110は、制御器103に発電システム101の起動継続信号を出力する。これにより、制御器103は、発電システム101の起動を継続させる。
 このように構成された本実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107の蓄電量が、第1の起動モードを継続可能な量でなくても、相対的に起動電力の小さい第2の起動モードに変更することで、起動動作の中断を抑制するよう構成されているため、実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、起動性がより向上する。
 次に、本実施の形態8に係る電力供給システム100の発電を停止するときの動作について、図15Bを参照しながら説明する。
 図15Bは、本実施の形態8に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図15Bに示すように、本実施の形態8に係る電力供給システム100においても、実施の形態6と同様に、発電システム101の発電を停止するときの動作が行われ、また、発電を停止するときの動作の各ステップは、上述した発電システム101の起動するときの動作と同様の動作が行われる場合がある。このため、以下においては、実施の形態6で説明した動作及び上述した発電システム101の起動するときの動作と異なる処理が行われる、ステップS603Bについて説明する。
 ステップS603Bでは、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3B以上であるか否かを判定する。蓄電ユニット107の蓄電量が、所定の電力量Q3B以上である場合(ステップS603BでYes)には、ステップS604Bに進み、所定の電力量Q3Bより小さい場合(ステップS603BでNo)には、ステップS605Bに進む。なお、所定の電力量Q3Bは、任意に設定することができ、例えば、発電システム101を第1の停止モードで発電停止後の処理動作を継続するのに必要な電力量であってもよい。第1の停止モードで発電停止後の処理動作を継続するのに必要な電力量は、例えば、第1の停止モードで発電停止後の処理動作を継続することで、発電停止後の処理動作が完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 このように、本実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)では、蓄電ユニット107からの出力電力を利用しても上限電力P1B以下にならなくても、相対的に停止電力の小さい第2の停止モードを選択し、発電停止後の処理動作の中断を抑制するよう構成されているため、実施の形態6に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、停止性がより向上する。
 なお、本実施の形態8に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例1]
 図16Aは、本実施の形態8に係る電力供給システムの変形例1において、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図16Aに示すように、本変形例1の電力供給システム100における発電システム101の起動動作は、第2の起動モードを選択した場合の動作が、実施の形態8に係る電力供給システム100における発電システム101の起動動作と異なる。
 具体的には、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3よりも小さい場合(ステップS603でNo)、第2の起動モードを選択し、発電システム101の起動モードを第1の起動モードから第2の起動モードに切替える(ステップS605)。そして、制御装置110は、蓄電ユニット107の電力制御器108に充電を行うように制御信号を出力する(ステップS607)。これにより、電力制御器108は、電力系統104から上限電力P3を超えない範囲の電力を、蓄電ユニット107を構成する蓄電池の単電池や組電池に供給して、蓄電ユニット107を充電させる。次に、制御装置110は、発電システム101の起動を第2の起動モードで継続させ(ステップS608)、ステップS603に戻る。
 このようにして、本変形例1では、蓄電ユニット107の蓄電量が、所定の電力量Q3以上になるまで、ステップS603、ステップS605、ステップS607、及びステップS608を繰り返す。そして、蓄電ユニット107の蓄電量が、所定の電力量Q3以上になると、制御装置110は、第1の起動モードを選択し、発電システム101の起動モードを、第2の起動モードから第1の起動モードに切替える(ステップS604)。そして、発電システム101の起動を第1の起動モードで継続させる(ステップS606)。
 このように構成された本変形例1の電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本変形例1の電力供給システム100(電力供給システム100の制御装置110)は、第2の起動モードに移行しても、蓄電ユニット107の蓄電量が所定の電力量Q3以上になると、第1の起動モードに切替えられるので、実施の形態8の電力供給システム100(電力供給システム100の制御装置110)に比べて、発電システム101の起動時間をより短縮することができる。
 次に、本変形例1の電力供給システム100の発電を停止するときの動作について、図16Bを参照しながら説明する。
 図16Bは、本変形例1の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図16Bに示すように、本変形例1の電力供給システム100における発電システム101の発電を停止するときの動作は、第2の停止モードを選択した場合の動作が、実施の形態8に係る電力供給システム100における発電システム101の発電を停止するときの動作と異なる。
 具体的には、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q3Bよりも小さい場合(ステップS603BでNo)、第2の停止モードを選択し、発電システム101の停止モードを第1の停止モードから第2の停止モードに切替える(ステップS605B)。そして、制御装置110は、蓄電ユニット107の電力制御器108に充電を行うように制御信号を出力する(ステップS607B)。これにより、電力制御器108は、電力系統104から上限電力P3Bを超えない範囲の電力を、蓄電ユニット107を構成する蓄電池の単電池や組電池に供給して、蓄電ユニット107を充電させる。次に、制御装置110は、発電システム101の発電停止後の処理動作を第2の停止モードで継続させ(ステップS608B)、ステップS603Bに戻る。
 このようにして、本変形例1では、蓄電ユニット107の蓄電量が、所定の電力量Q3B以上になるまで、ステップS603B、ステップS605B、ステップS607B、及びステップS608Bを繰り返す。そして、蓄電ユニット107の蓄電量が、所定の電力量Q3B以上になると、制御装置110は、第1の停止モードを選択し、発電システム101の停止モードを、第2の停止モードから第1の停止モードに切替える(ステップS604B)。そして、発電システム101の発電停止後の処理動作を第1の停止モードで継続させる(ステップS606B)。
 このように、本変形例1の電力供給システム100(電力供給システム100の制御装置110)では、第2の停止モードに移行しても、蓄電ユニット107の蓄電量が所定の電力量Q3以上になると、第1の停止モードに切替えられるので、実施の形態8の電力供給システム100(電力供給システム100の制御装置110)に比べて、発電システム101の発電停止後の処理動作を実行する時間をより短縮することができる。
 なお、本変形例1の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例2]
 図17A及び図17Bは、本実施の形態8に係る電力供給システムの変形例2において、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図17A及び図17Bに示すように、本変形例2の電力供給システム100における発電システム101の起動動作は、第2の起動モードを選択した場合の動作が、実施の形態8に係る電力供給システム100における発電システム101の起動動作と異なる。
 具体的には、制御装置110は、第2の起動モードを選択し、(ステップS605)、制御器103に発電システム101の起動継続信号を出力する(ステップS607)。
 次に、制御装置110は、電力検知器106から取得した発電システム101及び外部電力負荷105で使用されている電力(消費電力)を取得する。ついで、制御装置110は、取得した上記消費電力のうち外部電力負荷105の消費電力が、起動モード変更電力P2以上であるか否かを判定する(ステップS608)
 そして、制御装置110は、外部電力負荷105の消費電力が、起動モード変更電力P2未満になると(ステップS608でYes)、第1の起動モードに移行するように、制御器103を制御する(ステップS609)。
 このように構成された本変形例2の電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本変形例2の電力供給システム100(電力供給システム100の制御装置110)では、外部電力負荷105の消費電力が減少すると、第1の起動モードに切替えることにより、実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)に比べ、発電システム101の起動時間をより短縮することができる。
 次に、本変形例2の電力供給システム100の発電を停止するときの動作について、図17C及び図17Dを参照しながら説明する。
 図17C及び図17Dは、本変形例2の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図17C及び図17Dに示すように、本変形例2の電力供給システム100における発電システム101の発電を停止するときの動作は、第2の停止モードを選択した場合の動作が、実施の形態8に係る電力供給システム100における発電システム101の発電を停止するときの動作と異なる。
 具体的には、制御装置110は、第2の停止モードを選択し、(ステップS605B)、制御器103に発電システム101の発電停止後の処理動作を継続させる信号を出力する(ステップS607B)。
 次に、制御装置110は、電力検知器106から取得した発電システム101及び外部電力負荷105で使用されている電力(消費電力)を取得する。ついで、制御装置110は、取得した上記消費電力のうち外部電力負荷105の消費電力が、停止モード変更電力P2B以上であるか否かを判定する(ステップS608B)
 そして、制御装置110は、外部電力負荷105の消費電力が、停止モード変更電力P2B未満になると(ステップS608BでYes)、第1の停止モードに移行するように、制御器103を制御する(ステップS609B)。
 このように、本変形例2の電力供給システム100(電力供給システム100の制御装置110)では、外部電力負荷105の消費電力が減少すると、第2の停止モードに切替えることにより、実施の形態8に係る電力供給システム100(電力供給システム100の制御装置110)に比べ、発電システム101の発電停止後の処理動作を実行する時間をより短縮することができる。
 なお、本変形例2の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態9)
 本実施の形態9に係る電力供給システムは、制御装置が、発電システムの起動予定時刻前に電力系統より蓄電ユニットに充電するよう制御する。
 また、本実施の形態9に係る電力供給システムは、制御装置が、発電システムの発電の停止予定時刻前に電力系統及び発電システムの少なくとも一方より蓄電ユニットに充電するよう制御してもよい。
 本実施の形態9に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図18Aは、本実施の形態9に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 まず、発電システム101が起動しておらず、外部電力負荷105への電力の供給は、電力系統104から行われているとする。この場合において、制御装置110は、図18Aに示すように、起動予定時刻を取得する(ステップS701)。具体的には、制御装置110は、制御器103から起動予定時刻情報を取得する。
 次に、制御装置110は、ステップS701で取得した起動予定時刻と、現在時刻とから、起動予定時刻までの待機時間を算出し、該算出した待機時間が所定の時間T1以下であるか否かを判定する(ステップS702)。ここで、所定の時間T1は、任意に設定される時間であるが、実施の形態1乃至5(変形例を含む)で実行される蓄電ユニットからの電力補給の要否判定の前に、上記蓄電ユニットへの充電制御が実行されるように設定されることが好ましい。
 制御装置110は、待機時間が所定の時間T1よりも大きい場合(ステップS702でNo)、ステップS701に戻り、待機時間が所定の時間T1以下になるまで、ステップS701とステップS702を繰り返す。一方、制御装置110は、待機時間が所定の時間T1以下になる(ステップS702でYes)と、ステップS703に進む。
 ステップS703では、制御装置110は、蓄電ユニット107の電力制御器108に充電を行うように制御信号を出力する。これにより、電力制御器108は、蓄電ユニット107を構成する蓄電池の単電池や組電池に電力系統104から電力を供給して、蓄電ユニット107を充電させる。なお、上記ステップS701~S703のフローに示される制御は、実施の形態1乃至5(変形例を含む)のいずれの電力供給システム100(電力供給システム100の制御装置110)に適用しても構わない。
 このように、本実施の形態9に係る電力供給システム100(電力供給システム100の制御装置110)では、発電システム101の起動を開始する前に、蓄電ユニット107を充電するため、蓄電ユニット107からの電力補給力が向上するので、実施の形態1に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、起動性がより向上する。
 次に、制御装置110は、起動予定時刻が近づくと、制御装置110は、実施の形態1乃至5(変形例を含む)のいずれかで実行される蓄電ユニット107からの電力出力の要否判定や発電システム101の起動開始の許否判定を行って、起動が許可されれば、発電システム101の起動を開始する(ステップS704)。
 次に、本実施の形態9に係る電力供給システム100の発電を停止するときの動作について、図18Bを参照しながら説明する。
 図18Bは、本実施の形態9に係る電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 まず、発電システム101が発電運転中であるとする。この場合において、制御装置110は、図18Bに示すように、発電システム101の発電停止予定時刻を取得する(ステップS701B)。具体的には、制御装置110は、制御器103から発電停止予定時刻情報を取得する。
 次に、制御装置110は、ステップS701Bで取得した発電停止予定時刻と、現在時刻とから、発電停止予定時刻までの時間を算出し、該算出した時間(以下、算出時間という)が所定の時間T1B以下であるか否かを判定する(ステップS702B)。ここで、所定の時間T1Bは、任意に設定される時間であるが、実施の形態1乃至5(変形例を含む)で実行される蓄電ユニット107からの電力補給の要否判定の前に、上記蓄電ユニット107への充電制御が実行されるように設定されることが好ましい。
 制御装置110は、算出時間が所定の時間T1よりも大きい場合(ステップS702BでNo)、ステップS701に戻り、算出時間が所定の時間T1B以下になるまで、ステップS701BとステップS702Bを繰り返す。一方、制御装置110は、算出時間が所定の時間T1B以下になる(ステップS702BでYes)と、ステップS703Bに進む。
 ステップS703Bでは、制御装置110は、蓄電ユニット107の電力制御器108に充電を行うように制御信号を出力する。これにより、電力制御器108は、蓄電ユニット107を構成する蓄電池の単電池や組電池に電力系統104及び発電システム101の少なくともいずれか一方から電力を供給して、蓄電ユニット107を充電させる。なお、上記ステップS701B~S703Bのフローに示される制御は、実施の形態1乃至5(変形例を含む)のいずれの電力供給システム100(電力供給システム100の制御装置110)に適用しても構わない。
 次に、制御装置110は、発電システム101の発電停止予定時刻が近づくと、制御装置110は、実施の形態1乃至5(変形例を含む)のいずれかで実行される蓄電ユニット107からの電力出力の要否判定や発電システム101の発電の停止開始の許否判定を行って、発電の停止が許可されれば、発電システム101の発電の停止を開始する(ステップS704B)。
 このように、本実施の形態9に係る電力供給システム100(電力供給システム100の制御装置110)では、発電システム101の発電の停止を開始する前に、蓄電ユニット107を充電するため、蓄電ユニット107からの電力補給力が向上するので、従来の発電システムに比べて、停止性がより向上する。
 なお、本実施の形態9に係る電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 [変形例]
 本変形例に係る電力供給システムは、実施の形態9で説明した充電制御において、制御装置が蓄電ユニットの蓄電量に基づいて蓄電ユニットの充電の許否を決定するように構成されている。
 本変形例に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるため、構成の説明は省略する。
 図19Aは、本変形例に係る電力供給システムにおいて、発電システムを起動するときの動作を模式的に示すフローチャートの一例である。
 図19Aに示すように、本変形例に係る電力供給システム100は、実施の形態9に係る電力供給システム100と同様に、制御装置110は、起動予定時刻を取得し(ステップS801)、待機時間が所定の時間T1以下であるか否かを判定する(ステップS802)。そして、制御装置110は、待機時間が所定の時間T1以下になる(ステップS802でYes)と、ステップS803に進む。
 ステップS803では、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q4以上であるか否かを判定する。制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q4以上である場合(ステップS803でYes)、ステップS805に進み、所定の電力量Q4より小さい場合(ステップS803でNo)には、ステップS804に進む。なお、所定の電力量Q4は、任意に設定することができるが、例えば、発電システム101の起動に必要となる電力量であることが好ましい。起動に必要となる電力量は、例えば、起動動作が開始してから完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 ステップS804では、制御装置110は、蓄電ユニット107の電力制御器108に充電を行うように制御信号を出力する。これにより、電力制御器108は、蓄電ユニット107を構成する蓄電池の単電池や組電池に電力系統104から電力を供給して、蓄電ユニット107を充電させる。そして、制御装置110は、ステップS805に進む。
 ステップS805では、制御装置110は、現在時刻が起動予定時刻であるか否かを判断する。制御装置110は、現在時刻が起動予定時刻でない場合(ステップS805でNo)には、現在時刻が起動予定時刻になるまで、ステップS803~ステップS805を繰り返し、起動予定時刻までに蓄電ユニット107の蓄電量が所定の電力量Q4以上になるように制御する。一方、制御装置110は、現在時刻が起動予定時刻になる(ステップS805でYes)と、実施の形態1乃至5(変形例を含む)のいずれかで実行される蓄電ユニット107からの電力出力の要否判定や発電システム101の起動開始の許否判定を行って、起動が許可されれば、ステップS806に進む。
 そして、ステップS806では、制御装置110は、発電システム101の起動を開始する。
 このように構成された本変形例の電力供給システム100(電力供給システム100の制御装置110)であっても、実施の形態9に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。また、本変形例の電力供給システム100(電力供給システム100の制御装置110)は、蓄電ユニット107の蓄電量に基づき、起動予定時刻までの間、蓄電ユニット107への充電を制御するので、実施の形態9に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、蓄電ユニット107へ必要以上に充電が行われることが抑制され、または、蓄電ユニット107の充電不足が抑制される。
 次に、本変形例1の電力供給システム100の発電を停止するときの動作について、図19Bを参照しながら説明する。
 図19Bは、本変形例の電力供給システムにおいて、発電システムの発電を停止するときの動作を模式的に示すフローチャートの一例である。
 図19Bに示すように、本変形例に係る電力供給システム100は、実施の形態9に係る電力供給システム100と同様に、制御装置110は、発電停止予定時刻を取得し(ステップS801B)、ステップS801Bで取得した発電停止予定時刻と、現在時刻とから、発電停止予定時刻までの時間を算出し、該算出した時間(以下、算出時間という)が所定の時間T1B以下であるか否かを判定する(ステップS802B)。そして、制御装置110は、算出時間が所定の時間T1B以下になる(ステップS802BでYes)と、ステップS803Bに進む。
 ステップS803Bでは、制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q4B以上であるか否かを判定する。制御装置110は、蓄電ユニット107の蓄電量が、所定の電力量Q4B以上である場合(ステップS803BでYes)、ステップS805Bに進み、所定の電力量Q4Bより小さい場合(ステップS803BでNo)には、ステップS804Bに進む。
 なお、所定の電力量Q4Bは、任意に設定することができるが、例えば、発電システム101の発電を停止するときの動作に必要となる電力量であることが好ましい。発電を停止するときの動作に必要となる電力量は、例えば、発電停止後の処理動作を開始してから発電停止後の処理動作が完了するまでの間に内部電力負荷により消費される累積消費電力量であってもよい。
 ステップS804Bでは、制御装置110は、蓄電ユニット107の電力制御器108に充電を行うように制御信号を出力する。これにより、電力制御器108は、蓄電ユニット107を構成する蓄電池の単電池や組電池に電力系統104及び発電システム101の少なくともいずれか一方から電力を供給して、蓄電ユニット107を充電させる。そして、制御装置110は、ステップS805Bに進む。
 ステップS805Bでは、制御装置110は、現在時刻が発電停止予定時刻であるか否かを判断する。制御装置110は、現在時刻が発電停止予定時刻でない場合(ステップS805BでNo)には、現在時刻が発電停止予定時刻になるまで、ステップS803B~ステップS805Bを繰り返し、発電停止予定時刻までに蓄電ユニット107の蓄電量が所定の電力量Q4B以上になるように制御する。一方、制御装置110は、現在時刻が発電停止予定時刻になる(ステップS805BでYes)と、実施の形態1乃至5(変形例を含む)のいずれかで実行される蓄電ユニット107からの電力出力の要否判定や発電システム101の発電停止開始の許否判定を行って、発電停止が許可されれば、ステップS806Bに進む。
 そして、ステップS806Bでは、制御装置110は、発電システム101の発電停止を開始し、その後、発電停止後の処理動作を実行する。
 このように、本変形例の電力供給システム100(電力供給システム100の制御装置110)は、蓄電ユニット107の蓄電量に基づき、発電停止予定時刻までの間、蓄電ユニット107への充電を制御するので、実施の形態9に係る電力供給システム100(電力供給システム100の制御装置110)に比べて、蓄電ユニット107へ必要以上に充電が行われることが抑制され、または、蓄電ユニット107の充電不足が抑制される。
 なお、本変形例の電力供給システム100は、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作の少なくともいずれか一方を実行するよう構成されていればよい。すなわち、制御装置110が、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作のいずれか一方のみを実行するよう構成されていてもよいし、発電システム101を起動するときにおける蓄電ユニット107への制御動作及び発電システム101の発電を停止するときにおける蓄電ユニット107への制御動作を共に実行するよう構成されていてもよい。
 (実施の形態10)
 ところで、上記実施の形態1乃至9(変形例を含む)に係る電力供給システム100では、発電システム101の起動及び/又は発電を停止するときにおいて、蓄電ユニット107から電力を出力するときに、内部電力負荷及び外部電力負荷の両方に電力が供給されるよう構成されている。
 一方、本実施の形態10に係る電力供給システムは、蓄電ユニットからの出力電力が外部電力負荷及び内部電力負荷の少なくともいずれか一方に供給されるように構成されている形態を例示する。
 [電力供給システムの構成]
 図20は、本実施の形態10に係る電力供給システム及び電力供給システムの制御装置の概略構成を模式的に示すブロック図の一例である。
 図20に示すように、本実施の形態10に係る電力供給システム100は、実施の形態1に係る電力供給システム100と基本的構成は同じであるが、蓄電ユニット107からの出力電力が外部電力負荷105及び発電システム101の内部電力負荷102の少なくともいずれか一方に供給されるよう構成されている。
 具体的には、蓄電ユニット107と、連系点109及び外部電力負荷105の間の電路(配線201)とを接続点Aにて電気的に接続する配線202が設けられている。また、蓄電ユニット107と、連系点109及び内部電力負荷102の間の電路(配線205)とを接続点Bにて電気的に接続する配線204が設けられている。
 ここで、配線202の途中には、継電器(リレー)213が設けられている。また、配線204には、継電器212が設けられている。また、連系点109と接続点Aとの間の電路(配線201)には、継電器214が設けられている。また、連系点109と接続点Bとの間の電路(配線205)には、継電器211が設けられている。
 これにより、制御装置110は、継電器211~継電器214を制御することにより、蓄電ユニット107から内部電力負荷102及び外部電力負荷105の少なくともいずれか一方への電力の供給を制御することができる。また、制御装置110は、継電器211~継電器214を制御することにより、電力系統104から内部電力負荷102及び外部電力負荷105の少なくともいずれか一方への電力の供給を制御することができる。具体的には、制御装置110は、継電器211~継電器214を以下のように制御する。
 (A)電力系統104から外部電力負荷105に電力を供給し、蓄電ユニット107から内部電力負荷102に電力を供給する場合
 制御装置110は、継電器212及び継電器214を閉じて、継電器211及び継電器213を開けるように制御する。これにより、電力系統104から、配線203及び配線201を介して、外部電力負荷105に電力が供給され、蓄電ユニット107から、配線204及び配線201を介して、内部電力負荷102に電力が供給される。
 (B)電力系統104から内部電力負荷102に電力を供給し、蓄電ユニット107から外部電力負荷105に電力を供給する場合
 制御装置110は、継電器211及び継電器213を閉じて、継電器212及び継電器214を開けるように制御する。これにより、電力系統104から、配線203及び配線201を介して、内部電力負荷102に電力が供給され、蓄電ユニット107から、配線202及び配線201を介して、外部電力負荷105に電力が供給される。
 (C)電力系統104及び蓄電ユニット107共に、内部電力負荷102と外部電力負荷105の両方に電力を供給する場合
 制御装置110は、継電器211、継電器212、及び継電器214を閉じて、継電器213を開けるように制御する。これにより、電力系統104から、配線203及び配線201を介して、内部電力負荷102及び外部電力負荷105の両方に電力を供給することができる。また、蓄電ユニット107から、配線204及び配線201を介して、内部電力負荷102及び外部電力負荷105の両方に電力を供給することができる。なお、制御装置110は、継電器211、継電器213、及び継電器214を閉じて、継電器212を開けるように制御してもよく、また、継電器211、継電器212、継電器213、及び継電器214を閉じるように制御してもよい。
 このように構成された本実施の形態10に係る電力供給システム100(電力供給システム100の制御装置110)は、上記実施の形態1乃至9(変形例を含む)に係る電力供給システム100(電力供給システム100の制御装置110)と同様の制御動作を行うことにより、上記実施の形態1乃至9(変形例を含む)に係る電力供給システム100(電力供給システム100の制御装置110)と同様の作用効果を奏する。
 なお、本実施の形態10においては、継電器211~継電器214を用いて、蓄電ユニット107からの電力の供給を制御する形態を採用したが、これに限定されず、蓄電ユニット107からの電力が外部電力負荷105及び内部電力負荷102の少なくともいずれか一方に供給されるように構成されていれば、どのような形態を採用してもよい。
 ところで、上記実施の形態1~10(変形例を含む)に係る電力供給システム100においては、電力検知器106を電力系統104と連系点109との間に設けるよう形態を採用したが、電力検知器106を連系点109と外部電力負荷105との間に設ける形態を採用しても構わない。この場合、電力検知器106は、外部電力負荷105の消費電力を検知する。このため、発電システム101(内部電力負荷102)及び外部電力負荷105の消費電力の合計は、電力検知器106の検出値と内部電力負荷102の消費電力を検知する電力検知器(図示せず)の検出値の合計となる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
 本発明に係る電力供給システム、電力供給システム制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法は、従来の発電システムに比して、発電システムの起動性及び停止性の少なくともいずれか一方を向上させながら、電力系統からの上限電力を超えることが抑制されるため、有用である。
 1 改質器
 2 CO低減器
 3 電気ヒータ
 11 水素生成装置
 12 酸化剤ガス供給器
 13 燃料電池
 14 冷却媒体タンク
 15 電気ヒータ
 31 燃料ガス供給路
 33 冷却媒体経路
 100 電力供給システム
 101 発電システム(燃料電池システム)
 102 内部電力負荷
 103 制御器
 104 電力系統
 105 外部電力負荷
 106 電力検知器
 107 蓄電ユニット
 108 電力制御器
 109 連系点
 110 制御装置
 110a 予測器
 111 蓄電量検知器
 201 配線
 202 配線
 203 配線
 204 配線
 211 継電器
 212 継電器
 213 継電器
 214 継電器

Claims (44)

  1.  発電システムと、
     前記発電システム及び外部電力負荷へ電力供給を行う蓄電ユニットと、
     前記発電システムを起動するときに、前記発電システムの起動電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第1の制御、及び、前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第2の制御、の少なくともいずれか一方を実行するように構成されている制御装置と、を備える、電力供給システム。
  2.  前記制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの起動の許否を決定するように構成されている、請求項1記載の電力供給システム。
  3.  前記制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの起動モードを前記起動電力が相対的に大きい第1の起動モードと、前記起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている、請求項1記載の電力供給システム。
  4.  前記制御装置は、前記第2の起動モード中において、前記電力系統より前記蓄電ユニットに充電するように制御する、請求項3記載の電力供給システム。
  5.  前記制御装置は、前記充電により蓄電ユニットの蓄電量が増加すると、前記第1の起動モードに切替えるように構成されている、請求項4記載の電力供給システム。
  6.  前記制御装置は、前記外部電力負荷の消費電力が減少すると、前記第1の起動モードに切替えるように構成されている、請求項3記載の電力供給システム。
  7.  前記制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動の許否を決定するように構成されている、請求項1記載の電力供給システム。
  8.  前記制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動処理の継続の許否を決定するように構成されている、請求項1記載の電力供給システム。
  9.  前記制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動モードを前記起動電力が相対的に大きい第1の起動モードと、前記起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている、請求項1記載の電力供給システム。
  10.  前記制御装置は、前記発電システムの起動予定時刻前に前記電力系統より前記蓄電ユニットに充電するよう制御する、請求項1記載の電力供給システム。
  11.  前記発電システムは、燃料電池システムであり、
     前記燃料電池システムは、起動時に発電運転可能な温度に前記燃料電池システムの構成機器を昇温するための電気ヒータを備える、請求項1記載の電力供給システム。
  12.  前記制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの発電の停止の許否を決定するように構成されている、請求項1又は2記載の電力供給システム。
  13.  前記制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの停止モードを前記停止電力が相対的に大きい第1の停止モードと、前記停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されている、請求項1又は3記載の電力供給システム。
  14.  前記制御装置は、前記第2の停止モード中において、前記電力系統より前記蓄電ユニットに充電するように制御する、請求項13記載の電力供給システム。
  15.  前記制御装置は、前記充電により前記蓄電ユニットの蓄電量が増加すると、前記第1の停止モードに切替えるように構成されている、請求項14記載の電力供給システム。
  16.  前記制御装置は、前記外部電力負荷の消費電力が減少すると、前記第1の停止モードに切替えるように構成されている、請求項13記載の電力供給システム。
  17.  前記制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの発電の停止の許否を決定するように構成されている、請求項1又は7記載の電力供給システム。
  18.  前記制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの発電の停止後の処理動作の継続の許否を決定するように構成されている、請求項1又は8記載の電力供給システム。
  19.  前記制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの停止モードを前記停止電力が相対的に大きい第1の停止モードと、前記停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されている、請求項1又は9記載の電力供給システム。
  20.  前記制御装置は、前記発電システムの発電の停止予定時刻前に前記電力系統及び前記発電システムの少なくともいずれか一方より前記蓄電ユニットに充電するよう制御する、請求項1又は10記載の電力供給システム。
  21.  前記発電システムは、燃料電池システムであり、
     前記燃料電池システムは、該燃料電池システムにおける排ガスから回収した水を貯える水タンクを加熱するための電気ヒータを備える、請求項1記載の電力供給システム。
  22.  前記制御装置は、前記第1の制御及び前記第2の制御の少なくともいずれか一方を実行する場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記外部電力負荷に供給するように制御する、請求項1に記載の電力供給システム。
  23.  発電システムと、外部電力負荷及び前記発電システム及び前記外部電力負荷に電力を供給する蓄電ユニットと、を備える電力供給システムを制御する電力供給システムの制御装置であって、
     前記電力供給システムの制御装置は、前記発電システムを起動するときに、前記発電システムの起動電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第1の制御、及び、前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するように制御する第2の制御、の少なくともいずれか一方を実行するように構成されている、電力供給システムの制御装置。
  24.  前記電力供給システムの制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの起動の許否を決定するように構成されている、請求項23記載の電力供給システムの制御装置。
  25.  前記電力供給システムの制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの起動モードを前記起動電力が相対的に大きい第1の起動モードと、前記起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている、請求項23記載の電力供給システムの制御装置。
  26.  前記電力供給システムの制御装置は、前記第2の起動モード中において、前記電力系統より前記蓄電ユニットに充電するように制御する、請求項25記載の電力供給システムの制御装置。
  27.  前記電力供給システムの制御装置は、前記充電により前記蓄電ユニットの蓄電量が増加すると、前記第1の起動モードに切替えるように構成されている、請求項26記載の電力供給システムの制御装置。
  28.  前記電力供給システムの制御装置は、前記外部電力負荷の消費電力が減少すると、前記第1の起動モードに切替えるように構成されている、請求項25記載の電力供給システムの制御装置。
  29.  前記電力供給システムの制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動の許否を決定するように構成されている、請求項23記載の電力供給システムの制御装置。
  30.  前記電力供給システムの制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動処理の継続の許否を決定するように構成されている、請求項23記載の電力供給システムの制御装置。
  31.  前記電力供給システムの制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの起動モードを前記起動電力が相対的に大きい第1の起動モードと、前記起動電力が相対的に小さい第2の起動モードとの間で切替えるように構成されている、請求項23記載の電力供給システムの制御装置。
  32.  前記電力供給システムの制御装置は、前記発電システムの起動予定時刻前に前記電力系統より前記蓄電ユニットに充電するよう制御する、請求項23記載の電力供給システムの制御装置。
  33.  前記電力供給システムの制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの発電の停止の許否を決定するように構成されている、請求項23又は24記載の電力供給システムの制御装置。
  34.  前記電力供給システムの制御装置は、前記蓄電ユニットの蓄電量に基づいて前記発電システムの停止モードを前記停止電力が相対的に大きい第1の停止モードと、前記停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されている、請求項23又は25記載の電力供給システムの制御装置。
  35.  前記電力供給システムの制御装置は、前記第2の停止モード中において、前記電力系統より前記蓄電ユニットに充電するように制御する、請求項34記載の電力供給システムの制御装置。
  36.  前記電力供給システムの制御装置は、前記充電により前記蓄電ユニットの蓄電量が増加すると、前記第1の停止モードに切替えるように構成されている、請求項35記載の電力供給システムの制御装置。
  37.  前記電力供給システムの制御装置は、前記外部電力負荷の消費電力が減少すると、前記第1の停止モードに切替えるように構成されている、請求項34記載の電力供給システムの制御装置。
  38.  前記電力供給システムの制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの発電の停止の許否を決定するように構成されている、請求項23又は29記載の電力供給システムの制御装置。
  39.  前記電力供給システムの制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの発電の停止後の処理動作の継続の許否を決定するように構成されている、請求項23又は30記載の電力供給システムの制御装置。
  40.  前記電力供給システムの制御装置は、前記蓄電ユニットからの供給可能電力に基づいて前記発電システムの停止モードを前記停止電力が相対的に大きい第1の停止モードと、前記停止電力が相対的に小さい第2の停止モードとの間で切替えるように構成されている、請求項23又は31記載の電力供給システムの制御装置。
  41.  前記電力供給システムの制御装置は、前記発電システムの発電の停止予定時刻前に前記電力系統及び前記発電ユニットの少なくともいずれか一方より前記蓄電ユニットに充電するよう制御する、請求項23又は32記載の電力供給システムの制御装置。
  42.  前記電力供給システムの制御装置は、前記第1の制御及び前記第2の制御の少なくともいずれか一方を実行する場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記外部電力負荷に供給するように制御する、請求項23に記載の電力供給システムの制御装置。
  43.  発電システムを起動するときに前記発電システムの起動電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、蓄電ユニットの電力を前記発電システム及び前記外部電力負荷の少なくともいずれか一方に供給するステップとを備える第1の制御と、
     前記発電システムの発電を停止するときに前記発電システムの停止電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び外部電力負荷の少なくともいずれか一方に供給するステップとを備える第2の制御と、の少なくともいずれか一方を実行する、電力供給システムの運転方法。
  44.  発電システムを起動するときに前記発電システムの起動電力と外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、蓄電ユニットの電力を前記発電システム及び外部電力負荷の少なくともいずれか一方に供給するステップとを備える第1の制御と、
     前記発電システムの発電を停止するときに前記発電システムの起動電力と前記外部電力負荷の消費電力との合計が電力系統から受電可能な上限電力を超えるか否かを予測するステップと、前記合計が前記上限電力を超えると予測される場合に、前記電力系統から供給される電力が、前記上限電力を超えないように、前記蓄電ユニットの電力を前記発電システム及び外部電力負荷の少なくともいずれか一方に供給するステップとを備える第2の制御と、の少なくともいずれか一方を実行する、電力供給システムの制御方法。
PCT/JP2011/004266 2010-07-28 2011-07-28 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法 WO2012014474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/695,753 US9246345B2 (en) 2010-07-28 2011-07-28 Power supply system, controller of power supply system, method of operating power supply system, and method of controlling power supply system
CN201180022516.0A CN102884700B (zh) 2010-07-28 2011-07-28 电力供给系统、电力供给系统的控制装置、电力供给系统的运转方法和电力供给系统的控制方法
EP11812076.5A EP2557649A4 (en) 2010-07-28 2011-07-28 POWER SUPPLY SYSTEM, DEVICE FOR CONTROLLING THE POWER SUPPLY SYSTEM, OPERATING PROCESS FOR THE POWER SUPPLY SYSTEM AND METHOD FOR CONTROLLING THE POWER SUPPLY SYSTEM
JP2012526327A JP5184718B2 (ja) 2010-07-28 2011-07-28 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169076 2010-07-28
JP2010-169076 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014474A1 true WO2012014474A1 (ja) 2012-02-02

Family

ID=45529705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004266 WO2012014474A1 (ja) 2010-07-28 2011-07-28 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法

Country Status (5)

Country Link
US (1) US9246345B2 (ja)
EP (1) EP2557649A4 (ja)
JP (1) JP5184718B2 (ja)
CN (1) CN102884700B (ja)
WO (1) WO2012014474A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196952A (ja) * 2012-03-21 2013-09-30 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムの制御装置および運転方法
JP2015133213A (ja) * 2014-01-10 2015-07-23 京セラ株式会社 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
WO2016084903A1 (ja) * 2014-11-28 2016-06-02 日本電気株式会社 電力管理装置、電力管理システム、電力管理方法、及び、プログラム
JP2019024314A (ja) * 2018-10-11 2019-02-14 京セラ株式会社 電力管理システム、電力管理方法、電力管理装置及び燃料電池装置
US10608268B2 (en) 2012-08-06 2020-03-31 Kyocera Corporation Management system, management method, control apparatus, and power generation apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012144B2 (ja) * 2011-05-20 2016-10-25 パナソニックエコソリューションズ電路株式会社 充電制御システム
JP5776487B2 (ja) * 2011-10-13 2015-09-09 ソニー株式会社 電力制御装置およびプログラム
CN103199594B (zh) * 2013-04-27 2015-04-15 国家电网公司 风光储式电动汽车充换电站
CN105281352A (zh) * 2014-06-06 2016-01-27 �林昌明 一种光储一体化离网系统及其多级优化控制方法
CN104201706A (zh) * 2014-09-04 2014-12-10 北京艾科迈新能源科技有限公司 一种兼顾故障穿越与并离网无缝切换的储能协调控制方法
CN104362671B (zh) * 2014-10-27 2018-03-16 国家电网公司 一种大规模风电和抽水蓄能联合送出多目标优化协调方法
CN104319822B (zh) * 2014-11-19 2016-08-17 国网上海市电力公司 一种跨电网电力调峰能力调度方法和设备
CN105207272B (zh) * 2015-09-18 2018-03-13 武汉大学 基于通用分布的电力系统动态随机经济调度方法及装置
CN105703452A (zh) * 2016-04-25 2016-06-22 中物院成都科学技术发展中心 一种具有供电电池与超级电容的供电系统和供电方法
JP6834852B2 (ja) * 2017-08-30 2021-02-24 株式会社ダイフク スタッカークレーン
CN111466061B (zh) * 2017-12-15 2023-03-17 松下知识产权经营株式会社 电力管理系统
KR101945501B1 (ko) * 2018-05-23 2019-02-08 주식회사 광명전기 에너지 저장 장치와 태양광 발전을 이용한 전력 공급 제어 시스템 및 방법
KR102280972B1 (ko) * 2019-11-12 2021-07-23 주식회사 릴테크 스마트 고소설치기기 승강장치 및 그 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034162A (ja) * 2000-07-14 2002-01-31 Nippon Telegr & Teleph Corp <Ntt> 分散電源システムとその制御方法
JP2004180469A (ja) * 2002-11-29 2004-06-24 Toshiba Eng Co Ltd 発電装置
JP2006019169A (ja) 2004-07-02 2006-01-19 Tokyo Gas Co Ltd コージェネレーションシステム及びその運転制御方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666006A (en) * 1994-05-12 1997-09-09 Apple Computer, Inc. Circuit offering sequential discharge and simultaneous charge for a multiple battery system and method for charging multiple batteries
EP1638184A3 (en) * 1998-04-02 2009-03-25 Capstone Turbine Corporation Power controller
JP3624831B2 (ja) * 2000-12-28 2005-03-02 株式会社デンソー 車両用電源装置及びエンジン駆動規制支援装置
JP3899518B2 (ja) * 2002-09-30 2007-03-28 カシオ計算機株式会社 燃料電池システム及びその駆動制御方法並びに電源システムを備えた電子機器
GB2403377A (en) * 2003-06-26 2004-12-29 Nokia Corp Portable battery-driven apparatus
AU2003903839A0 (en) * 2003-07-24 2003-08-07 Cochlear Limited Battery characterisation
US7418315B2 (en) 2003-07-25 2008-08-26 Matsushita Electric Industrial Co., Ltd. Power generation system
JP4520959B2 (ja) 2005-04-22 2010-08-11 アイシン精機株式会社 電力供給システム
WO2007094054A1 (ja) * 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha 電力系統安定化システム
JP4682901B2 (ja) * 2006-04-04 2011-05-11 株式会社デンソー 発電制御システム
JP4486618B2 (ja) * 2006-06-06 2010-06-23 株式会社リコー 充電回路、充電回路の動作制御方法及び電源装置
JP2008061487A (ja) * 2006-07-31 2008-03-13 Toyota Motor Corp 電源システムおよびそれを備えた車両、蓄電装置の昇温制御方法、ならびに蓄電装置の昇温制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JPWO2008047400A1 (ja) * 2006-10-16 2010-02-18 Vpec株式会社 電力システム
JP5109360B2 (ja) 2006-12-14 2012-12-26 オムロン株式会社 燃料電池システム
JP5132158B2 (ja) * 2007-01-29 2013-01-30 パナソニック株式会社 電源システム、電源システムの電力供給制御方法及びその電力供給制御プログラム
JP4494426B2 (ja) * 2007-02-16 2010-06-30 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
CN101542865B (zh) * 2007-02-20 2012-07-11 松下电器产业株式会社 发电装置及其运转方法
EP2136450A4 (en) * 2007-03-26 2013-06-19 Vpec Inc FEEDING SYSTEM
US7960944B2 (en) * 2007-09-05 2011-06-14 Eveready Battery Company, Inc. Power supply that supplies power to and communicates with an electrical appliance
US7966501B2 (en) * 2007-10-04 2011-06-21 Kabushiki Kaisha Toshiba Multi-function peripheral, power supply apparatus, and power supply control method
US7843088B2 (en) * 2008-03-07 2010-11-30 Harry Leonard Perper Energy conserving (stand-by mode) power saving design for battery chargers and power supplies
CN101572745B (zh) * 2008-04-28 2012-07-25 深圳富泰宏精密工业有限公司 手机电流供应系统及方法
EP2159731A1 (en) * 2008-08-26 2010-03-03 Research In Motion Limited Authorization status for smart battery used in mobile communication device
JP4466772B2 (ja) * 2008-09-03 2010-05-26 トヨタ自動車株式会社 車両の制御装置
JP4623181B2 (ja) * 2008-09-24 2011-02-02 トヨタ自動車株式会社 電動車両および充電制御システム
CN101741306A (zh) * 2008-11-14 2010-06-16 王丙祥 集成电路汽车电压调节器
JP5116732B2 (ja) * 2009-07-02 2013-01-09 ローム株式会社 電源制御装置、電源システムおよび電子機器
US8729863B2 (en) * 2009-07-10 2014-05-20 Motorola Mobility Llc Battery and energy management circuit with temporal storage mode
JP5570782B2 (ja) * 2009-10-16 2014-08-13 三洋電機株式会社 電源装置及びこれを備える車両並びに電源装置の充放電制御方法
JP5459394B2 (ja) * 2010-04-28 2014-04-02 トヨタ自動車株式会社 蓄電装置の制御装置およびそれを搭載する車両
US20110279096A1 (en) * 2010-05-17 2011-11-17 Sonntag Jeffrey L Method and apparatus for powering a high current system from a resistive electrical storage device
US8659263B2 (en) * 2010-12-03 2014-02-25 Motorola Solutions, Inc. Power supply circuit having low idle power dissipation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034162A (ja) * 2000-07-14 2002-01-31 Nippon Telegr & Teleph Corp <Ntt> 分散電源システムとその制御方法
JP2004180469A (ja) * 2002-11-29 2004-06-24 Toshiba Eng Co Ltd 発電装置
JP2006019169A (ja) 2004-07-02 2006-01-19 Tokyo Gas Co Ltd コージェネレーションシステム及びその運転制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557649A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196952A (ja) * 2012-03-21 2013-09-30 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムの制御装置および運転方法
US10608268B2 (en) 2012-08-06 2020-03-31 Kyocera Corporation Management system, management method, control apparatus, and power generation apparatus
US11165081B2 (en) 2012-08-06 2021-11-02 Kyocera Corporation Management system, management method, control apparatus, and power generation apparatus
JP2015133213A (ja) * 2014-01-10 2015-07-23 京セラ株式会社 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
WO2016084903A1 (ja) * 2014-11-28 2016-06-02 日本電気株式会社 電力管理装置、電力管理システム、電力管理方法、及び、プログラム
JPWO2016084903A1 (ja) * 2014-11-28 2017-09-07 日本電気株式会社 電力管理装置、電力管理システム、電力管理方法、及び、プログラム
US10763671B2 (en) 2014-11-28 2020-09-01 Nec Corporation Power management apparatus, power management system, power management method, and non-transitory storage medium
JP2019024314A (ja) * 2018-10-11 2019-02-14 京セラ株式会社 電力管理システム、電力管理方法、電力管理装置及び燃料電池装置

Also Published As

Publication number Publication date
US9246345B2 (en) 2016-01-26
US20130127249A1 (en) 2013-05-23
EP2557649A4 (en) 2014-01-08
CN102884700A (zh) 2013-01-16
JP5184718B2 (ja) 2013-04-17
CN102884700B (zh) 2016-01-20
EP2557649A1 (en) 2013-02-13
JPWO2012014474A1 (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5184718B2 (ja) 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法
JP5079176B2 (ja) 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法
JP6174410B2 (ja) 電力制御装置、電力制御方法、および電力制御システム
JP5253690B1 (ja) 電力供給システムおよびその制御方法
JP6574696B2 (ja) 電力制御装置、電力制御方法及び燃料電池システム
JP2015065009A (ja) コージェネレーション装置
JP6475945B2 (ja) 電力供給機器、電力供給方法、及び電力供給システム
JP6410567B2 (ja) 電力供給システム、起動制御装置及び電力供給システムの制御方法
JP7163509B2 (ja) 燃料電池システムの制御方法、及び燃料電池システム
JP6476240B2 (ja) 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
JP7226730B2 (ja) 電力地産地消システム
JP6629694B2 (ja) 電力制御装置及びその制御方法
JP6174477B2 (ja) 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
JP2015220209A (ja) 燃料電池システムの運転方法、及び、燃料電池システム
JP6137886B2 (ja) 燃料電池発電システム
KR101380671B1 (ko) 연료 전지 발전기 및 그 제어 방법
JP6440056B2 (ja) 制御装置および燃料電池システム
JP6161646B2 (ja) 制御装置、制御システム、制御方法及びプログラム
JP2008218059A (ja) 燃料電池発電システムを用いた可搬型自立発電装置及びその運転方法
JP2013045581A (ja) 燃料電池システム
JP2010244843A (ja) 燃料電池システム
JP2014099360A (ja) 発電システムおよび発電システムの運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022516.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526327

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13695753

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011812076

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE