WO2012014344A1 - 受信回路およびそれを備えた受信装置 - Google Patents

受信回路およびそれを備えた受信装置 Download PDF

Info

Publication number
WO2012014344A1
WO2012014344A1 PCT/JP2011/000205 JP2011000205W WO2012014344A1 WO 2012014344 A1 WO2012014344 A1 WO 2012014344A1 JP 2011000205 W JP2011000205 W JP 2011000205W WO 2012014344 A1 WO2012014344 A1 WO 2012014344A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
receiving circuit
output
amplifier
Prior art date
Application number
PCT/JP2011/000205
Other languages
English (en)
French (fr)
Inventor
細川嘉史
林錠二
神野一平
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800031930A priority Critical patent/CN102474278A/zh
Priority to US13/274,027 priority patent/US8462894B2/en
Publication of WO2012014344A1 publication Critical patent/WO2012014344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • H04B1/0032Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage with analogue quadrature frequency conversion to and from the baseband
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference

Definitions

  • the present invention relates to a receiving circuit, and more particularly to a receiving circuit that converts a high-frequency signal used in a mobile phone or a broadcasting system into a baseband signal.
  • a high-frequency signal input to a receiving circuit is first amplified by a low noise amplifier and then frequency-converted to a baseband signal by a frequency converter.
  • a low-pass filtering process is performed by the analog filter in order to attenuate the interference wave close to the desired wave band.
  • an equalizer may be provided after the analog filter to compensate for a phase change due to the filtering process of the analog filter.
  • the analog filter is set to a higher cutoff frequency and the equalizer is paused to reduce power consumption (for example, Patent Documents). 1).
  • an object of the present invention is to realize a receiving circuit that maintains good anti-jamming wave characteristics and SNDR even when operating at a low voltage.
  • the receiving circuit converts an input high-frequency signal into a baseband signal and further performs a low-pass filtering process at a cutoff frequency lower than the desired wave band, and an output of the analog signal processing unit A / D converter for converting the digital signal into a digital signal, and a digital signal processing unit for compensating the signal component of the desired wave band attenuated by the filtering process of the analog signal processing unit with respect to the digital signal.
  • the distortion component is reduced by the filtering characteristic of the analog signal processing unit, and the signal component of the desired wave is compensated by the compensation unit.
  • the compensation unit it is possible to improve the anti-jamming wave characteristics and SNDR of the receiving circuit.
  • the analog signal processing unit converts the frequency of the first amplifier that amplifies the high-frequency signal with low noise, the local oscillator that generates the local oscillation signal, and the output of the first amplifier with the local oscillation signal, and after the frequency conversion Included in the output of the frequency converter that performs a low-pass filtering process with a cutoff frequency lower than the desired wave band, the second amplifier that amplifies the output of the frequency converter, and the output of the second amplifier And an analog filter for attenuating signal components outside the desired wave band.
  • the digital signal processing unit removes a signal component outside the desired wave band included in the output of the A / D converter, and performs a filtering process having characteristics opposite to those of the frequency converter on the output of the digital filter.
  • the filtering characteristics of the frequency converter and the compensation unit may be made variable, and the receiving circuit may include a control unit that controls the filtering characteristics of the frequency converter and the compensation unit according to the reception level of the high-frequency signal. .
  • the gain of at least one of the first and second amplifiers is made variable, and the control unit increases the variable gain and raises the cutoff frequency of the frequency converter when the reception level of the high-frequency signal is low, for example.
  • the control unit detects the presence / absence of a high-level interfering wave close to the desired wave band from the input / output level difference of the digital filter, and increases the cutoff frequency of the frequency converter when no interfering wave is detected. When the interference wave is detected, the cutoff frequency of the frequency converter may be lowered.
  • the analog signal processing unit includes a first amplifier that amplifies a high-frequency signal with low noise, a local oscillator that generates a local oscillation signal, and a frequency converter that converts the output of the first amplifier with the local oscillation signal. And a second amplifier that amplifies the output of the frequency converter, and an analog filter that performs low-pass filtering on the output of the second amplifier at a cutoff frequency lower than the desired wave band.
  • the digital signal processing unit performs a digital filter for removing a signal component outside the desired wave band included in the output of the A / D converter, and performs a filtering process having characteristics opposite to those of the analog filter for the output of the digital filter. And a compensation unit.
  • the gain of the second amplifier may be variable
  • the receiving circuit may include a control unit that controls the gain of the second amplifier in accordance with the reception level of the high-frequency signal.
  • the analog signal processing unit may include a third amplifier that amplifies the output of the analog filter with a variable gain, and the control unit controls the gain of the third amplifier according to the reception level of the high-frequency signal. May be.
  • the receiving circuit may include a demodulator that demodulates the signal output from the digital signal processor.
  • the demodulation unit evaluates the signal quality after demodulation, and the control unit adjusts the filtering characteristic of the compensation unit based on the evaluation result of the demodulation unit.
  • the anti-jamming wave characteristic and SNDR can be kept good even when the voltage of the receiving circuit is lowered.
  • FIG. 1 is a configuration diagram of a receiving circuit according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the frequency converter.
  • FIG. 3 is a diagram illustrating an output frequency spectrum of each signal processing block in the receiving circuit according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between the cutoff frequency of the frequency converter and IM3 and NF.
  • FIG. 5 is a configuration diagram of a receiving circuit according to the second embodiment.
  • FIG. 6 is a diagram illustrating an output frequency spectrum of each signal processing block in the receiving circuit according to the second embodiment.
  • FIG. 7 is a configuration diagram of a receiving circuit according to the third embodiment.
  • FIG. 8 is a diagram illustrating an output frequency spectrum of each signal processing block in the receiving circuit according to the third embodiment.
  • FIG. 9 is a configuration diagram of a receiving circuit according to the fourth embodiment.
  • FIG. 10 is an overview of a receiving apparatus according to an embodiment of the present invention.
  • FIG. 1 shows a configuration of a receiving circuit according to the first embodiment.
  • a high frequency signal (RF signal) received by the antenna 1 is converted into a differential RF signal composed of two signals whose phases are different from each other by 180 degrees in the balun 2.
  • the RF signal is not limited to a wireless signal, but may be a wired signal input via a cable.
  • the analog signal processing unit 10A generates a baseband signal for each IQ by orthogonally transforming the differential RF signal.
  • the low noise amplifier (LNA) 11 amplifies the differential RF signal with low noise.
  • the gain of the LNA 11 may be variable or fixed.
  • the frequency converter 12A converts the frequency of the output of the LNA 11 with the local oscillation signal of each IQ. These local oscillation signals are obtained by phase shifting the local oscillation signals generated by the local oscillator 13 so that the phases thereof are different from each other by 90 degrees by the 90 degree phase shifter 14. Furthermore, the frequency converter 12A performs a low-pass filtering process on the frequency-converted signal.
  • FIG. 2 shows one configuration of the frequency converter 12A.
  • the frequency converter 12A includes an amplifier 121 that amplifies the input differential RF signal, a switch unit 122 that converts the differential output of the amplifier 121 with a local oscillation signal, and a variable cutoff frequency for the signal after frequency conversion.
  • the analog filter 123 that performs the low-pass filtering process can be configured.
  • the analog filter 123 according to this example employs a capacitor bank configuration in which the capacitance value is controlled by a control signal, but the resistance value may be variable.
  • the filtering characteristic of the analog filter 123 may be fixed filtering according to a desired wave band, and the analog filter 123 may be a high-order Butterworth filter, a Chebyshev filter, an elliptic filter, or the like.
  • the cut-off frequency of the analog filter 123 is set lower than the desired wave band, and preferably about half of the desired wave band.
  • the amplifier 15 amplifies the output of the frequency converter 12A.
  • the amplifier 15 can be composed of an AGC amplifier. Alternatively, the gain of the amplifier 15 may be fixed.
  • the analog filter 16 attenuates signal components outside the desired wave band included in the output of the amplifier 15.
  • the analog filter 16 can be configured by an LPF having a cutoff frequency higher than the desired wave band.
  • the A / D converter 20 converts each baseband signal of IQ output from the analog signal processing unit 10A into a digital signal.
  • the digital signal processing unit 30A compensates the signal component of the desired wave band attenuated by the filtering process of the analog signal processing unit 10A for the digital signal.
  • the digital filter 31 removes signal components outside the desired wave band included in the input digital signal.
  • the compensation unit 32 performs a filtering process with characteristics opposite to those of the frequency converter 12 ⁇ / b> A on the output of the digital filter 31.
  • the baseband signals of the digitized IQs output from the compensation unit 32 are synthesized by digital calculation and output from the digital signal processing unit 30A.
  • One digital filter 31 and one compensation unit 32 may be provided, and baseband signals of IQs digitized by the A / D converter 20 may be combined and input to the digital filter 31.
  • FIG. 3 shows the output frequency spectrum of each signal processing block.
  • FIG. 3A shows the output frequency spectrum of the LNA 11.
  • the high-frequency signal shown here is, for example, a digital broadcast wave, and there is a high level interference wave in the vicinity of the desired wave.
  • FIG. 3B shows the output frequency spectrum of the frequency converter 12A.
  • the frequency converter 12A performs frequency conversion using a local oscillation signal having a center frequency in a desired wave band (direct conversion method).
  • the interference wave is greatly attenuated by the filtering process of the frequency converter 12A, and the level of the distortion component generated in the amplifier 15 and the analog filter 16 can be greatly reduced.
  • FIG. 3C shows the output frequency spectrum of the analog filter 16. The interference wave is further attenuated by the filtering process of the analog filter 16.
  • the A / D converter 20 has a sufficiently large dynamic range capable of A / D conversion from the minimum amplitude level of the attenuated desired wave to the maximum amplitude level of the remaining interference wave.
  • FIG. 3D shows the output frequency spectrum of the digital filter 31. The interference wave is removed by the filtering process of the digital filter 31.
  • FIG. 3E shows the output frequency spectrum of the compensation unit 32. Compensation is performed so that the signal level of the desired wave band becomes uniform by the filtering process of the compensation unit 32.
  • the dynamic range of the A / D converter 20 is sufficiently large, the desired wave band can be compensated without deterioration in signal quality. Thereby, it is possible to prevent deterioration of signal quality in the demodulator 40 described later.
  • the demodulator 40 demodulates the output of the digital signal processor 30A to generate a video signal and an audio signal.
  • the demodulator 40 performs demodulation processing after D / A converting the output of the digital signal processor 30A.
  • the control unit 50 controls the variable gain and variable filtering characteristics of each signal processing block of the LNA 11, the frequency converter 12A, the amplifier 15, and the compensation unit 32 according to the reception level of the high-frequency signal input to the receiving circuit.
  • the control unit 50 can detect the reception level of the high-frequency signal by comparing the output level of the digital signal processing unit 30A and the reference level.
  • the reference level is set to a level sufficient for the demodulation unit 40 to perform demodulation processing.
  • a level comparator may be provided separately to detect the reception level of the high frequency signal from the comparison result between the output level of each signal processing block and the reference level.
  • variable gain and variable filtering characteristics of each signal processing block are specifically controlled as follows.
  • the gains of the LNA 11 and the amplifier 15 are increased.
  • the cutoff frequency of the frequency converter 12A is increased, and a filtering characteristic that follows the change of the cutoff frequency is set for the compensation unit 32.
  • the gain of the LNA 11 is controlled to the maximum value, the cutoff frequency of the frequency converter 12A may be increased.
  • the reception level of the high frequency signal is high, the gains of the LNA 11 and the amplifier 15 are reduced. Further, the cutoff frequency of the frequency converter 12A is lowered, and a filtering characteristic that follows the change of the cutoff frequency is set for the compensation unit 32.
  • the cut-off frequency When the cut-off frequency is lowered, the NF of the frequency converter 12A is lowered, and the anti-jamming wave characteristics of the amplifier 15 and the analog filter 16 arranged at the subsequent stage of the frequency converter 12A are improved. In addition, it is possible to eliminate the minimum reception sensitivity deterioration of the reception circuit.
  • FIG. 4 shows the relationship between the cutoff frequency of the frequency converter 12A and IM3 and NF.
  • the horizontal axis represents the ratio of the cutoff frequency to the desired wave band.
  • the left vertical axis represents the third-order distortion component (IM3) generated in the amplifier 15.
  • the right vertical axis represents the NF of the circuit portion comprising the frequency converter 12A and the amplifier 15. It is assumed that the gain of the frequency converter 12A is 18 dB, and the LPF characteristic is a secondary characteristic.
  • the illustrated graph is obtained when a -30 dBm interference wave is input in the vicinity of the desired wave band.
  • NF and IM3 have opposite changes with respect to the values on the horizontal axis.
  • the value on the horizontal axis is around 0.5
  • IM3 can be reduced by about 20 dB while suppressing NF degradation to about 0.5 dB. Therefore, as described above, the cut-off frequency of the frequency converter 12A is preferably about half of the desired wave band.
  • the distortion components generated in the amplifier 15 and the analog filter 16 are reduced by the filtering characteristics of the frequency converter 12A. Then, by compensating the signal component in the desired wave band by the compensation unit 32, it is possible to improve the anti-jamming wave characteristic of the receiving circuit.
  • FIG. 5 shows a configuration of a receiving circuit according to the second embodiment.
  • differences from the first embodiment will be described.
  • the frequency converter 12B only converts the frequency of the output of the LNA 11 with the local oscillation signal of each IQ, and does not have a low-pass filtering characteristic. Instead, the analog filter 16 performs a low-pass filtering process on the output of the frequency converter 12B at a cutoff frequency lower than the desired wave band.
  • An amplifier 17 is provided after the analog filter 16. This is because if the output of the frequency converter 12B is amplified with a high gain in the amplifier 15, the distortion characteristic may be deteriorated by a high level interference wave. Therefore, the gain of the amplifier 15 is kept low, This is because the signal after the filtering process is sufficiently amplified.
  • the gains of the amplifiers 15 and 17 are controlled by the control unit 50.
  • FIG. 6 shows the output frequency spectrum of each signal processing block.
  • FIG. 6A shows an output frequency spectrum of the frequency converter 12B.
  • the high-frequency signal shown here is, for example, a digital broadcast wave, and there is a high level interference wave in the vicinity of the desired wave.
  • FIG. 6B shows the output frequency spectrum of the analog filter 16. The interference wave is greatly attenuated by the filtering process of the analog filter 16, and the level of the distortion component generated in the amplifier 17 can be greatly reduced.
  • FIG. 6C shows the output frequency spectrum of the compensation unit 32. Compensation is performed so that the signal level of the desired wave band becomes uniform by the filtering process of the compensation unit 32.
  • the distortion component generated in the amplifier 17 is reduced by the filtering characteristic of the analog filter 16 even if the distortion characteristic of each signal processing block is significantly deteriorated due to the low voltage operation. Then, by compensating the signal component in the desired wave band by the compensation unit 32, it is possible to improve the anti-jamming wave characteristic of the receiving circuit.
  • control unit 50 may control the gain of the LNA 11. Further, although the anti-jamming wave characteristic is somewhat deteriorated, the amplifier 17 may be omitted and the gain of the amplifier 15 may be increased.
  • FIG. 7 shows a configuration of a receiving circuit according to the third embodiment.
  • the receiving circuit according to the present embodiment is obtained by adding an image rejection unit 33 to the receiving circuit of FIG.
  • image rejection unit 33 to the receiving circuit of FIG.
  • the local oscillator 13 generates a local oscillation signal having a frequency lower or higher than the desired wave band.
  • the analog signal processing unit 10A performs Low-IF frequency conversion, and the high-frequency signal is converted into a baseband signal in the intermediate frequency band.
  • the intermediate frequency is, for example, a half value of the desired wave band.
  • an image rejection unit 33 is provided in front of the digital filter 31. The image rejection unit 33 receives baseband signals of IQs output from the A / D converter 20 and removes image signal components included in the respective signals.
  • FIG. 8 shows the output frequency spectrum of each signal processing block.
  • FIG. 8A shows the output frequency spectrum of the LNA 11.
  • the high-frequency signal shown here is, for example, an analog broadcast wave, and high-level video signals and audio signals exist in the desired wave band.
  • the video signal has a higher level and a lower frequency. Therefore, frequency conversion is performed with a local oscillation signal having a frequency lower than the desired wave band.
  • FIG. 8B shows the output frequency spectrum of the frequency converter 12A.
  • the video signal and the audio signal are frequency-converted to the intermediate frequency band and attenuated by the filtering process of the frequency converter 12A.
  • the Low-IF frequency conversion increases the level difference between the video signal and the audio signal, and the level of the audio signal is significantly attenuated from the level of the video signal.
  • FIG. 8C shows the output frequency spectrum of the compensation unit 32.
  • the level difference between the video signal and the audio signal is compensated by the filtering process of the compensation unit 32 so as to be the level difference before the frequency conversion.
  • the low-IF frequency conversion and filtering characteristics of the frequency converter 12A generate the amplifier 15 and the analog filter 16. Distortion component to be reduced. Then, by compensating the signal component of the desired wave band by the compensation unit 32, it is possible to improve the SNDR characteristic of the receiving circuit. The same effect can be obtained even when the image rejection unit 33 is added to the receiving circuit of FIG.
  • FIG. 9 shows a configuration of a receiving circuit according to the fourth embodiment. Hereinafter, differences from the first embodiment will be described.
  • the control unit 50 receives an input signal and an output signal of the digital filter 31 that performs the filtering process of the I signal, detects the presence / absence of a high level interference wave close to the desired wave band from the input / output level difference, and the detection result
  • Each signal processing block is controlled according to the above. For example, when the input / output level difference is larger than the threshold value, it is estimated that a high level jamming wave exists, and conversely, when the input / output level difference is smaller than the threshold value, it is estimated that no high level jamming wave exists.
  • the control unit 50 increases the gains of the LNA 11 and the amplifier 15 when a high level interference wave is not detected.
  • the cutoff frequency of the frequency converter 12A is increased, and a filtering characteristic that follows the change of the cutoff frequency is set for the compensation unit 32.
  • the gains of the LNA 11 and the amplifier 15 are reduced.
  • the cutoff frequency of the frequency converter 12A is lowered, and a filtering characteristic that follows the change of the cutoff frequency is set for the compensation unit 32.
  • the demodulator 40 evaluates the signal quality after demodulation.
  • the signal quality is, for example, a BER characteristic, a C / N characteristic, or the like.
  • the control unit 50 further receives the evaluation result from the demodulation unit 40 and adjusts the filtering characteristic of the compensation unit 32.
  • the amplifier 15 and the analog filter can be changed by changing the filtering characteristic of the frequency converter 12A according to the presence or absence of an interference wave even if the distortion characteristic of each signal processing block is significantly deteriorated due to the low voltage operation. 16 is reduced. Then, by compensating the signal component in the desired wave band by the compensation unit 32, it is possible to improve the anti-jamming wave characteristic of the receiving circuit. Furthermore, by monitoring the signal quality characteristic of the demodulator 40, the filtering characteristic of the compensator 32 can be adaptively controlled so that the anti-jamming wave characteristic is optimized.
  • the balun 2 may be omitted and each signal processing block may be modified to process a single-phase signal.
  • FIG. 10 shows an overview of a receiving apparatus according to an embodiment of the present invention.
  • the receiving device is, for example, a television receiver including the receiving circuit 100 according to each of the above embodiments and the display panel 101 as an output device that displays the output of the receiving circuit 100.
  • the receiving circuit 100 can also be applied to a television broadcast recorder provided with a recording device as an output device.
  • the receiving circuit according to the present invention can maintain good anti-jamming characteristics and SNDR even when the voltage is lowered, it is useful as a TV tuner or a portable communication terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

 低電圧動作しても耐妨害波特性およびSNDRを良好に保つ受信回路を実現する。受信回路において、アナログ信号処理部(10A)は、入力された高周波信号をベースバンド信号に周波数変換してさらに希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行う。A/D変換器(20)は、アナログ信号処理部(10)の出力をデジタル信号に変換する。デジタル信号処理部(30A)は、A/D変換器(20)の出力に対してアナログ信号処理部(10A)のフィルタリング処理で減衰した希望波帯域の信号成分を補償する。

Description

受信回路およびそれを備えた受信装置
 本発明は、受信回路に関し、特に携帯電話や放送システムなどで用いられる高周波信号をベースバンド信号に周波数変換する受信回路に関する。
 一般に、受信回路に入力された高周波信号はまず低雑音増幅器で増幅された後、周波数変換器でベースバンド信号に周波数変換される。そして、ベースバンド信号はAGC増幅器で増幅された後、希望波帯域に近接した妨害波を減衰させるためにアナログフィルタで低域通過フィルタリング処理が行われる。さらに、アナログフィルタの後段にイコライザを設けて、アナログフィルタのフィルタリング処理による位相変化を補償することがある。かかる構成の受信回路において、妨害波が存在しない場合にはアナログフィルタのカットオフ周波数を高めに設定するとともにイコライザを休止させることで、消費電力の低減を図っているものがある(例えば、特許文献1参照)。
特開2008-5259号公報
 受信回路の消費電力を低減するには動作電圧を下げることが効果的である。しかし、受信回路を低電圧化した場合、各信号処理ブロック、特にベースバンド信号を増幅するAGC増幅器の歪特性が著しく劣化し、受信機としての耐妨害波特性が劣化するという問題が生じる。すなわち、従来の受信回路は単に低電圧化しただけでは妨害波に起因する歪成分を十分に低減することができずに耐妨害波特性に限界がある。また、受信回路を低電圧化すると、入力される希望波の受信レベルが高すぎる場合に希望波に起因する歪成分により信号対雑音歪比(SNDR)が劣化するという問題も生じる。これは、NTSCやPALなどの高いSNDRが求められるアナログ放送信号の受信回路にとっては深刻な問題である。
 上記問題に鑑み、本発明は、低電圧動作しても耐妨害波特性およびSNDRを良好に保つ受信回路を実現することを課題とする。
 上記課題を解決するために本発明によって次のような手段を講じた。すなわち、受信回路は、入力された高周波信号をベースバンド信号に周波数変換してさらに希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行うアナログ信号処理部と、アナログ信号処理部の出力をデジタル信号に変換するA/D変換器と、デジタル信号に対してアナログ信号処理部のフィルタリング処理で減衰した希望波帯域の信号成分を補償するデジタル信号処理部とを備えている。
 これによると、低電圧動作により受信回路の各信号ブロックの歪特性が著しく劣化しても、アナログ信号処理部のフィルタリング特性により歪成分を低減し、補償部で希望波の信号成分を補償することで、受信回路の耐妨害波特性およびSNDRを改善させることが可能となる。
 例えば、アナログ信号処理部は、高周波信号を低雑音増幅する第1の増幅器と、局部発振信号を生成する局部発振器と、第1の増幅器の出力を局部発振信号で周波数変換し、当該周波数変換後の信号に対して希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行う周波数変換器と、周波数変換器の出力を増幅する第2の増幅器と、第2の増幅器の出力に含まれる希望波帯域外の信号成分を減衰させるアナログフィルタとを有する。また、デジタル信号処理部は、A/D変換器の出力に含まれる希望波帯域外の信号成分を除去するデジタルフィルタと、デジタルフィルタの出力に対して周波数変換器とは逆特性のフィルタリング処理を行う補償部とを有する。さらに、周波数変換器および補償部のフィルタリング特性を可変にして、受信回路は、高周波信号の受信レベルに応じて周波数変換器および補償部のそれぞれのフィルタリング特性を制御する制御部を備えていてもよい。
 さらに、第1および第2の増幅器の少なくとも一方のゲインを可変にして、制御部は、例えば、高周波信号の受信レベルが低いときは当該可変ゲインを大きくするとともに周波数変換器のカットオフ周波数を高くし、高周波信号の受信レベルが高いときは当該可変ゲインを小さくするとともに周波数変換器のカットオフ周波数を低くする。あるいは、制御部は、デジタルフィルタの入出力レベル差から希望波帯域に近接した高レベルの妨害波の有無を検出し、妨害波が検出されなかったときは周波数変換器のカットオフ周波数を高くし、妨害波が検出されたときは周波数変換器のカットオフ周波数を低くしてもよい。
 あるいは、例えば、アナログ信号処理部は、高周波信号を低雑音増幅する第1の増幅器と、局部発振信号を生成する局部発振器と、第1の増幅器の出力を局部発振信号で周波数変換する周波数変換器と、周波数変換器の出力を増幅する第2の増幅器と、第2の増幅器の出力に対して希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行うアナログフィルタとを有する。また、デジタル信号処理部は、A/D変換器の出力に含まれる希望波帯域外の信号成分を除去するデジタルフィルタと、デジタルフィルタの出力に対してアナログフィルタとは逆特性のフィルタリング処理を行う補償部とを有する。さらに、第2の増幅器のゲインを可変にして、受信回路は、高周波信号の受信レベルに応じて第2の増幅器のゲインを制御する制御部を備えていてもよい。さらに、アナログ信号処理部は、アナログフィルタの出力を可変ゲインで増幅する第3の増幅器を有していてもよく、制御部は、高周波信号の受信レベルに応じて第3の増幅器のゲインを制御してもよい。
 また、受信回路は、デジタル信号処理部から出力された信号を復調処理する復調部を備えていてもよい。例えば、復調部は、復調後の信号品質を評価するものであり、制御部は、復調部の評価結果に基づいて前記補償部のフィルタリング特性を調整する。
 本発明によると、受信回路を低電圧化しても耐妨害波特性およびSNDRを良好に保つことができる。
図1は、第1の実施形態に係る受信回路の構成図である。 図2は、周波数変換器の一構成例を示す図である。 図3は、第1の実施形態に係る受信回路における各信号処理ブロックの出力周波数スペクトラムを示す図である。 図4は、周波数変換器のカットオフ周波数とIM3およびNFの関係を示すグラフである。 図5は、第2の実施形態に係る受信回路の構成図である。 図6は、第2の実施形態に係る受信回路における各信号処理ブロックの出力周波数スペクトラムを示す図である。 図7は、第3の実施形態に係る受信回路の構成図である。 図8は、第3の実施形態に係る受信回路における各信号処理ブロックの出力周波数スペクトラムを示す図である。 図9は、第4の実施形態に係る受信回路の構成図である。 図10は、本発明の一実施形態に係る受信装置の概観図である。
 (第1の実施形態)
 図1は、第1の実施形態に係る受信回路の構成を示す。アンテナ1で受信した高周波信号(RF信号)は、バラン2で位相が互いに180度異なる2つの信号からなる差動RF信号に変換される。RF信号は無線信号に限られず、ケーブルを介して入力される有線信号であってもよい。アナログ信号処理部10Aは、差動RF信号を直交変換してIQそれぞれのベースバンド信号を生成する。具体的には、アナログ信号処理部10Aにおいて、低雑音増幅器(LNA)11は、差動RF信号を低雑音増幅する。LNA11のゲインは可変でも固定でもいずれであってもよい。周波数変換器12Aは、LNA11の出力をIQそれぞれの局部発振信号で周波数変換する。これら局部発振信号は、局部発振器13で生成された局部発振信号を90度位相シフタ14で位相が互いに90度異なるように位相シフトしたものである。さらに、周波数変換器12Aは、周波数変換後の信号に対して低域通過フィルタリング処理を行う。
 図2は、周波数変換器12Aの一構成を示す。周波数変換器12Aは、入力された差動RF信号を増幅する増幅器121、増幅器121の差動出力を局部発振信号で周波数変換するスイッチ部122、および周波数変換後の信号に対して可変カットオフ周波数で低域通過フィルタリング処理を行うアナログフィルタ123で構成することができる。本例に係るアナログフィルタ123は、制御信号で容量値が制御される容量バンク構成を採用しているが、抵抗値を可変にしてもよい。また、アナログフィルタ123のフィルタリング特性は希望波帯域に応じた固定のフィルタリング特定であってもよく、さらに、アナログフィルタ123は、高次のバタワースフィルタ、チェビシェフフィルタ、楕円フィルタなどであってもよい。ただし、いずれの場合でも、アナログフィルタ123のカットオフ周波数は、希望波帯域よりも小さくし、好ましくは希望波帯域の半分程度にする。
 図1に戻り、アナログ信号処理部10Aにおいて、増幅器15は、周波数変換器12Aの出力を増幅する。増幅器15はAGC増幅器で構成することができる。あるいは、増幅器15のゲインは固定であってもよい。アナログフィルタ16は、増幅器15の出力に含まれる希望波帯域外の信号成分を減衰させる。アナログフィルタ16は、希望波帯域よりも高いカットオフ周波数を有するLPFで構成することができる。
 A/D変換器20は、アナログ信号処理部10Aから出力されるIQそれぞれのベースバンド信号をデジタル信号に変換する。デジタル信号処理部30Aは、当該デジタル信号に対して、アナログ信号処理部10Aのフィルタリング処理で減衰した希望波帯域の信号成分を補償する。具体的には、デジタル信号処理部30Aにおいて、デジタルフィルタ31は、入力されたデジタル信号に含まれる希望波帯域外の信号成分を除去する。補償部32は、デジタルフィルタ31の出力に対して周波数変換器12Aとは逆特性のフィルタリング処理を行う。補償部32から出力されるデジタル化されたIQそれぞれのベースバンド信号はデジタル演算によって合成されてデジタル信号処理部30Aから出力される。デジタルフィルタ31および補償部32をそれぞれ1個ずつにして、A/D変換器20でデジタル化されたIQそれぞれのベースバンド信号を合成してからデジタルフィルタ31に入力するようにしてもよい。
 図3は、各信号処理ブロックの出力周波数スペクトラムを示す。図3(a)は、LNA11の出力周波数スペクトラムを示す。ここで示した高周波信号は例えばデジタル放送波であり、希望波に近接して高レベルの妨害波が存在する。図3(b)は、周波数変換器12Aの出力周波数スペクトラムを示す。周波数変換器12Aは、例えば希望波帯域の中心周波数の局部発振信号で周波数変換をする(ダイレクトコンバージョン方式)。周波数変換器12Aのフィルタリング処理により妨害波は大幅に減衰し、増幅器15およびアナログフィルタ16で発生する歪成分のレベルを大幅に低減させることが可能となる。図3(c)は、アナログフィルタ16の出力周波数スペクトラムを示す。アナログフィルタ16のフィルタリング処理により妨害波はより一層減衰する。ここでA/D変換器20は、減衰した希望波の最小振幅レベルから、残存する妨害波の最大振幅レベルまでをA/D変換することのできる十分に大きなダイナミックレンジを有するものとする。図3(d)は、デジタルフィルタ31の出力周波数スペクトラムを示す。デジタルフィルタ31のフィルタリング処理により妨害波は除去される。図3(e)は、補償部32の出力周波数スペクトラムを示す。補償部32のフィルタリング処理により希望波帯域の信号レベルが一様になるように補償される。上述したようにA/D変換器20のダイナミックレンジが十分に大きい場合、信号品質の劣化なしに希望波帯域の補償をすることができる。これにより、後述する復調部40における信号品質の劣化を防ぐことができる。
 図1に戻り、復調部40は、デジタル信号処理部30Aの出力を復調して映像信号や音声信号を生成する。アナログ放送波の場合には、復調部40はデジタル信号処理部30Aの出力をD/A変換してから復調処理を行う。一方、制御部50は、当該受信回路に入力された高周波信号の受信レベルに応じてLNA11、周波数変換器12A、増幅器15、および補償部32の各信号処理ブロックの可変ゲインおよび可変フィルタリング特性を制御する。制御部50は、例えば、デジタル信号処理部30Aの出力レベルと基準レベルとを比較することで高周波信号の受信レベルを検出することができる。基準レベルは、復調部40で復調処理をするのに十分なレベルとする。レベル比較器を別途設けて、各信号処理ブロックの出力レベルと基準レベルとの比較結果から高周波信号の受信レベルを検出するようにしてもよい。
 各信号処理ブロックの可変ゲインおよび可変フィルタリング特性は具体的には次のように制御する。高周波信号の受信レベルが低いときにはLNA11および増幅器15のゲインを大きくする。また、周波数変換器12Aのカットオフ周波数を高くするとともに補償部32に対して当該カットオフ周波数の変更に追従したフィルタリング特性を設定する。LNA11のゲインが最大値に制御される場合に周波数変換器12Aのカットオフ周波数を高くするようにしてもよい。一方、高周波信号の受信レベルが高いときにはLNA11および増幅器15のゲインを小さくする。また、周波数変換器12Aのカットオフ周波数を低くするとともに補償部32に対して当該カットオフ周波数の変更に追従したフィルタリング特性を設定する。カットオフ周波数を低くすると周波数変換器12AのNFが低下し、周波数変換器12Aの後段に配置された増幅器15およびアナログフィルタ16の耐妨害波特性が良化する。また、受信回路の最小受信感度劣化をなくすことができる。
 図4は、周波数変換器12Aのカットオフ周波数とIM3およびNFの関係を示す。横軸は希望波帯域に対するカットオフ周波数の比率を表す。左縦軸は増幅器15で発生する3次歪成分(IM3)を表す。右縦軸は周波数変換器12Aと増幅器15からなる回路部分のNFを表す。周波数変換器12Aのゲインは18dB、LPF特性は2次特性であるとする。また、増幅器15のゲインは21dB、IIP3=0dBm、NF=25dBとする。例示したグラフは希望波帯域に近接して-30dBmの妨害波が入力されたときのものである。横軸の値に対してNFおよびIM3はそれぞれ相反する変化をする。横軸の値が0.5付近では、NF劣化を約0.5dBに抑えつつIM3を約20dBも低減することができる。したがって、上述したように、周波数変換器12Aのカットオフ周波数は希望波帯域の半分程度にすることが好ましい。
 以上、本実施形態によると、低電圧動作により各信号処理ブロックの歪特性が著しく劣化しても、周波数変換器12Aのフィルタリング特性により増幅器15およびアナログフィルタ16で発生する歪成分が低減する。そして、補償部32で希望波帯域の信号成分を補償することで、受信回路の耐妨害波特性を改善させることが可能となる。
 (第2の実施形態)
 図5は、第2の実施形態に係る受信回路の構成を示す。以下、第1の実施形態と異なる点について説明する。
 アナログ信号処理部10Bにおいて、周波数変換器12Bは、LNA11の出力をIQそれぞれの局部発振信号で周波数変換するのみであり、低域通過フィルタリング特性は有しない。代わりにアナログフィルタ16が周波数変換器12Bの出力に対して希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行う。そして、アナログフィルタ16の後段に増幅器17を設けている。これは、周波数変換器12Bの出力を増幅器15において高ゲインで増幅すると高レベルの妨害波によって歪特性が劣化するおそれがあるため、増幅器15のゲインは抑えめにしておき、アナログフィルタ16でのフィルタリング処理後の信号を十分に増幅するためである。増幅器15,17のゲインは制御部50によって制御される。
 図6は、各信号処理ブロックの出力周波数スペクトラムを示す。図6(a)は、周波数変換器12Bの出力周波数スペクトラムを示す。ここで示した高周波信号は例えばデジタル放送波であり、希望波に近接して高レベルの妨害波が存在する。図6(b)は、アナログフィルタ16の出力周波数スペクトラムを示す。アナログフィルタ16のフィルタリング処理により妨害波は大幅に減衰し、増幅器17で発生する歪成分のレベルを大幅に低減させることが可能となる。図6(c)は、補償部32の出力周波数スペクトラムを示す。補償部32のフィルタリング処理により希望波帯域の信号レベルが一様になるように補償される。
 以上、本実施形態によると、低電圧動作により各信号処理ブロックの歪特性が著しく劣化しても、アナログフィルタ16のフィルタリング特性により増幅器17で発生する歪成分が低減する。そして、補償部32で希望波帯域の信号成分を補償することで、受信回路の耐妨害波特性を改善させることが可能となる。
 なお、第1の実施形態と同様に制御部50がLNA11のゲインを制御するようにしてもよい。また、耐妨害波特性が多少劣化するが、増幅器17を省略して増幅器15のゲインを大きくするように変形してもよい。
 (第3の実施形態)
 図7は、第3の実施形態に係る受信回路の構成を示す。本実施形態に係る受信回路は、図1の受信回路にイメージリジェクション部33を追加したものである。以下、第1の実施形態と異なる点について説明する。
 アナログ信号処理部10Aにおいて、局部発振器13は、希望波帯域よりも低いまたは高い周波数の局部発振信号を生成する。すなわち、アナログ信号処理部10AはLow-IF方式の周波数変換を行い、高周波信号は中間周波数帯域のベースバンド信号に変換される。中間周波数は、例えば希望波帯域の半分の値である。また、デジタル信号処理部30Bにおいて、デジタルフィルタ31の前段にイメージリジェクション部33が設けられている。イメージリジェクション部33は、A/D変換器20から出力されるIQそれぞれのベースバンド信号を受け、それぞれの信号に含まれるイメージ信号成分を除去する。
 図8は、各信号処理ブロックの出力周波数スペクトラムを示す。図8(a)は、LNA11の出力周波数スペクトラムを示す。ここで示した高周波信号は例えばアナログ放送波であり、希望波帯域において高レベルの映像信号および音声信号が存在する。このようにアナログ放送波では映像信号と音声信号には所定のレベル差と周波数差があり、一般に、映像信号の方がレベルが高く、周波数が低い。したがって、希望波帯域よりも低い周波数の局部発振信号で周波数変換する。逆に、映像信号のレベルが音声信号のレベルよりも低い場合には、希望波帯域よりも高い周波数の局部発振信号で周波数変換する。図8(b)は、周波数変換器12Aの出力周波数スペクトラムを示す。映像信号と音声信号は中間周波数帯域に周波数変換されるとともに周波数変換器12Aのフィルタリング処理により減衰する。また、Low-IF方式の周波数変換により、映像信号と音声信号のレベル差は拡大し、音声信号のレベルは映像信号のレベルよりも大幅に減衰する。これにより、増幅器105およびアナログフィルタ16で発生する映像信号と音声信号の相互変調の歪成分のレベルを大幅に低減させることが可能となる。図8(c)は、補償部32の出力周波数スペクトラムを示す。補償部32のフィルタリング処理により映像信号と音声信号のレベル差が周波数変換前のレベル差となるよう補償される。
 以上、本実施形態によると、低電圧動作により各信号処理ブロックの歪特性が著しく劣化しても、周波数変換器12AのLow-IF方式の周波数変換とフィルタリング特性により増幅器15およびアナログフィルタ16で発生する歪成分が低減する。そして、補償部32で希望波帯域の信号成分を補償することで、受信回路のSNDR特性を改善させることが可能となる。なお、図4の受信回路にイメージリジェクション部33を追加した場合でも同様の効果を得ることができる。
 (第4の実施形態)
 図9は、第4の実施形態に係る受信回路の構成を示す。以下、第1の実施形態と異なる点について説明する。
 制御部50は、I信号のフィルタリング処理を行うデジタルフィルタ31の入力信号および出力信号を受け、当該入出力レベル差から希望波帯域に近接した高レベルの妨害波の有無を検出し、当該検出結果に応じて各信号処理ブロックを制御する。例えば、入出力レベル差が閾値よりも大きい場合は高レベルの妨害波が存在すると推定され、逆に入出力レベル差が閾値よりも小さい場合は高レベルの妨害波は存在しないと推定される。制御部50は、高レベルの妨害波が検出されなかったときにはLNA11および増幅器15のゲインを大きくする。また、周波数変換器12Aのカットオフ周波数を高くするとともに補償部32に対して当該カットオフ周波数の変更に追従したフィルタリング特性を設定する。一方、妨害波が検出されたときにはLNA11および増幅器15のゲインを小さくする。また、周波数変換器12Aのカットオフ周波数を低くするとともに補償部32に対して当該カットオフ周波数の変更に追従したフィルタリング特性を設定する。
 復調部40は、復調後の信号品質を評価する。信号品質は、例えば、BER特性、C/N特性などである。制御部50は、さらに復調部40から評価結果を受けて補償部32のフィルタリング特性を調整する。
 以上、本実施形態によると、低電圧動作により各信号処理ブロックの歪特性が著しく劣化しても、妨害波の有無に応じて周波数変換器12Aのフィルタリング特性を変更することにより増幅器15およびアナログフィルタ16で発生する歪成分が低減する。そして、補償部32で希望波帯域の信号成分を補償することで、受信回路の耐妨害波特性を改善させることが可能となる。さらに、復調部40の信号品質特性をモニタすることで、耐妨害波特性が最適となるように補償部32のフィルタリング特性を適応的に制御することができる。
 なお、上記の各実施形態において、バラン2を省略して、各信号処理ブロックは片相信号を処理するように変形してもよい。
 (応用例)
 図10は、本発明の一実施形態に係る受信装置の概観を示す。受信装置は、例えば、上記の各実施形態に係る受信回路100と受信回路100の出力を表示する出力デバイスとしての表示パネル101とを備えたテレビジョン受像機である。受信回路100は、出力デバイスとして記録装置を備えたテレビジョン放送レコーダにも適用可能である。
 本発明に係る受信回路は、低電圧化しても耐妨害波特性およびSNDRを良好に保つことができるため、テレビチューナや携帯通信端末などとして有用である。
 10A,10B アナログ信号処理部
 11 増幅器(第1の増幅器)
 12A,12B 周波数変換器
 13 局部発振器
 15 増幅器(第2の増幅器)
 16 アナログフィルタ
 17 増幅器(第3の増幅器)
 20 A/D変換器
 30A,30B デジタル信号処理部
 31 デジタルフィルタ
 32 補償部
 40 復調部
 50 制御部
 100 受信回路
 101 表示パネル(出力デバイス)

Claims (13)

  1.  入力された高周波信号をベースバンド信号に周波数変換してさらに希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行うアナログ信号処理部と、
     前記アナログ信号処理部の出力をデジタル信号に変換するA/D変換器と、
     前記A/D変換器の出力に対して前記アナログ信号処理部のフィルタリング処理で減衰した前記希望波帯域の信号成分を補償するデジタル信号処理部とを備えている
    ことを特徴とする受信回路。
  2. 請求項1の受信回路において、
     前記アナログ信号処理部は、
      前記高周波信号を低雑音増幅する第1の増幅器と、
      局部発振信号を生成する局部発振器と、
      前記第1の増幅器の出力を前記局部発振信号で周波数変換し、当該周波数変換後の信号に対して前記希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行う周波数変換器と、
      前記周波数変換器の出力を増幅する第2の増幅器と、
      前記第2の増幅器の出力に含まれる前記希望波帯域外の信号成分を減衰させるアナログフィルタとを有するものであり、
     前記デジタル信号処理部は、
      前記A/D変換器の出力に含まれる前記希望波帯域外の信号成分を除去するデジタルフィルタと、
      前記デジタルフィルタの出力に対して前記周波数変換器とは逆特性のフィルタリング処理を行う補償部とを有するものである
    ことを特徴とする受信回路。
  3. 請求項2の受信回路において、
     前記周波数変換器および補償部のフィルタリング特性は可変であり、
     前記高周波信号の受信レベルに応じて前記周波数変換器および補償部のそれぞれのフィルタリング特性を制御する制御部を備えている
    ことを特徴とする受信回路。
  4. 請求項3の受信回路において、
     前記第1および第2の増幅器の少なくとも一方のゲインは可変であり、
     前記制御部は、前記高周波信号の受信レベルが低いときは前記可変ゲインを大きくするとともに前記周波数変換器のカットオフ周波数を高くし、前記高周波信号の受信レベルが高いときは前記可変ゲインを小さくするとともに前記周波数変換器のカットオフ周波数を低くする
    ことを特徴とする受信回路。
  5. 請求項3の受信回路において、
     前記制御部は、前記デジタルフィルタの入出力レベル差から前記希望波帯域に近接した高レベルの妨害波の有無を検出し、前記妨害波が検出されなかったときは前記周波数変換器のカットオフ周波数を高くし、前記妨害波が検出されたときは前記周波数変換器のカットオフ周波数を低くする
    ことを特徴とする受信回路。
  6. 請求項1の受信回路において、
     前記アナログ信号処理部は、
      前記高周波信号を低雑音増幅する第1の増幅器と、
      局部発振信号を生成する局部発振器と、
      前記第1の増幅器の出力を前記局部発振信号で周波数変換する周波数変換器と、
      前記周波数変換器の出力を増幅する第2の増幅器と、
      前記第2の増幅器の出力に対して前記希望波帯域よりも低いカットオフ周波数で低域通過フィルタリング処理を行うアナログフィルタとを有するものであり、
     前記デジタル信号処理部は、
      前記A/D変換器の出力に含まれる前記希望波帯域外の信号成分を除去するデジタルフィルタと、
      前記デジタルフィルタの出力に対して前記アナログフィルタとは逆特性のフィルタリング処理を行う補償部とを有するものである
    ことを特徴とする受信回路。
  7. 請求項6の受信回路において、
     前記第2の増幅器のゲインは可変であり、
     前記高周波信号の受信レベルに応じて前記第2の増幅器のゲインを制御する制御部を備えている
    ことを特徴とする受信回路。
  8. 請求項7の受信回路において、
     前記アナログ信号処理部は、前記アナログフィルタの出力を可変ゲインで増幅する第3の増幅器を有するものであり、
     前記制御部は、前記高周波信号の受信レベルに応じて前記第3の増幅器のゲインを制御する
    ことを特徴とする受信回路。
  9. 請求項3および7のいずれか一つの受信回路において、
     前記制御部は、前記補償部の出力から前記高周波信号の受信レベルを検出する
    ことを特徴とする受信回路。
  10. 請求項3および7のいずれか一つの受信回路において、
     前記デジタル信号処理部から出力された信号を復調処理する復調部を備え、
     前記復調部は、復調後の信号品質を評価するものであり、
     前記制御部は、前記復調部の評価結果に基づいて前記補償部のフィルタリング特性を調整する
    ことを特徴とする受信回路。
  11. 請求項1の受信回路において、
     前記カットオフ周波数は、前記希望波帯域の半分程度である
    ことを特徴とする受信回路。
  12. 請求項1の受信回路において、
     前記アナログ信号処理部は、前記高周波信号をLow-IF帯域に周波数変換する
    ことを特徴とする受信回路。
  13.  請求項1の受信回路と、
     前記受信回路の出力を記録または表示する出力デバイスとを備えている
    ことを特徴とする受信装置。
PCT/JP2011/000205 2010-07-28 2011-01-17 受信回路およびそれを備えた受信装置 WO2012014344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800031930A CN102474278A (zh) 2010-07-28 2011-01-17 接收电路以及具备该接收电路的接收装置
US13/274,027 US8462894B2 (en) 2010-07-28 2011-10-14 Receiver circuit and receiver apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169367A JP5610899B2 (ja) 2010-07-28 2010-07-28 受信回路およびそれを備えた受信装置
JP2010-169367 2010-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/274,027 Continuation US8462894B2 (en) 2010-07-28 2011-10-14 Receiver circuit and receiver apparatus including the same

Publications (1)

Publication Number Publication Date
WO2012014344A1 true WO2012014344A1 (ja) 2012-02-02

Family

ID=45529583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000205 WO2012014344A1 (ja) 2010-07-28 2011-01-17 受信回路およびそれを備えた受信装置

Country Status (4)

Country Link
US (1) US8462894B2 (ja)
JP (1) JP5610899B2 (ja)
CN (1) CN102474278A (ja)
WO (1) WO2012014344A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9100078B2 (en) * 2012-04-10 2015-08-04 Mediatek Inc. RF receiver and digitally-assisted calibration method applicable thereto
TWI606692B (zh) 2012-05-28 2017-11-21 Sony Corp Single-phase differential conversion circuit, balanced unbalanced adapter, switch and communication device for controlling balanced unbalanced adapter
CN103457623B (zh) * 2013-08-15 2015-09-23 武汉滨湖电子有限责任公司 一种零中频直流对消的电路及方法
JP6356967B2 (ja) * 2014-01-07 2018-07-11 ローム株式会社 Ad変換回路
JP6761218B2 (ja) * 2016-02-26 2020-09-23 国立大学法人東北大学 受信処理装置及び受信機
US9917604B1 (en) * 2016-03-24 2018-03-13 Amazon Technologies, Inc. Dynamic receive sensitivity
CN106533472B (zh) * 2016-11-24 2019-01-08 中国科学院微电子研究所 超宽频段通用接收机
US11424900B2 (en) * 2020-10-07 2022-08-23 Apple Inc. Leakage and noise cancelling for double balanced duplexers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286529A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 受信装置
JP2006210979A (ja) * 2005-01-25 2006-08-10 Matsushita Electric Ind Co Ltd 受信機
JP2008005259A (ja) * 2006-06-23 2008-01-10 Renesas Technology Corp 受信装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335414B2 (ja) * 1993-03-23 2002-10-15 富士通テン株式会社 周波数変換による被振幅変調隣接妨害除去装置
DE4332161A1 (de) 1993-09-22 1995-03-23 Thomson Brandt Gmbh Hochfrequenzempfänger
US5940143A (en) 1995-10-06 1999-08-17 Hitachi, Ltd. High-definition television signal receiving apparatus and gain control circuit thereof
US6498929B1 (en) * 1996-06-21 2002-12-24 Kabushiki Kaisha Toshiba Receiver having DC offset decreasing function and communication system using the same
TW331681B (en) 1997-02-18 1998-05-11 Chyng-Guang Juang Wide-band low-noise low-crossover distortion receiver
US6134430A (en) 1997-12-09 2000-10-17 Younis; Saed G. Programmable dynamic range receiver with adjustable dynamic range analog to digital converter
US6107878A (en) 1998-08-06 2000-08-22 Qualcomm Incorporated Automatic gain control circuit for controlling multiple variable gain amplifier stages while estimating received signal power
CN100352272C (zh) 1999-07-16 2007-11-28 汤姆森特许公司 提供电视接收机中双自动增益控制延迟设置的方法和设备
US7317493B1 (en) 1999-07-16 2008-01-08 Thomson Licensing Method and apparatus for providing dual automatic gain control delay settings in a television receiver
JP3850673B2 (ja) 2001-03-19 2006-11-29 シャープ株式会社 自動利得制御方法、および、自動利得制御回路
JP4170081B2 (ja) 2002-11-28 2008-10-22 クラリオン株式会社 干渉波検出装置、受信装置、および通信装置
JP2005151011A (ja) * 2003-11-13 2005-06-09 Renesas Technology Corp 高周波信号受信装置および半導体集積回路
US7970076B2 (en) * 2004-04-27 2011-06-28 Mitsubishi Electric Corporaiton Wireless apparatus
JP4480555B2 (ja) 2004-11-24 2010-06-16 シャープ株式会社 チューナ回路、それを備えたデジタル放送受信機
CA2530728A1 (en) * 2004-12-22 2006-06-22 Milad Technology Inc. Digital data acquisition system
JP2006229765A (ja) 2005-02-18 2006-08-31 Toshiba Corp デジタル無線受信器、復調回路、およびその復調方法
JP4554505B2 (ja) 2005-12-20 2010-09-29 シャープ株式会社 デジタル信号受信装置
JP2007281633A (ja) 2006-04-04 2007-10-25 Niigata Seimitsu Kk 受信機
JP5092282B2 (ja) 2006-05-29 2012-12-05 ソニー株式会社 受信装置
US7599674B2 (en) 2006-07-17 2009-10-06 Pine Valley Investments, Inc. Overload protection for receiver front end
JP5075605B2 (ja) 2007-12-13 2012-11-21 株式会社東芝 受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286529A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 受信装置
JP2006210979A (ja) * 2005-01-25 2006-08-10 Matsushita Electric Ind Co Ltd 受信機
JP2008005259A (ja) * 2006-06-23 2008-01-10 Renesas Technology Corp 受信装置

Also Published As

Publication number Publication date
JP2012034011A (ja) 2012-02-16
US8462894B2 (en) 2013-06-11
US20120033766A1 (en) 2012-02-09
JP5610899B2 (ja) 2014-10-22
CN102474278A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5610899B2 (ja) 受信回路およびそれを備えた受信装置
JP5783251B2 (ja) 受信装置及び受信方法
JP5420638B2 (ja) 高度に線形な埋込みフィルタリングパッシブミキサ
JP5180226B2 (ja) 信号干渉を決定論的に削減するための手法
US20120139633A1 (en) Semiconductor integrated circuit and tuner system including the same
US9106299B2 (en) Audio signal processing circuit
JP4891888B2 (ja) 無線通信回路および無線通信システム
WO2012124576A1 (ja) 利得制御回路、通信装置、電子機器、及び、利得制御方法
WO2012017627A1 (ja) 高周波受信装置及び無線受信機
JP2001268145A (ja) 振幅偏差補正回路
US20090086859A1 (en) Receiving unit receiving digital television broadcasting
US20080160946A1 (en) Systems and Methods for Reducing Broadband Image Noise Through a Programmable Bandwidth RF Variable Gain Attenuator
JP5569165B2 (ja) 無線受信装置
JP2007019900A (ja) 放送受信装置および放送受信方法
JP2010004286A (ja) 高周波受信装置、放送受信機、および高周波受信装置の利得制御方法
JP5119965B2 (ja) 受信装置とこれを用いた電子機器
US20110234909A1 (en) Receiving device
JP2007517467A (ja) 信号処理装置、agc提供方法、テレビジョン信号受信機
JP2015126365A (ja) 受信機
JP2011211635A (ja) Rf受信装置
JP2009164980A (ja) 受信機
US20070298740A1 (en) Fm radio receiver
JPH08340268A (ja) 受信機
EP1986334A2 (en) Narrowband interference cancellation method and apparatus
JP2014053740A (ja) 無線受信装置および無線受信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003193.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811951

Country of ref document: EP

Kind code of ref document: A1