WO2012014323A1 - 半割すべり軸受の製造方法および半割すべり軸受 - Google Patents

半割すべり軸受の製造方法および半割すべり軸受 Download PDF

Info

Publication number
WO2012014323A1
WO2012014323A1 PCT/JP2010/062942 JP2010062942W WO2012014323A1 WO 2012014323 A1 WO2012014323 A1 WO 2012014323A1 JP 2010062942 W JP2010062942 W JP 2010062942W WO 2012014323 A1 WO2012014323 A1 WO 2012014323A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
positioning member
mating surface
tool
bearing body
Prior art date
Application number
PCT/JP2010/062942
Other languages
English (en)
French (fr)
Inventor
美地利 稲垣
中島 健
Original Assignee
大同メタル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同メタル工業株式会社 filed Critical 大同メタル工業株式会社
Priority to US13/059,212 priority Critical patent/US8500335B2/en
Priority to PCT/JP2010/062942 priority patent/WO2012014323A1/ja
Priority to JP2010548685A priority patent/JP4746155B1/ja
Priority to KR1020117003197A priority patent/KR101336800B1/ko
Priority to EP10807420.4A priority patent/EP2520816B1/en
Publication of WO2012014323A1 publication Critical patent/WO2012014323A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/08Attachment of brasses, bushes or linings to the bearing housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/80Shaping by separating parts, e.g. by severing, cracking
    • F16C2220/82Shaping by separating parts, e.g. by severing, cracking by cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49647Plain bearing

Definitions

  • the present invention relates to a half sliding bearing manufacturing method and a half sliding bearing.
  • the half-sliding bearing is assembled as, for example, a connecting rod of an automobile engine, and is used as a bearing for smoothly rotating a crank pin of a crankshaft inserted through the connecting rod with respect to the connecting rod.
  • a positioning member protruding from the outer peripheral surface of the half-slide bearing is formed, and a fitting groove (recess) is formed in the bearing housing.
  • the half sliding bearing is positioned with respect to the bearing housing by fitting the positioning member into the fitting groove.
  • the amount of protrusion of the positioning member from the outer peripheral surface of the half slide bearing to the radially outer side is determined by the amount of the bearing housing. It is desirable to make it as large as possible according to the size of the fitting groove.
  • the half sliding bearing described in Patent Document 1 includes a semi-cylindrical bearing body and a positioning member formed on a mating surface of the bearing body.
  • the positioning member includes a flat portion that is shifted (dented) from the mating surface in the circumferential direction of the bearing body, and includes a protruding portion that protrudes radially outward of the bearing body from the flat portion.
  • the upper surface of the projecting portion is flush with the flat portion, and both exist on the same virtual plane.
  • the half-slide bearing having such a configuration can be manufactured as follows. First, a semi-cylindrical bearing body is prepared. A flat machining surface of the tool is applied to a part of the outer peripheral side of the mating surface (half surface) of the bearing body (see FIG.
  • the positioning member is formed by the method described in Patent Document 1
  • the amount of deformation of the forming material of the bearing body increases as the protruding amount of the positioning member increases.
  • unexpected deformation may occur in the bearing body, adversely affecting the bearing performance, and there may be restrictions on the material selection of the bearing body, limiting the design freedom of the half-slide bearing. It was.
  • the positioning member is formed by the method described in Patent Document 3
  • there is a concern that the durability of the tool is reduced due to an increase in stress applied to the tool, and the manufacturing efficiency is lowered.
  • the inventor of the present application has found that if a part of the forming material of the bearing body pressed with the width of the tool narrowed is allowed to escape to the outside of the tool, the bearing It was considered that the amount of protrusion (the amount of protrusion from the outer peripheral surface of the bearing body) necessary for the positioning member to perform its function can be secured while suppressing the amount of deformation of the forming material in the circumferential direction of the body. That is, the first aspect of the present invention is defined as follows.
  • a semi-cylindrical bearing body Formed on the mating surface of the bearing body by pressing a tool against a part of the outer peripheral side of the mating surface of the bearing body and deforming the forming material of the bearing main body together with a part of the outer peripheral side of the mating surface radially outward
  • a method for manufacturing a half plain bearing comprising: Manufacture of a half-slide bearing in which the positioning member is formed by plastically deforming the forming material of the bearing body so as to approach the outer surface of the tool by pressing the tool against a part of the outer peripheral side of the mating surface Method.
  • the forming material on the outer peripheral surface side of the bearing main body is plastically deformed so as to be close to the outer surface of the tool, in other words, to wrap around, so that it corresponds to the amount of wraparound. Deformation in the bearing body, particularly deformation in the circumferential direction is suppressed. Since the amount of protrusion from the outer peripheral surface of the bearing body can be increased by the material that wraps around the outer surface of the tool, the positioning function required for the positioning member can be ensured.
  • the surface of the tool (first surface) that is in contact with the mating surface of the bearing body is a surface that is substantially perpendicular to the pressing direction and its width (relative to the radial direction of the bearing body).
  • the outer surface of the tool ( The position of the tip of the second surface) on the first surface side coincides with the outer edge of the bearing body, or a range within ⁇ 30% of the width of the first surface when coincident with the outer edge It is assumed that there is a deviation in the radial direction from the outer edge of the bearing body.
  • the position of the tip of the second surface shifts outward from the outer edge of the bearing body within 30% of the width of the first surface when it coincides with the outer edge (the width of the first surface matches the outer edge).
  • the forming material of the bearing body easily turns around to the outer surface side of the tool.
  • the deviation from the outer peripheral surface of the bearing body toward the central axis is within 30% of the width of the first surface when the position of the tip of the second surface coincides with the outer edge (the width of the first surface is the outer edge). Is shorter than the width of the first surface when it coincides with the first surface), since a sufficient amount of protrusion can be easily obtained in the protrusion.
  • the included angle between the machining surface (first surface) and the outer surface (second surface) is a right angle or an obtuse angle in terms of the durability of the tool. It is desirable that the forming material of the bearing body does not come into contact with the outer surface (second surface) of the tool while the tool is being pressed in the direction perpendicular to the mating surface.
  • the processing surface and the subsequent outer surface portion are flat surfaces, and the two are orthogonal to each other.
  • the inner side surface portion following the processing surface is also a flat surface and the two are orthogonal to each other.
  • the positioning member formed as described above can be defined as follows. That is, A semi-cylindrical bearing body; A half-sliding bearing comprising a positioning member formed on a mating surface of the bearing body, The positioning member includes a flat portion that is shifted from the mating surface in a substantially circumferential direction of the bearing body, and a protruding portion that protrudes radially outward from the flat portion, with respect to a virtual plane including the flat portion.
  • the material of the bearing body that wraps around the outer surface of the tool becomes a protruding portion, and the protruding portion is refracted upward (to the mating surface side) from the flat portion. For this reason, the amount of protrusion necessary for the function of the positioning member is ensured while the amount of deformation of the forming material in the circumferential direction of the bearing body is suppressed. Therefore, it is easy to securely fix the half slide bearing to the housing, and contributes to improvement of bearing performance such as fatigue resistance.
  • the fitting groove formed in the housing can be made smaller.
  • the positioning member has a flat portion and a protruding portion protruding radially outward from the flat portion, and the tip of the protruding portion is from a virtual plane including the flat portion. Located on the upper side, that is, the mating surface side.
  • the mating surface side Located on the upper side, that is, the mating surface side.
  • FIG. 1A is a top view of an essential part of a half plain bearing 10 of an embodiment embodying the present invention.
  • FIG. 1B is a side view of the half plain bearing 10.
  • FIG. 2 is a longitudinal sectional view of the half-sliding bearing 10 cut at right angles to the axis, and is a sectional view taken along the line ⁇ - ⁇ shown in FIG.
  • the principal part longitudinal cross-sectional view which shows the vicinity of the positioning member 20 in the half slide bearing 10.
  • FIG. FIG. 5 is a longitudinal sectional view for explaining a method of forming the positioning member 20, and is a sectional view taken along the line ⁇ - ⁇ shown in FIG.
  • FIG. 4 is a longitudinal sectional view of an essential part showing the vicinity of a positioning member 20 ′ in a prior art half sliding bearing 10 ′ described in FIGS. 1 to 3 of Patent Document 2;
  • the material and dimensions Y, Z, X, W (Y ′, Z ′, X ′, W ′) and Y / Z (Y) of the back metal layer 12 in this embodiment (see FIG. 3) and the prior art (see FIG. 8) '/ Z') A chart showing the relationship with the value.
  • FIG. 4 is an explanatory view for explaining the relationship between the thickness U of the bottom surface portion 33a of the pressing tool 33 and the dimensions V, Y, and T, and is a main part longitudinal sectional view showing the vicinity of the positioning member 20 in the half slide bearing 10;
  • FIG. 13A is an explanatory diagram for explaining a processing method in the case where the positioning member 20 is used as a locking member, and is a main part longitudinal sectional view showing the vicinity of the positioning member 20 in the half slide bearing 10.
  • FIG. 13B is a longitudinal sectional view of an essential part for explaining a state in which the half slide bearing 10 is assembled to the bearing housing 40 when the positioning member 20 is used as a locking member.
  • the principal part longitudinal cross-sectional view for demonstrating the state which assembled
  • FIG. 1A is a top view of the main part of the half slide bearing 10.
  • FIG. 1B is a side view of the half slide bearing 10.
  • 2 is a longitudinal sectional view of the half plain bearing 10 cut at right angles to the axis, and is a sectional view taken along the line ⁇ - ⁇ shown in FIG.
  • FIG. 3 is a longitudinal sectional view of a main part showing the vicinity of the positioning member (positioning claw) 20 in the half slide bearing 10.
  • the half-sliding bearing 10 is integrally formed by superimposing a back metal layer 12 on the outer peripheral surface of the sliding layer 11, and the whole is curved into a semi-cylindrical shape. It is set to 13.
  • the sliding layer 11 is made of, for example, an Al alloy or a Cu alloy having properties suitable for a sliding bearing (for example, low friction, wear resistance, fatigue resistance, non-seizure property, and conformability).
  • the back metal layer 12 is provided in order to increase the strength of the half slide bearing 10, and is made of, for example, steel.
  • the half-slide bearing 10 having a diameter of about 40 to 80 mm and a combined thickness of the sliding layer 11 and the back metal layer 12 of about 1.5 to 3.0 mm is taken as an example.
  • the curved edges of the bearing body 13 become mating surfaces (divided surfaces, contact surfaces) 14a and 14b, respectively, and one positioning member 20 is formed at a substantially intermediate position of the mating surface 14a in the axial direction of the half slide bearing 10.
  • the formation position and the number of the positioning members 20 can be arbitrarily designed according to the use and shape of the half slide bearing 10.
  • the positioning member 20 includes a recess 21 and a protrusion 22 and is formed on the back metal layer 12.
  • the recess 21 is a U-shaped recess formed on the outer peripheral surface of the back metal layer 12 (bearing body 13), and the recess 21 opens in the mating surface 14a.
  • a flat bottom surface portion (flat portion) 21 a is formed on the bottom surface side of the recess 21 .
  • a back wall 23 having a substantially constant thickness is formed on the back metal layer 12 between the recess 21 and the sliding layer 11. That is, the back wall portion 23 is formed between the recess 21 and the inner peripheral surface of the bearing body 13.
  • the sliding layer 11 located behind the back wall portion 23 is not deformed, and the inner peripheral surface of the sliding layer 11 is generally smooth.
  • the protrusion 22 is a protrusion in which the forming material on the outer peripheral surface side of the back metal layer 12 (bearing body 13) protrudes outward in the radial direction of the half-sliding bearing 10.
  • a substantially flat inner surface portion 22 a that is slightly swollen is formed.
  • the inner surface portion 22a is continuous with the flat portion 21a of the concave portion 21, and the inner surface portion 22a is an inclined surface having an acute inclination angle ⁇ with respect to the flat portion 21a.
  • the inclination angle ⁇ can be arbitrarily designed, but is preferably 10 to 50 degrees, and more preferably 20 to 40 degrees.
  • the width of the flat portion 21 a of the concave portion 21 in the radial direction of the half slide bearing 10 is “dimension V”
  • the distance between the mating surface 14 a and the tip portion of the protruding portion 22 is “ “Dimension W”
  • the distance between the mating surface 14a and the flat portion 21a is “Dimension X”
  • the protruding amount of the protruding portion 22 in the radial direction of the half slide bearing 10 from the connecting portion between the flat portion 21a and the protruding portion 22 is " Dimension Y ”
  • the distance in the direction perpendicular to the radial direction from the mating surface 14a to the lower edge 22b of the positioning member 20 is denoted as“ dimension Z ”.
  • FIG. 4 is a perspective view for explaining a forming method (manufacturing method, construction method) of the positioning member 20 in the half slide bearing 10.
  • FIG. 5 is a longitudinal sectional view for explaining a method of forming the positioning member 20, and is a sectional view taken along the line ⁇ - ⁇ shown in FIG. 6 and 7 are main part longitudinal cross-sectional views for explaining the formation process of the positioning member 20.
  • a die 30, fixtures (stoppers) 31 a, 31 b and 32, and a pressing tool 33 are used to form the positioning member 20 of the half slide bearing 10.
  • the die 30 is a block material in which an inner peripheral surface 30a, upper surfaces 30b and 30c, and a molding recess 30d are formed.
  • Each fixture 31a, 31b is a rectangular flat block material having the same dimensions.
  • the fixture 32 is a rectangular flat plate-like block material.
  • the pressing tool 33 is a rectangular flat metal block material, and a flat processed surface (first surface) 33 a is formed on the bottom surface side of the pressing tool 33.
  • the outer surface (second surface) 33b of the pressing tool 33 is formed in a flat shape, and the processing surface 33a and the outer surface 33b are orthogonal to each other. In addition, at least the part which continues with the process surface 33a in the outer surface 33b should just be formed flat.
  • the included angle between the outer side surface 33b and the processed surface 33a is preferably a right angle or an obtuse angle. This is to provide durability to the pressing tool 33.
  • the included angle between the processing surface 33a and the inner surface 33c of the pressing tool 33 is a right angle.
  • the inner peripheral surface 30 a of the die 30 forms a curved surface with a semicircular longitudinal section corresponding to the outer shape of the half slide bearing 10.
  • the upper surfaces 30b and 30c of the die 30 are flat. Therefore, when the half sliding bearing 10 is set on the inner peripheral surface 30a of the die 30, the outer peripheral surface of the bearing body 13 is supported in a state of being in close contact with the inner peripheral surface 30a without a gap.
  • the half slide bearing 10 is rotated with respect to the die 30 so that the alignment surfaces 14a and 14b of the half slide bearing 10 are aligned with the upper surfaces 30b and 30c of the die 30, respectively. Then, by attaching and fixing the fixtures 31 a and 31 b to the upper surface 30 b of the die 30, the lower surface side of the fixtures 31 a and 31 b and the mating surface 14 a of the half slide bearing 10 are brought into contact with each other. Further, by attaching and fixing the fixture 32 to the upper surface 30c of the die 30, the lower surface side of the fixture 32 and the mating surface 14b of the half slide bearing 10 are brought into contact with each other. As a result, the half slide bearing 10 is clamped and fixed to the die 30 by the inner peripheral surface 30a of the die 30 and the fixtures 31a, 31b, and 32.
  • the molding recess 30d of the die 30 is a U-shaped concave groove (notch) formed in the upper surface 30b and is provided for molding the positioning member 20 of the half slide bearing 10. Therefore, each fixing tool 31a, 31b is mounted and fixed at a position where the molding recess 30d of the die 30 is avoided and where the positioning member 20 is formed on the mating surface 14a of the half slide bearing 10. As a result, from between each of the fixtures 31a and 31b, the molding recessed portion 30d and the portion where the positioning member 20 is formed on the mating surface 14a of the half slide bearing 10 are exposed.
  • the pressing tool 33 is lowered from above the die 30 toward the molding recess 30d, and as shown in FIG. 6A, the half slide bearing 10 is aligned.
  • the flat working surface 33a of the pressing tool 33 is brought into contact with a part of the outer peripheral side of the back metal layer 12 of the surface 14a.
  • the pressing tool 33 is lowered in a direction perpendicular to the mating surface 14 a (substantially circumferential direction of the bearing body 13), and the back metal layer of the mating surface 14 a of the half slide bearing 10.
  • the processing surface 33a of the pressing tool 33 the pressed back metal layer 12 is plastically deformed, and the concave portion 21 and the protruding portion 22 of the positioning member 20 are formed.
  • a portion (a part on the outer peripheral side) in contact with the processing surface 33 a of the pressing tool 33 becomes the flat portion 21 a of the recess 21, and a portion in contact with the inner surface 33 c of the pressing tool 33. It becomes the back wall part 23, and follows the shape of each surface 33a, 33c of the pressing tool 33, respectively.
  • the portion where contact with the pressing tool 33 is lost that is, the portion of the forming material of the back metal layer 12 that protrudes outward in the radial direction as the pressing tool 33 is pressed. Then, it is wound on the outer surface 33b side of the pressing tool 33.
  • the deviation amount (dimension X) between the mating surface 14a and the flat portion 21a is increased.
  • the protruding amount (dimension Y) of the protruding portion 22 in the radial direction of the half-sliding bearing 10 from the connecting portion between the flat portion 21a and the protruding portion 22, and from the mating surface 14a to the bottom of the positioning member 20 The distance (dimension Z) in the vertical direction to the radial direction to the edge 22b, the distance (dimension W) between the mating surface 14a and the tip of the protrusion 22, and the inclination angle ⁇ (the inner surface 22a of the protrusion 22 is the recess 21). All of the angles formed with respect to the flat portion 21a increase.
  • the dimensions X, Y, Z, and W increase.
  • the increase in the dimension Y stops and does not increase any further. That is, the dimension Y is defined by the distance between the vertical inner peripheral surface of the molding concave portion 30 d of the die 30 and the connection portion between the flat portion 21 a and the protruding portion 22.
  • the positioning member 20 of the half slide bearing 10 is completed.
  • the inclination angle ⁇ is greater than 0 and 60 degrees or less (0 ⁇ ⁇ 60 degrees).
  • one pressing tool 33 is moved in the same direction (vertical direction in the figure).
  • the pressing tool 33 is moved in the radial direction of the bearing body 13 (in the figure). Left and right direction).
  • the shape of a protrusion part can be prepared using the several press tool from which the width
  • the pressing tool can be replaced with a wider one when the pressing amount by the pressing tool (the amount of movement in the vertical direction in the figure) exceeds a predetermined length.
  • FIG. 8 is a longitudinal sectional view of a main part showing the vicinity of the positioning member 20 ′ in the prior art half sliding bearing 10 ′ described in Patent Document 1.
  • the same reference numerals are used for the same components and components as in the present embodiment shown in FIGS. Is attached.
  • the positioning member 20 ′ of the prior art is different from the positioning member 20 of the present embodiment shown in FIG. 3 in that the inner surface portion 22a ′ of the protrusion 22 ′ is inclined with respect to the flat portion 21a ′ of the recess 21 ′. In other words, the flat portion 21a ′ and the inner surface portion 22a ′ are in a flush state.
  • the inventor of the present application has found that the bottom surface portion 33a with respect to the added value (V ′ + Y ′) of the dimension V ′ and the dimension Y ′ in order to form the protrusion 22 ′ shown in FIG. It was concluded that a pressing tool 33 'having a sufficiently large thickness U' must be used (U '>V' + Y '). That is, since the pressing tool 33 ′ used in the prior art has a wide processing surface 33a ′, the material of the bearing body does not go around to the outer surface 33b ′ of the pressing tool 33 ′, and is all under the interference of the processing surface 33a ′. is there. As a result, the upper surface shape of the projecting portion is the same flat shape as the flat portion. In the present embodiment shown in FIG. 3, the thickness U and the dimension V of the processing surface 33a of the pressing tool 33 are the same.
  • FIG. 9 shows materials and dimensions Y, Z, X, W (Y ′, Z ′, X ′, W ′) and Y of the back metal layer 12 in this embodiment (see FIG. 3) and the prior art (see FIG. 8). It is a graph which shows the relationship with / Z (Y '/ Z') value.
  • Example Product 1 and Comparative Product 1 formed by the method of FIG. 8) are compared, dimensions Y and Y ′ are equal to dimensions Z and Z ′ even though dimensions X and X ′ are equivalent. Since the divided Y / Z and Y ′ / Z ′ values are 0.21 for the example product 1 and 0.19 for the comparative example product 1, it should be increased by 11% in this embodiment compared to the prior art. Can do.
  • Example Product 2 is an example in which X is larger than Example Product 1, but the Y / Z value is 0.2 or more as in Example 1.
  • the example product 3 in which the material of the back metal layer 12 is a hard material having a hardness exceeding 200 (HV) is substantially the same as the example product 1 in comparison with the example product 1, but the dimension Y is larger and the dimension is larger. Z becomes small, and the Y / Z value is 0.28 and is large. This shows that this embodiment is particularly suitable for hard materials.
  • FIG. 10 is a graph showing the relationship between the dimension Z and the dimension Y in the present embodiment (see FIG. 3) and the prior art (see FIG. 8).
  • the dimensions Y and Y ′ (Y / Z and Y ′ / Z ′ values) with respect to the dimensions Z and Z ′ can be increased as compared with the prior art.
  • the dimensions Z and Z ′ (the length of the protruding portion 22 in the circumferential direction of the half-slide bearing 10) are sufficiently secured. In addition, it is desirable to make it as small as possible. Further, when the dimensions Z and Z ′ are increased, the amount of deformation of the material forming the bearing body itself is increased, so that a large load is required by the tool and the possibility of distortion in the shape of the bearing body is increased.
  • the Y / Z value is larger in this embodiment than in the prior art.
  • a preferable Y / Z value is 0.2 or more, more preferably 0.25 or more.
  • the upper limit of Y / Z can be arbitrarily determined according to the strength required for the positioning member. This also means that according to the present embodiment, the positioning function of the positioning member 20 can be enhanced even when the back metal layer 12 is thin. Further, according to the present embodiment, it is possible to reduce the fitting groove of the bearing housing, reduce the manufacturing cost of the bearing housing, and increase the rigidity.
  • the plastically deformed volume of the forming material of the back metal layer 12 is the stroke amount (dimension X) of the pressing tool and the width deformed by the pressing tool (dimension X) when the halved sliding bearing axial length of the pressing tool is a predetermined dimension.
  • Dimension V the dimensions X and X ′ are the same. (That is, when the volume of the forming material of the back metal layer 12 to be plastically deformed is the same), the dimension Z of the present embodiment is smaller than the dimension Z ′ of the prior art.
  • the component deformed in the circumferential direction in the molding material of the back metal layer 12 becomes smaller.
  • the material for forming the back metal layer 12 can efficiently contribute to the formation of the protruding portion. Further, if the amount of deformation in the circumferential direction of the back metal layer 12 is reduced, the stress generated in the bearing body 13 is reduced, and the deformation can be prevented more reliably.
  • FIG. 11 is a graph showing the relationship between the dimension X in the present embodiment (see FIG. 3) and the prior art (see FIG. 8) and the load when the pressing tools 33 and 33 ′ press the back metal layer 12.
  • the load with which the pressing tool 33 presses the back metal layer 12 can be reduced in the present embodiment.
  • the shape of the peripheral portion P of the protrusion 22 on the outer peripheral surface of the slide bearing 10 can be made difficult to collapse. Therefore, according to the present embodiment, it is possible to improve the performance by smoothing the outer peripheral surface of the half slide bearing 10.
  • the driving device (not shown) of the pressing tools 33 and 33 ′ becomes larger and the pressing tools 33 and 33 ′ have a larger size. There is a problem that the tool life is shortened.
  • the drive device of the pressing tool 33 can be reduced in size, and the tool life of the pressing tool 33 can be reduced. Can be extended.
  • the width of the recess 21 in the radial direction on the mating surface 14 a of the half slide bearing 10 is expressed as “dimension T”.
  • the dimension T and the dimension V are equal.
  • FIG. 12 is an explanatory diagram for explaining the relationship between the thickness U of the machining surface 33a of the pressing tool 33 and the dimensions V, Y, T, and the main part showing the vicinity of the positioning member 20 in the half slide bearing 10. It is a longitudinal cross-sectional view.
  • the thickness U and the dimension V are the same.
  • the material of the back metal part 12 is more likely to wrap around the outer surface of the pressing tool 33. It is easier to give a sufficient amount of protrusion to the protrusion 22.
  • the sliding layer 11 located behind the back wall portion 23 of the back metal layer 12 is not deformed, and the inner peripheral surface of the sliding layer 11 is generally smooth. That is, the inner peripheral surface of the bearing main body 13 located behind the positioning member 20 is smooth. Therefore, according to the present embodiment, it is difficult for oil to leak from the mating surface 14a of the half slide bearing 10, and therefore oil leakage is prevented. It can be reduced. Further, according to the present embodiment, oil cavitation hardly occurs on the inner peripheral surface of the sliding layer 11, and therefore, damage to the inner peripheral surface of the sliding layer 11 can be reduced.
  • a rectangular flat plate shaped pressing tool 33 is used to press the positioning member 20. Since the processed surface 33a, which is the tip portion of the pressing tool 33 that presses the back metal layer 12, is a flat shape having a thickness, it has high strength and is not easily damaged. Therefore, according to this embodiment, the productivity of the half slide bearing 10 is increased, and the manufacturing cost can be reduced.
  • the positioning member 20 of the present embodiment as a locking member for preventing the half-slide bearing 10 from rotating in the circumferential direction.
  • FIG. 13A is an explanatory diagram for explaining a processing method in the case where the positioning member 20 of the present embodiment is used as a locking member, and is a main part longitudinal section showing the vicinity of the positioning member 20 in the half slide bearing 10.
  • FIG. 13B is a longitudinal sectional view of a main part for explaining a state where the half slide bearing 10 is assembled to the bearing housing 40 when the positioning member 20 of the present embodiment is used as a locking member.
  • a fitting groove 41 is formed in the mating surface 40 a of the bearing housing 40.
  • the half sliding bearing 50 that is paired with the half sliding bearing 10 is assembled to the bearing housing 60, and the mating surfaces of both the half sliding bearing 50 and the bearing housing 60 are flush with each other. Therefore, when the bearing housing 60 is assembled to the bearing housing 40, the mating surfaces of the half slide bearing 10 and the half slide bearing 50 are brought into close contact with each other, and the distal end portion of the protruding portion 22 of the positioning member 20 of the half slide bearing 10 is The positioning member 20 abuts on the mating surface of the bearing housing 60 and functions as a locking member. Therefore, the half slide bearing 10 is prevented from rotating in the circumferential direction with the rotation of the rotating shaft (not shown) inserted through each half slide bearing 10.
  • the dimension W of the present embodiment is larger than the dimension W ′ of the prior art. Becomes smaller.
  • FIG. 13A when the portion corresponding to the dimension W is cut and removed along the cutting line K, it is desirable that the smaller the dimension W, the smaller the amount of cutting and the easier the cutting process. Therefore, in the present embodiment, the dimension W is small compared to the prior art, so that the half sliding bearing 10 can be easily cut when the positioning member 20 is used as a locking member. Cost can be reduced.
  • FIG. 14 is a longitudinal sectional view of a main part for explaining a state in which the half slide bearing 10 is assembled to the bearing housing 40 when the positioning member 20 of the present embodiment is used as a locking member.
  • the pin 62 is inserted and fixed into the mounting hole 61 formed in the mating surface of the bearing housing 60 without cutting the half-slide bearing 10 as in the example shown in FIG.
  • the positioning member 20 is caused to function as a locking member by bringing the tip portion of the pin 62 into contact with the tip portion of the protrusion 22 of the positioning member 20. Therefore, it is desirable that the dimension W is small because the height of the pin 62 can be reduced to reduce the component cost. Therefore, in the present embodiment, the dimension W is smaller than that of the prior art, so that when the positioning member 20 is used as the locking member, the pin 62 can be made smaller, so that the component cost can be reduced.
  • the present invention is not limited to the above-described embodiment, and may be embodied as follows, and even in that case, operations and effects equivalent to or higher than those of the above-described embodiment can be obtained.
  • the half-slide bearing 10 of the above embodiment has a two-layer structure, but may have a single-layer structure (solid type) in which the back metal layer 12 is omitted.
  • the positioning member 20 is used as a member that becomes the sliding layer 11. Will be formed.
  • the half-slide bearing 10 may have a three-layer structure (trimetal type) with an overlay, or may have a multilayer structure having a four-layer structure or more.
  • the positioning member 20 is not limited to a substantially intermediate position and is formed at any location on the mating surface 14a.
  • two or more positioning members 20 may be formed at appropriate locations on the mating surface 14a.
  • the positioning members 20 may be formed at both ends in the circumferential direction of the half slide bearing 10 like the mating surface 14a and the mating surface 14b.
  • the position where the positioning member 20 is formed is not particularly limited, and the positioning member 20 may be formed at, for example, an end portion in the axial direction of the half slide bearing 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)

Abstract

新規構成の位置決め部材を有する半割すべり軸受及びその製造方法を提案する。 工具の幅を狭めて押圧した軸受本体13の形成材料の一部が工具の外側へ逃げるようにすれば、軸受本体13の円周方向における形成材料の変形量を抑制しつつ、位置決め部材20がその機能を奏するために必要な突出量(軸受本体の外周面からの突出量)を確保できる。このようにして形成された半割すべり軸受の位置決め部材20は平坦部21aと突出部22とを備え、平坦部21aを含む仮想平面に対して突出部22の先端が合わせ面側に位置している。

Description

半割すべり軸受の製造方法および半割すべり軸受
 本発明は、半割すべり軸受の製造方法および半割すべり軸受に関するものである。
 半割すべり軸受は、例えば、自動車用エンジンのコネクティングロッドに組み付けられ、コネクティングロッドに挿通されたクランクシャフトのクランクピンをコネクティングロッドに対して円滑に回転させるための軸受として用いられている。
 半割すべり軸受を軸受ハウジング(例えば、コネクティングロッドなど)に組み付ける際には、半割すべり軸受の外周面から突出した位置決め部材を形成すると共に、軸受ハウジングに嵌合溝(凹所)を形成しておき、嵌合溝に位置決め部材を嵌合させることにより、軸受ハウジングに対する半割すべり軸受の位置決めを行っている。
 ここで、軸受ハウジングに対する半割すべり軸受の軸線方向の位置決めを容易にして位置決め機能を高めるためには、半割すべり軸受の外周面から半径方向外側への位置決め部材の突出量を、軸受ハウジングの嵌合溝の寸法に合わせて、可能な限り大きくすることが望ましい。
 特許文献1に記載の半割すべり軸受は、半円筒形の軸受本体と、該軸受本体の合わせ面に形成される位置決め部材を備える。位置決め部材は合わせ面より軸受本体の円周方向へ偏移した(凹んだ)平坦部を備え、該平坦部から軸受本体の半径方向外側へ突出した突出部を備える。突出部の上面は平坦部と面一であり、両者は同一の仮想平面上に存在する。
 かかる構成の半割すべり軸受は次の様にして製造できる。
 まず、半円筒形の軸受本体を準備する。この軸受本体の合わせ面(半割面)の外周側一部へ工具の平坦な加工面を当てつけ(図8参照)、これを押圧して合わせ面の外周側一部とともに軸受本体の外周面側の形成材料を塑性変形させる。その結果、軸受本体の形成材料は工具に沿って半径方向外側に展開する。
 このようにして形成された位置決め部材の上面(工具当接面)は工具の加工面に沿った形状、即ち平坦面となる。
 この発明に関連する文献として特許文献2及び特許文献3も参照されたい。
特開昭59-50226号公報 特開平9-210064号公報 特表2005-536696号公報
 既述のように、高い位置決め機能を発揮するためには位置決め部材の突出量を可能な限り大きくすることが好ましい。
 しかしながら、特許文献1に記載の方法で位置決め部材を形成すると、位置決め部材の突出量の増大に伴い軸受本体の形成材料の変形量も増大する。
 その結果、軸受本体に予期せぬ変形が生じたりして軸受性能に悪影響を与えたり、また軸受本体の材料選択に制限が生じたりして半割すべり軸受の設計自由度を制限するおそれがあった。また特許文献3に記載の方法で位置決め部材を形成すると、工具にかかる応力増大に起因する工具の耐久性低下も懸念され、製造効率が低くなる。
 本願発明者は上記課題の少なくとも一つを解決するために鋭意検討を重ねた結果、工具の幅を狭めて押圧した軸受本体の形成材料の一部が工具の外側へ逃げるようにすれば、軸受本体の円周方向における形成材料の変形量を抑制しつつ、位置決め部材がその機能を奏するために必要な突出量(軸受本体の外周面からの突出量)を確保できると考えた。
 即ちこの発明の第1の局面は次のように規定される。
 半円筒形の軸受本体と、
 該軸受本体の合わせ面の外周側一部へ工具を押圧して、前記合わせ面の外周側一部とともに前記軸受本体の形成材料を半径方向外側へ変形させることにより、軸受本体の合わせ面に形成される位置決め部材と、を備える半割すべり軸受の製造方法において、
 前記合わせ面の外周側一部へ前記工具を押圧することにより前記軸受本体の形成材料を前記工具の外側面へ近接するように塑性変形させて前記位置決め部材を形成する、半割すべり軸受の製造方法。
 第1の局面の製造方法によれば、軸受本体の外周面側の形成材料を工具の外側面へ近接するように、換言すれば回り込むように塑性変形させるので、当該回り込みの量に対応して軸受本体における変形、特に円周方向への変形が抑制される。
 工具の外側面へ回り込んだ材料により、軸受本体の外周面からの突出量をかせげるので、位置決め部材に求められる位置決め機能も確保できる。
 軸受本体の材料を工具の外側面へ回り込ませるためには、比較的薄い工具を用いることとなる。本発明者らの検討によれば、軸受本体の合わせ面に当接される工具の面(第1の面)は押圧方向に略垂直な面であってその幅(軸受本体の半径方向に対する)は軸受本体の材質、構造等によって適宜選択されるものであるが、軸受本体の合わせ面の外縁(軸受本体の、合わせ面と外周面との交線)との関係において、工具の外側面(第2の面)の前記第1の面側の先端の位置は、軸受本体の外縁と一致するか、若しくは外縁と一致するときの第1の面の幅の±30%以内の長さの範囲で軸受本体の外縁から半径方向に偏移しているものとする。第2の面の先端の位置が、外縁と一致するときの第1の面の幅より30%以内で軸受本体の外縁から外方へ偏移(第1の面の幅が、外縁と一致するときの第1の面の幅よりも長い)していると、軸受本体の形成材料が工具の外側面側へ回り込み易くなるので好ましい。また、第2の面の先端の位置が外縁と一致するときの第1の面の幅より30%以内で軸受本体の外周面から中心軸側へ偏移(第1の面の幅が、外縁と一致するときの第1の面の幅よりも短い)していると、突出部に充分な突出量が容易に得られるので好ましい。
 かかる製造方法に用いる工具は、加工面(第1の面)と外側面(第2の面)との挟角が直角ないし鈍角とすることが工具の耐久面で好ましい。工具の外側面(第2の面)には、工具を合わせ面に垂直な方向に押圧している途中で、軸受本体の形成材料が接触しない方が望ましい。
 工具のより好ましい態様は加工面とそれに続く外側面の部分をそれぞれ平坦面として、両者を直交させる。さらには、加工面に続く内側面の部分も平坦面として両者を直交させることが好ましい。
 上記のようにして形成される位置決め部材は次のように規定することができる。即ち、
 半円筒形の軸受本体と、
 該軸受本体の合わせ面に形成される位置決め部材と、を備える半割すべり軸受であって、
 前記位置決め部材は前記合わせ面より前記軸受本体の略円周方向へ偏移した平坦部と該平坦部から半径方向外側へ突出した突出部とを備え、前記平坦部を含む仮想平面に対して前記突出部の先端が前記合わせ面側に位置している、半割すべり軸受。
 このように規定される半割すべり軸受において、工具の外側面へ回り込んだ軸受本体の材料が突出部となり、かかる突出部は平坦部から上方(合わせ面側)へ屈折している。 そのため、軸受本体の円周方向における形成材料の変形量が抑制されつつ、位置決め部材の機能を奏するために必要な突出量が確保されている。
 従って、半割すべり軸受をハウジングに確実に固定させ易く、また、耐疲労性等の軸受性能の向上に貢献している。また、ハウジングに形成する嵌合溝をより小さくすることも可能である。
 このように構成された半割すべり軸受によれば、その位置決め部材が平坦部とこの平坦部から半径方向外側へ突出した突出部を有し、その突出部の先端は平坦部を含む仮想平面より上側、即ち合わせ面側に位置する。
 このように突出部の先端側を合わせ面側へ偏移させることにより、合わせ面を含む平面と突出部の先端との距離が小さくなる。これにより、半割すべり軸受のハウジングへ覆うように組み付けられる相手側ハウジングへ干渉しやすくなり、相手側ハウジングの被干渉部材を小型化することができる。
図1(A)は、本発明を具体化した一実施形態の半割すべり軸受10の要部上面図。図1(B)は、半割すべり軸受10の側面図。 半割すべり軸受10を軸線に対して直角に切断した縦断面図であり、図1に示すα-α線断面図。 半割すべり軸受10における位置決め部材20の近傍を示す要部縦断面図。 半割すべり軸受10における位置決め部材20の形成方法を説明するための斜視図。 位置決め部材20の形成方法を説明するための縦断面図であり、図4に示すβ-β線断面図。 位置決め部材20の形成過程を説明するための要部縦断面図。 位置決め部材20の形成過程を説明するための要部縦断面図。 特許文献2の図1~図3に記載されている従来技術の半割すべり軸受10’における位置決め部材20’の近傍を示す要部縦断面図。 本実施形態(図3参照)と従来技術(図8参照)における裏金層12の材質と寸法Y,Z,X,W(Y’,Z’,X’,W’)およびY/Z(Y’/Z’)値との関係を示す図表。 本実施形態(図3参照)と従来技術(図8参照)における寸法Zと寸法Yの関係を示すグラフ。 本実施形態(図3参照)と従来技術(図8参照)における寸法Xと押圧工具33,33’が裏金層12を押圧する際の荷重との関係を示すグラフ。 押圧工具33の底面部33aの厚みUと、寸法V,Y,Tとの関係を説明するための説明図であり、半割すべり軸受10における位置決め部材20の近傍を示す要部縦断面図。 図13(A)は、位置決め部材20を係止部材として用いる場合の加工方法を説明するための説明図であり、半割すべり軸受10における位置決め部材20の近傍を示す要部縦断面図。図13(B)は、位置決め部材20を係止部材として用いる場合に、半割すべり軸受10を軸受ハウジング40に組み付けた状態を説明するための要部縦断面図。 本実施形態の位置決め部材20を係止部材として用いる場合に、半割すべり軸受10を軸受ハウジング40に組み付けた状態を説明するための要部縦断面図。
 以下、本発明を具体化した一実施形態の半割すべり軸受10について図面を参照しながら説明する。
 [本実施形態の半割すべり軸受10の構成]
 図1(A)は、半割すべり軸受10の要部上面図である。図1(B)は、半割すべり軸受10の側面図である。
 図2は、半割すべり軸受10を軸線に対して直角に切断した縦断面図であり、図1に示すα-α線断面図である。
 図3は、半割すべり軸受10における位置決め部材(位置決め爪)20の近傍を示す要部縦断面図である。
 半割すべり軸受10は、二層構造(バイメタルタイプ)の場合、摺動層11の外周面に裏金層12が重ね合わされて一体的になっており、全体が半円筒形状に湾曲して軸受本体13とされている。
 摺動層11は、すべり軸受に適した性質(例えば、低摩擦性、耐摩耗性、耐疲労性、非焼付き性、なじみ性など)を有する例えばAl合金やCu合金から成る。
 裏金層12は、半割すべり軸受10の強度を高めるために設けられており、例えば鋼から成る。
 本明細書では、直径が約40~80mmで、摺動層11と裏金層12とを合わせた肉厚が約1.5~3.0mmの半割すべり軸受10を例として採り上げた。
 軸受本体13の湾曲した両縁がそれぞれ合わせ面(分割面、当接面)14a,14bとなり、半割すべり軸受10の軸方向における合わせ面14aの略中間位置に1個の位置決め部材20が形成されている。位置決め部材20の形成位置及び形成数は、半割すべり軸受10の用途や形状に応じて任意に設計可能である。
 位置決め部材20は、凹部21および突出部22から構成され、裏金層12に形成されている。
 図3に示すように、凹部21は裏金層12(軸受本体13)の外周面に形成された断面コ字状の凹みであり、凹部21は合わせ面14aに開口している。
 凹部21の底面側には、平坦な底面部(平坦部)21aが形成されている。
 凹部21と摺動層11の間の裏金層12には、略一定厚さの背壁部23が形成されている。すなわち、背壁部23は、凹部21と軸受本体13の内周面との間に形成されている。
 背壁部23の背後に位置する摺動層11には変形が無く、摺動層11の内周面は全体的に平滑である。
 突出部22は、裏金層12(軸受本体13)の外周面側の形成材料が半割すべり軸受10の半径方向の外側に向けて突出した突起である。
 突出部22の内面側には、僅かに膨らんだ略平坦形状の内面部22aが形成されている。
 内面部22aは凹部21の平坦部21aに連続しており、内面部22aは平坦部21aに対して鋭角の傾斜角度θを成した傾斜面である。
 この傾斜角度θは任意に設計可能であるが、10~50度とすることが好ましく、更に好ましくは20~40度である。
 ここで、位置決め部材20の各部の寸法について、半割すべり軸受10の半径方向における凹部21の平坦部21aの幅を「寸法V」、合わせ面14aと突出部22の先端部分との距離を「寸法W」、合わせ面14aと平坦部21aとの距離を「寸法X」、平坦部21aと突出部22との接続箇所から半割すべり軸受10の半径方向への突出部22の突出量を「寸法Y」、合わせ面14aから位置決め部材20の下縁22bまでの前記半径方向に対する垂直方向の距離を「寸法Z」と表記する。
 [本実施形態の位置決め部材20の形成方法]
 図4は、半割すべり軸受10における位置決め部材20の形成方法(製造方法、工法)を説明するための斜視図である。
 図5は、位置決め部材20の形成方法を説明するための縦断面図であり、図4に示すβ-β線断面図である。
 図6および図7は、位置決め部材20の形成過程を説明するための要部縦断面図である。
 図4および図5に示すように、半割すべり軸受10の位置決め部材20を形成するには、ダイス30、固定具(ストッパ)31a,31b,32、押圧工具33を用いる。
 ダイス30は、内周面30a、上面30b,30c、成形凹部30dが形成されたブロック材である。
 各固定具31a,31bは、同一寸法の矩形平板状のブロック材である。
 固定具32は、矩形平板状のブロック材である。
 押圧工具33は矩形平板状の金属製ブロック材であり、押圧工具33の底面側には、平坦形状の加工面(第1の面)33aが形成されている。
 押圧工具33の外側面(第2の面)33bは平坦形状に形成され、加工面33aと外側面33bとは直交している。なお、外側面33bにおいて少なくとも加工面33aと連続する部分が平坦に形成されていればよい。外側面33bと加工面33aとの挟角(両者のなす角)は直角若しくは鈍角とすることが好ましい。押圧工具33に耐久性を付与するためである。
 加工面33aと押圧工具33の内側面33cとの挟角は直角である。
 ダイス30の内周面30aは、半割すべり軸受10の外形に対応した縦断面半円形状の湾曲面を成している。
 ダイス30の上面30b,30cは平坦になっている。
 そのため、半割すべり軸受10をダイス30の内周面30aにセットすると、軸受本体13の外周面は内周面30aに対して隙間無く密着した状態で支持される。
 そこで、ダイス30に対して半割すべり軸受10を回転させ、半割すべり軸受10の合わせ面14a,14bがそれぞれ、ダイス30の上面30b,30cと面一状態になるように位置を合わせる。
 そして、ダイス30の上面30bに各固定具31a,31bを取付け固定することにより、各固定具31a,31bの下面側と、半割すべり軸受10の合わせ面14aとを当接させる。
 また、ダイス30の上面30cに固定具32を取付け固定することにより、固定具32の下面側と、半割すべり軸受10の合わせ面14bとを当接させる。
 その結果、ダイス30の内周面30aと各固定具31a,31b,32とにより、ダイス30に対して半割すべり軸受10が挟持されて固定される。
 ダイス30の成形凹部30dは、上面30bに形成された断面コ字状の凹溝(切欠)であり、半割すべり軸受10の位置決め部材20を成形するために設けられている。
 そこで、各固定具31a,31bは、ダイス30の成形凹部30dを避ける位置で、且つ、半割すべり軸受10の合わせ面14aにおける位置決め部材20が形成される箇所を避ける位置に取付け固定する。
 その結果、各固定具31a,31bの間から、成形凹部30dと、半割すべり軸受10の合わせ面14aにおける位置決め部材20が形成される箇所とが露出される。
 そして、図4~図7の矢印γに示すように、ダイス30の上方から成形凹部30dに向かって押圧工具33を下降させ、図6(A)に示すように、半割すべり軸受10の合わせ面14aの裏金層12の外周側の一部に対して、押圧工具33の平坦な加工面33aを当接させる。
 続いて、図6(B)に示すように、押圧工具33を合わせ面14aに垂直な方向(軸受本体13の略円周方向)に下降させ、半割すべり軸受10の合わせ面14aの裏金層12の外周側の一部を押圧工具33の加工面33aによって押圧すると、押圧された裏金層12に塑性変形が生じ、位置決め部材20の凹部21および突出部22が形成される。
 このとき、裏金層12において、押圧工具33の加工面33aに当接している部分(外周側一部)が凹部21の平坦部21aとなり、押圧工具33の内側面33cと当接している部分が背壁部23となり、それぞれ押圧工具33の各面33a、33cの形状に沿ったものとなる。
 他方、押圧工具33との接触がなくなった部分、即ち裏金層12の形成材料において押圧工具33の押圧に伴い半径方向外側へはみ出した部分は、図6(B)、(C)に示すように、押圧工具33の外側面33b側へ巻き込まれてくる。
 そして、図6(C)に示すように、押圧工具33を更に下降させ、押圧工具33による裏金層12の押圧を続けると、合わせ面14aと平坦部21aとの偏移量(寸法X)が大きくなってゆくのに伴い、平坦部21aと突出部22との接続箇所から半割すべり軸受10の半径方向への突出部22の突出量(寸法Y)、合わせ面14aから位置決め部材20の下縁22bまでの前記半径方向に対する垂直方向の距離(寸法Z)、合わせ面14aと突出部22の先端部分との距離(寸法W)、傾斜角度θ(突出部22の内面部22aが凹部21の平坦部21aに対して成す角度)がいずれも大きくなってゆく。
 その後、用途に応じて、図7に示すように、押圧工具33を更に下降させ、押圧工具33による裏金層12への押圧を続けると、寸法X,Y,Z,Wが大きくなってゆき、突出部22の先端部分がダイス30の成形凹部30dの垂直内周面に当接した状態になると、寸法Yの増大が止まりそれ以上には大きくならない。
 つまり、寸法Yは、ダイス30の成形凹部30dの垂直内周面と、平坦部21aと突出部22との接続箇所との距離によって規定される。
 図6(C)または図7の状態になった時点で、押圧工具33による押圧を停止させると、半割すべり軸受10の位置決め部材20が完成する。
 位置決め部材20が完成すると、傾斜角度θは、0より大きく60度以下になる(0<θ≦60度)。
 上記の説明では、1つの押圧工具33を同一方向(図で上下方向)へ移動させているが、突出部22を任意に附形するため、押圧工具33を軸受本体13の半径方向(図で左右方向)へ移動させることができる。
 また、加工面の幅の異なる複数の押圧工具を用いて突出部の形状を整えることができる。例えば、押圧工具による押圧量(図で上下方向の移動量)が所定の長さを超えたときに押圧工具をより幅広のものに交換することができる。
 押圧工具において加工面33aと外側面33bとの交差部分を面トリ(曲面、若しくは平面)することも可能である。面トリすることにより、押圧工具の耐久性が向上する。
 [従来技術の半割すべり軸受10’の構成]
 図8は、特許文献1に記載の従来技術の半割すべり軸受10’における位置決め部材20’の近傍を示す要部縦断面図である。
 尚、説明を分かり易くするため、図8に示す従来技術において、図1~図7に示す本実施形態と同一の構成部材および構成要素については、符号を等しくすると共に、符号の末尾に「’」を付してある。
 従来技術の位置決め部材20’において、図3に示す本実施形態の位置決め部材20と異なるのは、凹部21’の平坦部21a’に対して突出部22’の内面部22a’が傾斜しておらず、平坦部21a’と内面部22a’とが面一状態になっている点である。
 特許文献1には、突出部22’の形成方法について、単に「外側の突起(突出部22’)が軸受シェル(軸受本体13’)の分割面(合わせ面14a’)に強い力を作用させかつ軸受の内側を対応受けで支えることによって局部的に押出し成形されている」とのみ記載されているだけであり、突出部22’を押圧形成するための押圧工具33’の具体的な形状については一切記載されていない。
 そこで、本願発明者は実験を繰り返した結果、図8に示す突出部22’を形成するためには、寸法V’と寸法Y’の加算値(V’+Y’)に対して、底面部33a’の厚みU’が十分に大きな押圧工具33’を用いるしかないとの結論に達した(U’>V’+Y’)。即ち、従来技術で用いる押圧工具33’は広い加工面33a’を有するので、軸受本体の材料は押圧工具33’の外側面33b’まで回り込むことがなく、全てその加工面33a’の干渉下にある。その結果、突出部の上面形状は平坦部と面一の平坦形状となる。
 尚、図3に示す本実施形態では、押圧工具33の加工面33aの厚みUと寸法Vとが同じになる。
 [本実施形態の作用・効果]
 本実施形態によれば、以下の作用・効果を得ることができる。
 図9は、本実施形態(図3参照)と従来技術(図8参照)における裏金層12の材質と寸法Y,Z,X,W(Y’,Z’,X’,W’)およびY/Z(Y’/Z’)値との関係を示す図表である。
 実施例品1と比較例品1(図8の方法で形成したもの)とを比較すると、寸法X,X’は同等であるにも関わらず、寸法Y,Y’を寸法Z,Z’で除算したY/Z,Y’/Z’値が、実施例品1は0.21、比較例品1は0.19であるため、従来技術に比べて本実施形態では11%も大きくすることができる。
 実施例品2は、実施例品1よりもXを大きくした実施例だが、実施例1と同様にY/Z値が0.2以上を示す。
 裏金層12の材質が硬度200(HV)を超える硬質材である実施例品3は、実施例品1と比較すると、寸法Xはほぼ同じであるのに対して、寸法Yが大きくなり、寸法Zが小さくなり、Y/Z値が0.28であって大きい。このことから、本実施形態は硬質材料に対して特に好適であることが分かる。
 図10は、本実施形態(図3参照)と従来技術(図8参照)における寸法Zと寸法Yの関係を示すグラフである。
 従来技術に比べて本実施形態では、寸法Z,Z’に対する寸法Y,Y’(Y/Z,Y’/Z’値)を大きくすることができる。
 軸受ハウジングに対する半割すべり軸受10,10’の軸線方向の位置決めを容易にして位置決め機能を高めるためには、寸法Y,Y’(平坦部21a,21a’と突出部22,22’との接続箇所から半割すべり軸受10,10’の半径方向への突出部22の突出量)を、軸受ハウジングの嵌合溝の寸法に合わせて、可能な限り大きくすることが望ましい。
 他方、軸受ハウジングの嵌合溝が大きくなると、嵌合溝を切削加工するための製造コストが増大する上に、軸受ハウジングの剛性が低下するという問題がある。
 そこで、軸受ハウジングの嵌合溝を小さくするためには、寸法Z,Z’(半割すべり軸受10の円周方向への突出部22の長さ)を、突出部22の強度を十分に確保した上で、可能な限り小さくすることが望ましい。
 また、寸法Z、Z’が大きくなると軸受本体の形成材料自体の変形量が大きくなるので、工具により大きな荷重が要求されるとともに軸受本体の形状に歪が生じる可能性も大きくなる。
 以上の観点から、Y/Z値はこれを可能な限り大きくすることが好ましい。
 図9および図10より、従来技術に比べて本実施形態では、Y/Z値が大きくなることがわかる。
 好ましいY/Z値は0.2以上であり、更に好ましくは0.25以上である。Y/Zの上限は位置決め部材に要求される強度等に応じて任意に定めることができる。
 これはまた、本実施形態によれば、裏金層12の肉厚が薄い場合でも、位置決め部材20の位置決め機能を高めることが可能になることを意味する。
 また、本実施形態によれば、軸受ハウジングの嵌合溝を小さくして、軸受ハウジングの製造コストを低減させると共に剛性を高めることが可能になる。
 裏金層12の形成材料において塑性変形された体積は、押圧工具の半割すべり軸受軸線方向長さを所定寸法とした場合、押圧工具のストローク量(寸法X)と押圧工具により変形される幅(寸法V)とで定義される。後者が同じであると仮定して、図3に示す本実施形態と図8に示す従来技術とを比べると(特に実施例品1及び比較例品1参照)、寸法X,X’が同じ場合には(即ち、塑性変形される裏金層12の形成材料の体積が同じ場合には)、本実施形態の寸法Zが従来技術の寸法Z’に比べて小さくなる。即ち、本実施形態によれば裏金層12の成形材料においてその円周方向へ変形する成分がより小さくなることがわかる。換言すれば、裏金層12の形成材料を効率良く突出部の形成に寄与させることが可能となる。
 また、裏金層12においてその円周方向への変形量が小さくなれば、軸受本体13に発生する応力が小さくなり、その変形をより確実に防止できる。
 図11は、本実施形態(図3参照)と従来技術(図8参照)における寸法Xと押圧工具33,33’が裏金層12を押圧する際の荷重との関係を示すグラフである。
 押圧工具33,33’が裏金層12,12’を押圧する荷重が大きくなると、半割すべり軸受10に予期せぬ変形が生じるおそれがあるが、特に、図1(B)に示すように、半割すべり軸受10の外周面における突出部22の周辺部分Pに塑性変形が生じて形状が崩れ易くなる。
 半割すべり軸受10の形状が崩れると、例えば軸受ハウジングに対して半割すべり軸受10を正常に組み付けることができなくなるおそれがある。
 そのため、押圧工具33,33’が裏金層12,12’を押圧する荷重は、可能な限り小さくすることが望ましい。
 図11に示すように、従来技術に比べて本実施形態では、寸法Xを十分に大きくした場合に、押圧工具33が裏金層12を押圧する荷重を小さくすることが可能であるため、半割すべり軸受10の外周面における突出部22の周辺部分Pの形状を崩れ難くすることができる。
 従って、本実施形態によれば、半割すべり軸受10の外周面を平滑にして高性能化を図ることができる。
 また、押圧工具33,33’が裏金層12,12’を押圧する荷重が大きくなると、押圧工具33,33’の駆動装置(図示略)が大型化する上に、押圧工具33,33’の工具寿命が短くなるという問題がある。
 本実施形態によれば、押圧工具33が裏金層12を押圧する荷重を小さくすることが可能であるため、押圧工具33の駆動装置を小型化することができる上に、押圧工具33の工具寿命を延長することができる。
 図12に示すように、半割すべり軸受10の合わせ面14aでの半径方向における凹部21の幅を「寸法T」と表記する。
 図1~図7に示す本実施形態では、寸法Tと寸法V(半割すべり軸受10の半径方向における凹部21の平坦部21aの幅)が等しくなっている。
 図12は、押圧工具33の加工面33aの厚みUと、寸法V,Y,Tとの関係を説明するための説明図であり、半割すべり軸受10における位置決め部材20の近傍を示す要部縦断面図である。
 尚、厚みUと寸法Vとは同じになる。
 図12(A)は、寸法Tに対して寸法U(=V)が30%だけ小さい場合を示す。
 図12(B)は、図1~図7に示すのと同じく、寸法U(=V)と寸法Tが等しい場合を示す。
 図12(C)は、寸法Tに対して寸法U(=V)が30%だけ大きい場合を示す。
 寸法U(=V)に対する寸法Tの寸法範囲は、-30%(図12(A)参照)~+30%(図12(C)参照)の範囲内が適当であり、望ましくは±20%の範囲内であり、特に望ましくは0%(図12(B)参照)である。
 寸法Tに対して寸法U(=V)が前記範囲内であると、裏金部12の材料が押圧工具33の外側面へより回り込み易い。突出部22に充分な突出量をより付与し易い。
 本実施形態では、裏金層12の背壁部23の背後に位置する摺動層11には変形が無く、摺動層11の内周面は全体的に平滑である。
 すなわち、位置決め部材20の背後に位置する軸受本体13の内周面は平滑である
 従って、本実施形態によれば、半割すべり軸受10の合わせ面14aからオイルが漏れ出し難いため、オイルリークを少なくすることが可能である。
 また、本実施形態によれば、摺動層11の内周面にオイルのキャビテーションが発生し難いため、摺動層11の内周面の損傷を少なくすることが可能である。
 本実施形態では、位置決め部材20を押圧形成するのに、矩形平板状の押圧工具33を用いる。
 裏金層12を押圧する押圧工具33の先端部分である加工面33aは、厚みを有した平坦形状であるため、強度が高く破損し難い。
 従って、本実施形態によれば、半割すべり軸受10の生産性が高くなり製造コストを低減することが可能である。
 半割すべり軸受10に挿通された回転軸(例えば、クランクピンなど)の回転に伴い、半割すべり軸受10が円周方向に連れ回ってしまうと、すべり軸受として機能しなくなる。
 そこで、本実施形態の位置決め部材20を、半割すべり軸受10の円周方向への回転を防止するための係止部材として用いることが考えられる。
 図13(A)は、本実施形態の位置決め部材20を係止部材として用いる場合の加工方法を説明するための説明図であり、半割すべり軸受10における位置決め部材20の近傍を示す要部縦断面図である。
 裏金層12の背壁部23および摺動層11において、寸法Wに対応する部分を切断線Kに沿って切削除去する。
 すると、元々の合わせ面14aは除去され、切断線Kに沿った新たな合わせ面14cが形成される。
 図13(B)は、本実施形態の位置決め部材20を係止部材として用いる場合に、半割すべり軸受10を軸受ハウジング40に組み付けた状態を説明するための要部縦断面図である。
 軸受ハウジング40の合わせ面40aには、嵌合溝41が形成されている。
 半割すべり軸受10を軸受ハウジング40に組み付ける際には、嵌合溝41に位置決め部材20を嵌合させることにより、軸受ハウジング40に対する半割すべり軸受10の位置決めを行う。
 このとき、半割すべり軸受10には切断線Kに沿った合わせ面14cが形成されているため、半割すべり軸受10の合わせ面14cと軸受ハウジング40の合わせ面40aとは同一平面状に位置することになる。
 半割すべり軸受10と対になる半割すべり軸受50は、軸受ハウジング60に組み付けられており、半割すべり軸受50と軸受ハウジング60の両者の合わせ面は面一状態になっている。
 そのため、軸受ハウジング40に軸受ハウジング60を組み付けると、半割すべり軸受10と半割すべり軸受50の合わせ面同士が密着すると共に、半割すべり軸受10の位置決め部材20の突出部22の先端部分が、軸受ハウジング60の合わせ面に当接し、位置決め部材20は係止部材として機能する。
 従って、各半割すべり軸受10に挿通された回転軸(図示略)の回転に伴い、半割すべり軸受10が円周方向に連れ回るのが防止される。
 ところで、図8に示す従来技術と図3に示す本実施形態とを比べると、寸法Y,Y’が同じ場合には、従来技術の寸法W’に比べて、本実施形態の寸法Wの方が小さくなる。
 図13(A)に示すように、寸法Wに対応する部分を切断線Kに沿って切削除去する際には、寸法Wが小さいほど切削量が少なくなり切削加工が容易になるため望ましい。
 従って、従来技術に比べて本実施形態では、寸法Wが小さいため、位置決め部材20を係止部材として用いる場合における半割すべり軸受10の切削加工が容易になることから、生産性が高くなり製造コストを低減することができる。
 図14は、本実施形態の位置決め部材20を係止部材として用いる場合に、半割すべり軸受10を軸受ハウジング40に組み付けた状態を説明するための要部縦断面図である。
 図14に示す例では、図13に示す例のように半割すべり軸受10を切削加工せず、軸受ハウジング60の合わせ面に穿設した取付穴61に対して、ピン62を挿入固定し、ピン62の先端部分と位置決め部材20の突出部22の先端部分とを当接させることにより、位置決め部材20を係止部材として機能させている。
 そのため、寸法Wが小さいほど、ピン62の高さ寸法を小さくして部品コストを低減できるため望ましい。
 従って、従来技術に比べて本実施形態では、寸法Wが小さいため、位置決め部材20を係止部材として用いる場合に、ピン62がより小型で済むことから部品コストの低減が可能になり、図14に示す軸受機構全体のコストも低減できる。
 <別の実施形態>
 本発明は前記実施形態に限定されるものではなく、以下のように具体化してもよく、その場合でも、前記実施形態と同等もしくはそれ以上の作用・効果を得ることができる。
 前記実施形態の半割すべり軸受10は二層構造であるが、裏金層12を省いた一層構造(ソリッドタイプ)にしてもよく、その場合には、摺動層11となる部材に位置決め部材20を形成することになる。
 また、半割すべり軸受10は、二層構造に加えてオーバーレイを施した三層構造(トリメタルタイプ)にしてもよく、更には四層構造以上の多層構造にしてもよい。
 前記実施形態では、半割すべり軸受10の軸方向における略中間位置に位置決め部材20を1個のみ形成しているが、略中間位置に限らず合わせ面14aのどの箇所に位置決め部材20を形成してもよく、合わせ面14aの適宜な箇所に2個以上の位置決め部材20を形成してもよい。合わせ面14aと合わせ面14bのように半割すべり軸受10の円周方向両端部に、位置決め部材20をそれぞれ形成してもよい。位置決め部材20の形成位置は特に限定されず、位置決め部材20を例えば半割すべり軸受10の軸線方向端部に形成してもよい。
 本発明は、前記各局面および前記実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。本明細書の中で明示した公開特許公報などの内容は、その全ての内容を援用によって引用することとする。
10…半割すべり軸受
11…摺動層
12…裏金層
13…軸受本体
14a,14b,14c…合わせ面
20…位置決め部材
21…凹部
21a…平坦部
22…突出部
22a…内面部
23…背壁部
30…ダイス
30a…内周面
30b,30c…上面
30d…成形凹部
31a,31b,32…固定具
33…押圧工具
33a…加工面
40…軸受ハウジング
40a…合わせ面
41…嵌合溝
50…半割すべり軸受
60…軸受ハウジング
61…取付穴
62…ピン
 

Claims (6)

  1.  半円筒形の軸受本体と、
     該軸受本体の合わせ面の外周側一部へ工具を押圧して、前記合わせ面の外周側一部とともに前記軸受本体の形成材料を半径方向外側へ変形させることにより、軸受本体の合わせ面に形成される位置決め部材と、を備える半割すべり軸受の製造方法において、
     前記合わせ面の外周側一部へ前記工具を押圧することにより前記軸受本体の形成材料を前記工具の外側面へ近接するように塑性変形させて前記位置決め部材を形成する、半割すべり軸受の製造方法。
  2.  前記工具は前記合わせ面の外周側一部へ当接する第1の面と、該第1の面と連続する第2の面であって前記軸受本体に対して外周側に位置する第2の面とを備え、前記第1の面と前記第2の面との挟角は直角ないし鈍角であり、
     前記第2の面の前記第1の面側の先端の位置は、前記軸受本体の外縁と一致するか、若しくは外縁と一致するときの第1の面の幅の±30%以内の長さの範囲で軸受本体の外縁から半径方向に偏移している、請求項1に記載の製造方法。
  3.  前記工具の第1の面と前記第2の面はともに平坦であり、かつ両者の挟角は直角である、請求項1又は2に記載の製造方法。
  4.  半円筒形の軸受本体と、
     該軸受本体の合わせ面に形成される位置決め部材と、を備える半割すべり軸受であって、
     前記位置決め部材は前記合わせ面より前記軸受本体の略円周方向へ偏移した平坦部と該平坦部から半径方向外側へ突出した突出部とを備え、前記平坦部を含む仮想平面に対して前記突出部の先端が前記合わせ面側に位置している、半割すべり軸受。
  5.  前記合わせ面の外縁から前記突出部の先端までの半径方向の距離Yと、前記合わせ面から前記位置決め部材の下縁までの前記半径方向に対する垂直方向の距離Zとの比(Y/Z)が0.2以上である、ことを特徴とする請求項4に記載の半割すべり軸受。
  6.  前記平坦部の外周側端部は、前記軸受本体の外周面と一致するか、若しくは前記平坦部の内周側端部を前記軸受本体の略円周方向に合わせ面まで偏移したところとその合わせ面の外縁との距離の±30%以内の長さの範囲で前記外周面から半径方向に偏移している、請求項4又は5に記載の軸受。
PCT/JP2010/062942 2010-07-30 2010-07-30 半割すべり軸受の製造方法および半割すべり軸受 WO2012014323A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/059,212 US8500335B2 (en) 2010-07-30 2010-07-30 Manufacturing method of half bearing and half plain bearing
PCT/JP2010/062942 WO2012014323A1 (ja) 2010-07-30 2010-07-30 半割すべり軸受の製造方法および半割すべり軸受
JP2010548685A JP4746155B1 (ja) 2010-07-30 2010-07-30 半割すべり軸受の製造方法および半割すべり軸受
KR1020117003197A KR101336800B1 (ko) 2010-07-30 2010-07-30 하프 미끄럼베어링의 제조방법 및 하프 미끄럼베어링
EP10807420.4A EP2520816B1 (en) 2010-07-30 2010-07-30 Halved sliding bearing manufacturing method and halved sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062942 WO2012014323A1 (ja) 2010-07-30 2010-07-30 半割すべり軸受の製造方法および半割すべり軸受

Publications (1)

Publication Number Publication Date
WO2012014323A1 true WO2012014323A1 (ja) 2012-02-02

Family

ID=44541409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062942 WO2012014323A1 (ja) 2010-07-30 2010-07-30 半割すべり軸受の製造方法および半割すべり軸受

Country Status (5)

Country Link
US (1) US8500335B2 (ja)
EP (1) EP2520816B1 (ja)
JP (1) JP4746155B1 (ja)
KR (1) KR101336800B1 (ja)
WO (1) WO2012014323A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514304A (ja) * 2017-12-21 2021-06-10 ストール マシーナリ カンパニー, エルエルシーStolle Machinery Company, LLC ボディメーカのラムストローク変更のための調整可能クランクシャフト偏心機構

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085869A1 (en) * 2011-12-05 2013-06-13 Smith International Inc. Rotating cutting elements for pdc bits
GB2508216A (en) * 2012-11-26 2014-05-28 Mahle Int Gmbh A bearing shell for a sliding bearing
US9322437B2 (en) * 2012-12-28 2016-04-26 Sunpower Corporation Support for solar energy collection
US11035591B2 (en) * 2015-10-13 2021-06-15 Corosolar Llc Bearing assembly for solar trackers
WO2017100555A1 (en) * 2015-12-09 2017-06-15 Ggb, Inc. Plain bearing shell with anti-rotation features
WO2021092372A1 (en) 2019-11-08 2021-05-14 Saint-Gobain Performance Plastics Corporation Split bearing, assembly, and method of making and using the same
CN113404780B (zh) * 2021-05-12 2022-06-28 湖南崇德科技股份有限公司 轴瓦止动装置
JP2023030707A (ja) * 2021-08-24 2023-03-08 大同メタル工業株式会社 半割軸受およびすべり軸受

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950226A (ja) 1982-08-18 1984-03-23 グリコ・アクチエンゲゼルシャフト 滑り軸受
JPH09210064A (ja) 1996-01-31 1997-08-12 Daido Metal Co Ltd 半割すべり軸受
DE10314435A1 (de) 2003-03-31 2004-10-21 Federal-Mogul Wiesbaden Gmbh & Co. Kg Lagerschale mit mindestens einem Haltenocken und Verfahren zu ihrer Herstellung
JP2005536696A (ja) 2002-08-27 2005-12-02 ミバ・グライトラーゲル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 滑り軸受の軸受メタル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114785B2 (ja) * 1993-12-28 2000-12-04 大豊工業株式会社 すべり軸受装置
DE10246976A1 (de) * 2002-10-09 2004-04-22 Ks Gleitlager Gmbh Gleitlagerschale und Verfahren zum Herstellen eines Haltevorsprungs bei einer Gleiterschale

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950226A (ja) 1982-08-18 1984-03-23 グリコ・アクチエンゲゼルシャフト 滑り軸受
JPH09210064A (ja) 1996-01-31 1997-08-12 Daido Metal Co Ltd 半割すべり軸受
JP2005536696A (ja) 2002-08-27 2005-12-02 ミバ・グライトラーゲル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 滑り軸受の軸受メタル
DE10314435A1 (de) 2003-03-31 2004-10-21 Federal-Mogul Wiesbaden Gmbh & Co. Kg Lagerschale mit mindestens einem Haltenocken und Verfahren zu ihrer Herstellung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514304A (ja) * 2017-12-21 2021-06-10 ストール マシーナリ カンパニー, エルエルシーStolle Machinery Company, LLC ボディメーカのラムストローク変更のための調整可能クランクシャフト偏心機構
JP7101783B2 (ja) 2017-12-21 2022-07-15 ストール マシーナリ カンパニー,エルエルシー ボディメーカのラムストローク変更のための調整可能クランクシャフト偏心機構

Also Published As

Publication number Publication date
KR20120055490A (ko) 2012-05-31
JPWO2012014323A1 (ja) 2013-09-09
JP4746155B1 (ja) 2011-08-10
KR101336800B1 (ko) 2013-12-04
US20120027328A1 (en) 2012-02-02
EP2520816A1 (en) 2012-11-07
US8500335B2 (en) 2013-08-06
EP2520816A4 (en) 2013-01-23
EP2520816B1 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP4746155B1 (ja) 半割すべり軸受の製造方法および半割すべり軸受
JP5213981B2 (ja) 内燃機関のクランク軸用軸受
EP2740950B1 (en) Radial foil bearing
JP2008510107A (ja) スラスト軸受アセンブリ
US5727885A (en) Sliding bearing half shell
JP2014092178A (ja) すべり軸受構造体
JP6571130B2 (ja) 半割スラスト軸受
JP5314181B1 (ja) 摺動部材、これを用いる半割すべり軸受、および半割すべり軸受の製造方法
JP6576976B2 (ja) 半割スラスト軸受
KR101462122B1 (ko) 하프 슬라이딩 베어링 및 그 제조 방법
JP6495759B2 (ja) 滑り軸受
JP6205508B2 (ja) 滑り軸受および滑り軸受の製造方法
JP2012031991A (ja) 半割すべり軸受の製造方法および半割すべり軸受
GB2525734A (en) Bearing device
JP2014126096A (ja) 半割スラスト軸受
JP4716828B2 (ja) 金属シール
JP5897625B2 (ja) すべり軸受
JP5962891B2 (ja) すべり軸受
JP6873819B2 (ja) クランクワッシャ
JP2001165166A (ja) コネクティングロッド用すべり軸受
JP2019190551A (ja) 半割軸受及びその製造方法
JP7204577B2 (ja) 滑り軸受、内燃機関、及び自動車
JP2016191433A (ja) 滑り軸受および滑り軸受の製造方法
JP2014047841A (ja) 内燃機関のクランク軸用軸受
JP2023129825A (ja) 往復移動ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010548685

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117003197

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010807420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13059212

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE