JP2005286529A - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
JP2005286529A
JP2005286529A JP2004095164A JP2004095164A JP2005286529A JP 2005286529 A JP2005286529 A JP 2005286529A JP 2004095164 A JP2004095164 A JP 2004095164A JP 2004095164 A JP2004095164 A JP 2004095164A JP 2005286529 A JP2005286529 A JP 2005286529A
Authority
JP
Japan
Prior art keywords
signal
frequency
signals
lpf
lpfs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004095164A
Other languages
English (en)
Other versions
JP4483369B2 (ja
Inventor
Takashi Umeda
隆司 梅田
Kenji Adachi
憲司 足立
Hiroaki Ozeki
浩明 尾関
Yasuo Oba
康雄 大場
Yuichi Watanabe
裕一 渡辺
Ippei Jinno
一平 神野
Takeshi Fujii
健史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004095164A priority Critical patent/JP4483369B2/ja
Publication of JP2005286529A publication Critical patent/JP2005286529A/ja
Application granted granted Critical
Publication of JP4483369B2 publication Critical patent/JP4483369B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】隣接信号の妨害抑圧のため、LPF51、LPF52の次数を上げる必要が生じ、受信装置の低消費電力化が実現できない。
【解決手段】複数のセグメントを連結してOFDM変調された信号の内の選択された1セグメントあるいは複数セグメントの位置に応じてIQ直交検波器の出力に接続されたI、Q信号用LPFのカットオフ周波数を変える。
このように、I、Q信号用LPFの次数を増やすことなく隣接信号に対する抑圧特性を得ることができるので、I、Q信号用LPFによる電流は増加しない。従って受信装置の低消費電力化を実現することができる。
また、I、Q信号用LPFの次数を高くすることなく隣接排除能力を十分得ることができるので、I、Q信号用LPFによる面積が増すことがない。従って小型化サイズの受信装置を実現できる。
【選択図】図1

Description

本発明は、デジタル放送等に用いる受信装置に関するものである。
以下、従来の受信装置について図9を用いてその構成を示す。アンテナ1で受信したISDB−T信号は、入力端子1aを介してRFアンプ2で増幅されて、ミキサ3に入力される。PLL4では所定の周波数の発振信号が生成され、この発振信号がミキサ3に供給されて、中間周波数fIF1である例えば1205MHzに周波数変換される。
ミキサ3の出力は、バンドパスフィルタ(以下BPFという。)5に入力される。このBPF5では、希望セグメントのみを選択して通過させ、他のセグメントや隣接信号の信号を抑圧する。さらに、BPF5からの出力信号は、IFアンプ6に入力され増幅された後、ミキサ7とミキサ8および移相器10で構成されるIQ直交検波器11に入力される。IQ直交検波器11からのI、Q信号は、それぞれローパスフィルタ(以下、LPFという。)51、LPF52によりさらに他のセグメントや隣接信号の信号を抑圧されて、希望セグメントの信号が選択される。
この希望セグメントの信号は、ベースバンドアンプ(以下BBアンプという。)30,31で既定のレベルに増幅される。さらに、BBアンプ30,31からのI、Q信号は、それぞれADコンバータ32,33に入力されてデジタル信号に変換される。そしてこのデジタル信号は、数値制御発振器NCO35からの信号により、複素乗算器34で周波数変換される。
さらに、複素乗算器34からの出力信号は、LPF36,37によりイメージとなる周波数が抑圧された後、OFDM復調器38に入力され、ISDB−Tの送信時の変調処理に応じて復調処理が行われ、トランスポートストリーム出力端子21(以下TS出力端子という。)にTSが出力される。
なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が挙げられる。
特開2001−77648号公報
地上波デジタル音声信号においては、隣接するチャンネルにアナログ放送が存在する場合があり、高い隣接信号の抑圧特性が必要になってくる。特にVHF帯では、7CHを用いて放送されるので、上側隣接チャンネルである8チャンネルおよび下側隣接チャンネルである6チャンネルにはアナログ放送が妨害信号として存在する。このため、これらの隣接信号に対して特に高い抑圧特性が必要になってくる。
図10(a)は、7CHによる地上波デジタル音声信号の図を表す。すなわち、図10(a)において、横軸を周波数とし、縦軸をセグメントの振幅として表している。この7CHは、低い周波数のセグメント101から高い周波数のセグメント108の8個からなるセグメントから構成されている。また、この音声信号に対して高い周波数には、上側隣接映像のアナログ信号が存在し、低い周波数には、下側隣接音声のアナログ信号が存在している。
図10(b)は、7CHによる地上波デジタル音声信号において、3番目の1セグメントを示す図である。すなわち、図10(b)において、3番目の1セグメントをセグメント103としている。このセグメント103は、下側隣接音声、上側隣接映像のいずれに対しても周波数が離れている。このため、BPF5およびLPF51、LPF52は、下側隣接音声、上側隣接映像を十分に抑圧できる。
図10(c)は、7CHによる地上波デジタル音声信号において、8番目の1セグメントを示す図である。すなわち、図10(c)において、8番目の1セグメントをセグメント108としている。このセグメント108は、妨害信号である上側隣接映像に対して周波数が近接する。このため、BPF5およびLPF51、LPF52では、妨害信号である上側隣接映像を十分に抑圧できなくなる。
また、希望する1セグメントが、低い周波数であるセグメント101とした場合においては、妨害信号である下側隣接音声に対して周波数が近接する。このため、BPF5およびLPF51、LPF52では、妨害信号である下側隣接音声信号を十分に抑圧できなくなる。
図10(d)は、7CHによる地上波デジタル音声信号において、6,7,8番目の3セグメントを示す図である。すなわち、図10(d)において、6,7,8番目の3セグメントをそれぞれセグメント206,207,208としている。これらセグメント206,207,208は、妨害信号である上側隣接映像に対して周波数が近接する。このため、BPF5およびLPF51、LPF52では、妨害信号である上側隣接映像を十分に抑圧できなくなる。
また、希望するセグメントが、低い周波数にあるセグメント201,202,203とした場合においては、セグメント201,202,203は、下側隣接音声の妨害信号に対して近接する。このため、BPF5およびLPF51、LPF52では、妨害信号である下側隣接音声を十分に抑圧できなくなる。
これら妨害信号である上側隣接映像、下側隣接音声に対して十分な抑圧特性を持たすには、例えばLPF51、LPF52の次数を上げて選択度特性を急峻にすることにより可能となる。ところが、LPF51、LPF52の次数を上げることによって消費電力が大きくなり受信装置の低消費電力化が実現できないという問題点があった。
そこで本発明は、この問題を解決したものであり、受信装置の低消費電力化を実現することを目的としたものである。
この目的を達成するために、本発明の受信装置は、複数のセグメントを連結してOFDM変調された信号の内の選択された1セグメントあるいは複数セグメントの位置に応じてIQ直交検波器の出力に接続されたI、Q信号用LPFのカットオフ周波数を変える。
これにより、I、Q信号用LPFの次数を増やすことなく隣接信号に対する抑圧特性を得ることができるので、I、Q信号用LPFによる電流は増加しない。従って受信装置の低消費電力化を実現することができる。
本発明の請求項1に記載の発明は、複数のセグメントからなるOFDM変調信号を受信信号とする受信装置において、前記受信信号が入力される入力端子と、この入力端子からの信号が供給されるIQ直交検波器と、このIQ直交検波器から出力されたI、Q信号がそれぞれ供給されるI、Q信号用LPFと、これらI、Q信号用LPFからの出力信号がそれぞれ供給されるI、Q信号用出力端子を備え、前記セグメントの内の選択された1セグメントあるいは複数セグメントの位置に応じて、前記I、Q信号用LPFのカットオフ周波数を変える手段を設けた受信装置である。
これにより、複数のセグメントを連結してOFDM変調された信号の内の選択された1セグメントあるいは複数セグメントの位置に応じてIQ直交検波器の出力に接続されたI、Q信号用LPFのカットオフ周波数を変えることができる。
このように、I、Q信号用LPFの次数を増やすことなく隣接信号に対する抑圧特性を得ることができるので、I、Q信号用LPFによる電流は増加しない。従って受信装置の低消費電力化を実現することができる。
また、I、Q信号用LPFの次数を高くすることなく隣接排除能力を十分得ることができるので、I、Q信号用LPFによる面積が増すことがない。従って小型化サイズの受信装置を実現できる。
請求項2に記載の発明は、基準クロックに接続された周波数調整回路と、周波数調整回路に接続された直流電圧補正回路を備え、異なる基準クロック信号周波数に対し直流電圧補正回路がI、Q信号用LPFのカットオフ周波数を一定にする手段を備えた請求項1に記載の受信装置であり、複数の基準クロックに対応しI、Q信号用LPFの周波数補正を行い、且つ隣接信号に対する抑圧特性を十分得ることのできる受信装置を実現できる。
請求項3に記載の発明は、I、Q信号用LPFと周波数調整回路の間に直流電圧補正回路を備え、異なる基準クロック信号周波数に対する直流電圧補正を行う手段を備えた請求項1に記載の受信装置であり、複数の基準クロックに対応するとともに、I、Q信号用LPFの製造上の特性ばらつきに応じてI、Q信号用LPFの周波数補正を行い、且つ隣接信号に対する抑圧特性を十分得ることのできる受信装置を実現できる。
請求項4に記載の発明は、ビット誤り率に応じてI、Q信号用LPFのカットオフ周波数を変える手段を備えた請求項1に記載の受信装置であり、I、Q信号用LPFの経年変化による選択特性の劣化があった場合にも隣接信号に対する抑圧特性を十分得ることのできる受信装置を実現できる。
請求項5に記載の発明は、入力端子からの受信信号が供給されるミキサと、このミキサからの出力信号が供給されるフィルタと、このフィルタの出力信号がIQ直交検波器に供給される請求項1に記載の受信装置であり、製造上でフィルタの特性ばらつきが存在する場合も隣接信号に対する抑圧特性を十分得ることのできる受信装置を実現できる。
請求項6に記載の発明は、フィルタの特性に応じてI、Q信号用LPFのカットオフ周波数を変える手段を備えた請求項1に記載の受信装置であり、製造上でフィルタの特性ばらつきが存在する場合も十分な隣接抑圧能力を有する受信装置を実現できる。
請求項7に記載の発明は、少なくともIQ直交検波器とI信号用LPFとQ信号用LPFは、同一のパッケージに集積された請求項1に記載の受信装置であり、小型化できるとともに、IQ直交検波器からのI信号とQ信号の特性差を低減できる。
以上のように本発明によれば、複数のセグメントを連結してOFDM変調された信号の内の選択された1セグメントあるいは複数セグメントの位置に応じてIQ直交検波器の出力に接続されたI、Q信号用LPFのカットオフ周波数を変えることができる。
このように、I、Q信号用LPFの次数を増やすことなく隣接信号に対する抑圧特性を得ることができるので、I、Q信号用LPFによる電流は増加しない。従って受信装置の低消費電力化を実現することができる。
また、I、Q信号用LPFの次数を高くすることなく隣接排除能力を十分得ることができるので、I、Q信号用LPFによる面積が増すことがない。従って小型化サイズの受信装置を実現できる。
(実施の形態1)
以下、本発明の実施の形態について、図1、図6(a)(b)(c)、図7(a)(b)(c)を用いて説明する。図1は、本発明の実施の形態1による受信装置のブロック図である。
図1において、1はアンテナ、1aは入力端子、2はRFアンプ、3はミキサ、4はPLL、5はBPF、6はIFアンプ、7,8はミキサ、9はPLL、10は移相器、61,62はI、Q信号用可変カットオフの低域通過フィルタ(以下LPFという。)、30,31はベースバンドアンプ(以下BBアンプという。)、30a,31aはI、Q信号用LPF出力端子、32,33はADコンバータ(図ではADCという。)、34は複素乗算器、35は数値制御発振器(以下NCOという。)、36,37はデジタルLPF、38はOFDM復調器、21はトランスポートストリーム出力端子(以下TS出力端子という。)、63はマイクロプロセッサである。このマイクロプロセッサ63で受信するセグメントの位置に応じてI、Q信号用LPFのカットオフ周波数を変えている。
この受信装置の構成は、1セグメントあるいは複数セグメントの部分受信を行う受信装置である。アンテナ1で受信したISDB−T信号は、入力端子1aに入力されて、次にRFアンプ2で増幅されて、ミキサ3に入力される。PLL4では所定の周波数の発振信号が生成され、この発振信号がミキサ3に供給されて、中間周波数fIF1である例えば1205MHzに周波数変換される。ここで、fIF1は固定周波数としている。
この1205MHzの中間周波数fIF1は、BPF5で不要信号の除去が行われる。BPF5で帯域制限を受けた中間周波数fIF1のセグメント信号はIFアンプ6で増幅されたのち、IQ直交検波器11に入力される。このIQ直交検波器11は、ミキサ7とミキサ8と移相器10とから構成されている。
このIQ直交検波器11に入力された信号は、分配されてミキサ7,8のそれぞれの一方に入力される。このミキサ8の他方の入力には、PLL9からの発振信号LO2bが入力され、ミキサ7の他方の入力には、PLL9の発振信号の移相器10で90°位相シフトされた発振信号LO2aが入力される。
これにより、IQ直交検波器11に入力された信号は、PLL9からの発振信号LO2a、LO2bによって乗算されI、Q信号が出力される。
さらに、このI、Q信号は、LPF61,62に入力される。このLPF61,62により、他のセグメントや隣接信号を更に抑圧できるとともに、希望セグメントのみが選択される。この希望セグメントは、BBアンプ30,31に入力されて所定値まで増幅される。さらに、このBBアンプ30,31からの信号は、I、Q信号用出力端子30a,31bに接続される。このI、Q信号は、ADコンバータ32,33に入力される。このADコンバータ32,33からは、デジタル信号に変換された信号が出力される。
さらに、このデジタル信号は、複素乗算器34に入力される。この複素乗算器34では、ADコンバータ32,33からのデジタル信号とNCO35の信号とが複素乗算される。これにより、複素乗算器34からはベースバンドに変換された信号が出力される。
そして、複素乗算器34からの信号は、LPF36,37に入力される。このLPF36,37では、イメージとなる周波数が抑圧された後、OFDM復調器38に入力される。このOFDM復調器38では、ISDB−Tの送信時の変調処理に応じて、複素フーリエ変換、周波数インターリーブ、時間インターリーブ、誤り訂正などの復調処理が行われる。これにより、TS出力端子21からはTSが出力される。
ここで、マイクロプロセッサ63は、LPF61,62のそれぞれの制御端子61a,62aに接続されている。このマイクロプロセッサ63からの制御信号により、LPF61,62のカットオフ周波数は可変制御される。
次に、図6と図7を用いて、受信するセグメント位置において、BPF5、LPF61、LPF62による隣接信号の抑圧について説明する。このとき、BPF5、LPF61、LPF62による隣接信号の抑圧レベルの所要値を40dB以上としている。
ただし、ミキサ3から出力される中間周波数fIF1は、PLL4の発振周波数に対してアンテナ入力信号の周波数の分だけ高い周波数と低い周波数の両方となる。この高い周波数である中間周波数fIF1の信号の周波数配列は、アンテナからの入力信号の周波数配列と同じになる。一方、低い周波数である中間周波数fIF1の信号の周波数配列は、アンテナからの入力信号の周波数配列に対して反転する。本実施の形態では、低い周波数である中間周波数fIF1を用いて説明する。
すなわち、アンテナからの入力信号の周波数配列は、ミキサ3の出力では周波数が反転する。この周波数の配列は、図6(a)から(c)のすべてについて同様である。
例えば、7CHによる地上波デジタル音声信号は、図10(a)に示すように、低い周波数にある1番目のセグメント101から高い周波数にある8番目のセグメント108の8個からなるセグメントから構成されている。
また、この音声信号である7CHに対して高い周波数には、上側隣接映像のアナログ信号が存在し、低い周波数には、下側隣接音声のアナログ信号が存在している。さらに、図10(a)の各セグメント101から108は、図6(a)、(b)においてはそれぞれ各セグメントである101aから108aに相当し、図6(c)においてはそれぞれ各セグメントである201aから208aに相当している。
図6(a)は、本発明の実施の形態1による受信装置において、3番目の1セグメントを受信時のミキサ3からの出力信号を表す。図6(a)において、横軸を周波数とし、縦軸をセグメントの振幅とし、希望する1セグメントをハッチングしたセグメント103aとして表している。
また、このセグメント103aより離れた高い周波数には、下側隣接音声のアナログ信号が存在し、またセグメント103aより離れた低い周波数には、上側隣接映像のアナログ信号が存在している。ところが、これら下側隣接音声、上側隣接映像は、希望するセグメント103aから一定の離れた周波数となっているので、BPF5によって抑圧される。このBPF5により、例えば、上側隣接映像信号に対しては40dB以上の抑圧がとれ、下側隣接音声信号に対しては20dBの抑圧がとれる。
さらに、BPF5からの出力信号である中間周波数fIF1は、ミキサ7,8の一方の入力に接続される。ミキサ7,8の他方の入力には、PLL9からのそれぞれ発振信号LO2a、LO2bが供給される。その結果、ミキサ7からは、中間周波数fIF1とPLL9からの発振信号LO2aとの差の信号が出力される。同様に、ミキサ8からは、中間周波数fIF1とPLL9からの発振信号LO2bとの差の信号が出力される。
図7(a)は、本発明の実施の形態1による受信装置において、3番目の1セグメントを受信時のミキサ7または8からの出力信号を表す。
ここで、横軸を周波数とし、縦軸を振幅としている。また、図6(a)における希望する3番目の1セグメント103aは、図7(a)においてI、Q信号103bで表している。
図7(a)において、LPF61,62の特性のカットオフ周波数202は、下側隣接音声信号の周波数に比べて十分に離れている。このため、下側隣接音声信号レベルは、LPF61,62により20dBの抑圧がされる。従って、BPF5の抑圧量20dBと合わせて所要の抑圧量である40dBを得ることができる。
図6(b)は、本発明の実施の形態1による受信装置において、8番目の1セグメントを受信時のミキサ3からの出力信号を表している。なお、この希望する1セグメントは、ハッチングしたセグメント108aとして表している。
このセグメント108aに対して高い周波数には、下側隣接音声信号が存在するが、周波数が離れているのでBPF5によって40dBの抑圧がとれる。一方、セグメント108aに対して低い周波数には、上側隣接映像信号が近接して存在するので、BPF5によって10dBの抑圧しかとれない。
さらに、BPF5からの出力信号である中間周波数fIF1は、ミキサ7,8の一方の入力に供給される。ミキサ7,8の他方の入力には、PLL9からのそれぞれ発振信号LO2a、LO2bが供給される。その結果、ミキサ7からは、中間周波数fIF1とPLL9からの発振信号LO2aとの差の信号が出力される。同様に、ミキサ8からは、中間周波数fIF1とPLL9からの発振信号LO2bとの差の信号が出力される。
図7(b)は、本発明の実施の形態1による受信装置において、8番目の1セグメントを受信時のミキサ7または8からの出力信号を表す。
なお、横軸を周波数とし、縦軸を振幅としている。また、図6(b)における希望する8番目の1セグメント108aは、図7(b)においてI、Q信号108bで表している。
図7(b)において、LPF61,62のカットオフ周波数204は、上側隣接映像信号の周波数に近接しているので10dBの抑圧しかとれない。このLPF61,62による抑圧量を増すためには、LPF61,62のカットオフ周波数204を変化させることにより可能となる。すなわち、LPF61,62のカットオフ周波数を制御するために設けられたマイクロプロセッサ63によって、LPF61,62のカットオフ周波数を204から205に設定する。これにより、上側隣接映像信号のレベルを、30dB以上に抑圧できる。
従って、上側隣接映像信号のレベルは、LPF61,62による30dB以上の抑圧量とBPF5による10dBの抑圧量を合わせた40dB以上となるので、所要値である40dBを確保できる。
このLPF61,62のカットオフ周波数の最適な設定方法について説明する。カットオフ周波数を低く設定することにより、上側隣接映像信号のレベルは抑圧できるが、希望セグメントの信号の一部が削られ、受信信号のスペクトラムの変形により性能劣化が発生する。
従って、希望セグメントの信号の一部が削られることによる性能劣化と上側隣接映像信号等の妨害信号性能劣化が最小になるようにLPF61,62のカットオフ周波数を制御し設定することが必要となる。
なお、希望する1セグメントを1番目のセグメントとした場合は、希望セグメントの信号の一部が削られることによる性能劣化と下側隣接音声信号等の妨害信号による性能劣化が最小になるように、LPF61,62のカットオフ周波数を制御し設定することが必要となる。
図6(c)は、本発明の実施の形態1による受信装置において、6,7,8番目の3セグメントを受信時のミキサ3からの出力信号を表す。この希望する3セグメントを、ハッチングしたセグメント206a,207a,208aの3つのセグメントで表している。
このセグメント206a,207a,208aに対して高い周波数には、下側隣接音声信号が存在するが、周波数が離れているのでBPF5によって40dBの抑圧がとれる。一方、セグメント206a,207a,208aに対して低い周波数には、上側隣接映像信号が近接して存在するので、BPF5によって10dBの抑圧しかとれない。
さらに、BPF5からの出力信号である中間周波数fIF1は、ミキサ7,8の一方の入力に供給される。ミキサ7,8の他方の入力には、PLL9からのそれぞれ発振信号LO2a、LO2bが供給される。その結果、ミキサ7からは、中間周波数fIF1とPLL9からの発振信号LO2aとの差の信号が出力される。同様に、ミキサ8からは、中間周波数fIF1とPLL9からの発振信号LO2bとの差の信号が出力される。
図7(c)は、本発明の実施の形態1による受信装置において、6,7,8番目の3セグメントを受信時のミキサ7または8からの出力信号を表す。なお、セグメント206a,207a,208aは、図7(c)においてそれぞれI、Q信号206b,207b,208bとして表している。
図7(c)において、LPF61,62のカットオフ周波数210は、上側隣接映像信号の周波数に近接しているので10dBの抑圧しかとれない。このLPF61,62による抑圧量を増すためには、LPF61,62のカットオフ周波数210を変化させることにより可能となる。すなわち、LPF61,62のカットオフ周波数を制御するために設けられたマイクロプロセッサ63によって、LPF61,62のカットオフ周波数を210から211に設定する。これにより、上側隣接映像信号のレベルを、30dB以上に抑圧できる。
従って、上側隣接映像信号のレベルは、LPF61,62による30dB以上の抑圧量とBPF5による10dBの抑圧量を合わせた40dB以上となるので、所要値である40dBを確保できる。
このLPF61,62のカットオフ周波数の最適な設定方法については、1セグメント信号受信時と同様に、希望セグメントの信号の一部が削られることによる性能劣化と上側隣接映像信号等の妨害信号による性能劣化が最小となるように、LPF61,62のカットオフ周波数を制御し設定することが必要となる。
なお、希望する3セグメントを1,2,3番目のセグメントとした場合は、希望セグメントの信号の一部が削られることによる性能劣化と下側隣接音声信号等の妨害信号による性能劣化が最小になるように、LPF61,62のカットオフ周波数を制御し設定することが必要となる。
(実施の形態2)
図2は、本発明の実施の形態2による受信装置のブロック図である。図1で説明した内容に加えて、汎用のデジタル入力端子65,66を具備するOFDM復調器38を用いてBPF5の性能を補正する構成とした。
図2において、BPF5はSAW(表面弾性波)フィルタなどが用いられるが、1205MHzと高い周波数では特性ばらつきが大きい。そのため図1の構成では十分な隣接信号を抑圧できなくなり、あるいは希望の信号を削ってしまう場合がある。
例えば、図6(b)のように1セグメント108aを受信する場合において、BPF5による上側隣接映像信号の抑圧が、本来10dBに対してばらつきにより8dBしか確保できないことがある。
この場合には、端子65,66をそれぞれLOW、Highに設定する。マイクロプロセッサ63は、端子65,66の論理を読み、BPF5が8dBの抑圧しか確保できていないことを検出する。さらに、マイクロプロセッサ63は、LPF61,62のカットオフ周波数を下げるように設定し、LPF61,62による減衰が32dBを得られるように制御する。これによって、BPF5、LPF61,62で40dBの抑圧が確保できる。
次に、図6(b)のように1セグメント108aを受信する場合においては、BPF5による上側隣接映像信号の抑圧が、本来10dBに対してばらつきにより15dBの確保が行われているが、セグメント108aの信号が削られることになる。
この場合には、端子65,66をそれぞれHigh、Highに設定する。マイクロプロセッサ63は、端子65,66の論理を読み、BPF5が15dBと過剰な抑圧が確保できていることを検出する。さらに、マイクロプロセッサ63は、LPF61,62のカットオフ周波数を上げるように設定し、LPF61,62により25dBの減衰が得られるように制御する。これによって、BPF5、LPF61,62で40dBの抑圧が確保できる。
このように、LPF61,62のカットオフ周波数を過剰に下げることなく必要以上に受信セグメントのスペクトラムを削られることなく所望の抑圧40dBが確保できる。
以上のように、BPF5が製造上のばらつきが発生した場合においても、LPF61,62の最適なカットオフ周波数を設定できる。これにより、所望の搬送波抑圧を得ながら必要以上に受信セグメントのスペクトラムを削られることがない。
(実施の形態3)
図3は、本発明の実施の形態3による受信装置のブロック図である。図1で説明した内容に加えて、直流電圧補正回路64および周波数調整回路67を追加したものである。
これにより、LPF61,62の製造ばらつきがあった場合にも、セグメント位置に応じたLPF61,62の最適なカットオフ周波数を得られるような構成としたものである。従って、周波数調整回路67の出力信号を用いて、LPF61,62のカットオフ周波数を最適に設定することができる。
しかしながら、この受信装置を小型携帯端末に内蔵する場合は基準クロック信号68の周波数は、各社まちまちである。そのため直流電圧補正回路64で基準クロック信号68の周波数に応じてマイクロプロセッサ63からLPF61,62の制御電圧を補正した補正電圧V1とすることが考えられている。
また、図1で説明したようにLPF61,62の最適なカットオフ周波数はセグメント位置により異なるので、セグメント位置に応じてLPF61,62の制御電圧を変える補正電圧V2を使用することにより、カットオフ周波数を最適に設定することができる。
つまり、基準クロック信号68の周波数と受信セグメントは既知であるので、マイクロプロセッサ63により直流電圧補正回路64を制御し、V1+V2を周波数調整回路67の出力電圧に重畳する。これにより、基準クロック信号68の周波数およびセグメント位置に応じた制御が可能になる。従って、セグメント位置に応じて、異なる基準クロック信号68に対しても、LPF61,62のばらつき補正を行いながら、カットオフ周波数を最適に設定することができる。
(実施の形態4)
図4は、本発明の実施の形態4による受信装置のブロック図である。図3の構成に加えて、BPF5の製造ばらつきに応じて、汎用デジタル入力端子65,66の論理を設定することにより、マイクロプロセッサ63で直流電圧補正回路64の制御が可能となる。
これにより、異なる基準クロック信号68に対して、LPF61、LPF62、BPF5の製造ばらつきがある場合でも、LPF61、LPF62のカットオフ周波数を受信セグメント位置に応じて制御し、カットオフ周波数を最適に設定することができる。
図3の説明で述べたように、基準クロック信号68の周波数に応じた補正電圧V1、セグメントの位置に応じた補正電圧V2の加算電圧(V1+V2)を周波数調整回路67からの制御電圧に重畳することにより、LPF61とLPF62のカットオフ周波数制御を行う。加えてBPF5に製造ばらつきがあった場合、マイクロプロセッサ63は汎用デジタル入力端子65,66の論理を読むことにより、製造ばらつきに応じた補正電圧V3をさらに重畳する。
以上のようにして、V1+V2+V3を周波数調整回路67からの制御電圧に重畳することにより、BPF5、LPF61,62の製造ばらつきと、基準クロック信号68の周波数と、セグメント位置に応じてLPF61、LPF62のカットオフ周波数の制御を行うことが可能となり、LPF61、LPF62のカットオフ周波数を最適に設定することができる。
(実施の形態5)
図5は、本発明の実施の形態5による受信装置のブロック図である。図5において、OFDM復調器38で正確に復調できなかったバイト発生を示す信号が誤り率カウント回路69に接続され、誤り率カウント回路69がマイクロプロセッサ63に接続されている。
また、BPF5は1205MHz帯において受信セグメントのみを通過させるフィルタであり、温度特性の影響がある。加えて受信する場所により、隣接信号の強さや受信セグメントの強さが異なるため、LPF61,62に要求されるカットオフ周波数は、最悪条件に対する所望値はあるものの、BPF5の経時変化や受信場所により変わる。
従って、経時変化や受信場所の変動に応じて、LPF61,62のカットオフ周波数を最適に設定を行うには、誤り率をカウントすることによって行うことが有効である。以下にその説明を行う。
最初は、セグメントの位置によりマイクロプロセッサ63は所定のカットオフ周波数になるようLPF61、LPF62を制御する。例えば、一番上である8番目のセグメントを受信するとき、BPF5の周波数特性が経時変化により初期には10dBあった上側隣接映像信号に対する抑圧量が5dBに悪化している場合を考える。
BPF5とLPF61,62を合わせた所望の上側隣接映像信号抑圧量が40dBとすると、従来例であれば図1で説明したとおり、LPF61,62では30dBの減衰量しか得られないため受信が不可能になる。
OFDM復調器38は、ISDB−Tの送信時の変調処理に応じて、複素フーリエ変換、周波数インターリーブ、時間インターリーブ、誤り訂正などの復調処理が行われ、TS出力端子にTSが出力される。
このOFDM復調器38ではビタビ復号の後、リードソロモン復号(以下RS復号という。)が行われる。RS復号の際、誤り訂正のできないRSバイトを検出可能であることが知られており、OFDM復調器38はRSバイトが発生すると誤り訂正不可能バイトが発生したことを示す信号を誤り率カウント回路69に送る。
この誤り率カウント回路69は、一定時間の中でその数をカウントすることによって誤り率を計算し、その結果をマイクロプロセッサ63に知らせる。マイクロプロセッサ63は、計算された誤り率が所望の誤り率より低い場合は何も行わないが、高い場合にはLPF61,62のカットオフ周波数を初期値から変えるよう制御を行う。
以上のように、順次変えていく過程で計算された誤り率が所望の誤り率より低くなるまでカットオフ周波数を変えていく。このような制御を行えば、BPF5が経年変化した場合にも低い誤り率を得られるだけでなく、LPF61、LPF62の経年変化に同時に対応し、さらに、より隣接信号の強い受信場所においても低い誤り率を得ることができる。
図8は、本発明の実施の形態5による受信装置において、LPFのカットオフ周波数と誤り率の関係を示す図である。図8を用いて、LPF61,62のカットオフ周波数の設定を変えたときの誤り率への変化を示す。
図8において、経年変化がない時、カットオフ周波数は105で示される点にあり、所望の誤り率より低いため、マイクロプロセッサ63からの制御はこれ以上不要である。経年変化により初期値が101になった時、例えば101から103へ、103から102へ、102から104へと変えるように制御を行うと、104になった時点で所望の誤り率より低くすることができる。
また今後、VHF帯においてアナログ放送は廃止され、別のデジタル音声放送などのチャンネル拡大などが考えられている。そのため所要の隣接排除は変わっていくことが予想される。
従って、図1〜図4の構成を持つ受信装置では、地域やチャンネルにより隣接信号のレベルが標準と異なる場合に、マイクロプロセッサ63のソフトウエアの変更で柔軟に変更することが可能であるが、図5の場合は誤り率によりカットオフ周波数を変えるものであり、ソフトウエアの変更も必要がない。
本発明にかかる受信装置は、I、Q信号用LPFの次数を増やすことなく隣接信号に対する抑圧特性を得ることができるので、低消費電力が必要とされる受信装置に利用すると有用である。
本発明の実施の形態1による受信装置のブロック図 本発明の実施の形態2による受信装置のブロック図 本発明の実施の形態3による受信装置のブロック図 本発明の実施の形態4による受信装置のブロック図 本発明の実施の形態5による受信装置のブロック図 (a)本発明の実施の形態1による受信装置において、3番目の1セグメントを受信時のミキサ3の出力信号図、(b)同、8番目の1セグメントを受信時のミキサ3の出力信号図、(c)同、6,7,8番目の3セグメントを受信時のミキサ3の出力信号図 (a)同、3番目の1セグメントを受信時のミキサ7または8からの出力信号図、(b)同、8番目の1セグメントを受信時のミキサ7または8からの出力信号図、(c)同、6,7,8番目の3セグメントを受信時のミキサ7または8からの出力信号図 同、LPFのカットオフ周波数と誤り率の関係図 従来の受信装置のブロック図 (a)7CHによる地上波デジタル音声信号図、(b)同、3番目の1セグメントを示す図、(c)同、8番目の1セグメントを示す図、(d)同、6,7,8番目の3セグメントを示す図
符号の説明
1a 入力端子
11 IQ直交検波器
30a I信号出力端子
31a Q信号出力端子
61 I信号用LPF
62 Q信号用LPF

Claims (7)

  1. 複数のセグメントからなるOFDM変調信号を受信信号とする受信装置において、前記受信信号が入力される入力端子と、この入力端子からの信号が供給されるIQ直交検波器と、このIQ直交検波器から出力されたI、Q信号がそれぞれ供給されるI、Q信号用LPFと、これらI、Q信号用LPFからの出力信号がそれぞれ供給されるI、Q信号用出力端子を備え、前記セグメントの内の選択された1セグメントあるいは複数セグメントの位置に応じて、前記I、Q信号用LPFのカットオフ周波数を変える手段を設けた受信装置。
  2. 基準クロックに接続された周波数調整回路と、周波数調整回路に接続された直流電圧補正回路を備え、異なる基準クロック信号周波数に対し直流電圧補正回路がI、Q信号用LPFのカットオフ周波数を一定にする手段を備えた請求項1に記載の受信装置。
  3. I、Q信号用LPFと周波数調整回路の間に直流電圧補正回路を備え、異なる基準クロック信号周波数に対する直流電圧補正を行う手段を備えた請求項1に記載の受信装置。
  4. ビット誤り率に応じてI、Q信号用LPFのカットオフ周波数を変える手段を備えた請求項1に記載の受信装置。
  5. 入力端子からの受信信号が供給されるミキサと、このミキサからの出力信号が供給されるフィルタと、このフィルタの出力信号がIQ直交検波器に供給される請求項1に記載の受信装置。
  6. フィルタの特性に応じてI、Q信号用LPFのカットオフ周波数を変える手段を備えた請求項1に記載の受信装置。
  7. 少なくともIQ直交検波器とI信号用LPFとQ信号用LPFは、同一のパッケージに集積された請求項1に記載の受信装置。
JP2004095164A 2004-03-29 2004-03-29 受信装置 Expired - Fee Related JP4483369B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095164A JP4483369B2 (ja) 2004-03-29 2004-03-29 受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095164A JP4483369B2 (ja) 2004-03-29 2004-03-29 受信装置

Publications (2)

Publication Number Publication Date
JP2005286529A true JP2005286529A (ja) 2005-10-13
JP4483369B2 JP4483369B2 (ja) 2010-06-16

Family

ID=35184473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095164A Expired - Fee Related JP4483369B2 (ja) 2004-03-29 2004-03-29 受信装置

Country Status (1)

Country Link
JP (1) JP4483369B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128267A1 (ja) * 2008-04-17 2009-10-22 パナソニック株式会社 受信装置とこれを用いた電子機器
WO2012014344A1 (ja) * 2010-07-28 2012-02-02 パナソニック株式会社 受信回路およびそれを備えた受信装置
JP2012109877A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd 周波数シフト回路および通信装置
JP2015046799A (ja) * 2013-08-28 2015-03-12 富士通株式会社 電子回路および制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128267A1 (ja) * 2008-04-17 2009-10-22 パナソニック株式会社 受信装置とこれを用いた電子機器
WO2012014344A1 (ja) * 2010-07-28 2012-02-02 パナソニック株式会社 受信回路およびそれを備えた受信装置
JP2012034011A (ja) * 2010-07-28 2012-02-16 Panasonic Corp 受信回路およびそれを備えた受信装置
CN102474278A (zh) * 2010-07-28 2012-05-23 松下电器产业株式会社 接收电路以及具备该接收电路的接收装置
US8462894B2 (en) 2010-07-28 2013-06-11 Panasonic Corporation Receiver circuit and receiver apparatus including the same
JP2012109877A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd 周波数シフト回路および通信装置
JP2015046799A (ja) * 2013-08-28 2015-03-12 富士通株式会社 電子回路および制御方法

Also Published As

Publication number Publication date
JP4483369B2 (ja) 2010-06-16

Similar Documents

Publication Publication Date Title
US7098967B2 (en) Receiving apparatus
US20040153879A1 (en) High-frequency signal reception apparatus and manufacturing method thereof
JP4561154B2 (ja) 高周波装置
JP2003134411A (ja) テレビジョンチューナ
KR100719116B1 (ko) 노이즈신호를 여파 처리하는 방송수신장치 및 그 방법
EP1113573A1 (en) Tuner IC and receiving apparatus employing the same
JP4171764B2 (ja) 高周波受信機および隣接妨害波の低減方法
JPH11112462A (ja) デジタル放送の受信機
JP4483369B2 (ja) 受信装置
US7986929B2 (en) Providing channel filtering in an automatic frequency control path
JP2003179513A (ja) 復調装置
JP4089275B2 (ja) 受信制御方法、受信制御装置、受信装置
US6788747B1 (en) Receiver capable of receiving analog broadcast and digital broadcast and IC for the same
JP2013062558A (ja) デジタル放送受信機
JP3743417B2 (ja) 受信装置
JP4793274B2 (ja) イメージ除去型受信装置
EP1623571A1 (en) Carrier recovery based demodulation
JP2007281653A (ja) 半導体集積回路、tv放送受信装置およびtv放送受信方法
JP4506426B2 (ja) Cofdm変調方式受信機及び隣接チャネル妨害排除方法
US20170026068A1 (en) Receiving device
US20080253485A1 (en) Broadcast receiving apparatus and method for receiving broadcast signal
KR101331663B1 (ko) 아날로그 및 디지털 위성파 겸용 튜너
JP2007088880A (ja) チューナ
JP4611142B2 (ja) 電子チューナおよび電子チューナを含む電子機器
JPH11205170A (ja) デジタル衛星放送用受信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees