JP4623181B2 - 電動車両および充電制御システム - Google Patents

電動車両および充電制御システム Download PDF

Info

Publication number
JP4623181B2
JP4623181B2 JP2008244149A JP2008244149A JP4623181B2 JP 4623181 B2 JP4623181 B2 JP 4623181B2 JP 2008244149 A JP2008244149 A JP 2008244149A JP 2008244149 A JP2008244149 A JP 2008244149A JP 4623181 B2 JP4623181 B2 JP 4623181B2
Authority
JP
Japan
Prior art keywords
battery
power
charging
upper limit
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008244149A
Other languages
English (en)
Other versions
JP2010081677A (ja
Inventor
典丈 光谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008244149A priority Critical patent/JP4623181B2/ja
Priority to US12/585,291 priority patent/US8686591B2/en
Publication of JP2010081677A publication Critical patent/JP2010081677A/ja
Application granted granted Critical
Publication of JP4623181B2 publication Critical patent/JP4623181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電力供給源からの供給電力により充電される充放電可能なバッテリを搭載した電動車両、および、当該電動車両においてバッテリの充電動作を制御する充電制御システムに関する。
従来から、動力源としてバッテリを搭載した電動車両、例えば、電気自動車やハイブリッド自動車が知られている。かかる電動車両の中には、電力供給源、例えば、外部電源などからの供給電力によりバッテリの充電が可能な車両がある。かかる車両において、外部電源から供給された電力は、バッテリの充電に用いられる他、空調装置やオーディオ装置などの電気設備(補機ユニット)の駆動にも用いられる場合があった。例えば、冬季や夏季には、乗車前(すなわち車両停車時)の車室内を予備的に空調するプレ空調を実行する場合が多い。外部充電実行時、すなわち、充電器と外部電力とが接続された状態で、このプレ空調が実行された場合には、外部電源からの供給電力を、バッテリだけでなく空調装置にも供給する技術も提案されている(例えば、特許文献1など)。かかる構成とすることで、バッテリの充電動作を効率的に行うことができる。
特開2001−63347号公報 特開平10−108379号公報
しかしながら、外部電源からの電力を補機ユニットにも供給した場合、過充電によるバッテリの損傷を招く場合があった。すなわち、外部電源からの補機ユニットへの電力供給が過剰となった場合、余剰電力はバッテリ側へと出力される。この時点で、バッテリが満充電となっていた場合には、過充電によるバッテリの損傷や寿命低下を招く。特許文献2には、かかる問題を避けるために、外部充電中における補機ユニットの駆動を禁止する技術が開示されている。しかし、かかる技術によれば、プレ空調などが制限されてしまい、利便性を損なうという問題がある。
そこで、本発明では、補機ユニットの駆動とバッテリの充電処理とを両立でき得る電動車両および充電制御システムを提供することを目的とする。
本発明の電動車両は、動力源の一つとして車両に搭載される充放電可能なバッテリと、電力供給源から供給される供給電力によりバッテリを充電する充電器と、前記バッテリおよび充電器の少なくとも一方から供給される電力により駆動される補機ユニットと、前記バッテリの充電量を取得する充電量取得手段と、前記充電量取得手段で取得された前記バッテリの充電量が規定の充電上限値を超過しないように前記充電器の駆動を制御する制御手段と、を備え、前記制御手段は、前記電力供給源からの供給電力によりバッテリを充電する際において、前記補機ユニット駆動時は、補機ユニット非駆動時に比して、前記充電上限値を小さくする、ことを特徴とする。
好適な態様では、さらに、前記バッテリの温度を検出する温度検出手段を備え、前記制御手段は、前記補機ユニット駆動時は、前記温度検出手段で検出された温度に応じて前記充電上限値を変動させる。また、前記制御手段は、前記バッテリの充電量が前記充電上限値を超過した場合には、前記充電器から補機ユニットへの電力供給を停止することも望ましい。また、前記制御手段が、充電量を予測しつつ電圧を一定に保って充電する定電圧制御方式を含む複数種類の制御方式で充電制御可能である場合、前記制御手段は、前記補機ユニット駆動時には、前記電圧制御方式以外の制御方式で充電制御を行うことも望ましい。さらに、前記電力供給源は、車両の外部に設けられた外部電源であることも望ましい。
他の本発明である充電制御システムは、電力供給源からの供給電力により充電される充放電可能なバッテリと、前記バッテリおよび前記電力供給源の少なくとも一方から供給される電力により駆動される補機ユニットと、を備えた電動車両において、前記バッテリの充電動作を制御する充電制御システムであって、前記電力供給源から供給される供給電力によりバッテリを充電する充電器と、前記バッテリの充電量を取得する充電量取得手段と、前記充電量取得手段で取得された前記バッテリの充電量が規定の充電上限値を超過しないように前記充電器の駆動を制御する制御手段と、を備え、前記制御手段は、前記電力供給源からの供給電力によりバッテリを充電する際において、前記補機ユニット駆動時は、補機ユニット非駆動時に比して、前記充電上限値を小さくする、ことを特徴とする。
本発明によれば、補機ユニット駆動時には充電上限値が小さくなるため、補機ユニットからバッテリに余剰電力が供給されたとしても過充電になりにくい。その結果、補機ユニットの駆動とバッテリの充電処理とを両立できる。
以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の実施形態である電動車両10のうち充電動作に関与する部位の概略構成図である。この電動車両10は、バッテリ20からの出力電力を動力源の一つとする車両で、例えば、ハイブリッド自動車や電気自動車などが該当する。
この電動車両10には、バッテリ20およびコンバータ22からなる複数の電源ユニット12が並列に接続されている。各バッテリ20は、充放電可能な二次電池、例えば、リチウムイオン電池などからなる。コンバータ22は、このバッテリ20と電動機ユニット14との間に設けられ、適宜、供給電圧を昇降圧する。
電源ユニット12には、電動機30およびインバータ32からなる複数の電動機ユニット14が接続されている。電動機30は、車輪を駆動するトルクを発生させるモータとして機能するとともに、制動時には発電して回生電力を発生させるジェネレータとしても機能する。車両の走行時、バッテリ20は、この電動機30に電力供給するとともに、当該電動機30で発電された回生電力により充電される。インバータ32は、電動機30とバッテリ20との間に設けられ、適宜、交流・直流変換を行う。
一つの電源ユニット12には、補機ユニット19も接続されている。補機ユニット19は、空調装置やオーディオ装置、冷却ファンなどの電気設備のほか、必要に応じて、DC−DCコンバータなどの電圧変換器を備えた回路ユニットである。この補機ユニット19は、通常、バッテリ20から供給されるバッテリ電力により駆動されるが、外部電源100によりバッテリ20を充電する外部充電時には、当該外部電源100から供給される外部電力によっても駆動される。
充電器16は、後述するMP−ECU18や、バッテリ20に設けられた各種センサなどとともに充電制御システムを構成する部品で、電力供給源である外部電源100から供給される外部電力によりバッテリ20を充電する。この充電器16は、車体表面に設けられた受電コネクタ34、および、外部電源100に設けられた送電コネクタ102を介して外部電源100と接続自在となっており、当該外部電源100から供給された電力を、適宜、昇圧・直流変換したうえで、バッテリ20に供給する。また、この外部充電実行時に、補機ユニット19が駆動される場合、充電器16は、外部電源100から供給された外部電力を補機ユニット19にも供給するようになっている。
PM−ECU18(パワー・マネージメント−エレクトリック・コントロール・ユニット)は、この充電器16の駆動を制御する制御手段である。このPM−ECU18は、バッテリ20に搭載された各種センサ(図示せず)で検出された電池温度や電流値、電圧値に基づいてSOC(State Of Charge)を算出する。また、PM−ECU18は、出されたSOCや補機ユニット19の駆動状態などに応じて、必要な電力量を算出し、当該電力量が充電器16から出力されるように、充電器16の駆動を制御する。
より具体的には、PM−ECU18は、予め規定された充電上限値Fと算出されたバッテリSOCとの差分量であるSOC偏差ΔC(ΔC=F−SOC)に基づいて、バッテリ20の充電に必要な電力である充電電力Wvを算出する。また、PM−ECU18は、補機ユニット19における消費電力Xsを推測し、当該補機ユニット19の駆動に必要な電力である補機駆動電力Wsを算出する。そして、PM−ECU18は、この充電電力Wvと補機駆動電力Wsとを合計した要求電力Wが充電器16から出力されるように、充電器16の駆動を制御する。
ここで、通常、バッテリ20への電力供給は、バッテリSOCが充電上限値Fに到達するまで行われる。換言すれば、充電上限値Fは、バッテリ20の充電動作を停止するか否かの判断基準値となる。従来の電動車両10では、補機ユニット19の駆動状況に関わらず、この充電上限値Fを一定としていることが多かった。しかし、充電上限値Fを一定値とした場合、補機ユニット19の消費電力Xsの急変を吸収できず、バッテリ20の過充電を招く場合があった。これについて図7を参照して説明する。
図7は、従来の電動車両におけるバッテリSOC、補機ユニット19の消費電力Xs、充電器16からの出力電力Wの関係の一例を示す図である。この図7において上段はバッテリSOC,中段は補機ユニット19の消費電力Xs、下段は充電器16からの出力電力Wの変動を示している。
この図7に図示するとおり、時刻tにおいて、車両に設けられた受電コネクタ34に外部電源100の送電コネクタ102が接続され、外部充電が開始されたとする。この場合、充電器16は、バッテリ20の充電に必要な電力である充電電力Wvを出力する。この充電器16からの電力供給により、バッテリSOCは徐々に増加する。なお、この充電電力Wvは、通常、充電上限値FとバッテリSOCとの差分量に応じて変動することが多いが、ここでは、説明を簡単にするために、バッテリSOCが充電上限値Fに到達するまで充電電力Wvは一定とする。
その後、時刻tにおいて、補機ユニット19の駆動が開始されたとする。この場合、充電器16は、充電電力Wvに、補機ユニット19の駆動に要するであろう電力である補機駆動電力Wsを加えた電力(Wv+Ws)を出力する。
そして、時刻tにバッテリSOCが充電上限値Fに到達したとする。この場合、充電器16は、バッテリ20への電力供給を停止する。その一方で、補機ユニット19は継続的に駆動しているため、バッテリSOCが充電上限値Fに到達した時刻t以降も、充電器16は、補機駆動電力Wsを出力し続けることになる。
ここで、このまま補機ユニット19において、安定的に補機駆動電力Ws分の電力が消費されるのであれば、問題はない。しかし、何らかの原因で、時刻tにおいて、補機ユニット19の消費電力Xsが一時的に急減したとする。この場合、本来であれば、この消費電力の急減に追従して、充電器16からの出力電力も急減することが望ましい。しかし、実際には、かかる急激な変化に迅速に追従することは困難であり、充電器16からは、実際の消費電力Xsよりも大きい電力が出力されることになる。その結果、補機ユニット19では消費しきれない余剰電力が生じることになる。かかる余剰電力は、通常、バッテリ20に出力され充電されることになる。
ここで、このバッテリ20は、時刻tの時点で充電上限値Fに達しており、さらなる電力供給は、過充電、ひいては、過充電に起因するバッテリ20の損傷や寿命低下などを招くおそれがある。かかる問題を避けるために、バッテリ20の外部充電実行中には、補機ユニット19の駆動を禁止する技術も提案されている。しかし、このように補機ユニット19の駆動について制限を設けることは、例えば、乗車前に車室を空調するプレ空調などの実行を制限することになり、利便性を損なうという問題がある。また、充電上限値Fを、多少の超過があってもバッテリ20を損傷しない程度の低めの値に設定することも考えられなくはない。しかし、その場合には、バッテリ20を十分に充電することができないという問題がある。
本実施形態では、こうした問題を避けるために、バッテリ20の充電を停止するか否かの基準値である充電上限値Fを補機ユニット19の駆動状況に応じて変更している。より具体的には、本実施形態では、補機ユニット19が駆動していないときの充電上限値である第一上限値Fに比して、補機ユニット19が駆動しているときの充電上限値Fである第二上限値Fを低くしている(F2<F1)。これにより、過充電に起因するバッテリ20の損傷等を防止できる。これについて図2を参照して説明する。
図2は、本実施形態におけるバッテリSOC、補機ユニット19の消費電力Xs、充電器16からの出力電力Wの関係を示す図である。図2において、上段はバッテリSOCを、中段は補機ユニット19の消費電力Xsを、下段は充電器16からの出力電力Wの変動をそれぞれ示している。また、上段における破線は、充電上限値Fの変動を示している。
いま、時刻tにおいて外部電源100から充電器16への電力供給が開始されたとする。この場合、PM−ECU18は、バッテリSOCが第一上限値Fに達しているか否かを判断し、達していない場合には、充電器16から充電電力Wvを出力させる。この充電電力Wvの供給によりバッテリSOCが徐々に増加する。
その後、時刻tにおいて、補機ユニット19の駆動が開始されたとする。この場合、PM−ECU18は、充電上限値Fを、第一上限値Fから第二上限値Fへと切り替える。この第二上限値Fは、第一上限値Fよりも小さく、多少超過しても過充電に起因するバッテリ20の損傷等を防止できる値に設定されている。補機ユニット19が駆動開始された後、PM−ECU18は、バッテリSOCが、この第二上限値Fに到達するか否かを監視する。
そして、時刻tにおいて、バッテリSOCが第二上限値Fに到達したとする。この場合、PM−ECU18は、充電器16に対して、バッテリ20への充電電力Wvの供給停止を指示する。この指示を受けて充電器16からは、補機ユニット19の駆動に必要な補機駆動電力Wsのみが出力されることになる。
その後、さらに、時刻tにおいて、補機ユニット19における消費電力Xsが、一時的に急減し、この消費電力の急減に充電器16が追従できなかったとする。この場合、補機ユニット19では消費し切れなかった余剰電力が発生することになり、当該余剰電力分だけ、バッテリ20がさらに充電されることになる。しかしながら、本実施形態では、この時刻tにおけるバッテリSOCは第二上限値Fであり、多少超過したとしても過充電に起因するバッテリ20損傷は生じないようになっている。したがって、時刻tにおいて、余剰電力がバッテリ20に供給されたとしても問題はないことになる。
その後、時刻tにおいて、補機ユニット19の駆動が停止すれば、PM−ECU18は、充電上限値を、第二上限値Fから第一上限値Fに切り替える。そして、この時点で、バッテリSOCが第一上限値Fに到達していない場合は、第一上限値Fに到達するまで、充電器16を駆動して、バッテリ20に充電電力Wvを供給する。これにより、バッテリ20には、十分な量の電力が蓄電されることになる。
以上の説明から明らかなとおり、補機ユニット19の駆動状況、換言すれば、バッテリ20に接続された電気負荷の状況に応じて、バッテリ20の充電上限値を切り替えることにより、過充電に起因するバッテリ20損傷を防止しつつ、十分な電力量の蓄電が可能となる。
なお、上記説明では、バッテリSOCが第二上限値Fを超過した後も、外部電力の補機ユニット19への供給を継続しているが、実際には、バッテリSOCが充電上限値を超過した場合、補機ユニット19への外部電力供給を遮断している。例えば、図3に図示するように、時刻tにおける補機ユニット19での消費電力の急減に伴い、バッテリSOCが第二上限値Fを超過したとする。この場合、当該超過を検知した時刻tの時点においてPM−ECU18は、充電器16と補機ユニット19との間に設けられたゲート(図示せず)を遮断し、補機ユニット19への外部電力の供給を停止する。そして、補機ユニット19の駆動に要する電力は、バッテリ20から供給されるようにする。その結果、ゲート遮断された時刻t以降、バッテリSOCは、徐々に低下していき、時刻tにおいて第二上限値Fに到達する。バッテリSOCが第二上限値Fに到達したことが検知できれば、PM−ECU18は、再び、充電器16と補機ユニット19との間のゲートを開放し、補機ユニット19に外部電力を供給する。
このように、バッテリSOCが、充電上限値Fを超過した場合に、補機ユニット19への外部電力の供給を停止することで、超過分のバッテリ20電力が積極的に補機ユニット19に供給されることになり、過充電によるバッテリ20の損傷をより確実に防止することができる。
また、上記の説明では、第二上限値Fを一定値としているが、実際には、第二上限値Fを電池温度(バッテリ温度)に応じて変動する変動値としている。図4は、本実施形態で用いる充電上限値マップの一例を示す図である。図4において、横軸は電池温度Kを、縦軸は充電上限値Fを示している。また、実線は、電池温度Kに応じて変動する第二上限値Fの一例を、破線は電池温度Kに関わらず一定の第一上限値Fを示している。この図4に図示するとおり、電池温度Kが一定基準値Kaに到達するまで、電池温度が上昇するほど第二上限値Fも上昇することが望ましい。これは、電池温度Kに応じて、バッテリ20周辺の電気特性も変動するためである。電池温度Kに応じて第二上限値Fも変動させることにより、電池温度Kの変動に応じた電気特性の変動にも対応でき、より適切なバッテリ20の充電動作が可能となる。
また、上記の説明では、充電器16から出力される充電電力Wvを一定としているが、実際には、SOC偏差量ΔCや電池温度に応じて、充電電力Wvも変動させている。具体的には、図5に図示する充電電力マップなどに基づいて、充電電力Wvを算出している。図5において、横軸は、SOC偏差量ΔCを、縦軸は充電電力Wvを示している。なお、SOC偏差量ΔCは、充電上限値Fと算出されたバッテリSOCとの差分値である。したがって、補機ユニット19非駆動時にはΔC=F−SOCであり、補機ユニット19駆動時にはΔC=F−SOCである。また、図5において実線、破線、一点鎖線は、それぞれ、電池温度KがK≧K1、K2≦K<K1未満、K<K2(K1>K2)の場合の充電電力Wvを示している。
この図5から明らかなとおり、充電上限値FとバッテリSOCとの差分量であるSOC偏差量ΔCが小さいほど充電電力Wvも小さくなる。かかる構成とすることで、バッテリSOCが充電上限値Fを超過する可能性を低減でき、より適切にバッテリ20の充電を行うことができる。また、電池温度Kが小さいほど、充電電力Wvも小さくなっている。かかる構成とすることで、電池温度Kの変動に応じた電気特性の変動にも対応でき、より適切なバッテリ20の充電動作が可能となる。
次に、本実施形態における充電処理の流れについて図6を参照して説明する。図6は、充電処理の流れを示すフローチャートである。充電動作は、車体表面に設けられた受電コネクタ34に、外部電源100に設けられた送電コネクタ102が装着されることで開始される。すなわち、PM−ECU18において、送電コネクタ102の装着が検知された場合に、充電動作が開始される(S10)。送電コネクタ102の装着が検知された場合、続いて、PM−ECU18は、補機ユニット19の駆動状態を確認する(S12)。補機ユニット19が駆動している場合には、第二上限値Fを充電上限値Fとして設定する(S14)。ここで、この第二上限値Fの値は、電池温度Kに応じて可変させることが望ましい。すなわち、PM−ECU18は、補機ユニット19が駆動していると判断した場合には、バッテリ20に設けられた温度センサを用いて電池温度を取得する。そして、得られた電池温度を、図4に図示する充電上限値マップなどに当てはめ、第二上限値Fの値を算出することが望ましい。
充電上限値F(第二上限値F)の値が算出できれば、続いて、PM−ECU18は、充電器16からの出力すべき電力、要求電力Wを算出する(S16)。要求電力Wは、バッテリ20の充電に必要な充電電力Wvと、補機ユニット19の駆動に必要な補機駆動電力Wsの合計値となる(W=Wv+Ws)。ここで、既述したとおり、充電電力Wvは、SOC偏差ΔCおよび電池温度Kに基づいて算出する。すなわち、PM−ECU18は、各種センサでの検出値に基づいて算出されたバッテリSOCと、ステップS14で算出された充電上限値F(F=F2)との差分量であるSOC偏差ΔCを算出する(ΔC=F−SOC)。そして、このSOC偏差ΔCと、温度センサで検出された電池温度Kと、を図5に図示する充電電力マップに当てはめ、充電に必要な充電電力Wvを算出する。
要求電力Wが算出できれば、PM−ECU18は、算出された要求電力Wが出力されるように、充電器16の駆動を制御し、バッテリ20および補機ユニット19へ電力を供給する(S18)。続いて、PM−ECU18は、補機ユニット19での消費電力Xsと、充電器16から出力される要求電力Wとを比較する(S20)。比較の結果、消費電力Xsのほうが大きく、要求電力Wだけでは不足する場合には、バッテリ20から当該不足分が出力されるように、バッテリ20の駆動を制御する(S22)。一方、要求電力Wが、消費電力Xs以上の場合(Ws≧Xs)には、続いて、PM−ECU18は、バッテリSOCと充電上限値F(=F)とを比較する(S32)。比較の結果、バッテリSOCが、充電上限値F以上の場合、PM−ECU18は、充電器16と補記ユニットの間のゲートを遮断し、補機ユニット19への外部電力の供給を停止する(S34)。そして、バッテリSOCが充電上限値Fを下回るまで、補機ユニット19には、バッテリ20からの出力電力を供給する。そして、バッテリSOCが、充電上限値Fを下回れば、ステップS12に戻り、ステップS12以降の処理を再度繰り返す。
ここで、ステップS12において、補機ユニット19が駆動されていないと判断された場合、PM−ECU18は、第一上限値Fを充電上限値Fに設定する(S24)。第一上限値Fは、図4に図示するとおり、第二上限値Fより大きく、かつ、電池温度Kに関わらず一定の値である。このF=Fの設定を行えば、続いて、PM−ECU18は、要求電力Wを算出する(S26)。要求電力Wは、充電電力Wvと補機駆動電力Wsとの合計値であるが、このステップS26において補機ユニット19は非駆動であるため、要求電力Wは、W=Wvとなる。この充電電力Wvは、ステップS16で説明したとおり、SOC偏差ΔC、電池温度K、図5に図示する充電電力マップなどに基づいて算出する。
要求電力Wが算出できれば、PM−ECU18は充電器16を駆動制御して、当該要求電力Wを出力させる(S28)。その後、PM−ECU18は、バッテリSOCと充電上限値F(=F1)との比較を行う(S30)。比較の結果、バッテリSOCが充電上限値F以上の場合には、充電処理を終了する。一方、充電上限値Fに比して、バッテリSOCが小さい場合には、再度、ステップS12に戻り、同様の処理を繰り返す。
以上の説明から明らかなとおり本実施形態によれば、補機ユニット19駆動時には、充電上限値を低減させている。換言すれば、補機ユニット19駆動時には、バッテリ20内において、余剰電力を吸収するために、(F−F)相当の大きさのバッファを常に確保できる。その結果、補機ユニット19における消費電力が急変したとしても、当該急変に起因する電力バランスの崩れを十分に吸収でき、バッテリ20の過充電に起因する各種不具合を防止することができる。
なお、バッテリ20の充電形式としては、電圧を一定に保ちつつ充電する定電圧充電(CV充電)や、電力を一定に保ちつつ充電する定電力充電(CP充電)などが知られている。このうち、CV充電は、電圧値などに基づいて充電量を予測しつつ、電圧を一定に保って充電する。このような充電量を予測する充電方式の場合において、補機ユニットのような外乱要因が存在すると、誤差が生じやすいという問題がある。したがって、バッテリ20から見て電気的負荷となる補機ユニット19が駆動している場合、換言すれば、外乱要因が存在している場合には、CV充電方式を禁止し、CP充電方式などの他の充電方式で充電するようにしてもよい。
また、上記説明では、車両の外部に設けられた外部電源を、バッテリ充電における電力供給源とした場合を例に挙げて説明しているが、車両に搭載された燃料電池をバッテリ充電の電力供給源としてもよい。
本発明の実施形態である電動車両のうち充電動作に関与する部位の概略構成図である。 本実施形態におけるSOC、補機ユニットでの消費電力、充電器からの出力電力の関係の一例を示す図である。 本実施形態におけるSOC、補機ユニットでの消費電力、充電器からの出力電力の関係の他の一例を示す図である。 本実施形態における充電上限値マップを示す図である。 本実施形態における充電電力マップを示す図である。 本実施形態における充電処理の流れを示すフローチャートである。 従来の電動車両におけるSOC、補機ユニットでの消費電力、充電器からの出力電力の関係の一例を示す図である。
符号の説明
10 電動車両、12 電源ユニット、14 電動機ユニット、16 充電器、19 補機ユニット、20 バッテリ、22 コンバータ、30 電動機、32 インバータ、34 受電コネクタ、100 外部電源、102 送電コネクタ。

Claims (6)

  1. 動力源の一つとして車両に搭載される充放電可能なバッテリと、
    電力供給源から供給される供給電力によりバッテリを充電する充電器と、
    前記バッテリおよび充電器の少なくとも一方から供給される電力により駆動される補機ユニットと、
    前記バッテリの充電量を取得する充電量取得手段と、
    前記充電量取得手段で取得された前記バッテリの充電量が規定の充電上限値を超過しないように前記充電器の駆動を制御する制御手段と、
    を備え、
    前記制御手段は、前記電力供給源からの供給電力によりバッテリを充電する際において、前記補機ユニット駆動時は、補機ユニット非駆動時に比して、前記充電上限値を小さくする、
    ことを特徴とする電動車両。
  2. 請求項1に記載の電動車両であって、さらに、
    前記バッテリの温度を検出する温度検出手段を備え、
    前記制御手段は、前記補機ユニット駆動時は、前記温度検出手段で検出された温度に応じて前記充電上限値を変動させる、
    ことを特徴とする電動車両
  3. 請求項1または2に記載の電動車両であって、
    前記制御手段は、前記バッテリの充電量が前記充電上限値を超過した場合には、前記充電器から補機ユニットへの電力供給を停止することを特徴とする電動車両。
  4. 請求項1から3のいずれか1項に記載の電動車両であって、
    前記制御手段が、充電量を予測しつつ電圧を一定に保って充電する定電圧制御方式を含む複数種類の制御方式で充電制御可能である場合、
    前記制御手段は、前記補機ユニット駆動時には、前記電圧制御方式以外の制御方式で充電制御を行う、
    ことを特徴とする電動車両。
  5. 請求項1から4のいずれか1項に記載の電動車両であって、
    前記電力供給源は、車両の外部に設けられた外部電源であることを特徴とする電動車両。
  6. 電力供給源からの供給電力により充電される充放電可能なバッテリと、前記バッテリおよび前記電力供給源の少なくとも一方から供給される電力により駆動される補機ユニットと、を備えた電動車両において、前記バッテリの充電動作を制御する充電制御システムであって、
    前記電力供給源から供給される供給電力によりバッテリを充電する充電器と、
    前記バッテリの充電量を取得する充電量取得手段と、
    前記充電量取得手段で取得された前記バッテリの充電量が規定の充電上限値を超過しないように前記充電器の駆動を制御する制御手段と、
    を備え、
    前記制御手段は、前記電力供給源からの供給電力によりバッテリを充電する際において、前記補機ユニット駆動時は、補機ユニット非駆動時に比して、前記充電上限値を小さくする、
    ことを特徴とする充電制御システム。
JP2008244149A 2008-09-24 2008-09-24 電動車両および充電制御システム Active JP4623181B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008244149A JP4623181B2 (ja) 2008-09-24 2008-09-24 電動車両および充電制御システム
US12/585,291 US8686591B2 (en) 2008-09-24 2009-09-10 Electrically-driven vehicle and charge control system which enable simultaneous performance of driving of an accessory unit and a charging process of a battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244149A JP4623181B2 (ja) 2008-09-24 2008-09-24 電動車両および充電制御システム

Publications (2)

Publication Number Publication Date
JP2010081677A JP2010081677A (ja) 2010-04-08
JP4623181B2 true JP4623181B2 (ja) 2011-02-02

Family

ID=42036955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244149A Active JP4623181B2 (ja) 2008-09-24 2008-09-24 電動車両および充電制御システム

Country Status (2)

Country Link
US (1) US8686591B2 (ja)
JP (1) JP4623181B2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089523A (ja) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp 電気自動車の充電制御装置
DE102010021030B4 (de) * 2010-05-19 2015-11-19 Audi Ag Bestimmen einer Energieverteilung aufgrund der Anwesenheit eines Benutzers
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
JP5621845B2 (ja) * 2010-06-23 2014-11-12 トヨタ自動車株式会社 車両用制御装置および車両用制御方法
JP5184718B2 (ja) * 2010-07-28 2013-04-17 パナソニック株式会社 電力供給システム、電力供給システムの制御装置、電力供給システムの運転方法、及び電力供給システムの制御方法
JP5263242B2 (ja) * 2010-08-24 2013-08-14 三菱自動車工業株式会社 空調制御装置
KR101181186B1 (ko) 2010-10-20 2012-09-18 현대자동차주식회사 원격 공조 제어를 위한 전기 자동차의 텔레매틱스 장치 및 그 원격 공조 제어 방법
US9290098B2 (en) * 2010-11-15 2016-03-22 Tai Dung Nguyen Electric vehicles with extended range
CN103260933B (zh) * 2010-12-14 2015-11-25 本田技研工业株式会社 车辆
US20130271080A1 (en) * 2010-12-21 2013-10-17 Nec Corporation Charging system and charging method
EP2663480A4 (en) * 2011-01-13 2016-10-26 Cummins Inc SYSTEM, METHOD AND DEVICE FOR CONTROLLING THE OUTPUT POWER DISTRIBUTION IN A HYBRID DRIVE TRAIN
KR101896648B1 (ko) * 2011-06-16 2018-10-04 르노 에스.아.에스. 자동차의 전기 부속품이 연결되어 있는 전기 배터리를 포함하는 자동차의 전기 부속품에 전력을 공급하는 방법
EP2645527A1 (en) * 2012-03-26 2013-10-02 Samsung SDI Co., Ltd. Battery pack
JP5345263B1 (ja) * 2012-05-18 2013-11-20 三菱電機株式会社 インバータ装置
CN104716698B (zh) * 2013-12-16 2017-06-16 高达能源科技股份有限公司 用于充电电池的充电器及其充电方法
JP6331697B2 (ja) * 2014-05-28 2018-05-30 トヨタ自動車株式会社 蓄電システム
JP6186315B2 (ja) * 2014-07-14 2017-08-23 本田技研工業株式会社 電力システム
US9643512B2 (en) * 2015-02-17 2017-05-09 Ford Global Technologies, Llc Vehicle battery charge preparation for post-drive cycle power generation
JP2018014820A (ja) * 2016-07-20 2018-01-25 三菱自動車工業株式会社 電動車両の外部給電装置
CN117644796A (zh) * 2018-01-08 2024-03-05 康明斯有限公司 电池充电期间插电式电动车辆附件再充电的系统和方法
JP7161340B2 (ja) * 2018-08-10 2022-10-26 株式会社Subaru 充電システム
KR102535466B1 (ko) * 2018-10-12 2023-05-23 삼성전자 주식회사 무선 충전 코일 및 상기 무선 충전 코일을 포함하는 전자 장치
CN109591598B (zh) * 2018-10-26 2022-03-08 南京中欧威能新能源动力系统有限公司 一种新能源汽车附加储能机构及使用方法
JP7265905B2 (ja) * 2019-03-27 2023-04-27 株式会社Subaru 車両
KR20200123888A (ko) * 2019-04-22 2020-11-02 현대자동차주식회사 친환경 차량용 충전 시스템 및 이를 이용한 충전 제어방법
DE102019216645A1 (de) * 2019-10-29 2021-04-29 Robert Bosch Gmbh Verfahren zum Laden eines elektrischen Energiespeichersystems, elektrisches Energiespeichersystem und Fahrzeug
CN112550071A (zh) * 2020-12-17 2021-03-26 宝能(西安)汽车研究院有限公司 用于电动车辆的防亏电系统和车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336236A (ja) * 1995-06-06 1996-12-17 Honda Motor Co Ltd 電気自動車用蓄電池充電制御装置
JPH10108379A (ja) * 1996-09-30 1998-04-24 Nissan Motor Co Ltd 電気自動車の充電制御システム
JPH1198697A (ja) * 1997-09-25 1999-04-09 Nissan Motor Co Ltd 電気車用二次電池の充電制御方法および充電制御装置
JP2000217206A (ja) * 1999-01-21 2000-08-04 Toyota Motor Corp 電気自動車の充電制御装置
JP2002325373A (ja) * 2001-04-25 2002-11-08 Toyota Motor Corp バッテリ容量制御装置
JP2002330552A (ja) * 2001-04-27 2002-11-15 Toyota Motor Corp バッテリ容量制御装置及びバッテリ容量制御方法
JP2008199761A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電源制御装置
JP2009071902A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 蓄電機構の充電制御装置および充電制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662190A (en) * 1950-04-05 1953-12-08 Hartford Nat Bank & Trust Co Electrical rectifying system
JPH07143682A (ja) * 1993-11-16 1995-06-02 Matsushita Electric Ind Co Ltd 充電装置
JP3247230B2 (ja) 1993-12-28 2002-01-15 トヨタ自動車株式会社 充電制御装置
JP3450906B2 (ja) * 1994-08-25 2003-09-29 本田技研工業株式会社 電気自動車用充電制御装置
JP3676134B2 (ja) * 1998-11-30 2005-07-27 三洋電機株式会社 充放電制御方法
JP2000166103A (ja) * 1998-12-01 2000-06-16 Sanyo Electric Co Ltd 充放電制御方法
JP2001063347A (ja) 1999-08-26 2001-03-13 Denso Corp 車両用空調制御システム
JP4206630B2 (ja) * 2000-10-04 2009-01-14 トヨタ自動車株式会社 燃料電池を有する直流電源
JP4232693B2 (ja) * 2004-06-08 2009-03-04 株式会社デンソー 車両用発電制御システム
WO2007092337A2 (en) * 2006-02-02 2007-08-16 Gentex Corporation Power supply circuit for selectively supplying power to a vehicle a ccessory
FR2916099B1 (fr) * 2007-05-11 2009-07-31 Commissariat Energie Atomique Procede de charge d'une batterie d'un systeme autonome

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336236A (ja) * 1995-06-06 1996-12-17 Honda Motor Co Ltd 電気自動車用蓄電池充電制御装置
JPH10108379A (ja) * 1996-09-30 1998-04-24 Nissan Motor Co Ltd 電気自動車の充電制御システム
JPH1198697A (ja) * 1997-09-25 1999-04-09 Nissan Motor Co Ltd 電気車用二次電池の充電制御方法および充電制御装置
JP2000217206A (ja) * 1999-01-21 2000-08-04 Toyota Motor Corp 電気自動車の充電制御装置
JP2002325373A (ja) * 2001-04-25 2002-11-08 Toyota Motor Corp バッテリ容量制御装置
JP2002330552A (ja) * 2001-04-27 2002-11-15 Toyota Motor Corp バッテリ容量制御装置及びバッテリ容量制御方法
JP2008199761A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電源制御装置
JP2009071902A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 蓄電機構の充電制御装置および充電制御方法

Also Published As

Publication number Publication date
US8686591B2 (en) 2014-04-01
JP2010081677A (ja) 2010-04-08
US20100072953A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP4623181B2 (ja) 電動車両および充電制御システム
US9421867B2 (en) Electric vehicle
US10759303B2 (en) Autonomous vehicle route planning
US8639413B2 (en) Vehicle power supply system and method for controlling the same
US7755329B2 (en) Battery charging time optimization system based on battery temperature, cooling system power demand, and availability of surplus external power
KR101139022B1 (ko) 2 전원 방식의 차량용 전력공급장치
US11007893B2 (en) Control device for electric vehicle and electric vehicle
KR101742392B1 (ko) 연료 전지 탑재 차량의 외부 급전 시스템의 제어 방법 및 외부 급전 시스템
US10239417B2 (en) Vehicle
JP3997965B2 (ja) 組電池の充放電制御装置および方法、プログラム、電池制御システム
US10099557B2 (en) Vehicle driven by motor and control method of charging and discharging of secondary battery provided in vehicle
US20130300192A1 (en) Electric vehicle power storage system
CN103813928A (zh) 电池的处理装置、车辆、电池的处理方法及电池的处理程序
US20190275912A1 (en) Fuel cell system, vehicle including fuel cell system, and control method of fuel cell system
CA2911056C (en) Fuel cell vehicle and control method therefor
US8501360B2 (en) Fuel cell output control device
JP7178892B2 (ja) 車両のバッテリ充電制御装置
JP2017011940A (ja) 燃料電池自動車の制御方法及び燃料電池自動車
JP5762699B2 (ja) ハイブリッドカーの電源装置
CN110949131A (zh) 车辆电气负载甩负荷
JP2020089100A (ja) 車両用充電制御システム
JP2020108230A (ja) 車載電気システム
JP3772876B2 (ja) ハイブリッド車両の制御装置
JP4501604B2 (ja) 電気システムの制御装置
EP4197079A1 (en) Battery module including a multi-function relay driver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4623181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3