WO2012011420A1 - 流体中の微粒子検出装置及び検出方法 - Google Patents

流体中の微粒子検出装置及び検出方法 Download PDF

Info

Publication number
WO2012011420A1
WO2012011420A1 PCT/JP2011/065996 JP2011065996W WO2012011420A1 WO 2012011420 A1 WO2012011420 A1 WO 2012011420A1 JP 2011065996 W JP2011065996 W JP 2011065996W WO 2012011420 A1 WO2012011420 A1 WO 2012011420A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
flow path
fine particles
measured
pressure
Prior art date
Application number
PCT/JP2011/065996
Other languages
English (en)
French (fr)
Inventor
史貴 市原
広 菅原
義宣 小野
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN201180021856.1A priority Critical patent/CN102869977B/zh
Priority to KR1020127026580A priority patent/KR101502210B1/ko
Publication of WO2012011420A1 publication Critical patent/WO2012011420A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means

Definitions

  • the present invention relates to a particle detection device and detection method in a fluid, and more particularly to a particle detection device and detection method for particles contained in supercritical or liquid phase high-pressure carbon dioxide.
  • Non-Patent Document 1 discloses a technique for performing a direct spectroscopic method with a high-pressure fluid.
  • two branch pipes are provided in the pipe through which the high-pressure fluid flows, and these branch pipes are connected to both sides of the filter holder. Since the filter receives the pressure of the high-pressure fluid from both sides, the pressure is canceled out and a large pressure is prevented from being applied to the filter and the filter holder.
  • PC method particle counter method that detects fine particles using scattering of laser light
  • Patent Document 2 a particle counter method that detects fine particles using scattering of laser light
  • the fluid to be measured is passed through a light-transmitting hollow member called a flow cell.
  • a side surface of the flow cell is irradiated with laser light, and a photoelectric converter installed on the opposite side across the flow cell detects scattered light of the laser light to measure the particle size and number of fine particles.
  • Fine particles in an aerosol state may be introduced into the flow cell (dry PC method), or a liquid containing fine particles may be introduced (wet PC method).
  • the PC method can be evaluated online, and quick measurement is easy.
  • the flow cell uses a special material such as quartz or sapphire, it is difficult to increase the pressure resistance.
  • Patent Documents 3 and 4 As a method similar to the PC method, a method called a condensed particle counter method (CPC method) is also known (Patent Documents 3 and 4). In this method, alcohol vapor and water vapor are condensed and grown around fine particles using fine particles as nuclei. The condensed and grown aerosol is introduced into the flow cell, and the number of aerosols is measured by a condensed particle counter. There is a problem similar to the PC method regarding the pressure resistance performance of the flow cell. Although it is a technique related to the PC method, Patent Document 5 discloses a flow cell in which the cross-sectional shape of the flow path is configured with a curved surface in order to improve the pressure resistance performance of the flow cell.
  • CPC method condensed particle counter method
  • JP 2009-52981 A Patent No. 3530078 JP 2000-180342 A JP 2007-57532 A JP 2008-224342 A
  • the direct microscopic method can handle a high-pressure fluid to be processed using the technique of Patent Document 1.
  • the direct spectroscopic method is not suitable for continuous measurement, and rapid measurement is difficult.
  • the PC method and the CPC method require high reliability in the pressure resistance of the flow cell, and there is a limit to the applicable pressure.
  • the above-mentioned problem can be solved by measuring the fluid under reduced pressure.
  • a known member such as a pressure reducing valve can be used to decompress the fluid.
  • a member since such a member generates fine particles such as metal powder with the operation, high measurement accuracy cannot be realized.
  • An object of the present invention is to provide an in-fluid particle detection device and a detection method capable of detecting particles contained in a high-pressure fluid with high accuracy and efficiency.
  • the particulate detection device in the fluid has a fluid supply unit to which the fluid to be measured is supplied, one end connected to the fluid supply unit, and the flow path is narrowed with respect to the fluid supply unit A flow path reduction pipe, and a fine particle detection means connected to the other end of the flow path reduction pipe for detecting the fine particles flowing from the flow path reduction pipe.
  • the flow path reduction tube is narrowed with respect to the fluid supply part. For this reason, the flow path reducing tube can depressurize the fluid to be measured by the throttling effect, and can gradually reduce the pressure of the fluid to be measured by the friction loss between the inner wall of the flow path reducing tube and the fluid to be measured. Since the reduced pressure fluid is introduced into the particulate detection means, the problem of pressure resistance of the members hardly occurs, and the detection means that has been conventionally applied to the low pressure fluid can be used as it is. Moreover, since the flow path reduction tube has no moving parts and can gradually reduce the pressure, there is no risk of generation of fine particles such as metal powder due to operation, and even a small amount of fine particles can be measured with high accuracy. it can. Since the fluid to be measured supplied from the fluid supply unit can be continuously introduced into the particulate detection means via the flow path reduction tube, efficient measurement is also possible.
  • a method for detecting particulates in a fluid includes a step of supplying a fluid to be measured by a fluid supply unit, and a flow path of the supplied fluid to be measured is narrowed with respect to the fluid supply unit.
  • the method includes a step of reducing the pressure of the fluid to be measured by passing through the flow path reducing tube, and a step of detecting fine particles contained in the pressure-reduced fluid to be measured.
  • FIG. 1 shows a schematic configuration diagram of a carbon dioxide supply facility 1 as an example. Liquid carbon dioxide is stored in the CO 2 cylinder 2.
  • Liquid carbon dioxide stored in the CO 2 cylinder 2 is filtered by the metal gas filter 3 a and introduced into the condenser 4. Carbon dioxide is condensed in the condenser 4 and sent to the CO 2 tank 5. The carbon dioxide in the CO 2 tank 5 is once supercooled by the precooler 6 to be liquid carbon dioxide. The reason for supercooling by the precooler 6 is to prevent gaseous carbon dioxide from being generated by the subsequent circulation pump 7. Carbon dioxide is boosted by the circulation pump 7, filtered by the metal gas filter 8, and becomes clean high-pressure liquid carbon dioxide, which is sent to a use point (not shown) through the valve 12d.
  • the high-pressure liquid carbon dioxide that has not been used is expanded on the outlet side of the pressure-holding valve 9 and further converted into a gas phase by the evaporator 10. This is to increase the particle removal efficiency in the latter metal gas filter 3b.
  • the carbon dioxide supply facility is configured to supply high-pressure liquid carbon dioxide to the use point as necessary while carbon dioxide circulates along the circulation loop.
  • the supercritical carbon dioxide supply facility can have the same configuration except that liquid carbon dioxide is heated to a temperature higher than the critical temperature.
  • the particle detector 11 can be provided at any position on the line of the carbon dioxide supply facility 1.
  • the illustrated sampling points P1 to P3 are an outlet part of the metal gas filter 8, a bottom part of the CO 2 tank 5, and an outlet part of the metal gas filter 3b.
  • the particle detector 11 is connected to the carbon dioxide supply facility 1 via valves 12a to 12c.
  • the fine particle detection device 11 detects fine particles contained in carbon dioxide flowing from the sampling points P1 to P3.
  • the pressure of carbon dioxide at the sampling points P1 to P3 is not limited, but according to the present invention, high-pressure carbon dioxide having a pressure of 1 MPa or more can be taken out.
  • FIG. 2A shows a schematic configuration diagram of the particle detector 11.
  • the particle detector 11 includes, for example, a fluid supply unit 13 configured by a pipe having a predetermined inner diameter to which a fluid to be measured is supplied, a flow path reducing tube 14 that is a decompression unit, and a particle detector 15. Yes.
  • the broken line in the figure schematically shows the flow of carbon dioxide.
  • One end of the fluid supply unit 13 is connected to the carbon dioxide supply facility 1 via valves 12 a to 12 c, and the other end is connected to the flow path reducing tube 14.
  • Supercritical, liquid or gaseous high-pressure carbon dioxide is continuously supplied to the flow path reduction tube 14 through the fluid supply unit 13.
  • the fluid supply unit 13 is shown as a pipe in FIG. 2A, a pipe such as a steel pipe, a high-pressure tube, a joint, or the like can be selected depending on the status of the valves 12a to 12c (measurement points).
  • the fluid supply unit 13 shown in FIG. 2A can be eliminated, and the valves 12a to 12c can be directly connected to the flow path reducing tube 14 so that the valves 12a to 12c function as the fluid supply unit.
  • the flow path reduction pipe 14 may be directly connected to the circulation loop (mother pipe) of the carbon dioxide supply facility 1 via a joint or the like, and the circulation loop (mother pipe) itself may function as a fluid supply unit.
  • the flow path reducing tube 14 only needs to be narrowed with respect to the fluid supply unit 13.
  • a pressure holding valve (not shown) may be provided, and a constant flow rate of high pressure carbon dioxide may be supplied to the flow path reducing pipe 14 by adjusting the pressure holding valve.
  • the one end 14 a of the flow path reducing tube 14 is connected to the fluid supply unit 13, and the other end 14 b of the flow path reducing tube 14 is connected to the particulate detection means 15.
  • the connection method between the flow path reducing tube 14 and the particulate detection means 15 is not particularly limited and can be connected via a pipe, a joint, a valve, or the like, but from the viewpoint of temperature control described later, It is preferable that the distance from the particulate detection means 15 is as short as possible, and that there are few joints, valves, etc. from the viewpoint of preventing unnecessary particulate generation.
  • the flow path reducing pipe 14 and the particulate detection means 15 may be connected via a branch pipe for discharging a part of carbon dioxide to the atmosphere.
  • the flow path reducing pipe 14 has a flow path constricted with respect to the fluid supply unit 13 and depressurizes supercritical, liquid, or gaseous carbon dioxide by a throttling effect and friction loss.
  • the flow path reducing tube 14 is not particularly limited as long as the fluid to be measured can be depressurized by such a throttling effect and friction loss.
  • a metal tube or a capillary tube can be used.
  • the flow path reduction tube 14 can be made of various types of stainless steel, tungsten, kovar, titanium, brass, phosphor bronze, phosphorous deoxidized copper, etc., but cleanliness in the measurement of fine particles in the fluid (ease of surface treatment in the tube) Stainless steel is preferred from the viewpoint of ease of processing.
  • the flow path area and length of the flow path reduction pipe 14 can be appropriately set according to the supply pressure of high-pressure carbon dioxide, the pressure after decompression, and the required flow rate.
  • the inner diameter is preferably 100 to 1000 ⁇ m, more preferably 200 to 500 ⁇ m.
  • the length of the flow path reducing tube 14 is preferably 0.1 to 500 m, more preferably 0.5 to 100 m. Since the flow path reducing pipe 14 gradually reduces the pressure of the high-pressure carbon dioxide without causing a rapid pressure drop, the pipe length is very long compared to the inner diameter.
  • the ratio of the pipe length to the inner diameter is 10 or more and 5000000 or less.
  • a more preferable ratio of the pipe length to the inner diameter is 100 or more and 500,000 or less. For this reason, it may be difficult to provide linearly from a viewpoint of installation space. In that case, the installation space can be reduced by deforming by an appropriate method such as bending in a spiral shape or winding in a circular shape (see FIG. 2B).
  • heaters 16a and 16b for heating the flow path reducing tube 14 are provided.
  • the installation positions of the heaters 16a and 16b are not limited to this, and may be provided only in the vicinity of the inlet or the outlet of the flow path reducing pipe 14, or may be provided in other positions.
  • the types of the heaters 16a and 16b are not particularly limited, and may be, for example, a coil-shaped heater around which the flow path reducing tube 14 is wound, a ribbon heater (ribbon-shaped heater), or the like. However, as shown in FIG.
  • the heaters 16a and 16b at least at the unfolded portion with the inlet side and the outlet side unfolded. Moreover, you may heat the whole channel reduction pipe
  • Thermometers 17a and 17b for measuring the temperature of carbon dioxide are installed adjacent to the heaters 16a and 16b.
  • the heaters 16a and 16b and the thermometers 17a and 17b are connected to a control device 18 that adjusts the temperature of the fluid.
  • thermocouples can be used as the thermometers 17a and 17b.
  • the temperature measuring units of the thermometers 17a and 17b may be inside the flow path reducing tube 14, but are preferably provided on the outer surface of the flow path reducing tube 14 in order to prevent generation of fine particles.
  • the control device 18 controls the amount of heat generated by the heaters 16a and 16b according to the measurement results of the thermometers 17a and 17b.
  • control device 18 detects the particulate matter in the gas phase containing a very small amount of solid phase or liquid phase so that carbon dioxide does not significantly affect the detection of the particulate matter from the flow path reduction tube 14 or the particulate matter.
  • the carbon dioxide flowing inside the flow path reducing tube 14 is maintained at a predetermined temperature so as to flow into the means 15.
  • FIG. 3 schematically shows a ph diagram of carbon dioxide.
  • the horizontal axis represents enthalpy (h), and the vertical axis represents pressure (p).
  • a broken line shows an isotherm, and the temperature is higher on the right side and lower on the left side.
  • gas phase carbon dioxide is supplied to the particulate detection means 15, particulates are detected based on the dry PC method or the CPC method, as will be described later.
  • the heaters 16a and 16b are intended to heat carbon dioxide so that fine particles are detected in a gas phase.
  • the purpose of the heaters 16a and 16b is also to keep the temperature of carbon dioxide introduced into the detector constant. Therefore, the heaters 16 a and 16 b are not necessarily provided in the flow path reducing tube 14, and can be provided in the vicinity of the inlet of the particulate detection means 15.
  • the flow path reducing pipe 14 is a pipe and has a simple structure, the heater can be easily installed.
  • the inner diameter of the flow path reduction tube 14 is increased, the throttling effect is reduced and the degree of decompression is reduced. Similarly, if the pipe length of the flow path reducing pipe 14 is shortened, the degree of decompression is reduced.
  • the adjustment of the pipe length and the flow path area (inner diameter) of the flow path reduction pipe 14 and the temperature control of the flow path reduction pipe 14 by the heaters 16a and 16b can be performed together. Even when the flow path area and length of the flow path reducing pipe 14 are optimized, it is more preferable to control the temperature of the flow path reducing pipe 14 in order to avoid a gas-solid mixed state or a gas-liquid mixed state.
  • the pressure reducing method using the flow path reducing pipe 14 does not require a mechanically operating portion like a conventional pressure reducing valve, there is no generation of fine particles such as metal powder in accordance with the operation. For this reason, the fine particles contained in carbon dioxide can be detected with high accuracy.
  • a filter as another decompression method, since the filter repeats adhesion and separation of fine particles during long-time use, precise measurement is difficult.
  • the depressurization method using the flow path reduction tube 14 hardly causes generation of fine particles such as metal powder, which becomes a contamination source (or a cause for increasing the number of blank fine particles) for the fine particle detection means 15, and enables highly accurate measurement. It is.
  • the flow path area (inner diameter) and the total length of the flow path reduction tube 14 are adjusted and the temperature is controlled by the heaters 16a and 16b, it is less affected by the temperature and pressure conditions of the sampling points P1 to P3 and is stable. This makes it possible to detect fine particles with high accuracy.
  • Another advantage of the flow path reduction pipe 14 is that the heat transfer area is very large due to the long pipe length. For this reason, the degree of freedom in setting the heating range is high, and a wide range in which temperature control is possible can be ensured, so fine temperature control is possible. Since it has a large heat transfer area, carbon dioxide can be maintained in a desired temperature range without necessarily providing a heater depending on the external environment temperature. Since the pressure reducing valves and filters are substantially concentrated at one point, it is difficult to control the temperature precisely. Further, the flow path reducing tube 14 has a simple structure, high reliability, low necessity for maintenance, and is advantageous in terms of cost.
  • the fine particle detection means 15 detects the fine particles flowing from the flow path reducing tube 14.
  • the supercritical, liquid or gaseous carbon dioxide is in the gas phase after being depressurized by the flow path reduction tube 14, and the fine particles originally contained in the carbon dioxide are present in the gas phase.
  • the gas phase carbon dioxide containing the fine particles is introduced into the fine particle detection means 15, and the fine particles contained in the gas phase carbon dioxide are detected.
  • a dry PC method or a CPC method can be used as such a particle detector.
  • the fine particle detection means 15 by dry PC method has means for irradiating the fine particles with laser light and means for detecting scattered light of the laser light from the fine particles.
  • laser light generated by a semiconductor laser is irradiated to fine particles in a gas phase, and direct scattered light from the fine particles is detected.
  • FIG. 2 shows the particulate detection means 15 based on the CPC method.
  • the particulate detection means 15 has a condensation chamber 20 provided with a supply port 20a for a vapor such as alcohol.
  • the fine particles are introduced into a condensation chamber 20 in a supersaturated atmosphere such as alcohol, and vapor such as alcohol condenses and grows with the fine particles as a nucleus.
  • a downstream side of the condensing chamber 20 is a flow cell 21 made of a material that can transmit laser light.
  • a semiconductor laser 22 that irradiates laser light onto vapor-condensed and grown fine particles and a photoelectric converter 23 that detects scattered light of laser light from the vapor-condensed and grown fine particles are disposed. ing.
  • the fine particles become aerosols (droplets) condensed and grown by vapor deposition, and the droplets are irradiated with laser light.
  • the particle size of the droplet is increased to a level that can be measured by the light scattering method, and the number (concentration) of fine particles is measured by the light scattering method. For this reason, the CPC method can detect fine particles having a smaller particle diameter than the dry PC method.
  • the dry PC method directly irradiates fine particles with laser light, the particle size distribution of the fine particles can be obtained.
  • a pump is installed on the downstream side of the particulate detection means 15 to introduce a fluid to be measured having an appropriate flow rate and flow rate into the particulate detection means 15, and the atmosphere upstream of the particulate detection means 15.
  • An opening means may be provided to exhaust the fluid that is not introduced into the particulate detection means 15.
  • the pump may be provided between the fine particle detection means 15 and the atmospheric release means, but since the fine particles generated from the pump may be introduced into the fine particle detection means 15, it is provided downstream of the fine particle detection means 15. preferable.
  • Fig. 4 shows the flow chart in the example.
  • high-pressure carbon dioxide filtered with a metal gas filter (filtration accuracy: 0.003 ⁇ m) manufactured by Pureron Japan Co., Ltd. was used.
  • the high-pressure carbon dioxide was continuously supplied to the flow path reducing tube 14 serving as a decompression unit through a fluid supply unit having an inner diameter of 4.35 mm.
  • a branch pipe 19 was provided in the fluid supply part of high-pressure carbon dioxide, and a part of the carbon dioxide was exhausted through the pressure holding valve 20.
  • the set pressure of the pressure holding valve 20 was 9 MPa, and high-pressure carbon dioxide at a constant flow rate (3 g / min) was supplied to the flow path reduction tube 14.
  • the flow path reducing tube 14 was made of SUS316 with a tube diameter of ⁇ 200 ⁇ m and a tube length of 30 m.
  • the flow path reducing tube 14 was wound in a circular shape of ⁇ 48 cm and bundled, and both ends were unwound.
  • the heaters 16a and 16b were installed at two locations near the inlet and the outlet of the flow path reducing pipe 14, and the temperatures were controlled so that the outer surface temperatures of the flow path reducing pipe 14 were 60 ° C and 30 ° C, respectively.
  • a ribbon heater having a width of 4 cm and a length of 3 m is prepared as the heater 16a, attached along the part where the flow path reducing pipe 14 is unwound from the start end of the flow path reducing pipe 14, and the remaining part is further connected to the flow path. It was attached to the bundled portion of the reduction tube 14.
  • a ribbon heater having a width of 4 cm and a length of 3 m is prepared as the heater 16b, and is attached along the portion where the flow path reducing pipe 14 extends from the vicinity of the exhaust pipe branching portion 27 on the downstream side of the flow path reducing pipe 14. Further, the remaining part was attached to a part connected to the unwound part of the bundled parts of the flow path reducing tube 14. In FIG. 4, the range in which the heaters 16a and 16b are attached is indicated by hatching.
  • the number (concentration) of fine particles contained in carbon dioxide reduced in pressure by the flow path reducing tube 14 was measured with a fine particle detection device 15 (CPC3772 manufactured by TSI) using the CPC method.
  • a pump 28 is provided on the downstream side of the particulate detection device 15, and only a constant flow rate (1 L / min) of suctioned carbon dioxide is sucked and introduced into the particulate detection device 15, and the rest is released into the atmosphere from the exhaust pipe branching portion 27. did.
  • Comparative Example 1 a flow restrictor manufactured by Sugiyama Shoji Co., Ltd. was used as the pressure reducing means.
  • a pressure reducing valve manufactured by Tescom
  • Comparative Example 3 a flow path reducing tube 14 ( ⁇ 200 ⁇ m, 30 m) with a heater, which is the same as the Example, was installed at the subsequent stage of the flow restrictor of Comparative Example 1.
  • the flow restrictors of Comparative Examples 1 and 3 are filters that can remove fine particles having a particle diameter of 2 ⁇ m or more.
  • the pressure reducing valve of Comparative Example 2 was provided with a ribbon heater having a width of 4 cm and a length of 3 cm on the outer periphery, and the temperature of the thermocouple installed on the pressure reducing valve was controlled to be 100 ° C.
  • the flow restrictor was controlled so that its external temperature was 100 ° C.
  • 5A to 5C show the results of measuring the number (concentration) of fine particles having a particle size in high-pressure carbon dioxide exceeding 10 nm in Examples and Comparative Examples.
  • 5A shows the measurement results of Comparative Examples 1 and 2
  • FIG. 5B shows the measurement results of Comparative Example 3
  • FIG. 5C shows the measurement results of the Example.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the number of detected particles (per 1 cc of gas). The number of detected particles).
  • 5B and 5C are the same scale, but the vertical axis of FIG. 5A is 1000 times larger than the scale of FIGS. 5B and 5C.
  • Comparative Example 2 it is considered that fine particles such as metal powder are generated by the operation of the pressure reducing valve, and it is difficult to obtain practical measurement accuracy when a fluid having a low concentration of fine particles is a measurement target.
  • the number of detected particles was smaller than that in Comparative Example 2, but much more fine particles were detected than in Examples described later.
  • Comparative Example 1 is considered to be affected by fine particles that repeatedly adhere and peel off by the filter. Further, in Comparative Examples 1 and 2, since the temperature control was not sufficient, it is presumed that carbon dioxide partially entered the solid phase or the liquid phase and flowed into the measuring apparatus. In Comparative Example 3, it is considered that carbon dioxide is completely in the gas phase because the flow path reducing tube 14 with the heater of the example is installed after the filter of Comparative Example 1.
  • the comparative example 3 extracts only the influence of the fine particles that repeatedly adhere and peel by the filter.
  • fine particles other than the fine particles originally included in the measurement target have an influence on the measurement result, the number of detected particles is high, and the measured value is not stable.
  • the number of detected particles was smaller than in each comparative example, and it was hardly affected by fine particles other than the fine particles originally contained in the measurement target, and a stable measurement value was obtained.
  • FIG. 6 shows the result of measuring the number (concentration) of fine particles having a particle size exceeding 10 nm at the sampling points P2, P3, and P1 in the high-pressure carbon dioxide supply device in this example.
  • Sampling points P1 to P3 are positions as shown in FIG. A phenomenon was observed in which the number of microparticles increased transiently when the sampling location was changed, but the number of microparticles almost corresponding to the sampling location was obtained.
  • FIG. 7A shows the result of measuring the number (concentration) of fine particles having a particle diameter of more than 10 nm when the valve 24 is opened and closed at the same sampling location.
  • the valve 24 is provided with a configuration as shown in FIG. 7B in order to see the influence of the opening / closing operation of the valve.
  • a line 25 provided with a valve and a line 26 provided with no valve were configured in parallel, and the valve 24 was opened and closed while supplying carbon dioxide, and the number of fine particles was measured. After the opening / closing operation of the valve, the number of fine particles temporarily increases, and then returns to a steady state again.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 高圧流体に含まれる微粒子を高精度にかつ効率よく検出する。 流体中の微粒子検出装置は被測定流体が供給される流体供給部13と、一端が流体供給部13に接続され、流体供給部13に対して流路の絞られた流路縮小管14と、流路縮小管14の他端に接続され、流路縮小管14から流入する微粒子を検出する微粒子検出手段15と、を有している。流体中の微粒子検出方法は被測定流体を流体供給部13によって供給するステップと、供給された被測定流体を流体供給部13に対して流路の絞られた流路縮小管14を通すことによって、被測定流体を減圧するステップと、減圧された被測定流体に含まれる微粒子を検出するステップと、を有している。

Description

流体中の微粒子検出装置及び検出方法
 本発明は、流体中の微粒子検出装置及び検出方法に関し、特に超臨界状態または液相の高圧二酸化炭素に含まれる微粒子の検出装置及び検出方法に関する。
 流体中に存在する微粒子を検出する様々な方法が知られている。例えば、直接検鏡法では、濾過膜で被測定水を濾過したときに濾過膜上に捕捉される微粒子が、光学顕微鏡や走査型電子顕微鏡を用いて検出される(非特許文献1)。直接検鏡法は、被測定流体の圧力が濾過膜やそれを保持するための容器(フィルタホルダ)に直接作用するため、被測定流体が高圧であると濾過膜やフィルタホルダが耐圧限界を超えてしまう。このため高圧の流体をそのまま導入することは困難である。これに対して特許文献1には、高圧流体のまま直接検鏡法を行う技術が開示されている。この方法によれば、高圧流体の流れる配管に2か所の分岐配管を設け、これらの分岐配管がフィルタホルダの両側に接続される。フィルタは両面から高圧流体の圧力を受けるため、圧力が相殺され、フィルタやフィルタホルダに大きな圧力がかかることが防止される。
 他の方法として、レーザー光の散乱を利用して微粒子を検出するパーティクルカウンター法(PC法)が知られている(特許文献2)。被測定流体はフローセルと呼ばれる光透過性の中空部材の中を通される。フローセルの一側面にレーザー光が照射され、フローセルを挟んだ反対側の位置に設置された光電変換器がレーザー光の散乱光を検出して、微粒子の粒径及び個数を測定する。フローセルにはエアロゾル状態の微粒子が導入されてもよく(乾式PC法)、微粒子を含む液体が導入されてもよい(湿式PC法)。PC法はオンラインでの評価が可能であり、迅速な計測が容易である。しかし、フローセルは石英やサファイア等の特殊な材料を用いているため耐圧性能を上げにくい。
 PC法と類似した方法として、凝縮粒子カウンター法(CPC法)と呼ばれる方法も知られている(特許文献3,4)。この方法では微粒子を核として微粒子の周囲にアルコール蒸気や水蒸気を凝縮成長させる。凝縮成長したエアロゾルはフローセルに導入され、凝縮粒子カウンターによってエアロゾルの個数が測定される。フローセルの耐圧性能に関してはPC法と同様の課題が存在する。PC法に関連した技術であるが、特許文献5には、フローセルの耐圧性能を向上させるため、流路の断面形状を曲面で構成したフローセルが開示されている。
特開2009-52981号公報 特許第3530078号 特開2000-180342号公報 特開2007-57532号公報 特開2008-224342号公報
日本工業規格K0554-1995「超純水中の微粒子検出方法」
 直接検鏡法は、特許文献1の技術を用いれば高圧の被処理流体を取り扱うことができる。しかし、測定の都度濾過膜を取り外す必要があるため、直接検鏡法は連続的な測定には適さず、迅速な計測は困難である。PC法及びCPC法は、フローセルの耐圧性能に高い信頼性が要求され、適用できる圧力にも限界がある。
 これに対し、流体を減圧して測定すれば上述の課題は解消できる。流体を減圧するには減圧弁などの公知の部材を用いることができる。しかし、このような部材は作動に伴い金属粉等の微粒子を発生させるため、高い測定精度を実現できない。
 本発明は、高圧流体に含まれる微粒子を高精度にかつ効率よく検出することができる、流体中微粒子検出装置及び検出方法を提供することを目的とする。
 本発明の一実施態様によれば、流体中の微粒子検出装置は被測定流体が供給される流体供給部と、一端が流体供給部に接続され、流体供給部に対して流路の絞られた流路縮小管と、流路縮小管の他端に接続され、流路縮小管から流入する微粒子を検出する微粒子検出手段と、を有している。
 流路縮小管は流体供給部に対して流路が絞られている。このため、流路縮小管は絞り効果によって被測定流体を減圧させると共に、流路縮小管内壁と被測定流体との摩擦損失によって被測定流体を徐々に減圧させることができる。微粒子検出手段には減圧した流体が導入されるため、部材の耐圧性の問題が生じにくく、従来から低圧流体に適用されていた検出手段をそのまま用いることができる。しかも、流路縮小管は可動部がなく、また徐々に圧力を減少させることができるため、作動に伴う金属粉等の微粒子が発生するおそれがなく、微量の微粒子でも高い精度で測定することができる。流体供給部から供給された被測定流体は流路縮小管を介して連続的に微粒子検出手段に導入することができるため、効率的な測定も可能である。
 本発明の他の実施態様によれば、流体中の微粒子検出方法は被測定流体を流体供給部によって供給するステップと、供給された被測定流体を流体供給部に対して流路の絞られた流路縮小管を通すことによって、被測定流体を減圧するステップと、減圧された被測定流体に含まれる微粒子を検出するステップと、を有している。
 以上説明したように、本発明によれば、高圧流体に含まれる微粒子を高精度にかつ効率よく検出することができる、流体中微粒子検出装置及び検出方法を提供することができる。
二酸化炭素供給設備の概略構成図である。 本発明の微粒子検出装置の概略構成図である。 流路縮小管の部分拡大図である。 二酸化炭素のp-h線図を示す模式図である。 実施例におけるフロー図である。 比較例1,2の微粒子数の検出結果を示すグラフである。 比較例3の微粒子数の検出結果を示すグラフである。 実施例の微粒子数の検出結果を示すグラフである。 サンプリング箇所を変えた場合の検出結果の変動を示すグラフである。 弁の開閉動作を行った際の検出結果の変動を示すグラフである。 一実施例におけるライン構成を示す概略図ある。
 以下、図面を参照して本発明の流体中微粒子検出装置及び測定方法の実施形態について説明する。本発明が適用される流体の圧力及び種類は限定されないが、本発明は高圧の超臨界、液体または気体の二酸化炭素に含まれる微粒子の測定に特に好適に適用できる。このため、以下の説明は超臨界、液体または気体の二酸化炭素を対象として行う
 本測定装置は既存の二酸化炭素製造設備ないし供給設備に接続して用いることができる。そこでまず、二酸化炭素製造設備ないし供給設備の概要について説明する。図1は、一例として二酸化炭素供給設備1の概略構成図を示す。COボンベ2には液体二酸化炭素が貯蔵されている。COボンベ2に貯蔵されている液体二酸化炭素はメタルガスフィルター3aでろ過され、凝縮器4に導入される。二酸化炭素は凝縮器4で凝縮され、CO槽5に送られる。CO槽5の二酸化炭素はいったん予冷却器6で過冷却され、液体の二酸化炭素とされる。予冷却器6で過冷却するのは、後段の循環ポンプ7で気体の二酸化炭素が発生することを防止するためである。二酸化炭素は循環ポンプ7で昇圧され、メタルガスフィルター8でろ過され、清浄な高圧の液体二酸化炭素となって、弁12dを通って、図示していないユースポイントへ送られる。使用されなかった高圧の液体二酸化炭素は保圧弁9の出口側で膨張させられ、さらに蒸発器10で気相に変換される。これは後段のメタルガスフィルター3bでの除粒子効率を上げるためである。このようにして、二酸化炭素供給設備は、二酸化炭素が循環ループに沿って循環しながら、必要に応じてユースポイントに高圧の液体二酸化炭素を供給するようにされている。超臨界状態の二酸化炭素の供給設備についても、液体二酸化炭素を加熱して臨界温度以上まで昇温させる以外は、同様の構成とすることができる。
 微粒子検出装置11は、この二酸化炭素供給設備1のライン上の任意の位置に設けることができる。例示したサンプリング箇所P1~P3は各々、メタルガスフィルター8の出口部、CO槽5の底部及びメタルガスフィルター3bの出口部である。微粒子検出装置11は弁12a~12cを介して二酸化炭素供給設備1に接続されている。微粒子検出装置11は各サンプリング箇所P1~P3から流入する二酸化炭素に含まれる微粒子を検出する。サンプリング箇所P1~P3における二酸化炭素の圧力に制限はないが、本発明によれば、特に圧力1MPa以上の高圧の二酸化炭素を取り出すことができる。
 図2Aは、微粒子検出装置11の概略構成図を示す。微粒子検出装置11は、例えば所定の内径を有する配管で構成され被測定流体が供給される流体供給部13と、減圧手段である流路縮小管14と、微粒子検出手段15と、を有している。図中の破線は二酸化炭素の流れを模式的に示している。
 流体供給部13は一端が、二酸化炭素供給設備1に弁12a~12cを介して接続され、他端が流路縮小管14に接続されている。超臨界、液体または気体の高圧二酸化炭素は流体供給部13を通して流路縮小管14に連続的に供給される。流体供給部13は、図2Aでは配管として示しているが、弁12a~12c(測定点)の状況により、鋼管等の配管や高圧チューブ、継手などを選択できる。図2Aに示す流体供給部13をなくし、弁12a~12cを流路縮小管14と直接接続して、弁12a~12cを流体供給部として機能させることもできる。状況によっては、二酸化炭素供給設備1の循環ループ(母管)に継手等を介して流路縮小管14を直接接続させ、循環ループ(母管)自体を流体供給部として機能させてもよい。いずれの形態をとる場合でも、流路縮小管14は流体供給部13に対して流路が絞られていればよい。また、保圧弁(図示せず)を設け、保圧弁を調整することにより一定流量の高圧二酸化炭素を流路縮小管14に供給するようにしてもよい。
 流路縮小管14の一端14aは流体供給部13に接続されており、流路縮小管14の他端14bは微粒子検出手段15に接続されている。流路縮小管14と微粒子検出手段15との接続方法は特に限定されず、配管、継手、バルブ等を介して接続することができるが、後述する温度制御の観点から、流路縮小管14と微粒子検出手段15との間は極力短くし、不要な微粒子発生防止の観点から、継手やバルブ等は少ないのが好ましい。実施例で述べるように、流路縮小管14と微粒子検出手段15は二酸化炭素の一部を大気へ排出するための分岐管を介して接続してもよい。
 流路縮小管14は流体供給部13に対して流路が絞られており、絞り効果と摩擦損失によって、超臨界、液体または気体の二酸化炭素を減圧する。流路縮小管14はこのような絞り効果と摩擦損失によって被測定流体を減圧することができれば特に限定されないが、例えば金属管やキャピラリーチューブを用いることができる。流路縮小管14は、各種ステンレス鋼、タングステン、コバール、チタン、黄銅、リン青銅、リン脱酸銅などで製作できるが、流体中の微粒子計測における清浄度(管内の表面処理のしやすさ)や加工容易性などからステンレス鋼が好ましい。
 流路縮小管14の流路面積及び長さは、高圧二酸化炭素の供給圧力、減圧後の圧力及び必要流量に応じて適宜設定することができる。流路縮小管14を円形断面の配管で構成する場合、内径は100~1000μmが好ましく、より好ましくは200~500μmである。流路縮小管14の長さは0.1~500mが好ましく、より好ましくは0.5~100mである。流路縮小管14は、急激な圧力低下を起こさずに高圧二酸化炭素の圧力を徐々に低下させるために、配管長が内径と比べて非常に長い。流路縮小管14を円形断面の配管で構成する場合において、上述の例では内径に対する配管長の比は10以上、5000000以下である。また、流路縮小管14を円形断面の配管で構成する場合において、内径に対する配管長のより好ましい比は100以上、500000以下である。このため、設置スペースの観点から直線状に設けることが困難である場合がある。その場合は、らせん状に曲げる、あるいは円形に巻いて束ねる(図2B参照)などの適宜の方法で変形させ、設置スペースを縮小することができる。
 流路縮小管14の両端14a,14b付近には、流路縮小管14を加熱するヒータ(加熱手段)16a,16bが設けられている。ヒータ16a,16bの設置位置はこれに限定されず、流路縮小管14の入口付近と出口付近のいずれかだけに設けられていてもよく、他の位置に設けられていてもよい。ヒータ16a,16bの種類も特に限定されず、例えば、流路縮小管14を巻回するコイル状のヒータや、リボンヒータ(リボン状のヒータ)等とすることができる。ただし図2Bに示すように、円形に束ねた流路縮小管24を用いる場合は、入口側と出口側をほどいた状態として、少なくともほどいた部分にヒータ16a,16bを設けることが好ましい。また、束ねている流路縮小管全体をヒータで加熱してもよい。
 ヒータ16a,16bに隣接して二酸化炭素の温度を測定する温度計17a,17bが設置されている。ヒータ16a,16b及び温度計17a,17bは流体の温度を調整する制御装置18と接続されている。温度計17a,17bとしては例えば熱電対を用いることができる。温度計17a,17bの温度計測部は流路縮小管14の内部にあってもよいが、微粒子の発生を防止するために、流路縮小管14の外面に設けることが好ましい。制御装置18は温度計17a,17bの計測結果に応じて、ヒータ16a,16bの発熱量を制御する。具体的には制御装置18は、二酸化炭素が流路縮小管14から完全な気相、または微粒子の検出に大きな影響を与えない程度のごく少量の固相または液相を含む気相で微粒子検出手段15に流入するように、流路縮小管14の内部を流れる二酸化炭素を所定の温度に維持する。
 流路縮小管14の内部を二酸化炭素が減圧しながら移動する際、二酸化炭素は近似的に等エンタルピー変化を行うとみなすことができる。図3は二酸化炭素のp-h線図を模式的に示している。横軸はエンタルピー(h)を、縦軸は圧力(p)を示している。破線は等温線を示し、右側ほど温度が高く左側ほど温度が低い状態を示している。例えば超臨界状態の二酸化炭素がA点で流路縮小管14に導入された場合、二酸化炭素はA点からB点に状態変化し、気相の二酸化炭素となって流路縮小管14から流出する。微粒子検出手段15には気相の二酸化炭素が供給されるため、後述するように乾式PC法またはCPC法に基づき微粒子が検出される。
 次に、エンタルピーがより小さい状態、すなわちA点より低温の二酸化炭素が供給された場合(C点)を考える。低温の二酸化炭素が等エンタルピー変化をすると、減圧条件によるが、気固混合状態となる可能性がある(D”点)。気固混合状態とは、二酸化炭素の場合、固相であるドライアイスが気相中に生成された状態を意味する。固相は減圧が進行しても存在し続けるため、二酸化炭素が気固混合状態で流路縮小管14を出て微粒子検出手段15に流入すると、二酸化炭素の固相と本来検出すべき微粒子との区別がつかなくなってしまう。そこで、ヒータ16a,16bを作動させ、二酸化炭素の温度をあらかじめ上昇させる(E点)。この結果、二酸化炭素のエンタルピーは増加し、減圧しても気固混合状態となることが防止される(B’点)。また、微粒子の検出に乾式PC法またはCPC法を用いる場合、二酸化炭素は完全に気化されることが望ましい。そこで、ヒータ16a,16bで二酸化炭素を加熱することで、気液混合状態(D’点)を回避することもできる。
 ヒータ16a,16bは、二酸化炭素が気相の状態で微粒子が検出されるように二酸化炭素を加熱することを目的としている。また、ヒータ16a,16bは、検出器に導入される二酸化炭素の温度を一定に保つことも目的としている。従って、ヒータ16a,16bは必ずしも流路縮小管14に設ける必要はなく、微粒子検出手段15の入口付近に設けることも可能である。しかし、流路縮小管14は配管でありしかも簡易な構造であるので、ヒータの設置が容易である。
 また、二酸化炭素の固相または液相が一時的に発生しても、微粒子検出手段15に導入される時点で消失していればよい。つまり二酸化炭素が一時的にD’点またはD”点の状態になっても、最終的にE’点またはE”の状態になればよい。しかし、状態変化にはある程度の時間を要するため、できるだけ流路縮小管14の上流側で加熱するほうが、気固混合状態ないし気液混合状態を回避する上では望ましい。このような観点からは、ヒータ16aを流路縮小管14の入口14a付近に設けることが望ましい。また早期に加熱することで、気固混合状態ないし気液混合状態が生じない高エンタルピー領域で等エンタルピー変化を行うこともできる(D→E→B’)。一方、微粒子検出手段15に二酸化炭素が確実に気相で導入されるようにするため、ヒータ16bを流路縮小管14の出口14b付近に設けることも望ましく、さらには入口14a付近と出口14b付近の両方の位置に各々ヒータ16a,16bを設けてもよい。このようにヒータ16a,16bの設置位置は目的に応じて適宜決定することができる。
 流路縮小管14の内径を大きくすれば絞り効果が減少し、減圧の程度は小さくなる。同様に流路縮小管14の配管長を短くすれば、減圧の程度は小さくなる。流路縮小管14の配管長及び流路面積(内径)の調整と、ヒータ16a,16bによる流路縮小管14の温度制御はあわせて行うことができる。流路縮小管14の流路面積及び長さを適正化した場合でも、気固混合状態ないし気液混合状態を回避するためには流路縮小管14の温度制御を行うことがより好ましい。
 流路縮小管14を用いた減圧方法は従来の減圧弁のように機械的に作動する部分を必要としないため、作動に伴う金属粉等の微粒子発生が原理的にない。このため、二酸化炭素に含まれる微粒子を高精度で検出することができる。他の減圧方法としてフィルタを用いることも考えられるが、フィルタは長時間の使用中に微粒子の付着、剥離を繰り返すため、精密な測定は困難である。これに対して流路縮小管14を用いた減圧方法は、微粒子検出手段15にとって汚染源(もしくはブランク微粒子数を上げる原因)となる金属粉等の微粒子の発生がほとんどなく、精度の高い測定が可能である。しかも、流路縮小管14の流路面積(内径)及び全長を調整し、さらにはヒータ16a,16bによる温度制御を行うために、サンプリング箇所P1~P3の温度圧力条件の影響を受けにくく、安定で精度よく微粒子検出を行うことが可能になる。
 流路縮小管14の他の長所は、配管長が長いために伝熱面積が非常に大きいということである。このため加熱範囲設定の自由度が高く、温度制御が可能な範囲も広く確保することができるため、きめの細かい温度制御が可能である。大きな伝熱面積を有しているために、外部環境温度によっては、必ずしもヒータを設けなくとも所望の温度範囲に二酸化炭素を維持することができる。減圧弁やフィルタは、減圧が実質的に一点で集中して行われるため、きめの細かい温度制御は困難である。また、流路縮小管14は構造が単純で信頼性が高く、メンテナンスの必要性も小さく、コスト的にも有利である。
 微粒子検出手段15は、流路縮小管14から流入する微粒子を検出する。超臨界、液体または気体の二酸化炭素は、流路縮小管14によって減圧された後は気相となっており、二酸化炭素に元々含まれていた微粒子は気相中に存在する。この微粒子を含んだ気相の二酸化炭素が微粒子検出手段15に導入され、気相の二酸化炭素に含まれる微粒子が検出される。このような微粒子検出器として、乾式PC法またはCPC法を用いることができる。
 乾式PC法による微粒子検出手段15は、微粒子にレーザー光を照射する手段と、微粒子からのレーザー光の散乱光を検出する手段と、を有している。乾式PC法では、気相中の微粒子に半導体レーザーで発生したレーザー光を照射して、微粒子からの直接の散乱光を検出する。
 図2にはCPC法に基づく微粒子検出手段15を示している。微粒子検出手段15は、アルコール等の蒸気の供給口20aを備えた凝縮室20を有している。微粒子はアルコール等の過飽和雰囲気とされた凝縮室20に導入され、この微粒子を核としてアルコール等の蒸気が凝縮成長する。凝縮室20の下流側はレーザー光を透過可能な材料で製作されたフローセル21となっている。フローセル21の側方には、蒸気の凝縮成長した微粒子にレーザー光を照射する半導体レーザー22と、蒸気の凝縮成長した微粒子からのレーザー光の散乱光を検出する光電変換器23と、が配置されている。微粒子は、蒸気が付着し凝縮成長したエアロゾル(液滴)となり、その液滴にレーザー光が照射される。液滴の粒径は光散乱法で測定可能な程度まで大きくされ、光散乱法によって微粒子の個数(濃度)が計測される。このためCPC法では、乾式PC法と比べてより小さい粒径の微粒子まで検出することができる。一方、乾式PC法は微粒子に直接レーザー光を照射するため、微粒子の粒径分布を求めることが可能である。
 また、流路縮小管14で減圧された流体は流速が増しているため、微粒子検出手段15に不要な負荷をかける場合がある。したがって、実施例に示すように、微粒子検出手段15の下流側にポンプを設置して適切な流速・流量の被測定流体を微粒子検出手段15に導入するとともに、微粒子検出手段15の上流側に大気開放手段を設けて、微粒子検出手段15に導入されない流体を排気するようにしてもよい。ポンプは微粒子検出手段15と大気開放手段の間に設けてもよいが、ポンプから発生する微粒子が微粒子検出手段15に導入される可能性があるため、微粒子検出手段15の下流側に設けるのが好ましい。
 実施例におけるフロー図を図4に示す。高圧流体には、株式会社ピュアロンジャパン社製メタルガスフィルター(濾過精度0.003μm)で濾過した高圧二酸化炭素を使用した。高圧二酸化炭素は、内径4.35mmの流体供給部を通して、減圧手段である流路縮小管14に連続的に供給した。高圧二酸化炭素の流体供給部には分岐管19を設け、一部の二酸化炭素を保圧弁20を通して排気した。保圧弁20の設定圧力は9MPaとし、一定流量(3g/min)の高圧二酸化炭素を流路縮小管14に供給した。流路縮小管14は、管径がφ200μm、管長が30mとし、SUS316で製作した。流路縮小管14はφ48cmの円状に巻いて束ね、両端はほどいた状態とした。
 流路縮小管14の入口付近と出口付近の2箇所にヒータ16a,16bを設置し、流路縮小管14の外面の温度がそれぞれ60℃と30℃になるように温度を制御した。具体的には、ヒータ16aとして幅4cm、長さ3mのリボンヒータを用意し、流路縮小管14の始端から流路縮小管14のほどいた部分に沿って取付け、さらに残りの部分を流路縮小管14の束ねた部分に取り付けた。同様に、ヒータ16bとして幅4cm、長さ3mのリボンヒータを用意し、流路縮小管14の下流側にある排気管分岐部27の付近から流路縮小管14のほどいた部分に沿って取付け、さらに残りの部分を流路縮小管14の束ねた部分のうち、ほどいた部分につながる部分に取り付けた。図4には、ヒータ16a,16bを取り付けた範囲を斜線で示している。
 流路縮小管14で減圧された二酸化炭素中に含まれる微粒子数(濃度)を、CPC法を用いた微粒子検出装置15(TSI社製CPC3772)で計測した。微粒子検出装置15の下流側にはポンプ28を設け、減圧した二酸化炭素のうち一定流量(1L/min)だけを吸引して微粒子検出装置15に導入し、残りは排気管分岐部27から大気放出した。
 比較例1では減圧手段として株式会社杉山商事製フローリストリクターを用い、比較例2では減圧手段として減圧弁(テスコム社製)を用いた。比較例3では、比較例1のフローリストリクターの後段に、実施例と同じ、ヒータ付きの流路縮小管14(φ200μm、30m)を設置した。比較例1,3のフローリストリクターは、粒径2μm以上の微粒子を除去できるフィルタである。比較例2の減圧弁には、外周部に幅4cm、長さ3cmのリボンヒータを設け、減圧弁に設置した熱電対の温度が100℃となるように制御した。フローリストリクターはその外部温度が100℃になるように制御した。
 実施例及び各比較例において、高圧二酸化炭素中の粒径が10nmを超える微粒子数(濃度)を計測した結果を図5A~5Cに示す。図5Aは比較例1,2の、図5Bは比較例3の、図5Cは実施例の測定結果を示しており、横軸が経過時間、縦軸が検出された粒子数(気体1cc当たりの検出粒子数)である。図5B,5Cの縦軸は同じスケールであるが、図5Aの縦軸はスケールが図5B,5Cと比べて1000倍大きくなっている。
 比較例2は減圧弁の作動による金属粉等の微粒子が発生していると考えられ、微粒子の濃度が低い流体を測定対象とする場合、実用的な測定精度を得ることは困難である。比較例1は比較例2よりは検出粒子数が少ないが、後述する実施例よりはるかに多い微粒子が検出された。比較例1は、フィルタで付着、剥離を繰り返す微粒子の影響を受けていると考えられる。さらに比較例1,2では温度制御が十分でなかったために、二酸化炭素が部分的に固相または液相となって測定装置に流入したものと推察される。比較例3は比較例1のフィルタの後段に実施例のヒータ付きの流路縮小管14を設置しているため二酸化炭素は完全に気相になっていると考えられる。比較例3は、フィルタで付着、剥離を繰り返す微粒子の影響だけを抽出したものであるといえる。比較例1~3は、被測定対象に本来含まれる微粒子以外の微粒子が測定結果に影響を与えており、検出粒子数が高く、計測値が安定していない。
 一方、実施例では各比較例よりも検出粒子数が少なくなっており、被測定対象に本来含まれる微粒子以外の微粒子の影響をほとんど受けておらず、安定した計測値が得られた。
 次に、本実施例において、高圧二酸化炭素供給装置におけるサンプリング箇所P2,P3,P1における粒径10nmを超える微粒子数(濃度)を計測した結果を図6に示す。サンプリング箇所P1~P3は図1に示すとおりの位置である。サンプリング箇所を変更した際に過渡的に微粒子数が増加する現象が確認されたが、ほぼサンプリング箇所に見合った微粒子数が得られた。
 さらに、同一のサンプリング箇所において、弁24の開閉操作を行った際の、粒径10nmを超える微粒子数(濃度)を計測した結果を図7Aに示す。この弁24は、弁の開閉操作の影響を見るために、図7Bに示すような構成で設けたものである。弁の設けられたライン25と弁の設けられていないライン26を並列で構成し、二酸化炭素を供給しながら弁24の開閉動作を行い、微粒子数を測定した。弁の開閉動作を行った後に微粒子数が一時的に増加し、その後再び定常的な状態に復帰している。
 このように、サンプリング箇所の変更や弁の開閉操作を行った時の微小な微粒子数(濃度)の変化を、連続的にモニタリングできることが確認された。
 1 液体二酸化炭素製造設備
 11 微粒子検出装置
 13 流体供給部
 14 流路縮小管
 15 微粒子検出手段
 16a,16b ヒータ(加熱手段)
 17a,17b 温度計
 18 制御装置

Claims (12)

  1.  被測定流体が供給される流体供給部と、
     一端が前記流体供給部に接続され、前記流体供給部に対して流路の絞られた流路縮小管と、
     前記流路縮小管の他端に接続され、前記流路縮小管から流入する微粒子を検出する微粒子検出手段と、
     を有する、流体中の微粒子検出装置。
  2.  前記流路縮小管を流れる前記被測定流体を加熱する加熱手段と、前記被測定流体が前記流路縮小管から気相で前記微粒子検出手段に流入するように前記加熱手段を制御する制御装置と、を有する、請求項1に記載の微粒子検出装置。
  3.  前記加熱手段は前記流路縮小管の前記一端側と前記他端側の少なくとも一方に設けられている、請求項2に記載の微粒子検出装置。
  4.  前記微粒子検出手段は、気化された前記被測定流体中に含まれている前記微粒子にレーザー光を照射する手段と、前記微粒子からの前記レーザー光の散乱光を検出する手段と、を有する、請求項2に記載の微粒子検出装置。
  5.  前記微粒子検出手段は、気化された前記被測定流体中に含まれている前記微粒子の周囲に蒸気を凝縮成長させる手段と、蒸気の凝縮成長した前記微粒子にレーザー光を照射する手段と、前記蒸気の凝縮成長した微粒子からの前記レーザー光の散乱光を検出する手段と、を有する、請求項2に記載の微粒子検出装置。
  6.  前記流路縮小管は内径が100~1000μmの範囲にある円形断面を有し、0.1~500mの配管長を有している、請求項1に記載の微粒子検出装置。
  7.  前記流路縮小管は円形断面を有し、内径に対する配管長の比が10以上、5000000以下の範囲にある、請求項1に記載の微粒子検出装置。
  8.  被測定流体を流体供給部によって供給するステップと、
     供給された前記被測定流体を前記流体供給部に対して流路の絞られた流路縮小管を通すことによって、前記被測定流体を減圧するステップと、
     減圧された前記被測定流体に含まれる微粒子を検出するステップと、
     を有する、流体中の微粒子検出方法。
  9.  前記被測定流体を減圧するステップは、前記被測定流体が前記流路縮小管を気相で流出するように、前記流路縮小管の入口側と出口側の少なくとも一方を加熱することを含む、請求項8に記載の微粒子検出方法。
  10.  前記被測定流体を減圧するステップは、前記被測定流体が前記流路縮小管を気相で流出するように、前記流路縮小管の流路面積と配管長の少なくともいずれかを調整することを含む、請求項8に記載の微粒子検出方法。
  11.  前記微粒子数を計測するステップは、気化された前記被測定流体中に含まれている前記微粒子にレーザー光を照射し、または気化された前記被測定流体中に含まれている前記微粒子に、その周囲に蒸気を凝縮成長させた状態でレーザー光を照射し、照射された前記レーザー光の散乱光を検出することを含む、請求項8に記載の微粒子検出方法。
  12.  前記減圧するステップは、圧力1MPa以上の超臨界状態または液相または気相の二酸化炭素を減圧して、圧力1MPa未満の気相の二酸化炭素にすることを含む、請求項8に記載の微粒子検出方法。
PCT/JP2011/065996 2010-07-21 2011-07-13 流体中の微粒子検出装置及び検出方法 WO2012011420A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180021856.1A CN102869977B (zh) 2010-07-21 2011-07-13 流体中的微粒子检测装置及检测方法
KR1020127026580A KR101502210B1 (ko) 2010-07-21 2011-07-13 유체 중의 미립자 검출 장치 및 검출 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-163940 2010-07-21
JP2010163940A JP5599249B2 (ja) 2010-07-21 2010-07-21 流体中の微粒子検出装置及び検出方法

Publications (1)

Publication Number Publication Date
WO2012011420A1 true WO2012011420A1 (ja) 2012-01-26

Family

ID=45496847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065996 WO2012011420A1 (ja) 2010-07-21 2011-07-13 流体中の微粒子検出装置及び検出方法

Country Status (5)

Country Link
JP (1) JP5599249B2 (ja)
KR (1) KR101502210B1 (ja)
CN (1) CN102869977B (ja)
TW (1) TWI571623B (ja)
WO (1) WO2012011420A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181084A1 (en) 2014-05-26 2015-12-03 Eydo Pharma Use of a nanoemulsion of cinnamaldehyde and/or a metabolite thereof, possibly in association with eugenol and/or carvacrol, to prevent resistance to antibiotics

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101897232B1 (ko) * 2016-12-23 2018-09-11 주식회사 포스코 용액내 미립자 검출용 화상검출장치
EP3581917A4 (en) * 2017-02-10 2020-10-14 Tosoh Corporation PARTICLE DETECTION DEVICE AND PARTICLE DETECTION METHOD
KR20230038866A (ko) * 2021-09-13 2023-03-21 세메스 주식회사 기판 처리 방법 및 기판 처리 장치
CN118392729A (zh) * 2024-04-28 2024-07-26 广州机械科学研究院有限公司 一种流动油液中磨损颗粒视频采集装置及分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046137A (ja) * 2002-01-22 2008-02-28 Praxair Technol Inc 二酸化炭素中の不純物を分析する方法
JP2009052981A (ja) * 2007-08-24 2009-03-12 Japan Organo Co Ltd 高圧流体中の微粒子測定システムおよび微粒子測定方法
JP2009052980A (ja) * 2007-08-24 2009-03-12 Japan Organo Co Ltd 高圧二酸化炭素の微粒子測定システムおよび微粒子測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM381713U (en) * 2010-01-22 2010-06-01 Kumtek Internat Co Ltd Fluid pipe heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046137A (ja) * 2002-01-22 2008-02-28 Praxair Technol Inc 二酸化炭素中の不純物を分析する方法
JP2009052981A (ja) * 2007-08-24 2009-03-12 Japan Organo Co Ltd 高圧流体中の微粒子測定システムおよび微粒子測定方法
JP2009052980A (ja) * 2007-08-24 2009-03-12 Japan Organo Co Ltd 高圧二酸化炭素の微粒子測定システムおよび微粒子測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181084A1 (en) 2014-05-26 2015-12-03 Eydo Pharma Use of a nanoemulsion of cinnamaldehyde and/or a metabolite thereof, possibly in association with eugenol and/or carvacrol, to prevent resistance to antibiotics

Also Published As

Publication number Publication date
JP5599249B2 (ja) 2014-10-01
KR101502210B1 (ko) 2015-03-12
CN102869977B (zh) 2014-11-26
JP2012026792A (ja) 2012-02-09
TWI571623B (zh) 2017-02-21
TW201229488A (en) 2012-07-16
KR20120127672A (ko) 2012-11-22
CN102869977A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2012011420A1 (ja) 流体中の微粒子検出装置及び検出方法
TWI577452B (zh) 形成及調節二氧化碳複合噴霧之裝置
JP4762835B2 (ja) 基板処理方法、基板処理装置、プログラムおよびプログラム記録媒体
JP4832473B2 (ja) 凝縮核計数器
US9821263B2 (en) Advanced laminar flow water condensation technology for ultrafine particles
JP5607642B2 (ja) ガスサンプリング装置
KR20090088886A (ko) 초순수 내의 비-휘발성 잔류물을 측정하기 위한 시스템
US8816305B2 (en) Filter for material supply apparatus
KR101976934B1 (ko) 대기오염 측정 분석을 위한 수분 전처리 장치 및 수분 배출방법
KR20130076867A (ko) 필터의 청정화 방법, 및 피처리체의 세정 또는 건조 방법
US8490506B2 (en) In-situ gas analyzer probe
US20120103561A1 (en) Heat exchanger and related methods
JP2012026792A5 (ja)
JP6752591B2 (ja) 排ガス計測装置
JP2008224300A (ja) サンプリングプローブおよびその設置構造、セメント製造プロセス
JP2017003384A (ja) パーティクル計測装置およびパーティクル計測方法
KR102341503B1 (ko) 고온 응축 입자 계수기
JP5912597B2 (ja) 流体二酸化炭素の供給装置及び供給方法
US8079838B2 (en) Pure particle generator
JP2007212381A (ja) 温度調節装置
JP2009052981A (ja) 高圧流体中の微粒子測定システムおよび微粒子測定方法
JP2011043435A (ja) 微量水分発生装置および標準ガス生成装置
EP3355046A1 (en) Device and method for removing water contained in gas phase substance by phase-changing water into frost phase
FI130261B (en) Device and method for detecting particles
JP5311412B2 (ja) サンプリングガスの減圧装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021856.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127026580

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809594

Country of ref document: EP

Kind code of ref document: A1