WO2012011341A1 - 撮像装置、その制御方法およびプログラム - Google Patents

撮像装置、その制御方法およびプログラム Download PDF

Info

Publication number
WO2012011341A1
WO2012011341A1 PCT/JP2011/063662 JP2011063662W WO2012011341A1 WO 2012011341 A1 WO2012011341 A1 WO 2012011341A1 JP 2011063662 W JP2011063662 W JP 2011063662W WO 2012011341 A1 WO2012011341 A1 WO 2012011341A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
subject
focus
imaging
unit
Prior art date
Application number
PCT/JP2011/063662
Other languages
English (en)
French (fr)
Inventor
相澤 秀邦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/392,529 priority Critical patent/US20120154547A1/en
Priority to EP11809515.7A priority patent/EP2597502A1/en
Priority to CN2011800038662A priority patent/CN102511013A/zh
Publication of WO2012011341A1 publication Critical patent/WO2012011341A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/285Systems for automatic generation of focusing signals including two or more different focus detection devices, e.g. both an active and a passive focus detecting device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to an imaging apparatus, and more particularly, to an imaging apparatus that generates a stereoscopic image, a control method thereof, and a program that causes a computer to execute the method.
  • imaging apparatuses such as a digital still camera and a digital video camera (camera integrated recorder) that record a plurality of images (image data) for displaying stereoscopic images in association with each other have been proposed.
  • a stereoscopic image capturing apparatus that includes two image capturing units provided with a focus lens and records two images generated by these image capturing units on a recording medium has been proposed (see, for example, Patent Document 1). .).
  • this stereoscopic image capturing apparatus in the AF operation, each focus lens is moved to calculate an AF evaluation value, and the other focus lens is set at the position of the focus lens where the maximum value of the AF evaluation value is detected first.
  • the other focus lens is set at the position of the focus lens where the maximum AF evaluation value is detected first, the AF operation can be performed in a relatively short time. That is, when the same subject included in the two images generated by the two imaging units is set as the focusing target, the subject that is the focusing target can be focused quickly, so that a relatively short time is required. AF operation can be performed.
  • the focal length of the lens is long and the distance to the subject is short, or when the exposure environment is such that sufficient illumination cannot be obtained and the aperture is relatively open,
  • the depth of field before and after the in-focus position becomes shallow.
  • the image is in focus for the subject included in the shallow depth of field, but other subjects Is displayed as a blurred image.
  • a stereoscopic image is displayed using a left-eye viewing image and a right-eye viewing image generated with a shallow depth of field before and after the in-focus position.
  • the stereoscopic image is in focus for a subject included in the shallow depth of field, but is blurred for other subjects. Displayed as an image.
  • the user can view the subject in focus as a clear solid, but the other subjects can be seen as a blurred solid.
  • the object included in the field of view can often be viewed three-dimensionally relatively freely.
  • the relatively small subject the subject in focus
  • the relatively small subject can be viewed stereoscopically relatively freely, but other subjects remain out of focus. It is difficult to see the subject in the same way as the subject.
  • the user since it is different from the state in which the object included in the visual field can be seen relatively freely, there is a possibility that the user may feel uncomfortable.
  • a stereoscopic image that can appropriately stereoscopically view a subject included in a relatively wide range is generated even under an imaging condition where the depth of field is relatively shallow, and the stereoscopic image can be displayed with a natural feeling for the user. It is important to be able to see.
  • the present invention has been made in view of such a situation, and an object of the present invention is to enlarge a focused image area when generating a stereoscopic image.
  • a first aspect of the present invention is to provide a first image and a first image for displaying a stereoscopic image for imaging the subject and stereoscopically viewing the subject.
  • An imaging unit that generates two images, and focus control in the imaging unit so as to focus on a first subject that is a subject included in a specific area among subjects included in the first image when the first image is generated
  • focus on a second subject which is another subject existing in a position different from the first subject in the optical axis direction among subjects included in the second image.
  • An imaging apparatus including a focus control unit that performs focus control in the imaging unit, a control method thereof, and a program that causes a computer to execute the method. Accordingly, focus control is performed so that the subject (first subject) included in the specific area among the subjects included in the first image is focused when the first image is generated, and the second is generated when the second image is generated. This brings about an effect of performing focus control so that another subject (second subject) existing in a position different from the first subject in the optical axis direction among subjects included in the image is focused.
  • the focus control unit is configured so that the range of the depth of field at the time of generating the first image is different from the range of the depth of field at the time of generating the second image.
  • Each focus control may be performed. Accordingly, there is an effect that each focus control is performed so that the range of the depth of field at the time of generating the first image is different from the range of the depth of field at the time of generating the second image.
  • the focus control unit may prevent the range of depth of field when the first image is generated from overlapping the range of depth of field when the second image is generated.
  • Each focus control described above may be performed so as to be in a continuous range. Thereby, each focus control is performed so that the range of the depth of field at the time of generating the first image and the range of the depth of field at the time of generating the second image are continuous without overlapping. Bring about an effect.
  • the focus control unit may cause the range of the depth of field when the first image is generated to overlap the range of the depth of field when the second image is generated. You may make it perform said each focus control. This brings about the effect that each focus control is performed so that the range of the depth of field at the time of generating the first image overlaps the range of the depth of field at the time of generating the second image.
  • the focus control unit determines the range of the depth of field at the time of generating the first image and the depth of field at the time of generating the second image, when a certain condition is satisfied.
  • Each focus control may be performed so that the range is not continuous.
  • each focus control is performed so that the range of depth of field at the time of generating the first image and the range of depth of field at the time of generating the second image are discontinuous. Brings the effect of doing.
  • the focus control unit may include two objects whose background is substantially one color and that are closer to the imaging device than the background and are separated from each other by a certain value in the optical axis direction.
  • the above-described focus control may be performed so that the discontinuity occurs when the predetermined condition is satisfied with the condition that the first subject and the second subject are defined as the predetermined condition.
  • the condition that the two objects having a background of substantially one color and present on the imaging apparatus side of the background and separated from the fixed value in the optical axis direction are the first subject and the second subject is satisfied.
  • each focus control is performed so that the range of the two depths of field is discontinuous.
  • the imaging unit includes a first imaging unit that generates the first image, and a second imaging unit that generates the second image in synchronization with the first image
  • the focus control unit performs focus control so as to focus on the first subject using a first focus lens provided in the first imaging unit at the time of generation of the first image, and also controls the second image.
  • focus control may be performed using the second focus lens provided in the second imaging unit so as to focus on the second subject.
  • the focus control is performed so that the first subject is focused using the first focus lens provided in the first imaging unit, and at the time of generating the second image, the second image is generated.
  • the second focus lens provided in the imaging unit is used to perform focus control so as to focus on the second subject.
  • the focus control unit is included in a range different from the range of the first depth of field specified by the position of the first subject, the F value, and the focal length of the lens.
  • Focus control using the second focus lens may be performed so as to focus on the second subject. Accordingly, the second focus is set so that the second subject included in a range different from the range of the first depth of field specified by the position of the first subject, the F value, and the focal length of the lens is focused. This provides an effect of performing focus control using a lens.
  • the focus control unit synchronizes the first focus lens and the second focus lens when the first subject and the second subject are within the range of the hyperfocal distance. Then, the focus control may be performed. As a result, when the first subject and the second subject are within the range of the hyperfocal distance, the first focus lens and the second focus lens are synchronized to perform focus control.
  • the focus control unit may be configured such that the focal length of the lens in the imaging unit is long and the subject distance related to the first subject is short, or the F value is based on a constant value.
  • the imaging unit performs focus control so as to focus on the first subject included in the first image, and the imaging unit so as to focus on the second subject included in the second image.
  • Focus control may be performed. Accordingly, when the focal length of the lens in the imaging unit is long and the subject distance related to the first subject is short, or when the F value is small with reference to a certain value, the first subject included in the first image is displayed.
  • the focus control is performed so as to focus, and the focus control is performed so that the second subject included in the second image is focused.
  • the second subject may be a subject that is closer to the imaging device than the first subject in the optical axis direction, or the second subject may be more than the first subject in the optical axis direction.
  • An operation receiving unit that receives a selection operation for selecting whether the subject exists on the far side is further provided, and the focus control unit focuses so as to focus on the selected subject when the second image is generated. Control may be performed. Thus, when the second image is generated, the focus control is performed so that the subject selected by the selection operation is focused.
  • a recording control unit that associates the generated first image and the second image with each other and records the moving image content on a recording medium may be further provided.
  • generated 1st image and 2nd image are linked
  • a recording control unit that associates the generated first image and the second image and records them as a still image content on a recording medium may be further provided. This brings about the effect
  • the operation accepting unit that accepts an instruction operation for recording the still image, and when the instruction operation is accepted, each of the first subject and the second subject is focused.
  • the focus control is performed to generate the first image and the second image
  • the focus control is performed so that at least one of the first subject and the second subject is focused.
  • a control unit that controls the imaging unit to continuously perform the second imaging operation for generating the first image and the second image, and the recording control unit includes the first imaging unit.
  • the first image and the second image generated by the operation and the first image and the second image generated by the second imaging operation are associated with each other and recorded as the still image content on the recording medium. It may be allowed.
  • each focus control is performed so as to focus on each of the first subject and the second subject, and the first image and the second image are generated.
  • the imaging operation and the second imaging operation for generating the first image and the second image by performing each focus control so as to focus on at least one of the first subject and the second subject are performed continuously.
  • the first image and the second image generated by the first imaging operation and the first image and the second image generated by the second imaging operation are associated with each other and recorded on the recording medium as a still image content.
  • the recording control unit adds identification information indicating that the recording control unit has been generated by the first imaging operation to the first image and the second image generated by the first imaging operation. You may make it record in relation. Accordingly, there is an effect that the identification information indicating that it is generated by the first imaging operation is recorded in association with the first image and the second image generated by the first imaging operation.
  • FIG. 1 is a perspective view illustrating an appearance of an imaging device 100 according to a first embodiment of the present disclosure.
  • 2 is a block diagram illustrating an internal configuration example of the imaging apparatus 100 according to the first embodiment of the present disclosure.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the imaging apparatus 100 according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating a display example of an input / output panel 190 according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating a display example of an input / output panel 190 according to the first embodiment of the present disclosure.
  • FIG. 6 is a display example of an input / output panel 190 according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram schematically illustrating a relationship between a depth of field set by a focus control unit 123 and a subject in the first embodiment of the present disclosure. It is an example of a set of images (still images) generated by each of the left-eye imaging unit 200 and the right-eye imaging unit 300 according to the first embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure of focus control processing by the imaging device 100 according to the first embodiment of the present disclosure. It is a block diagram showing an example of functional composition of imaging device 670 in a modification of a 1st embodiment of this indication. It is a figure which shows an example of the focusing position table hold
  • First Embodiment Focus control: an example in which the in-focus positions of two imaging units are different and a stereoscopic image is generated with continuous depth of field of the two imaging units
  • Second Embodiment Focus Control: Example in which stereoscopic images with different in-focus positions of two imaging units and stereoscopic images with the same in-focus positions of two imaging units are recorded continuously
  • Third Embodiment Focus Control: Example in which the in-focus positions of the two image capturing units are different and the depth of field of the two image capturing units is discontinuous to generate a stereoscopic image
  • FIG. 1 is a perspective view illustrating an appearance of the imaging apparatus 100 according to the first embodiment of the present disclosure.
  • An upper view of FIG. 1 is a perspective view showing an external appearance of the imaging apparatus 100 on the front side (that is, a surface on which a lens directed to a subject is provided).
  • 1 is a perspective view showing an external appearance of the imaging device 100 on the back surface (that is, the surface provided with the input / output panel 190 directed to the photographer).
  • the imaging apparatus 100 includes a shutter button 111, an input / output panel 190, a left-eye imaging unit 200, and a right-eye imaging unit 300.
  • the imaging apparatus 100 captures an object to generate a captured image (image data), and uses the generated captured image as image content (still image content or moving image content) as a recording medium (content storage unit 160 illustrated in FIG. 2). It is an imaging device capable of recording on the camera.
  • the imaging device 100 is an imaging device that supports stereoscopic imaging, and can generate image content for displaying a stereoscopic image (3D image). Note that a stereoscopic image (3D image) is an image that enables stereoscopic vision to be obtained using the parallax between the left and right eyes.
  • each of the left-eye imaging unit 200 and the right-eye imaging unit 300 captures a subject and takes two captured images (a left-eye viewing image (left-eye image) and a right-eye viewing for displaying a stereoscopic image).
  • Image right eye image
  • image content for displaying a stereoscopic image is generated based on the two generated captured images.
  • the imaging apparatus 100 includes other operation members such as a power switch, a mode switch, and a zoom button, but illustration and description thereof are omitted here.
  • the shutter button 111 is a button pressed by the user when recording a captured image (image data) generated by imaging a subject as image content. For example, when a still image capturing mode for recording a still image is set, when the shutter button 111 is pressed halfway, focus control for performing autofocus is performed. Further, when the shutter button 111 is fully pressed, the focus control is performed, and the captured images captured by the left eye imaging unit 200 and the right eye imaging unit 300 at the time of the full pressing are associated with each other. To be recorded on a recording medium.
  • the input / output panel 190 displays various images and receives an operation input from the user by detecting a contact operation on the input / output panel 190.
  • the left-eye imaging unit 200 and the right-eye imaging unit 300 will be described in detail with reference to FIG.
  • FIG. 2 is a block diagram illustrating an internal configuration example of the imaging apparatus 100 according to the first embodiment of the present disclosure.
  • the imaging apparatus 100 includes an operation receiving unit 110, a CPU 120, a synchronous clock 130, an exposure control unit 140, a recording control unit 150, a content storage unit 160, a display control unit 170, and a display unit 180.
  • the imaging apparatus 100 includes a left-eye imaging unit 200 and a right-eye imaging unit 300.
  • each of the optical system, the imaging device, and the imaging signal processing unit is a pair of left and right. It is configured. That is, the left-eye imaging unit 200 includes a zoom lens 211, a diaphragm 212, a focus lens 213, a zoom lens drive motor 221, a zoom lens control unit 222, a diaphragm drive motor 231, and a diaphragm control unit 232. Prepare.
  • the left-eye imaging unit 200 includes a focus lens driving motor 241, a focus lens control unit 242, an imaging element 250, and an imaging signal processing unit 260.
  • the right-eye imaging unit 300 includes a zoom lens 311, an aperture 312, a focus lens 313, a zoom lens drive motor 321, a zoom lens control unit 322, an aperture drive motor 331, and an aperture control unit 332. Prepare.
  • the right-eye imaging unit 300 includes a focus lens drive motor 341, a focus lens control unit 342, an imaging element 350, and an imaging signal processing unit 360.
  • each structure (each lens, each image sensor, etc.) of the imaging unit 200 for the left eye and the imaging unit 300 for the right eye is substantially the same except that the arrangement position is different. For this reason, in the following, a description of some of these left and right configurations will be omitted.
  • the zoom lens 211 is a lens that adjusts the focal length by moving in the optical axis direction by driving the zoom lens driving motor 221. That is, the zoom lens 211 is a lens that is driven back and forth with respect to the subject in order to enlarge or reduce the subject included in the captured image. Further, the zoom function is realized by the zoom lens 211.
  • the zoom lens drive motor 221 is a motor that adjusts the focal length by moving the zoom lens 211 in the optical axis direction by rotating according to the drive control signal output from the zoom lens control unit 222.
  • the zoom lens control unit 222 generates a drive control signal for rotating the zoom lens drive motor 221 based on the control signal output from the CPU 120, and outputs the drive control signal to the zoom lens drive motor 221.
  • the diaphragm 212 adjusts the amount of light (that is, exposure) of incident light that passes through the zoom lens 211 and the focus lens 213, and the adjusted light is supplied to the image sensor 250.
  • the diaphragm 212 is driven by a diaphragm drive motor 231 to adjust the opening of the diaphragm.
  • the aperture drive motor 231 is a motor that adjusts the F value (aperture value) by opening and closing the aperture 212 by rotating according to the drive control signal output from the aperture controller 232.
  • the aperture control unit 232 generates a drive control signal for rotating the aperture drive motor 231 based on the control signal output from the CPU 120 and outputs the drive control signal to the aperture drive motor 231.
  • the focus lens 213 is a lens that moves in the optical axis direction by the drive of the focus lens drive motor 241 to adjust the focus.
  • the focus lens 213 is a lens used for focusing on a desired object included in the captured image.
  • the focus lens 213 realizes an autofocus function.
  • the focus lens drive motor 241 is a motor that adjusts the focal position by moving the focus lens 213 in the optical axis direction by rotating according to the drive control signal output from the focus lens control unit 242.
  • the focus lens control unit 242 generates a drive control signal for rotating the focus lens drive motor 241 based on the control signal output from the CPU 120, and outputs the drive control signal to the focus lens drive motor 241.
  • the zoom lens 211 and the focus lens 213 are a lens group that collects incident light from a subject, and the amount (light quantity) of the light collected by these lens groups is adjusted by the diaphragm 212. The light enters the image sensor 250.
  • the imaging device 250 is an imaging device that performs photoelectric conversion processing on incident light that has passed through the zoom lens 211, the diaphragm 212, and the focus lens 213, and supplies an electrical signal (image signal) that has been subjected to photoelectric conversion to the imaging signal processing unit 260. . That is, the image sensor 250 receives light from a subject incident through the zoom lens 211 and the focus lens 213 and performs photoelectric conversion, thereby generating an analog image signal corresponding to the amount of received light. In addition, the image sensor 250 and the image sensor 350 (the right-eye image capturing unit 300) form an analog image signal by forming a subject image incident through each lens by synchronous driving based on the clock signal of the synchronous clock 130. Generate.
  • the analog image signal generated by the image sensor 250 is supplied to the image signal processor 260, and the analog image signal generated by the image sensor 350 is supplied to the image signal processor 360.
  • a CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the imaging signal processing unit 260 is an imaging signal processing unit for the left eye that performs various types of signal processing on the analog image signal supplied from the imaging device 250 based on the control of the CPU 120. Then, the imaging signal processing unit 260 outputs a digital image signal (left-eye viewing image) generated by performing various signal processes to the CPU 120 and the recording control unit 150.
  • the imaging signal processing unit 360 is a right-eye imaging signal processing unit that performs various types of signal processing on the analog image signal supplied from the imaging device 350 based on the control of the CPU 120. Then, the imaging signal processing unit 360 outputs a digital image signal (right-eye viewing image) generated by performing various signal processes to the CPU 120, the exposure control unit 140, and the recording control unit 150. Further, the left-eye imaging unit 200 and the right-eye imaging unit 300 output each imaging information (focal length, F value, etc. of the reference lens) to the CPU 120.
  • the operation accepting unit 110 is an operation accepting unit that accepts an operation input by a user, and supplies an operation signal corresponding to the content of the accepted operation input to the CPU 120.
  • the operation reception unit 110 corresponds to operation members such as a shutter button 111, an input / output panel 190, various operation buttons, and various operation dials.
  • the imaging apparatus 100 includes zoom buttons (W (wide) button and T (tele) button) for the user to perform a zoom operation. When the zoom button W is pressed, the zoom lenses 211 and 311 move to the wide end side (telephoto side), and when the T button is pressed, the zoom lenses 211 and 311 move to the tele end side. Move to (wide angle side).
  • the operation reception unit 110 receives a setting operation for setting various imaging conditions in the stereoscopic image imaging mode.
  • the operation reception unit 110 receives a setting operation for setting each imaging mode and an instruction operation for instructing image recording.
  • the imaging apparatus 100 illustrates an example of setting a stereoscopic image imaging mode (for example, a still image imaging mode and a moving image imaging mode) for recording a stereoscopic image.
  • the CPU 120 generates a control signal to be supplied to each unit of the imaging apparatus 100, and supplies the generated control signal to each unit to perform various controls such as zoom control, focus control, shutter control, and image recording processing.
  • the CPU 120 performs AF (Auto Focus) control for detecting a focus position with respect to a predetermined subject by generating a control signal for moving the focus lenses 213 and 313.
  • the CPU 120 moves the focus lenses 213 and 313 and performs autofocus control on the captured image corresponding to the image signal output from the captured image signal processing unit 260 and the captured image signal processing unit 360.
  • the exposure control unit 140 controls the exposure time of the imaging elements 250 and 350 based on the image signal output from the imaging signal processing unit 260. That is, the exposure control unit 140 determines the exposure time of the imaging elements 250 and 350 based on the luminance of the subject in the image corresponding to the image signal output from the imaging signal processing unit 260, and uses the determined exposure time. It outputs to CPU120.
  • the recording control unit 150 Based on the control of the CPU 120, the recording control unit 150 causes the content storage unit 160 to record each image output from the left-eye imaging unit 200 and the right-eye imaging unit 300 as an image file (image content). .
  • the recording control unit 150 associates the left-eye viewing image output from the imaging signal processing unit 260 with the right-eye viewing image output from the imaging signal processing unit 360 according to the clock signal of the synchronization clock 130, and the content It is recorded in the storage unit 160.
  • the recording control unit 150 associates the left-eye viewing image and the right-eye viewing image as a still image file (still image content). It is recorded in the content storage unit 160. At the time of recording, attribute information such as date and time information at the time of imaging is recorded in the image file.
  • the still image recording instruction operation is performed by, for example, pressing the shutter button 111 (shown in FIG. 1).
  • the recording control unit 150 associates the order relationship (for example, viewpoint number) between the left-eye viewing image and the right-eye viewing image with the left-eye viewing image and the right-eye viewing image, and performs MP (Multi-Picture). ) You may make it record on a recording medium as a file.
  • the MP file is a file conforming to the MP format for recording a plurality of still images as one file (extension: .MPO).
  • the operation accepting unit 110 accepts a moving image recording instruction operation.
  • the recording control unit 150 uses the left-eye viewing image and the right-eye viewing image output from the imaging signal processing units 260 and 360 at a predetermined frame rate as a moving image file (moving image content). Are recorded sequentially.
  • the moving image recording instruction operation is performed, for example, by pressing a recording button.
  • the content storage unit 160 stores the images output from the left-eye imaging unit 200 and the right-eye imaging unit 300 in association with each other based on the control of the recording control unit 150 as an image file (image content).
  • a removable recording medium such as a disk such as a DVD (Digital Versatile Disk) or a semiconductor memory such as a memory card can be used as the content storage unit 160.
  • these recording media may be built in the imaging apparatus 100 or may be detachable from the imaging apparatus 100.
  • the display control unit 170 displays various images on the display unit 180 based on the control of the CPU 120. For example, when the operation receiving unit 110 receives an instruction operation to display a stereoscopic image (still image), the display control unit 170 stores image content for displaying the stereoscopic image (still image) as content. From the unit 160. Then, the display control unit 170 causes the display unit 180 to display the image content. Further, the display control unit 170 causes the display unit 180 to display various screens (for example, the setting screens shown in FIGS. 4A, 4B, and 5A) based on the control of the CPU 120. In addition, when the still image capturing mode is set, the display control unit 170 displays each image generated by the left eye imaging unit 200 and the right eye imaging unit 300 as a monitoring image (stereoscopic image or planar image). ) May be displayed on the display unit 180.
  • the display control unit 170 displays each image generated by the left eye imaging unit 200 and the right eye imaging unit 300 as a monitoring image (stereoscopic image or planar image).
  • the display unit 180 is a display unit that displays the image content stored in the content storage unit 160 based on the control of the display control unit 170.
  • the display unit 180 displays various menu screens and various images.
  • an LCD Liquid Crystal Display
  • an organic EL Electro Luminescence
  • the input / output panel 190 shown in FIG. 1 includes an operation receiving unit 110 and a display unit 180.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the imaging apparatus 100 according to the first embodiment of the present disclosure.
  • the imaging apparatus 100 includes an imaging unit 101, an operation receiving unit 110, a control unit 121, a stereoscopic image imaging condition holding unit 122, a focus control unit 123, a recording control unit 150, a content storage unit 160, and a display.
  • a control unit 170 and a display unit 180 are provided.
  • the imaging unit 101 corresponds to the left-eye imaging unit 200 and the right-eye imaging unit 300 illustrated in FIG.
  • the operation receiving unit 110, the recording control unit 150, the content storage unit 160, the display control unit 170, and the display unit 180 correspond to the same reference numerals shown in FIG. For this reason, some of these descriptions are omitted.
  • the control unit 121, the stereoscopic image capturing condition holding unit 122, and the focus control unit 123 correspond to the CPU 120 illustrated in FIG.
  • the imaging unit 101 includes a left-eye imaging unit 200 and a right-eye imaging unit 300.
  • the left-eye viewing image and the right eye for capturing a subject and displaying a stereoscopic image for stereoscopic viewing of the subject.
  • a visual image is generated.
  • the imaging unit 101 outputs the generated left-eye viewing image and right-eye viewing image to the focus control unit 123 and the recording control unit 150.
  • the imaging unit 101 outputs each piece of imaging information (focal length, F value, etc. of the reference lens) in each of the left-eye imaging unit 200 and the right-eye imaging unit 300 to the focus control unit 123. Note that focus control in the left-eye imaging unit 200 and the right-eye imaging unit 300 is performed based on the control of the focus control unit 123.
  • the control unit 121 controls each unit of the imaging apparatus 100 based on the operation content from the operation receiving unit 110. For example, when the operation accepting unit 110 accepts a setting operation for setting various imaging conditions in the stereoscopic image imaging mode, the control unit 121 displays setting information corresponding to the setting operation as the stereoscopic image imaging condition. It is held by the holding unit 122.
  • the control unit 121 when the setting operation for setting the still image capturing mode is accepted by the operation accepting unit 110, the control unit 121 notifies the imaging unit 101, the focus control unit 123, and the recording control unit 150 to that effect, Set the still image capture mode. Further, for example, when the still image capturing mode is set and the operation receiving unit 110 receives a still image recording instruction operation for instructing recording of a still image, the control unit 121 sets the stereoscopic image. Each unit is caused to execute a recording process for recording a still image. Specifically, the control unit 121 causes the focus control unit 123 to perform focus control in the left-eye imaging unit 200 and the right-eye imaging unit 300, and the left-eye viewing image and the right-eye viewing image are captured by the imaging unit 101. To generate. Then, the control unit 121 controls the recording control unit 150 to record the generated left-eye viewing image and right-eye viewing image in the content storage unit 160 as a stereoscopic image still image file.
  • control unit 121 records a moving image of a stereoscopic image when a moving image recording instruction operation for instructing recording of a moving image is received by the operation receiving unit 110 in a state where the moving image capturing mode is set. The recording process is performed for each unit.
  • control unit 121 reproduces a still image or a moving image when a reproduction instruction operation for instructing the reproduction of a still image or a moving image is received by the operation receiving unit 110 while the reproduction mode is set.
  • Each part is caused to execute a reproduction process for this purpose.
  • the display control unit 170 acquires image content related to the reproduction instruction operation from the content storage unit 160 and causes the display unit 180 to display each image based on the acquired image content.
  • the stereoscopic image imaging condition holding unit 122 holds setting information for setting various imaging conditions in the stereoscopic image imaging mode, and supplies the held setting information to the focus control unit 123.
  • the setting information held in the stereoscopic image capturing condition holding unit 122 is stored in the control unit 121 every time a setting operation for setting various imaging conditions in the stereoscopic image capturing mode is received by the operation receiving unit 110. Updated. The contents held by the stereoscopic image capturing condition holding unit 122 will be described in detail with reference to FIG. 5B.
  • the focus control unit 123 performs focus control by moving the focus lenses 213 and 313 in the left-eye imaging unit 200 and the right-eye imaging unit 300. That is, the focus control unit 123 generates an AF evaluation value (contrast signal) from each image output from the left-eye imaging unit 200 and the right-eye imaging unit 300. Then, the focus control unit 123 performs focus control based on the generated AF evaluation value and each imaging information acquired from the left-eye imaging unit 200 and the right-eye imaging unit 300. That is, in the AF area (specific area) included in the captured image, the focus control unit 123 extracts the high frequency component of the spatial frequency of the image in the AF area, and the luminance difference (AF evaluation value) of the extracted high frequency component. ) Is generated.
  • a focus position is detected based on the AF evaluation value generated in this way.
  • the focus control unit 123 performs focus control when, for example, a half-press operation or a full-press operation of the shutter button 111 is performed.
  • the focus control unit 123 performs focus control during, for example, a moving image recording operation.
  • the focus control unit 123 uses the left eye so as to focus on the subject (first subject) included in the specific area among the subjects included in the left eye viewing image when generating the left eye viewing image. Focus control in the imaging unit 200 is performed. In addition, the focus control unit 123, when generating the right-eye viewing image, out of the subjects included in the right-eye viewing image, another subject (second subject) that exists at a position different from the first subject in the optical axis direction. Focus control is performed in the right-eye imaging unit 300 so as to focus on.
  • the focus control unit 123 captures the left eye so that the range of the depth of field at the time of generating the left-eye viewing image is different from the range of the depth of field at the time of generating the right-eye viewing image.
  • Each focus control in the unit 200 and the right-eye imaging unit 300 is performed.
  • the focus control unit 123 includes a range in which the range of the depth of field at the time of generating the left-eye viewing image and the range of the depth of field at the time of generating the right-eye viewing image are continuous without overlapping.
  • Each focus control is performed so that Further, for example, the focus control unit 123 sets the depth of field at the time of generating the left-eye viewing image and the range of depth of field at the time of generating the right-eye viewing image, Perform focus control.
  • each of these focus controls can be performed based on user settings.
  • each of these focus controls may be automatically performed by the imaging apparatus 100 when certain conditions are satisfied. For example, it is possible to set a fixed condition when the focal length of the lens in the imaging unit 101 is long and the subject distance related to the subject to be focused on by the imaging unit 101 (for example, the subject at the center position in the image) is short. . Alternatively, a constant condition can be set when the F value is small with a constant value as a reference.
  • the imaging apparatus 100 is an imaging apparatus that has at least left and right optical systems and can independently adjust the focus of a subject.
  • the imaging apparatus 100 provides a difference in the left and right focusing positions in consideration of the focal length of the photographing lens, the distance to the subject, and the F value corresponding to the exposure value so that the depths of field overlap each other.
  • An imaging device that generates a stereoscopic image. Note that, as described above, the imaging apparatus 100 can perform recording processing for both moving images and still images, but the following description focuses on still image generation processing and recording processing.
  • FIG. 4A is a screen displayed on the input / output panel 190 when setting lenses (focus lenses 213 and 313) used as reference lenses in the focus control by the focus control unit 123.
  • the setting screen 500 is displayed immediately after the operation for setting the stereoscopic image capturing mode for recording a stereoscopic image is performed.
  • the setting screen 500 includes a left eye button 501, a right eye button 502, an enter button 503, and a return button 504.
  • the left eye button 501 and the right eye button 502 are buttons that are pressed when setting a lens to be used as a reference lens in focus control.
  • the reference lens can be set by pressing a desired button on the input / output panel 190 formed of a touch panel.
  • the left eye button 501 is pressed, and when the user's dominant eye is the right eye, the right eye button 502 is pressed.
  • the reference lens will be described in detail with reference to FIG.
  • the reference lens is set by selecting the user's dominant eye, but the reference lens may be set according to the user's preference.
  • a desired reference lens is set while the user looks at an image (monitoring image) displayed on the input / output panel 190 in a standby state of still image recording. Also good. In this case, for example, by arranging each button so as to overlap the monitoring image, the user can easily perform the setting operation while viewing the monitoring image.
  • the determination button 503 is a button that is pressed when the selection is determined after the pressing operation to select the dominant eye is performed. Further, information regarding the reference lens (reference lens information) determined by the pressing operation of the determination button 503 is held in the stereoscopic image imaging condition holding unit 122.
  • the return button 504 is, for example, a button that is pressed when returning to the display screen displayed immediately before.
  • the setting screen 510 illustrated in FIG. 4B sets whether the depth of field of another lens with respect to the depth of field of the reference lens is set to a far point or a near point when the focus control unit 123 performs focus control. It is a screen displayed on the input / output panel 190 at this time. For example, the setting screen 510 is displayed immediately after the enter button 503 is pressed on the setting screen 500 shown in FIG. 4A.
  • the setting screen 510 is provided with a far point button 511, a near point button 512, an enter button 513, and a return button 514.
  • the far point button 511 and the near point button 512 are buttons that are pressed when setting whether the depth of field of another lens with respect to the depth of field of the reference lens is a far point or a near point. . For example, by pressing a desired button on the input / output panel 190, the depth of field of another lens can be selected. The setting of the far point or the near point will be described in detail with reference to FIG.
  • This example shows an example in which the depth of field of another lens with respect to the depth of field of the reference lens is set as a far point or a near point by a user operation.
  • a point may be set in advance.
  • a main subject is a human face
  • a human face included in a captured image generated by either the left-eye imaging unit 200 or the right-eye imaging unit 300 is detected and detected.
  • the subject distance of the face (for example, see Equation 2) is calculated.
  • the depth of field of the other lens is set to the far point.
  • the depth of field of the other lens is set to the near point.
  • a detection method for example, a special method
  • a template in which luminance distribution information of the specific object is recorded with a content image See 2004-133737.
  • a face detection method based on a skin color part included in a captured image or a feature amount of a human face can be used.
  • the still image capturing mode when the still image capturing mode is set, whether the far point or the near point is set while the user is viewing the image (monitoring image) displayed on the input / output panel 190 in the standby state of still image recording May be set.
  • the user can easily perform the setting operation while viewing the monitoring image.
  • the determination button 513 is a button that is pressed when determining the selection after the pressing operation for selecting the far point or the near point is performed. Further, information regarding the far point or near point (far point near point information) determined by the pressing operation of the determination button 513 is held in the stereoscopic image imaging condition holding unit 122.
  • the return button 514 is, for example, a button that is pressed when returning to the display screen displayed immediately before.
  • the operation reception unit 110 sets the second subject as a subject that is closer to the imaging device 100 than the first subject in the optical axis direction, or a subject that is farther from the first subject in the optical axis direction.
  • a selection operation for selecting whether to do is accepted.
  • the first subject is a subject to be focused by the reference lens
  • the second subject is a subject to be focused by another lens.
  • the setting screen 515 shown in FIG. 5A is an input / output panel for setting the overlapping ratio of the depth of field of another lens with respect to the range of the depth of field of the reference lens during focus control by the focus control unit 123.
  • 190 is a screen displayed on 190.
  • the setting screen 515 is displayed immediately after the enter button 513 is pressed on the setting screen 510 shown in FIG. 4B.
  • the setting screen 515 is provided with an overlap rate setting bar 516, an overlap rate designation position 517, an enter button 518, and a return button 519.
  • the overlap rate setting bar 516 is a bar used when setting the overlap rate of the depth of field of another lens with respect to the range of the depth of field of the reference lens, and the overlap rate designation position 517 is displayed in an overlapping manner.
  • the overlap rate setting bar 516 by moving the overlap rate setting bar 516 to the position of the overlap rate desired by the user, the range of the depth of field of the other lens with respect to the range of the depth of field of the reference lens
  • the overlap rate can be set. For example, when the overlap rate is set to 0%, the range of the depth of field of the reference lens and the range of the depth of field of the other lens do not overlap, so that these two ranges are continuous. Is set to the depth of field of the other lens.
  • the overlap rate is set to 100%
  • the other lens's subject field is completely overlapped with the reference lens's depth of field range and the other lens's depth of field range.
  • the depth of field is set.
  • the focus position of the reference lens and the focus position of the other lens are the same.
  • the overlapping rate will be described in detail with reference to FIG.
  • the overlap rate of the depth of field range of another lens with respect to the range of depth of field of the reference lens is set by a user operation, but the overlap rate is set in advance. You may do it. For example, it can be set to 0%, 10 to 20%, or the like.
  • the duplication rate may be set while the user looks at an image (monitoring image) displayed on the input / output panel 190 in a standby state of still image recording.
  • the user can easily perform the setting operation while viewing the monitoring image.
  • the determination button 518 is a button that is pressed to determine the designation after the designation operation for designating the duplication rate is performed.
  • information related to the overlap rate determined by pressing the enter button 518 is held in the stereoscopic image capturing condition holding unit 122.
  • the return button 519 is a button that is pressed when returning to the display screen displayed immediately before, for example.
  • FIG. 5B shows an example of content held in the stereoscopic image capturing condition holding unit 122.
  • the stereoscopic image imaging condition holding unit 122 holds setting information for setting various imaging conditions in the stereoscopic image imaging mode, and setting information 126 is held for each setting item 125.
  • the setting item 125 is an item that is a target of a setting operation by the user on the setting screens 500, 510, and 515 illustrated in FIGS. 4A, 4B, and 5A.
  • the setting information 126 is setting information set by a setting operation by the user on the setting screens 500, 510, and 515 shown in FIGS. 4A, 4B, and 5A.
  • “left (left eye)” is set as the reference lens by the setting operation on the setting screen 500, and the other lens coverage with respect to the depth of field of the reference lens is set by the setting operation on the setting screen 510.
  • a case where “far point” is set as the depth of field is shown.
  • 5B shows a case where “0%” is set as the overlap ratio of the depth of field by the setting operation on the setting screen 515.
  • FIG. 6 is a diagram schematically illustrating a relationship between the permissible circle of confusion of the imaging elements 250 and 350, the lenses configuring the optical system, and the depth of field according to the first embodiment of the present disclosure.
  • each lens constituting the optical system is schematically shown as a lens 600.
  • light from the subject enters the lens 600.
  • a light receiving surface of an imaging device (imaging devices 250 and 350) that receives incident light from the lens 600 is shown as an imaging surface 610.
  • the maximum focus diameter that can be allowed in the image pickup apparatus is determined based on the size and number of pixels of the image pickup element, the filter type, and the like. This focus diameter is generally called the allowable circle of confusion. This allowable circle of confusion is, for example, about 0.03 mm for a 35 mm silver salt camera size, and about 0.02 mm for APS (Advanced Photo System) -C. If it is within this permissible circle of confusion, even an image taken out of focus appears to be in focus when the image is reproduced.
  • a surface including a position 621 of a subject (a focused subject) corresponding to a state where the spot 611 formed on the imaging surface 610 is minimized is defined as a subject surface 620.
  • a focus shift range DF near point
  • This range DF is generally referred to as the depth of field.
  • the imaging apparatus has a distance HD that is focused to infinity (within the allowable confusion circle diameter d) when the distance from the imaging apparatus to the subject is more than a certain distance.
  • This distance HD is generally called the hyperfocal distance.
  • This hyperfocal length HD is a value that is uniquely determined by the focal length of the lens, the allowable confusion circle diameter, and the lens aperture (F value (F No.)).
  • the hyperfocal distance HD can be obtained using the following formula 1.
  • HD f 2 / d ⁇ F Equation 1 Note that f is a value indicating the focal length of the lens, d is a value indicating an allowable circle of confusion, and F is an F value.
  • the subject when a subject farther than the hyperfocal distance HD is to be imaged, the subject is present between the hyperfocal distance HD and infinity, so it is estimated that the subject is in focus. Is done.
  • a subject that is closer to the imaging apparatus 100 than the hyperfocal distance is used as an imaging target, it is assumed that there are a subject that is in focus and a subject that is not in focus.
  • a stereoscopic image when a stereoscopic image is taken, a plurality of images including substantially the same subject are generated using two optical systems. Therefore, by setting the depth of field at the time of capturing these multiple images to different ranges, substantially the same subject is included as the depth of field that is deeper than the depth of field at the time of capturing one image. An image can be generated.
  • the focus is different from the subject that is out of focus.
  • the stereoscopic image shows a stereoscopic image to the user using an illusion due to the left-right parallax of the eyes. For this reason, if at least one of the two images is in focus, the images can be recognized as a three-dimensional image, and the influence on the user is assumed to be small.
  • FIG. 7 is a diagram schematically illustrating a relationship between the depth of field set by the focus control unit 123 and the subject in the first embodiment of the present disclosure.
  • FIG. 7A illustrates a case where the relationship between the right-eye imaging unit 300 included in the imaging device 100 and the objects A to F to be imaged by the right-eye imaging unit 300 is viewed from above.
  • FIG. 7B shows a case where the relationship between the left-eye imaging unit 200 included in the imaging device 100 and the objects A to F to be imaged by the left-eye imaging unit 200 is viewed from above.
  • the objects A to F are objects that are arranged at substantially constant intervals in the optical axis direction of the imaging apparatus 100.
  • each lens constituting the left-eye imaging unit 200 is schematically shown as a lens 201
  • each lens constituting the right-eye imaging unit 300 is schematically shown as a lens 301.
  • FIG. 7 shows an example with the left-eye imaging unit 200 as a reference.
  • FIG. 7 illustrates an example in which the depth-of-field range of the right-eye imaging unit 300 is set to be farther than the depth-of-field range of the left-eye imaging unit 200. I will explain.
  • FIG. 7 illustrates an example in which 0% is set as the overlapping rate of the depth of field range of the right-eye imaging unit 300 with respect to the range of depth of field of the left-eye imaging unit 200. To do. That is, FIG. 7 illustrates an example in which the content of the setting information 126 illustrated in FIG. 5B is held in the stereoscopic image capturing condition holding unit 122.
  • the focus control unit 123 performs focus control in synchronization with the focus lenses 213 and 313 when the subject to be focused on by the imaging unit 101 exists within the range of the hyperfocal distance. Therefore, in the example illustrated in FIG. 7, an example in which a subject that is closer to the imaging device 100 than the hyperfocal distance is mainly an imaging target will be described.
  • the object to be focused by the left-eye imaging unit 200 is defined as an object C.
  • This focus target subject (object C) can be, for example, a subject included in a specific area in a captured image generated by the left-eye imaging unit 200.
  • the specific area in the captured image can be, for example, an area located in the central portion of the captured image.
  • a specific area in the captured image may be set by a user operation (for example, a touch operation on the input / output panel 190).
  • the imaging apparatus 100 includes a specific object detection unit that detects a specific object, and the specific object is detected by the specific object detection unit, a captured image of the detected specific object
  • the position at may be set as a specific area.
  • the face detection unit is provided as the specific object detection unit in the imaging apparatus 100 and a human face is detected from the captured image, the position of the detected face in the captured image may be set as the specific area. it can. Note that the face detection method described above can be used as the face detection method.
  • the hyperfocal distance HD L of the left-eye imaging unit 200 illustrated in FIG. 7B can be obtained using the above-described Expression 1. That is, it can be obtained by the following equation.
  • HD L f 2 / d ⁇ F
  • f, d, and F are the same as in Equation 1.
  • the distance (subject distance) from the left-eye imaging unit 200 to the in-focus target subject (object C) is L L
  • the distance from the lens 201 to the image formed on the image sensor 250 is b
  • the distance L L F that is farthest from the imaging device 100 in the range in focus on the far point side of the depth of field is obtained.
  • the distance LL F can be obtained by using the following expression 3 (Chineko Ueno, 6 other authors, “Photo Glossary”, Nippon Camera Co., Ltd., October 15, 1991, p. 193-195) reference).
  • LL F HD L ⁇ L L / (HD L ⁇ L L ) Equation 3
  • the closest distance LR N from the imaging device 100 is, from a distance LL F obtained by Equation 3 Must be close. That is, it is necessary to satisfy the relationship of the following formula 4. LR N ⁇ LL F ... Formula 4
  • the distance to the focusing target object in the right-eye image capturing unit 300 (subject distance) is assumed that the L R.
  • the object distance L R within the range that matches the near point side of the focus of the depth of field can be obtained closest distance LR N in the imaging apparatus 100. That is, the distance LR N can be obtained using the following equation 5 (see the literature shown in equation 3).
  • LR N HD R ⁇ L R / (HD R + L R) ... formula 5
  • the focus control unit 123, the position of the object C and (subject distance), F value and the object E that is included in a different range than the range of the depth of field DF L specified by the focal length of the lens Focus control using the focus lens 313 is performed so as to focus on.
  • the depth of field DF R of the right-eye image capturing unit 300 is, than the depth of field DF L of the left-eye image capturing unit 200 Becomes distant, and both are continuous.
  • the left-eye imaging unit 200 and the right-eye imaging unit 300 generate a depth-of-field DF that combines the depths of field of the left-eye imaging unit 200 and the right-eye imaging unit 300. This corresponds to the depth of field of the image.
  • the depth of field DF is set.
  • the included subjects can be viewed in focus.
  • the subject included in the rectangles 631 and 632 can be viewed in focus.
  • a stereoscopic image capable of appropriately stereoscopically viewing a subject included in a relatively wide range can be generated even under an imaging condition with a relatively shallow depth of field. .
  • the user can view the stereoscopic image with a natural feeling.
  • the position of the far point of the depth of field of the left-eye imaging unit 200 and the position of the near point of the depth of field of the right-eye imaging unit 300 are combined, and these fields of view are combined.
  • An example in which the depth range is continuous is shown.
  • the focus position of the right-eye imaging unit 300 can be set so that the depth of field ranges overlap according to the overlap rate set on the setting screen 515 shown in FIG. 5A.
  • overlap rate RR1 (However, 0 (%) ⁇ RR1 ⁇ 100 (%)) when is set, overlap rate of depth of field DF R and the depth of field DF L is, is the set
  • the subject distance LR is calculated so as to be a certain value (or within a certain range including the value).
  • the range of the depth of field of the right-eye imaging unit 300 is set farther than the range of the depth of field of the left-eye imaging unit 200 with the left-eye imaging unit 200 as a reference.
  • the range of the depth of field of the right-eye imaging unit 300 is set closer to the imaging device 100 than the range of the depth of field of the left-eye imaging unit 200 with the left-eye imaging unit 200 as a reference.
  • An example is shown.
  • the distance LL N closest to the imaging device 100 in the range where the near field side of the depth of field is in focus is obtained.
  • the distance LL N can be obtained by using the following equation 8 (references shown in Equation 3).
  • LL N HD L ⁇ L L / (HD L + L L) ... Equation 8 Equation 8 is obtained by changing the denominator of Equation 3 from “ ⁇ ” to “+”.
  • Equation 9 the distance (subject distance) L1 R (not shown) from the right-eye imaging unit 300 to the in-focus target subject can be obtained using Equation 9.
  • L1 R HD L ⁇ LL N / (HD L + LL N) ... Equation 9 Equation 9 is obtained by changing the denominator of Equation 7 from “ ⁇ ” to “+”.
  • the distance (subject distance) L1 R to the in-focus target subject of the right-eye imaging unit 300 is calculated according to the setting information held in the stereoscopic image imaging condition holding unit 122. Further, the focus position of the right-eye imaging unit 300 can be set so that the depth-of-field ranges overlap according to the overlap rate set on the setting screen 515 shown in FIG. 5A.
  • the in-focus position of each imaging unit is appropriately calculated according to the change.
  • Example of stereoscopic image 8 and 9 are examples of a set of images (still images) generated by the left-eye imaging unit 200 and the right-eye imaging unit 300 according to the first embodiment of the present disclosure.
  • FIG. 8 shows an example of a set of images generated when an imaging operation is performed using a plurality of writing tools arranged in the direction from infinity toward the infinity as a subject.
  • a pair of images (left-eye viewing image 650 and right-eye viewing image 651) generated by the left-eye imaging unit 200 and the right-eye imaging unit 300 are arranged side by side.
  • the left-eye viewing image 650 and the right-eye viewing image 651 are a set of images for displaying a stereoscopic image, and are in-focus positions at the time of imaging by the left-eye imaging unit 200 and the right-eye imaging unit 300. Is an example of the case where they are the same.
  • the focus position at the time of imaging the left-eye viewing image 650 and the right-eye viewing image 651 is schematically shown as a dotted line P1. In other words, in the example shown in the upper diagram of FIG.
  • the writing instrument that overlaps the dotted line P ⁇ b> 1 indicating the in-focus position is focused on both the left-eye viewing image 650 and the right-eye viewing image 651. Further, the subject in the vicinity of the writing instrument that overlaps the dotted line P1 indicating the in-focus position is also in focus. That is, the subject included in the depth of field with reference to the dotted line P1 indicating the in-focus position is focused.
  • both the left-eye viewing image 650 and the right-eye viewing image 651 when a substantially identical subject is in focus, the subject that is relatively far from the subject in focus. Is out of focus because it is out of focus. That is, a subject that is not included in the depth of field with reference to the dotted line P1 indicating the in-focus position is blurred.
  • the writing tools on the back side (indicated by arrows 652 and 653) included in the left-eye viewing image 650 and the right-eye viewing image 651 are blurred.
  • the left-eye viewing image 650 and the right-eye viewing image 651 have substantially the same focus position, the same applies to the focused subject and the focused subject. For this reason, in the stereoscopic image displayed using the left-eye viewing image 650 and the right-eye viewing image 651, the subject corresponding to the in-focus position and the subjects before and after it are in focus. Other than these, the image is out of focus.
  • the focused subject (the writing instrument on which the dotted line P1 overlaps) is relatively beautiful. Can be seen. However, a subject that is relatively far from the subject in focus (for example, the writing instrument on the back side indicated by arrows 652 and 653) appears out of focus because it is out of focus. For this reason, it is assumed that the user who is viewing the stereoscopic image corresponding to the left-eye viewing image 650 and the right-eye viewing image 651 becomes a limited stereoscopic image compared with the naked eye viewing, and the user feels uncomfortable. Is done.
  • a pair of images (left-eye viewing image 656 and right-eye viewing image 657) generated by the left-eye imaging unit 200 and the right-eye imaging unit 300 are shown side by side.
  • the left-eye viewing image 656 and the right-eye viewing image 657 are a set of images for displaying a stereoscopic image, and are in-focus positions at the time of imaging by the left-eye imaging unit 200 and the right-eye imaging unit 300. This is an example in the case of different.
  • the in-focus positions at the time of imaging the left-eye viewing image 656 and the right-eye viewing image 657 are schematically shown as dotted lines P2 and P3. In other words, in the example shown in the lower diagram of FIG.
  • the writing instrument overlapping the dotted line P2 indicating the in-focus position is in focus.
  • the writing instrument overlapping the dotted line P3 indicating the in-focus position is in focus. That is, the left-eye viewing image 656 and the right-eye viewing image 657 are images that are captured by shifting the depth of field of both so that at least a part of the depth of field at the time of the imaging operation overlaps. .
  • the subject in focus is different for each of the left-eye viewing image 656 and the right-eye viewing image 657, at least one imaging is performed for a subject that is relatively distant in the optical axis direction.
  • the image is in focus.
  • the left-side visual image 656 is focused on the writing instrument on the near side and the writing instrument adjacent thereto.
  • the writing instrument on the back side and the writing instrument adjacent thereto are in focus in the right-eye viewing image 657.
  • the near-side subject included in the depth of field with respect to the dotted line P2 is focused, and the back side object not included in the depth of field with respect to the dotted line P2 is focused.
  • the subject (indicated by arrow 658) will be blurred.
  • the subject on the back side included in the depth of field with reference to the dotted line P3 is focused, and is not included in the depth of field with reference to the dotted line P3.
  • the subject on the front side is blurred.
  • a relatively deep depth of field for these two images can be set.
  • the subject that is in focus is different from the subject that is not in focus.
  • the stereoscopic image shows a stereoscopic image to the user by using an illusion due to the left-right parallax of the eyes. For this reason, if at least one of the two images is in focus, the images can be recognized as a three-dimensional image, and the influence on the user is assumed to be small.
  • a stereoscopic image is displayed relatively neatly even for a subject that is relatively distant in the optical axis direction.
  • Can see For example, when the user is looking at an object (for example, multiple writing instruments) while changing the consciousness to see from the front to the back, the subject is focused on the change. A stereoscopic image can be seen relatively neatly.
  • FIG. 9 shows an example of an image generated when an imaging operation is performed using a plurality of mold members arranged in the direction from the vicinity of the imaging apparatus 100 toward the infinity as a subject.
  • a pair of images (left-eye viewing image 661 and right-eye viewing image 662) generated by the left-eye imaging unit 200 and the right-eye imaging unit 300 are shown side by side.
  • the left-eye viewing image 661 and the right-eye viewing image 662 are examples when the in-focus positions at the time of imaging by the left-eye imaging unit 200 and the right-eye imaging unit 300 are the same.
  • both the left-eye viewing image 661 and the right-eye viewing image 662 when the substantially identical subject is in focus, the subject that is relatively far from the subject in focus. Is out of focus because it is out of focus. That is, a subject that is not included in the depth of field with the focus position as a reference is blurred.
  • the near-side mold member and the far-side mold member included in the left-eye viewing image 661 and the right-eye viewing image 662 are blurred.
  • the user who is viewing the stereoscopic image corresponding to the left-eye viewing image 661 and the right-eye viewing image 662 is limited as compared with the naked-eye viewing. It is assumed that a stereoscopic image is obtained and the user feels uncomfortable.
  • left-eye viewing image 663 and right-eye viewing image 664 show a set of images (left-eye viewing image 663 and right-eye viewing image 664) generated by the left-eye imaging unit 200 and the right-eye imaging unit 300, respectively.
  • the left-eye viewing image 663 and the right-eye viewing image 664 are an example in the case where the in-focus positions at the time of imaging by the left-eye imaging unit 200 and the right-eye imaging unit 300 are different.
  • the focused object when the focused object is different for each of the left-eye viewing image 663 and the right-eye viewing image 664, at least one imaging is performed for a subject that is relatively distant in the optical axis direction.
  • the image is in focus.
  • the mold member on the near side is in focus in the left-eye viewing image 663.
  • the back mold member is in focus in the right-eye viewing image 664.
  • subjects in focus are continuous. Therefore, as in the example shown in the lower diagram of FIG.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of focus control processing by the imaging device 100 according to the first embodiment of the present disclosure. This example shows a focus control process when a still image recording instruction operation is performed in a state where the still image capturing mode is set.
  • the shutter button 111 is fully pressed by the user. As described above, when the shutter button 111 is fully pressed, it is determined whether or not the setting for recording the stereoscopic image is made so that the in-focus positions of the two imaging units are different (step S1). S901). This setting is set in advance by a user operation. If the setting for recording the stereoscopic image so that the in-focus positions of the two imaging units are different (step S901), the stereoscopic image recording process is performed (step S917).
  • This stereoscopic image recording process is a process of generating a stereoscopic image so that the in-focus positions of the two imaging units are the same, and recording the generated stereoscopic image.
  • step S901 If the setting is made so as to record the stereoscopic image so that the in-focus positions of the two imaging units are different (step S901), the focus control unit 123 captures each setting information regarding the stereoscopic image. Obtained from the condition holding unit 122 (step S902). Subsequently, the focus control unit 123 acquires each piece of imaging information (focal length, F value, etc. of the reference lens) from the imaging unit 101 (step S903). Subsequently, the focus control unit 123 performs focus control in the imaging unit set as the reference lens (step S904). That is, focus control is performed so as to focus on a subject (first subject) included in a specific area in the captured image. Note that step S904 is an example of a first control procedure described in the claims.
  • the focus control unit 123 determines whether or not the subject that is in focus by the focus control in the imaging unit set as the reference lens exists at the hyperfocal distance (step S905). If the subject to be focused does not exist at the hyperfocal distance (step S905), whether or not the focus control unit 123 is set to set the depth of field of another lens to the far point side. Is determined (step S906).
  • step S906 When the depth of field of the other lens is set to the far point side (step S906), the focus control unit 123 determines the far point side of the other lens based on the focus position of the reference lens. Is calculated (step S907), and the process proceeds to step S909.
  • step S906 when the depth of field of the other lens is set to be the near point side (step S906), the focus control unit 123 determines the nearness of the other lens based on the focus position of the reference lens. A point-side in-focus position is calculated (step S908), and the process proceeds to step S909. Subsequently, the focus control unit 123 performs focus control in the imaging unit corresponding to another lens based on the calculated focus position (step S909).
  • steps S906 to S909 are an example of a second control procedure described in the claims.
  • Step S910 is an example of an imaging procedure described in the claims.
  • each attribute information includes the fact that the two images (left-eye viewing image and right-eye viewing image) constituting the stereoscopic image are generated at different in-focus positions.
  • step S905 when the subject that is focused by the focus control in the imaging unit set to the reference lens exists at the hyperfocal distance (step S905), the focus position of the reference lens and the focus of the other lens The position is determined to be the same (step S912). Subsequently, the focus control unit 123 performs focus control in the imaging unit set for the other lens based on the in-focus position of the reference lens (step S913). Subsequently, the imaging unit 101 generates two images (a left-eye viewing image and a right-eye viewing image) at the same in-focus position (step S914).
  • the recording control unit 150 uses the generated two images (the left-eye viewing image and the right-eye viewing image) as an image file of a stereoscopic image, and associates attribute information indicating that to the content storage unit 160. (Step S911).
  • the focus control processing when the still image recording instruction operation is performed in the state where the still image capturing mode is set is shown.
  • the focus control processing during the moving image recording operation is also applied. Can do.
  • focus control is performed in the two imaging units for each frame constituting the moving image or frames at regular intervals.
  • Example of focus control using the focus position table The example in which the in-focus position of another imaging unit is calculated based on the in-focus position of the imaging unit serving as the reference among the imaging unit 200 for the left eye and the imaging unit 300 for the right eye has been described above. However, for example, when a certain imaging condition is set, it is assumed that the relationship between the in-focus position of the imaging unit serving as a reference and the in-focus position of another imaging unit has a certain regularity. Therefore, in the following, the relationship between the in-focus position of the reference imaging unit and the in-focus position of the other imaging unit is held in a table, and the in-focus position of the other imaging unit is determined based on the held contents. An example of determination will be shown.
  • FIG. 11 is a block diagram illustrating a functional configuration example of the imaging device 670 according to the modification example of the first embodiment of the present disclosure.
  • the imaging apparatus 670 is obtained by adding a focus control unit 690 to the imaging apparatus 100 shown in FIG. 3 instead of the focus control unit 123, and adding a focus position table holding unit 680.
  • a focus control unit 690 to the imaging apparatus 100 shown in FIG. 3 instead of the focus control unit 123
  • symbol is attached
  • the in-focus position table holding unit 680 is a table that holds the relationship between the in-focus position of one imaging unit and the in-focus position of another imaging unit for each imaging condition set in the imaging device 670. Further, the focus position table holding unit 680 supplies the contents of the held table to the focus control unit 690. The contents of the table held in the focus position table holding unit 680 will be described in detail with reference to FIG.
  • the focus control unit 690 acquires the in-focus position of another imaging unit associated with the in-focus position of the one imaging unit from the in-focus position table holding unit 680, and the acquired other imaging unit. Based on the in-focus position, focus control of other imaging units is performed.
  • FIG. 12 is a diagram illustrating an example of the focus position table held by the focus position table holding unit 680 according to the first embodiment of the present disclosure.
  • the focusing position table 681 shown in FIG. 12 is a table that holds the imaging information 682 in the imaging apparatus 100 and the relationship 683 between the focusing position of one imaging unit and the focusing position of another imaging unit in association with each other.
  • the focus position table in the case where the depth of field of the other lens with respect to the depth of field of the reference lens is “far point” and the overlapping rate of the depth of field is “0%”. An example is shown.
  • an imaging condition when an imaging operation is performed using the imaging apparatus 100 a lens focal length “45 to 51 mm” and an aperture value (F No.) “2.8 to 3.0” are allowed. It is assumed that the circle of confusion “0.03 mm” is set.
  • the in-focus position of the reference imaging unit the focusing distance of the reference lens
  • the position (focusing distance of other lenses) can be determined as 107.2 (cm).
  • the focusing position of the reference imaging unit is 103.6 to 107.2 (cm)
  • the focusing position of the other imaging unit can be determined to be 111.2 (cm). .
  • the focus control unit 690 holds the focusing position table 681 in the imaging device 670, and uses this focusing position table 681 to perform other imaging based on the focusing position of the imaging unit serving as a reference.
  • the in-focus position of the part can be determined. For this reason, during the imaging operation, it is not necessary to sequentially calculate the in-focus position of the other image capturing units based on the in-focus position of the image capturing unit serving as a reference, and thus the load related to the arithmetic processing can be reduced. .
  • the imaging device 100 capable of generating a stereoscopic image
  • two captured images are obtained using the difference in the left and right depths of field.
  • the generated two captured images are recorded.
  • the stereoscopic image in which the sense of depth is further enlarged can be recorded, a more natural stereoscopic image can be displayed.
  • a stereoscopic image when viewing a stereoscopic image, a stereoscopic image can be seen relatively cleanly for an image area that is in focus, but even for an image area that is blurred because it is out of focus. It can be viewed as a three-dimensional image.
  • the object when the user is looking at the object with the naked eye while changing the consciousness to see from the front to the back, the object can be focused according to the change. Therefore, the object can be seen relatively beautifully.
  • the stereoscopic image can be viewed with a feeling close to that of the user looking at the object with the naked eye (natural feeling), it is considered that the user can further enjoy the stereoscopic image. Therefore, in the first embodiment of the present disclosure, the stereoscopic image is viewed with a feeling close to a natural feeling that the user looks at the object with the naked eye by expanding the focused image area. Can do.
  • the focal length of the lens is long and the distance to the subject is short, or even in an exposure environment where sufficient illumination is not obtained and the aperture is open, it is relatively Deep depth of field can be set. Since a relatively deep depth of field can be set in this way, when displaying a stereoscopic image, it is possible to see a stereoscopic image in which a relatively wide range of subjects are in focus, and in a more natural form. A stereoscopic image can be viewed.
  • a relatively deep depth of field can be obtained without enhancing the illumination.
  • the depth of field can be extended even under blurry imaging conditions, which makes it possible to sharpen within the expanded depth of field during stereoscopic viewing. You can see the image.
  • the imaging conditions at the time of capturing a stereoscopic image can be set by a user operation, a stereoscopic image desired by the user can be easily recorded.
  • Second Embodiment> In the first embodiment of the present disclosure, an example in which a pair of left-eye viewing images and right-eye viewing images are recorded as still image files so that the in-focus positions of the two imaging units are different has been described. However, depending on the user, a stereoscopic image captured so that the in-focus positions of the two imaging units are different from each other and a stereoscopic image captured so that the in-focus positions of the two imaging units are the same are displayed. It may be desired that a stereoscopic image that is easy to see in comparison is desired to be displayed.
  • the configuration of the imaging apparatus according to the second embodiment of the present disclosure is substantially the same as the example illustrated in FIGS. 1 to 3. For this reason, about the part which is common in 1st Embodiment of this indication, the same code
  • FIG. 13A and 13B are diagrams illustrating a display example of the input / output panel 190 and a holding content example in the stereoscopic image capturing condition holding unit 127 according to the second embodiment of the present disclosure.
  • a setting screen 520 illustrated in FIG. 13A is a screen displayed on the input / output panel 190 when the imaging mode in the imaging apparatus 700 is set.
  • the setting screen 520 is displayed after the setting operation of the stereoscopic image capturing mode for recording the stereoscopic image is performed (for example, after the determination operation on the setting screen 510 illustrated in FIG. 4B is performed).
  • the setting screen 520 is provided with a set recording mode button 521, continuous shooting mode buttons 522 and 523, an enter button 524, and a return button 525.
  • the one set recording mode button 521 is a button that is pressed when setting an imaging mode for recording only one set of stereoscopic images. That is, when one set recording mode is set by pressing the one set recording mode button 521, one set of images (left) for displaying a stereoscopic image by pressing the shutter button 111 once. Visual images and right-eye images) are recorded.
  • the continuous shooting mode buttons 522 and 523 are pressed when setting an imaging mode for recording a plurality of sets of stereoscopic images generated in succession.
  • the continuous shooting mode button 522 is a button that is pressed when setting an imaging mode for recording two sets of stereoscopic images generated in succession.
  • one set of stereoscopic images is a stereoscopic image that is captured so that the in-focus positions of the two imaging units are the same.
  • the other set of stereoscopic images is a stereoscopic image captured so that the in-focus positions of the two imaging units are different.
  • the continuous shooting mode button 523 is a button that is pressed when setting an imaging mode for recording three sets of stereoscopic images generated in succession.
  • one set of stereoscopic images is a stereoscopic image that is captured so that the in-focus positions of the two imaging units are the same.
  • the other two sets of stereoscopic images are stereoscopic images that are captured so that the in-focus positions of the two imaging units are different.
  • one set of stereoscopic images was captured with the focusing position of the other imaging unit farther than the focusing position of the reference imaging unit. It is a stereoscopic image.
  • the other set of stereoscopic images is a stereoscopic image that is captured with the in-focus position of the other imaging unit closer to the near point side than the in-focus position of the imaging unit serving as a reference.
  • the imaging apparatus 700 may automatically set the imaging mode according to the state of the imaging operation.
  • the continuous shooting mode may be automatically set when the focal length of the lens is long and the subject distance is short, or when the aperture is opened beyond a certain value. That is, if it is estimated that the depth of field is relatively shallow, the continuous shooting mode can be automatically set. In this case, according to the depth of field, whether two sets of stereoscopic images are recorded (corresponding to the continuous shooting mode button 522) or three sets of stereoscopic images are recorded (continuous shooting mode button). 523) may be determined.
  • the user can set a desired imaging mode while viewing the image (monitoring image) displayed on the input / output panel 190 in the standby state of still image recording. Also good. In this case, for example, by arranging each button so as to overlap the monitoring image, the user can easily perform the setting operation while viewing the monitoring image.
  • the determination button 524 is a button that is pressed when determining the selection after the pressing operation for selecting the imaging mode is performed. Also, information regarding the imaging mode (imaging mode information) determined by the pressing operation of the determination button 524 is held in the stereoscopic image imaging condition holding unit 122.
  • the return button 525 is a button that is pressed when returning to the display screen displayed immediately before, for example.
  • FIG. 13B shows an example of content held in the stereoscopic image capturing condition holding unit 127.
  • the stereoscopic image imaging condition holding unit 127 is obtained by adding a setting item “imaging mode” to the stereoscopic image imaging condition holding unit 122 illustrated in FIG. 5B. Except for the addition of the setting item, the configuration is substantially the same as that of the stereoscopic image capturing condition holding unit 122 shown in FIG. 5B. Therefore, a part of these descriptions is omitted.
  • the setting item 125 is an item to be set by the user on the setting screen 520 shown in FIG. 13A
  • the setting information 126 is setting information set by the setting operation by the user on the setting screen 520 shown in FIG. 13A. .
  • FIG. 13B shows a case where “continuous shooting mode (two sets of stereoscopic images)” is set as the imaging mode by the setting operation (pressing operation of the continuous shooting mode button 522) on the setting screen 520.
  • FIG. 14 is a diagram schematically illustrating a recording example of an image generated by an imaging operation by the imaging apparatus 700 according to the second embodiment of the present disclosure.
  • 14A to 14C on the time axis, the relationship between the recording instruction operation of the stereoscopic image (still image) (full pressing operation of the shutter button 111) and the image to be recorded (still image) is shown. This is shown schematically.
  • FIG. 14A shows an example of image recording when the one set recording mode is set by pressing the one set recording mode button 521 shown in FIG. 13A.
  • a set of images left-eye viewing image and right-eye viewing
  • Image for displaying a stereoscopic image by pressing the shutter button 111 (so-called full pressing operation).
  • Image 711 is recorded. That is, the recording control unit 150 causes the content storage unit 160 to record a set of images 711 in association with each other.
  • This set of images 711 is a stereoscopic image captured so that the in-focus positions of the two imaging units are different. Note that the generation time of one set of images 711 is denoted by t1.
  • FIG. 14B shows an example of recording an image when the continuous shooting mode (two sets of stereoscopic images) is set by pressing the continuous shooting mode button 522 shown in FIG. 13A.
  • the continuous shooting mode two sets of images (one set of images 712 and 713) for displaying stereoscopic images are displayed by pressing the shutter button 111 (so-called full pressing operation).
  • the recording control unit 150 associates each image (a set of images 712 and 713) surrounded by a dotted-line rectangle 721 and causes the content storage unit 160 to record the images.
  • the set of images 712 is a stereoscopic image captured so that the in-focus positions of the two imaging units are the same.
  • a set of images 713 is a stereoscopic image captured so that the in-focus positions of the two imaging units are different. Note that the generation time of the set of images 712 is denoted by t11, and the generation time of the set of images 713 is denoted by t12.
  • FIG. 14 (c) shows an example of image recording when the continuous shooting mode (three sets of stereoscopic images) is set by pressing the continuous shooting mode button 523 shown in FIG. 13A.
  • the continuous shooting mode three sets of images (one set of images 714 to 716) for displaying a stereoscopic image by pressing the shutter button 111 (so-called full pressing operation) are displayed.
  • the recording control unit 150 associates each image (a set of images 714 to 716) surrounded by a dotted-line rectangle 722 and records it in the content storage unit 160.
  • the set of images 714 is a stereoscopic image captured so that the in-focus positions of the two imaging units are the same.
  • a pair of images 715 and 716 are stereoscopic images captured so that the in-focus positions of the two imaging units are different.
  • the in-focus positions of the two imaging units are set with the depth of field of the right-eye imaging unit 300 farther than the depth of field of the left-eye imaging unit 200. It can be set as the stereoscopic image imaged so that it may differ.
  • the two image capturing units are focused with the depth of field of the right eye image capturing unit 300 as the near point side relative to the depth of field of the left eye image capturing unit 200. It can be set as the stereoscopic image imaged so that a position may differ.
  • the generation time of the set of images 714 is indicated by t21
  • the generation time of the set of images 715 is indicated by t22
  • the generation time of the set of images 716 is indicated by t23.
  • FIGS. 14B and 14C are examples, and the order may be changed.
  • the control unit 121 performs control to cause the two imaging units to continuously perform the first imaging operation and the second imaging operation.
  • the first imaging operation is an imaging operation that generates two images by performing focus control so that the in-focus positions of the two imaging units are different.
  • the second imaging operation is an imaging operation that generates two images by performing focus control so that the in-focus positions of the two imaging units are the same. That is, in the second imaging operation, at least one of the two subjects (two subjects (first subject and second subject) having different positions in the optical axis direction) to be focused by the first imaging operation is focused. Focus control is performed.
  • the focus control unit 123 does not change the in-focus position of the imaging unit serving as a reference, but changes only the in-focus position of the other imaging unit. I do.
  • the recording control unit 150 associates a plurality of sets of continuously generated images and records them in the content storage unit 160 as an image file of a stereoscopic image.
  • the stereoscopic image information indicating that it is a stereoscopic image and the identification indicating whether or not the stereoscopic image is captured so that the in-focus positions of the two imaging units are different.
  • Information is recorded as attribute information.
  • information about the near point and the far point can be recorded as attribute information. That is, the contents described at the bottom of the rectangles 711 to 716 indicating a set of images can be recorded as attribute information.
  • the attribute information (stereoscopic image information and identification information) recorded in the image file is used when the image file stored in the content storage unit 160 is displayed. be able to.
  • the display control unit 170 when displaying an image file stored in the content storage unit 160, acquires an image file to be displayed, and stereoscopic image information and identification recorded in the image file. Get information.
  • the display control unit 170 can display stereoscopic images corresponding to a plurality of sets of images based on the acquired stereoscopic image information and identification information.
  • the content of identification information can be displayed with a stereoscopic image. Thereby, the user who is viewing the stereoscopic image can easily grasp the type of the stereoscopic image.
  • the background may be the sky (for example, a deep blue sky).
  • the plurality of objects flying in the air with the background as the sky are to be imaged, the plurality of objects need to be displayed in a three-dimensional manner, but the sky in the background is displayed in a three-dimensional manner. There is no need.
  • the third embodiment two images (left-eye viewing image and right-eye viewing image) are generated so that the focusing positions of the two imaging units are different from each other.
  • a case where there is no need to keep the depth of field continuous will be described as an example.
  • the configuration of the imaging apparatus according to the third embodiment of the present disclosure is substantially the same as the example illustrated in FIGS. 1 to 3. For this reason, about the part which is common in 1st Embodiment of this indication, the same code
  • FIG. 15 is a diagram illustrating an example of a state of an imaging operation performed using the imaging device 750 according to the third embodiment of the present disclosure and an imaging range of an image generated by the imaging operation.
  • the imaging operation state performed using the imaging device 750 is shown in a simplified manner. Specifically, a state in which an imaging operation is performed using the imaging device 750 with two butterflies 801 and 802 flying over a flower as a subject is shown.
  • the imaging range (vertical imaging range) of an image generated by the imaging operation performed using the imaging device 750 is indicated by a dotted line.
  • FIG. 15 shows an example of the imaging range (imaging range in the horizontal and vertical directions) of an image generated by the imaging operation performed using the imaging device 750. Specifically, an imaging range 800 of an image generated by any one of the left-eye imaging unit 200 and the right-eye imaging unit 300 in the state illustrated in the upper diagram of FIG. 15 is illustrated.
  • the butterfly 801 flying relatively close to the imaging device 750 has a large size in the imaging range 800.
  • the size of the butterfly 802 flying in a position relatively far from the imaging device 750 is small in the imaging range 800.
  • the background of the butterflies 801 and 802 is a blue sky and has substantially the same color (that is, sky blue).
  • FIG. 16A and 16B are diagrams illustrating a display example of the input / output panel 190 and a holding content example in the stereoscopic image capturing condition holding unit 128 according to the third embodiment of the present disclosure.
  • FIG. 16A shows a display example of the input / output panel 190 used when setting the depth of field to be continuous or discontinuous.
  • a setting screen 530 illustrated in FIG. 16A sets whether or not the depth of field of the reference lens and the depth of field of another lens may be discontinuous during focus control by the focus control unit 123. It is a screen displayed on the input / output panel 190 at this time.
  • the setting screen 530 is displayed after the setting operation of the stereoscopic image capturing mode for recording the stereoscopic image is performed (for example, after the determination operation on the setting screen 510 illustrated in FIG. 4B is performed).
  • the setting screen 530 is provided with a continuous only button 531, a discontinuous allowed button 532, an enter button 533, and a return button 534.
  • the continuous only button 531 and the discontinuous enable button 532 are used to select whether or not the depth of field of the reference lens and the depth of field of another lens may be discontinuous during focus control. This button is pressed. For example, when it is not desired that the depth of field at the time of the imaging operation of the left-eye viewing image and the right-eye viewing image for displaying the stereoscopic image is not desired, the continuous only button 531 is pressed. The If the depth of field at the time of the imaging operation of the left-eye viewing image and the right-eye viewing image for displaying the stereoscopic image may be discontinuous, the discontinuous enable button 532 is pressed. Is done.
  • the user may press a desired button while viewing an image (monitoring image) displayed on the input / output panel 190 in a still image recording standby state.
  • a desired button for example, by arranging each button in an overlapping manner on the monitoring image, the setting can be easily performed while the user looks at the monitoring image.
  • the determination button 533 is a button that is pressed when the selection is determined after the pressing operation for selecting only continuous or non-continuous is performed. Further, information regarding the continuity / discontinuity of the depth of field determined by the pressing operation of the determination button 533 (continuity / discontinuity information of the depth of field) is held in the stereoscopic image imaging condition holding unit 122.
  • the return button 534 is a button that is pressed when returning to the display screen displayed immediately before, for example.
  • FIG. 16B shows an example of content held in the stereoscopic image capturing condition holding unit 128.
  • the stereoscopic image capturing condition holding unit 128 is obtained by adding the setting item “continuous / discontinuous depth of field” to the stereoscopic image capturing condition holding unit 127 illustrated in FIG. 13B. Except for the addition of the setting item, the configuration is substantially the same as that of the stereoscopic image capturing condition holding unit 127 shown in FIG. 13B. Therefore, a part of these descriptions is omitted.
  • the setting item 125 is an item to be set by the user on the setting screen 530 shown in FIG. 16A
  • the setting information 126 is setting information set by the setting operation by the user on the setting screen 530 shown in FIG. 16A. .
  • FIG. 16B shows a case where “non-continuous” is set as the imaging mode by a setting operation on the setting screen 530 (depressing the non-continuous allowed button 532).
  • FIG. 17 is a diagram schematically illustrating a relationship between the depth of field set by the focus control unit 123 and the subject in the third embodiment of the present disclosure. That is, an example of setting the depth of field of the two imaging units when discontinuity of the depth of field is set is shown. Specifically, in the case where focus control is performed with two objects (butterflies 801 and 802) existing at different positions in the optical axis direction of the left-eye imaging unit 200 and the right-eye imaging unit 300 being focused. An example of the depth of field is shown. In this case, two objects to be focused can be designated by a user operation (for example, a touch operation on the input / output panel 190).
  • the imaging apparatus 750 includes a specific object detection unit that detects a specific object, and two specific objects among the specific objects detected by the specific object detection unit are to be focused. It may be.
  • the focus position of the left-eye imaging unit 200 be the focus position P11.
  • the depth of field of the left-eye imaging unit 200 and the right-eye imaging unit 300 need not be continuous.
  • the focus position P12 that becomes the depth of field DF12 that is not continuous with the depth of field DF11 of the left-eye imaging unit 200 can be set as the in-focus position of the right-eye imaging unit 300. That is, the depth of field DF11 of the left-eye imaging unit 200 and the depth of field DF12 of the right-eye imaging unit 300 are separated by a distance L1.
  • the focus control unit 123 determines that the range of the depth of field at the time of generating the left-eye viewing image is different from the range of the depth of field at the time of generating the right-eye viewing image when a certain condition is satisfied.
  • Each focus control in the two imaging units is performed so as to be continuous.
  • this fixed condition for example, a condition where the background is substantially one color and two objects that are closer to the imaging apparatus 100 than the background and are separated from the fixed value in the optical axis direction are to be focused. Can be used.
  • the focus control unit 123 may automatically perform the focus control in the two imaging units so that the range of the two depths of field is discontinuous. .
  • the image generated by the left-eye imaging unit 200 is captured in a state where the butterfly 801 is in focus but the butterfly 802 is not in focus.
  • the butterfly 801 included in the image generated by the left-eye imaging unit 200 is clearly imaged without blur, but the butterfly 802 is estimated to be imaged with blur.
  • the image generated by the right-eye imaging unit 300 is captured in a state where the butterfly 802 is in focus but the butterfly 801 is not in focus.
  • the butterfly 802 included in the image generated by the right-eye imaging unit 300 is clearly imaged without blur, but the butterfly 801 is estimated to be imaged with blur.
  • a subject that is imaged without blur in at least one of the two images can be naturally viewed as a stereoscopic image.
  • the background of the butterflies 801 and 802 is a blue sky and is substantially the same color, so it is assumed that the blur is not an issue. For this reason, even when displaying a stereoscopic image including butterflies 801 and 802 that are relatively distant from each other in the optical axis direction, the stereoscopic image can be viewed relatively clearly.
  • continuous / discontinuous depth of field is set by a manual operation by the user.
  • the depth of field is based on the attribute or color of the subject included in the captured image.
  • the continuity / discontinuity may be automatically determined. For example, when a color histogram of a captured image is generated, the most common color is a specific color (for example, sky blue, white), and the relative distance between two specific objects is relatively large in the optical axis direction Can determine discontinuities in depth of field.
  • the allowable circle of confusion diameter can be set, and the user may set the value of the allowable circle of confusion according to the situation of viewing the stereoscopic image. For example, when viewing a stereoscopic image using a device having a relatively small display screen (for example, a mobile phone device), the allowable circle of confusion diameter can be set large.
  • the allowable circle of confusion diameter is set to be small.
  • the user may set the value of the allowable circle of confusion diameter when generating the stereoscopic image.
  • a setting screen for setting the allowable confusion circle diameter value is displayed on the input / output panel 190, and the user can input and set the allowable confusion circle diameter value desired by the user.
  • the permissible circle of confusion corresponding to each of the case where the display screen when viewing the stereoscopic image is small, the display screen when viewing the stereoscopic image is large, and the case where the display screen when viewing the stereoscopic image is normal The diameter value is set in advance.
  • a plurality of selection buttons (for example, “standard” button, “large screen” button, “small screen” button) corresponding to the set allowable confusion circle diameter value are provided on the setting screen, and the selection button is pressed.
  • the value of the allowable confusion circle diameter desired by the user may be set.
  • Each focus control can be performed by using the value of the allowable confusion circle diameter set in this way.
  • the embodiment of the present disclosure an example in which two captured images for displaying a stereoscopic image using two imaging units (the left-eye imaging unit 200 and the right-eye imaging unit 300) are generated is shown. It was. However, the embodiment of the present disclosure can be applied to a case where a captured image for displaying a stereoscopic image is generated using three or more imaging units. For example, the in-focus positions of the image capturing units are made different so that the depth of field of each image capturing unit overlaps or continues. Moreover, when a certain condition is satisfied, the depth of field of any one of the imaging units may be discontinuous.
  • the embodiment of the present disclosure can be applied to a case where a captured image for displaying a stereoscopic image is generated using a single imaging unit. For example, two captured images are continuously captured by a single imaging unit, and image processing is performed on the two captured images to obtain a left-eye viewing image and a right-eye viewing image. In addition, when the two captured images are continuously captured, the depth of field is changed for imaging.
  • the focus control is executed by the control circuit incorporated in the imaging device.
  • the focus is controlled by the control circuit linked to the imaging device or an information processing device such as a computer. Control may be executed.
  • a system including an apparatus including an imaging unit and an information processing apparatus such as a control circuit or a computer constitutes the imaging apparatus.
  • the imaging apparatus that performs focus control using contrast AF has been described as an example.
  • the imaging apparatus that performs focus control using phase difference AF AF based on a phase difference detection method
  • the embodiment of the present disclosure can be applied.
  • the lens-integrated imaging device has been described as an example.
  • the embodiment of the present disclosure can also be applied to an interchangeable lens imaging device.
  • focus control can be performed by controlling the focus lens in the interchangeable lens based on control from the main body side imaging device.
  • the lens-interchangeable imaging device is, for example, a digital still camera (for example, a digital single-lens camera) capable of exchanging lenses.
  • the embodiment of the present disclosure can also be applied to an imaging apparatus having a function of generating a stereoscopic image with a predetermined convergence angle (for example, a 3D camera with a variable convergence angle). Furthermore, the embodiments of the present disclosure can also be applied to an imaging device having a function of generating a stereoscopic image with a predetermined baseline length (for example, a 3D camera in which the distance between two lenses is variable).
  • the embodiment of the present disclosure is an example for embodying the present disclosure, and as clearly shown in the embodiment of the present disclosure, the matters in the embodiment of the present disclosure and the scope of the claims There is a corresponding relationship with the invention-specific matters in. Similarly, the matters specifying the invention in the claims and the matters in the embodiments of the present disclosure having the same names as the claims have a corresponding relationship.
  • the present disclosure is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist of the present disclosure.
  • the processing procedure described in the embodiment of the present disclosure may be regarded as a method having a series of these procedures, and a program for causing a computer to execute the series of procedures or a recording medium storing the program May be taken as
  • this recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray Disc (Blu-ray Disc (registered trademark)), or the like can be used.
  • Imaging unit 100, 700, 750 Imaging device 101 Imaging unit 110 Operation receiving unit 111 Shutter button 120 CPU 121 Control Unit 122 Stereoscopic Image Imaging Condition Holding Unit 123, 690 Focus Control Unit 130 Synchronous Clock 140 Exposure Control Unit 150 Recording Control Unit 160 Content Storage Unit 170 Display Control Unit 180 Display Unit 190 Input / Output Panel 200 Left Eye Imaging Unit 300 Right-eye imaging unit 211, 311 Zoom lens 212, 312 Aperture 213, 313 Focus lens 221, 321 Zoom lens drive motor 222, 322 Zoom lens control unit 231, 331 Aperture drive motor 232, 332 Aperture control unit 241, 341 Focus lens Drive motor 242, 342 Focus lens control unit 250, 350 Image sensor 260, 360 Image signal processing unit 680 Focus position table holding unit

Abstract

【課題】立体視画像の生成時にフォーカスが合っている画像領域を拡大させる。そして、鮮鋭な立体視画像を表示する。 【解決手段】左眼用撮像部200は、左眼視用画像を生成し、右眼用撮像部300は、左眼視用画像に同期して右眼視用画像を生成する。フォーカス制御部123は、左眼視用画像に含まれる被写体のうち特定エリアに含まれる被写体(第1被写体)に合焦するように左眼用撮像部200のフォーカス制御を行う。また、フォーカス制御部123は、右眼視用画像に含まれる被写体のうち、光軸方向において第1被写体とは異なる位置に存在する他の被写体(第2被写体)に合焦するように右眼用撮像部300のフォーカス制御を行う。この場合に、左眼視用画像の生成時における被写界深度の範囲と、右眼視用画像の生成時における被写界深度の範囲とが重複せずに連続する範囲となるように各フォーカス制御を行う。

Description

撮像装置、その制御方法およびプログラム
 本発明は、撮像装置に関し、特に、立体視画像を生成する撮像装置およびその制御方法ならびに当該方法をコンピュータに実行させるプログラムに関する。
 従来、左右眼の視差を利用して立体的な視覚を得ることができる立体視画像を表示するための立体視画像表示方法が多数提案されている。また、立体視画像を表示するための複数の画像(画像データ)を関連付けて記録するデジタルスチルカメラやデジタルビデオカメラ(カメラ一体型レコーダ)等の撮像装置が提案されている。
 例えば、フォーカスレンズが設けられている2つの撮像部を備え、これらの各撮像部により生成される2つの画像を記録媒体に記録する立体画像撮影装置が提案されている(例えば、特許文献1参照。)。この立体画像撮影装置では、AF動作において、各フォーカスレンズを移動してAF評価値を算出し、AF評価値の最大値を先に検出したフォーカスレンズの位置に、他方のフォーカスレンズを設定する。
特開2006-162990号公報
 上述の従来技術では、AF評価値の最大値を先に検出したフォーカスレンズの位置に、他方のフォーカスレンズを設定するため、比較的短い時間でAF動作を行うことができる。すなわち、2つの撮像部により生成される2つの画像に含まれる同一の被写体を合焦対象とする場合に、その合焦対象となる被写体に迅速にフォーカスを合わせることができるため、比較的短い時間でAF動作を行うことができる。
 ここで、例えば、レンズの焦点距離が長く、かつ、被写体までの距離が近い場合、または、十分な照度が得られず絞りが比較的開放されているような露出環境下である場合には、合焦位置の前後の被写界深度は浅くなる。このように、被写界深度が浅い状態で生成された画像が表示される場合には、その画像は、その浅い被写界深度に含まれる被写体についてはフォーカスが合っているが、他の被写体についてはボケている画像として表示される。
 また、合焦位置の前後の被写界深度が浅い状態で生成された左眼視用画像および右眼視用画像を用いて立体視画像が表示される場合を想定する。このように生成された立体視画像が表示される場合には、その立体視画像は、その浅い被写界深度に含まれる被写体についてはフォーカスが合っているが、他の被写体についてはボケている画像として表示される。この場合、ユーザは、フォーカスが合っている被写体については鮮明な立体として見ることができるが、他の被写体についてはそれなりにボケた立体として見ることになる。
 例えば、人間は、視野に含まれる物体のうち、何れの物体に対してもフォーカスを合わせることができるため、視野に含まれる物体については比較的自由に立体的に見ることができる場合が多い。ここで、表示されている立体視画像をユーザが見る場合において、その立体視画像に含まれる被写体のうち、フォーカスが合っている被写体が比較的少ない場合を想定する。この場合には、上述したように、その比較的少ない被写体(フォーカスが合っている被写体)については比較的自由に立体的に見ることができるが、他の被写体についてはボケたままであるため、フォーカスが合っている被写体と同じように見ることは困難である。このように、視野に含まれる物体を比較的自由に見ることができる状態とは異なるため、ユーザにとって違和感が生じるおそれがある。
 そこで、被写界深度が比較的浅い撮像条件であっても、比較的広範囲に含まれる被写体を適切に立体視することができる立体視画像を生成し、ユーザが自然な感じで立体視画像を見ることができるようにすることが重要である。
 本発明はこのような状況に鑑みてなされたものであり、立体視画像を生成する場合に、フォーカスが合っている画像領域を拡大させることを目的とする。
 本発明は、上記課題を解決するためになされたものであり、その第1の側面は、被写体を撮像して当該被写体を立体視するための立体視画像を表示するための第1画像および第2画像を生成する撮像部と、上記第1画像の生成時において上記第1画像に含まれる被写体のうち特定エリアに含まれる被写体である第1被写体に合焦するように上記撮像部におけるフォーカス制御を行い、上記第2画像の生成時において上記第2画像に含まれる被写体のうち光軸方向において上記第1被写体とは異なる位置に存在する他の被写体である第2被写体に合焦するように上記撮像部におけるフォーカス制御を行うフォーカス制御部とを具備する撮像装置およびその制御方法ならびに当該方法をコンピュータに実行させるプログラムである。これにより、第1画像の生成時において第1画像に含まれる被写体のうち特定エリアに含まれる被写体(第1被写体)に合焦するようにフォーカス制御を行い、第2画像の生成時において第2画像に含まれる被写体のうち光軸方向において第1被写体とは異なる位置に存在する他の被写体(第2被写体)に合焦するようにフォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、上記第1画像の生成時における被写界深度の範囲と上記第2画像の生成時における被写界深度の範囲とが異なるように上記各フォーカス制御を行うようにしてもよい。これにより、第1画像の生成時における被写界深度の範囲と、第2画像の生成時における被写界深度の範囲とが異なるように各フォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、上記第1画像の生成時における被写界深度の範囲と上記第2画像の生成時における被写界深度の範囲とが重複せずに連続する範囲となるように上記各フォーカス制御を行うようにしてもよい。これにより、第1画像の生成時における被写界深度の範囲と、第2画像の生成時における被写界深度の範囲とが重複せずに連続する範囲となるように各フォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、上記第1画像の生成時における被写界深度の範囲と上記第2画像の生成時における被写界深度の範囲とが重複するように上記各フォーカス制御を行うようにしてもよい。これにより、第1画像の生成時における被写界深度の範囲と、第2画像の生成時における被写界深度の範囲とが重複するように各フォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、一定条件を満たす場合に、上記第1画像の生成時における被写界深度の範囲と上記第2画像の生成時における被写界深度の範囲とが非連続となるように上記各フォーカス制御を行うようにしてもよい。これにより、一定条件を満たす場合に、第1画像の生成時における被写界深度の範囲と、第2画像の生成時における被写界深度の範囲とが非連続となるように各フォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、背景が略一色であり、かつ、当該背景よりも上記撮像装置側に存在して光軸方向において一定値よりも離れている2つの物体を上記第1被写体および上記第2被写体とする条件を上記一定条件として、上記一定条件を満たす場合に上記非連続となるように上記各フォーカス制御を行うようにしてもよい。これにより、背景が略一色であり、かつ、その背景よりも撮像装置側に存在して光軸方向において一定値よりも離れている2つの物体を、第1被写体および第2被写体とする条件を一定条件とし、この一定条件を満たす場合に、2つの被写界深度の範囲が非連続となるように各フォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記撮像部は、上記第1画像を生成する第1撮像部と、上記第1画像に同期して上記第2画像を生成する第2撮像部とを備え、上記フォーカス制御部は、上記第1画像の生成時において上記第1撮像部に備えられる第1フォーカスレンズを用いて上記第1被写体に合焦するようにフォーカス制御を行うとともに、上記第2画像の生成時において上記第2撮像部に備えられる第2フォーカスレンズを用いて上記第2被写体に合焦するようにフォーカス制御を行うようにしてもよい。これにより、第1画像の生成時において、第1撮像部に備えられる第1フォーカスレンズを用いて第1被写体に合焦するようにフォーカス制御を行うとともに、第2画像の生成時において、第2撮像部に備えられる第2フォーカスレンズを用いて第2被写体に合焦するようにフォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、上記第1被写体の位置とF値とレンズの焦点距離とにより特定される第1被写界深度の範囲とは異なる範囲に含まれる上記第2被写体に合焦するように上記第2フォーカスレンズを用いたフォーカス制御を行うようにしてもよい。これにより、第1被写体の位置と、F値と、レンズの焦点距離とにより特定される第1被写界深度の範囲とは異なる範囲に含まれる第2被写体に合焦するように第2フォーカスレンズを用いたフォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、上記第1被写体および上記第2被写体が過焦点距離の範囲内に存在する場合には上記第1フォーカスレンズおよび上記第2フォーカスレンズを同期して上記フォーカス制御を行うようにしてもよい。これにより、第1被写体および第2被写体が過焦点距離の範囲内に存在する場合には、第1フォーカスレンズおよび第2フォーカスレンズを同期してフォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記フォーカス制御部は、上記撮像部におけるレンズの焦点距離が長く、かつ、上記第1被写体に係る被写体距離が短い場合、または、F値が一定値を基準として小さい場合に、上記第1画像に含まれる上記第1被写体に合焦するように上記撮像部におけるフォーカス制御を行い、上記第2画像に含まれる上記第2被写体に合焦するように上記撮像部におけるフォーカス制御を行うようにしてもよい。これにより、撮像部におけるレンズの焦点距離が長く、かつ、第1被写体に係る被写体距離が短い場合、または、F値が一定値を基準として小さい場合に、第1画像に含まれる第1被写体に合焦するようにフォーカス制御を行い、第2画像に含まれる第2被写体に合焦するようにフォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記第2被写体を、上記光軸方向において上記第1被写体よりも上記撮像装置側に存在する被写体とするか、上記光軸方向において上記第1被写体よりも上記遠方側に存在する被写体とするかを選択する選択操作を受け付ける操作受付部をさらに具備し、上記フォーカス制御部は、上記第2画像の生成時において上記選択された被写体に合焦するようにフォーカス制御を行うようにしてもよい。これにより、第2画像の生成時において、選択操作により選択された被写体に合焦するようにフォーカス制御を行うという作用をもたらす。
 また、この第1の側面において、上記生成された第1画像および第2画像を関連付けて動画コンテンツとして記録媒体に記録させる記録制御部をさらに具備するようにしてもよい。これにより、生成された第1画像および第2画像を関連付けて動画コンテンツとして記録媒体に記録させるという作用をもたらす。
 また、この第1の側面において、上記生成された第1画像および第2画像を関連付けて静止画コンテンツとして記録媒体に記録させる記録制御部をさらに具備するようにしてもよい。これにより、生成された第1画像および第2画像を関連付けて静止画コンテンツとして記録媒体に記録させるという作用をもたらす。
 また、この第1の側面において、上記静止画を記録する指示操作を受け付ける操作受付部と、上記指示操作が受け付けられた場合には、上記第1被写体および上記第2被写体のそれぞれに合焦するように上記各フォーカス制御を行い上記第1画像および上記第2画像を生成する第1撮像動作と、上記第1被写体および上記第2被写体の少なくとも何れか一方に合焦するように上記各フォーカス制御を行い上記第1画像および上記第2画像を生成する第2撮像動作とを上記撮像部に連続して行わせる制御を行う制御部とをさらに具備し、上記記録制御部は、上記第1撮像動作により生成された第1画像および第2画像と、上記第2撮像動作により生成された第1画像および第2画像とを関連付けて静止画コンテンツとして上記記録媒体に記録させるようにしてもよい。これにより、静止画を記録する指示操作が受け付けられた場合には、第1被写体および第2被写体のそれぞれに合焦するように各フォーカス制御を行い第1画像および第2画像を生成する第1撮像動作と、第1被写体および第2被写体の少なくとも何れか一方に合焦するように各フォーカス制御を行い第1画像および第2画像を生成する第2撮像動作とを連続して行わせ、第1撮像動作により生成された第1画像および第2画像と、第2撮像動作により生成された第1画像および第2画像とを関連付けて静止画コンテンツとして記録媒体に記録させるという作用をもたらす。
 また、この第1の側面において、上記記録制御部は、上記第1撮像動作により生成された旨を示す識別情報を、上記第1撮像動作により生成された上記第1画像および上記第2画像に関連付けて記録するようにしてもよい。これにより、第1撮像動作により生成された旨を示す識別情報を、第1撮像動作により生成された第1画像および第2画像に関連付けて記録するという作用をもたらす。
 本発明によれば、立体視画像を生成する場合に、フォーカスが合っている画像領域を拡大させるという優れた効果を奏し得る。
本開示の第1の実施の形態における撮像装置100の外観を示す斜視図である。 本開示の第1の実施の形態における撮像装置100の内部構成例を示すブロック図である。 本開示の第1の実施の形態における撮像装置100の機能構成例を示すブロック図である。 本開示の第1の実施の形態における入出力パネル190の表示例を示す図である。 本開示の第1の実施の形態における入出力パネル190の表示例を示す図である。 本開示の第1の実施の形態における入出力パネル190の表示例である。 本開示の第1の実施の形態における立体視画像撮像条件保持部122における保持内容例を示す図である。 本開示の第1の実施の形態における撮像素子250および350の許容錯乱円と、光学系を構成する各レンズと、被写界深度との関係を概略的に示す図である。 本開示の第1の実施の形態におけるフォーカス制御部123により設定される被写界深度と被写体との関係を概略的に示す図である。 本開示の第1の実施の形態における左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(静止画)例である。 本開示の第1の実施の形態における左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(静止画)例である。 本開示の第1の実施の形態における撮像装置100によるフォーカス制御処理の処理手順の一例を示すフローチャートである。 本開示の第1の実施の形態の変形例における撮像装置670の機能構成例を示すブロック図である。 本開示の第1の実施の形態における合焦位置テーブル保持部680に保持される合焦位置テーブルの一例を示す図である。 本開示の第2の実施の形態における入出力パネル190の表示例である。 本開示の第2の実施の形態における立体視画像撮像条件保持部127における保持内容例を示す図である。 本開示の第2の実施の形態における撮像装置700による撮像動作により生成される画像の記録例を模式的に示す図である。 本開示の第3の実施の形態における撮像装置750を用いて行われる撮像動作の状態およびその撮像動作により生成される画像の撮像範囲の一例を示す図である。 本開示の第3の実施の形態における入出力パネル190の表示例である。 本開示の第3の実施の形態における立体視画像撮像条件保持部128における保持内容例を示す図である。 本開示の第3の実施の形態におけるフォーカス制御部123により設定される被写界深度と被写体との関係を概略的に示す図である。
 以下、本開示の実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(フォーカス制御:2つの撮像部の合焦位置を異なるものとし、2つの撮像部の被写界深度を連続として立体視画像を生成する例)
 2.第2の実施の形態(フォーカス制御:2つの撮像部の合焦位置が異なる立体視画像と、2つの撮像部の合焦位置が同一である立体視画像とを連続して記録する例)
 3.第3の実施の形態(フォーカス制御:2つの撮像部の合焦位置を異なるものとし、2つの撮像部の被写界深度を非連続として立体視画像を生成する例)
 <1.第1の実施の形態>
 [撮像装置の外観構成例]
 図1は、本開示の第1の実施の形態における撮像装置100の外観を示す斜視図である。図1の上図は、撮像装置100の正面(すなわち、被写体に向けられるレンズが設けられている面)側の外観を示す斜視図である。また、図1の下図は、撮像装置100の背面(すなわち、撮影者に向けられる入出力パネル190が設けられている面)側の外観を示す斜視図である。
 撮像装置100は、シャッターボタン111と、入出力パネル190と、左眼用撮像部200と、右眼用撮像部300とを備える。撮像装置100は、被写体を撮像して撮像画像(画像データ)を生成し、この生成された撮像画像を画像コンテンツ(静止画コンテンツまたは動画コンテンツ)として記録媒体(図2に示すコンテンツ記憶部160)に記録することが可能な撮像装置である。また、撮像装置100は、立体視撮像対応の撮像装置であり、立体視画像(3D画像)を表示させるための画像コンテンツを生成することができる。なお、立体視画像(3D画像)は、左右眼の視差を利用して立体的な視覚を得ることができる画像である。例えば、左眼用撮像部200および右眼用撮像部300のそれぞれが被写体を撮像して2つの撮像画像(立体視画像を表示するための左眼視用画像(左眼画像)および右眼視用画像(右眼画像))を生成する。そして、その生成された2つの撮像画像に基づいて、立体視画像を表示させるための画像コンテンツが生成される。なお、撮像装置100には、電源スイッチ、モード切替スイッチ、ズームボタン等の他の操作部材が備えられているが、ここでの図示および説明は省略する。
 シャッターボタン111は、被写体を撮像して生成された撮像画像(画像データ)を画像コンテンツとして記録する際にユーザにより押下されるボタンである。例えば、静止画を記録するための静止画撮像モードが設定されている場合において、シャッターボタン111が半押しされた場合には、オートフォーカスを行うためのフォーカス制御が行われる。また、シャッターボタン111が全押しされた場合には、そのフォーカス制御が行われ、この全押しの際に左眼用撮像部200および右眼用撮像部300のそれぞれにより撮像された撮像画像が関連付けて記録媒体に記録される。
 入出力パネル190は、各種画像を表示するとともに、入出力パネル190における接触操作を検出することによりユーザからの操作入力を受け付けるものである。
 なお、左眼用撮像部200および右眼用撮像部300については、図2を参照して詳細に説明する。
 [撮像装置の内部構成例]
 図2は、本開示の第1の実施の形態における撮像装置100の内部構成例を示すブロック図である。撮像装置100は、操作受付部110と、CPU120と、同期クロック130と、露光制御部140と、記録制御部150と、コンテンツ記憶部160と、表示制御部170と、表示部180とを備える。また、撮像装置100は、左眼用撮像部200および右眼用撮像部300を備える。
 左眼用撮像部200および右眼用撮像部300は、左眼視用画像および右眼視用画像を生成するため、光学系、撮像素子、撮像信号処理部のそれぞれが左右1組となるように構成されている。すなわち、左眼用撮像部200は、ズームレンズ211と、絞り212と、フォーカスレンズ213と、ズームレンズ駆動モータ221と、ズームレンズ制御部222と、絞り駆動モータ231と、絞り制御部232とを備える。また、左眼用撮像部200は、フォーカスレンズ駆動モータ241と、フォーカスレンズ制御部242と、撮像素子250と、撮像信号処理部260とを備える。また、右眼用撮像部300は、ズームレンズ311と、絞り312と、フォーカスレンズ313と、ズームレンズ駆動モータ321と、ズームレンズ制御部322と、絞り駆動モータ331と、絞り制御部332とを備える。また、右眼用撮像部300は、フォーカスレンズ駆動モータ341と、フォーカスレンズ制御部342と、撮像素子350と、撮像信号処理部360とを備える。
 なお、左眼用撮像部200および右眼用撮像部300の各構成(各レンズ、各撮像素子等)は、配置位置が異なる点以外は略同一である。このため、以下では、これらの左右の構成のうち何れかについては一部の説明を省略して説明する。
 ズームレンズ211は、ズームレンズ駆動モータ221の駆動により光軸方向に移動して焦点距離を調整するレンズである。すなわち、ズームレンズ211は、撮像画像に含まれる被写体を拡大または縮小させるため、被写体に対して前後に駆動するレンズである。また、ズームレンズ211により、ズーム機能が実現される。
 ズームレンズ駆動モータ221は、ズームレンズ制御部222から出力された駆動制御信号に応じて回転することにより、ズームレンズ211を光軸方向に移動させて焦点距離を調整するモータである。
 ズームレンズ制御部222は、CPU120から出力された制御信号に基づいて、ズームレンズ駆動モータ221を回転させる駆動制御信号を生成し、この駆動制御信号をズームレンズ駆動モータ221に出力するものである。
 絞り212は、ズームレンズ211およびフォーカスレンズ213を通過する入射光の光量(すなわち、露出)を調整するものであり、その調整後の光が撮像素子250に供給される。また、絞り212は、絞り駆動モータ231により駆動され、絞りの開度が調節される。
 絞り駆動モータ231は、絞り制御部232から出力された駆動制御信号に応じて回転ることにより、絞り212を開閉させてF値(絞り値)を調整するモータである。
 絞り制御部232は、CPU120から出力された制御信号に基づいて、絞り駆動モータ231を回転させる駆動制御信号を生成し、この駆動制御信号を絞り駆動モータ231に出力するものである。
 フォーカスレンズ213は、フォーカスレンズ駆動モータ241の駆動により光軸方向に移動してフォーカス(焦点)を調整するレンズである。すなわち、フォーカスレンズ213は、撮像画像に含まれる所望の対象物にフォーカスを合わせるために使用されるレンズである。また、フォーカスレンズ213により、オートフォーカス機能が実現される。
 フォーカスレンズ駆動モータ241は、フォーカスレンズ制御部242から出力された駆動制御信号に応じて回転することにより、フォーカスレンズ213を光軸方向に移動させて焦点位置を調整するモータである。
 フォーカスレンズ制御部242は、CPU120から出力された制御信号に基づいて、フォーカスレンズ駆動モータ241を回転させる駆動制御信号を生成し、この駆動制御信号をフォーカスレンズ駆動モータ241に出力するものである。
 このように、ズームレンズ211およびフォーカスレンズ213は、被写体からの入射光を集光するレンズ群であり、これらのレンズ群により集光される光が絞り212によりその量(光量)が調整されて撮像素子250に入射される。
 撮像素子250は、ズームレンズ211、絞り212およびフォーカスレンズ213を通過した入射光に光電変換処理を施し、光電変換された電気信号(画像信号)を撮像信号処理部260に供給する撮像素子である。すなわち、撮像素子250は、ズームレンズ211およびフォーカスレンズ213を介して入射された被写体からの光を受光して光電変換を行うことにより、光の受光量に応じたアナログの画像信号を生成する。また、撮像素子250および撮像素子350(右眼用撮像部300)は、各レンズを介して入射された被写体像を同期クロック130のクロック信号に基づく同期駆動により結像してアナログの画像信号を生成する。このように撮像素子250により生成されたアナログの画像信号が撮像信号処理部260に供給され、撮像素子350により生成されたアナログの画像信号が撮像信号処理部360に供給される。なお、撮像素子250および350として、CCD(Charge Coupled Device)、CMOS(Complementary Metal-Oxide Semiconductor)等を用いることができる。
 撮像信号処理部260は、CPU120の制御に基づいて、撮像素子250から供給されたアナログの画像信号に対して各種の信号処理を施す左眼用撮像信号処理部である。そして、撮像信号処理部260は、各種の信号処理が施されて生成されたデジタルの画像信号(左眼視用画像)をCPU120および記録制御部150に出力する。また、撮像信号処理部360は、CPU120の制御に基づいて、撮像素子350から供給されたアナログの画像信号に対して各種の信号処理を施す右眼用撮像信号処理部である。そして、撮像信号処理部360は、各種の信号処理が施されて生成されたデジタルの画像信号(右眼視用画像)をCPU120、露光制御部140および記録制御部150に出力する。また、左眼用撮像部200および右眼用撮像部300は、各撮像情報(基準レンズの焦点距離、F値等)をCPU120に出力する。
 操作受付部110は、ユーザによる操作入力を受け付ける操作受付部であり、受け付けられた操作入力の内容に応じた操作信号をCPU120に供給する。操作受付部110は、例えば、シャッターボタン111、入出力パネル190、各種操作ボタン、各種操作ダイヤル等の操作部材に対応する。例えば、ユーザがズーム操作を行うためのズームボタン(W(ワイド)ボタンおよびT(テレ)ボタン)が撮像装置100に備えられる。このズームボタンのWボタンが押下されている状態では、ズームレンズ211および311がワイド端側(望遠側)に移動し、Tボタンが押下されている状態では、ズームレンズ211および311がテレ端側(広角側)に移動する。また、例えば、操作受付部110は、立体視画像撮像モードの各種撮像条件を設定するための設定操作を受け付ける。また、例えば、操作受付部110は、各撮像モードを設定する設定操作や画像の記録を指示する指示操作を受け付ける。なお、本開示の第1の実施の形態では、撮像装置100は、立体視画像を記録するための立体視画像撮像モード(例えば、静止画撮像モード、動画撮像モード)を設定する例を示す。
 CPU120は、撮像装置100の各部に供給する制御信号を生成し、生成された制御信号を各部に供給してズーム制御、フォーカス制御、シャッター制御、画像記録処理等の各制御を行うものである。例えば、CPU120は、フォーカスレンズ213および313を移動させる制御信号を生成することにより、所定の被写体に対する合焦位置を検出するAF(Auto Focus:オートフォーカス)制御を行う。具体的には、CPU120は、撮像信号処理部260および撮像信号処理部360から出力された画像信号に対応する撮像画像について、フォーカスレンズ213および313を移動させてオートフォーカス制御を行う。
 露光制御部140は、撮像信号処理部260から出力された画像信号に基づいて、撮像素子250および350の露光時間を制御するものである。すなわち、露光制御部140は、撮像信号処理部260から出力された画像信号に対応する画像における被写体の輝度に基づいて、撮像素子250および350の露光時間を決定し、この決定された露光時間をCPU120に出力する。
 記録制御部150は、CPU120の制御に基づいて、左眼用撮像部200および右眼用撮像部300から出力された各画像を画像ファイル(画像コンテンツ)としてコンテンツ記憶部160に記録させるものである。例えば、記録制御部150は、撮像信号処理部260から出力された左眼視用画像と、撮像信号処理部360から出力された右眼視用画像とを同期クロック130のクロック信号に従って関連付けてコンテンツ記憶部160に記録させる。
 例えば、記録制御部150は、操作受付部110により静止画記録の指示操作が受け付けられた場合には、左眼視用画像および右眼視用画像を関連付けて静止画ファイル(静止画コンテンツ)としてコンテンツ記憶部160に記録させる。この記録時に、撮像時における日時情報等の属性情報が画像ファイルに記録される。なお、静止画記録の指示操作は、例えば、シャッターボタン111(図1に示す)の押下操作により行われる。また、例えば、記録制御部150は、左眼視用画像および右眼視用画像の順序関係(例えば、視点番号)を、左眼視用画像および右眼視用画像に関連付けてMP(Multi Picture)ファイルとして記録媒体に記録させるようにしてもよい。MPファイルは、複数の静止画を1つのファイル(拡張子:.MPO)として記録するMPフォーマットに準拠したファイルである。
 また、例えば、操作受付部110により動画記録の指示操作が受け付けられた場合を想定する。この場合には、記録制御部150は、撮像信号処理部260および360から所定のフレームレートで出力される左眼視用画像および右眼視用画像を動画ファイル(動画コンテンツ)としてコンテンツ記憶部160に順次記録させる。なお、動画記録の指示操作は、例えば、録画ボタンの押下操作により行われる。
 コンテンツ記憶部160は、記録制御部150の制御に基づいて、左眼用撮像部200および右眼用撮像部300から出力された各画像を関連付けて画像ファイル(画像コンテンツ)として記憶するものである。なお、コンテンツ記憶部160として、例えば、DVD(Digital Versatile Disk)等のディスクやメモリカード等の半導体メモリ等のリムーバブルな記録媒体(1または複数の記録媒体)を用いることができる。また、これらの記録媒体は、撮像装置100に内蔵するようにしてもよく、撮像装置100から着脱可能とするようにしてもよい。
 表示制御部170は、CPU120の制御に基づいて、各種画像を表示部180に表示させるものである。例えば、表示制御部170は、操作受付部110により立体視画像(静止画)を表示する指示操作が受け付けられた場合には、立体視画像(静止画)を表示させるための画像コンテンツをコンテンツ記憶部160から取得する。そして、表示制御部170は、その画像コンテンツを表示部180に表示させる。また、表示制御部170は、CPU120の制御に基づいて、各種画面(例えば、図4A、図4Bおよび図5Aに示す各設定画面)を表示部180に表示させる。また、表示制御部170は、静止画撮像モードが設定されている場合に、左眼用撮像部200および右眼用撮像部300からにより生成された各画像をモニタリング画像(立体視画像または平面画像)として表示部180に表示させるようにしてもよい。
 表示部180は、表示制御部170の制御に基づいて、コンテンツ記憶部160に記憶されている画像コンテンツを表示する表示部である。また、表示部180には各種メニュー画面や各種画像が表示される。表示部180として、例えば、LCD(Liquid CrystalDisplay)、有機EL(Electro Luminescence)パネル等を用いることができる。また、図1に示す入出力パネル190は、操作受付部110および表示部180により構成される。
 [撮像装置の機能構成例]
 図3は、本開示の第1の実施の形態における撮像装置100の機能構成例を示すブロック図である。撮像装置100は、撮像部101と、操作受付部110と、制御部121と、立体視画像撮像条件保持部122と、フォーカス制御部123と、記録制御部150と、コンテンツ記憶部160と、表示制御部170と、表示部180とを備える。なお、撮像部101は、図2に示す左眼用撮像部200および右眼用撮像部300に対応する。また、操作受付部110、記録制御部150、コンテンツ記憶部160、表示制御部170および表示部180は、図2に示す同一符号の各部に対応する。このため、これらの説明の一部を省略する。また、制御部121、立体視画像撮像条件保持部122およびフォーカス制御部123は、図2に示すCPU120に対応する。
 撮像部101は、左眼用撮像部200および右眼用撮像部300を備え、被写体を撮像してその被写体を立体視するための立体視画像を表示するための左眼視用画像および右眼視用画像を生成するものである。そして、撮像部101は、生成された左眼視用画像および右眼視用画像をフォーカス制御部123および記録制御部150に出力する。また、撮像部101は、左眼用撮像部200および右眼用撮像部300のそれぞれにおける各撮像情報(基準レンズの焦点距離、F値等)をフォーカス制御部123に出力する。なお、フォーカス制御部123の制御に基づいて、左眼用撮像部200および右眼用撮像部300におけるフォーカス制御が行われる。
 制御部121は、操作受付部110からの操作内容に基づいて、撮像装置100の各部を制御するものである。例えば、制御部121は、操作受付部110により立体視画像撮像モードの各種撮像条件を設定するための設定操作が受け付けられた場合には、その設定操作に応じた設定情報を立体視画像撮像条件保持部122に保持させる。
 例えば、制御部121は、操作受付部110により静止画撮像モードを設定する設定操作が受け付けられた場合には、その旨を撮像部101、フォーカス制御部123および記録制御部150に通知して、静止画撮像モードを設定する。また、例えば、制御部121は、静止画撮像モードが設定されている状態で、操作受付部110により静止画の記録を指示する静止画記録指示操作が受け付けられた場合には、立体視画像の静止画を記録するための記録処理を各部に実行させる。具体的には、制御部121は、左眼用撮像部200および右眼用撮像部300におけるフォーカス制御をフォーカス制御部123に行わせ、左眼視用画像および右眼視用画像を撮像部101に生成させる。そして、制御部121は、記録制御部150に制御により、その生成された左眼視用画像および右眼視用画像を立体視画像の静止画ファイルとしてコンテンツ記憶部160に記録させる。
 また、例えば、制御部121は、動画撮像モードが設定されている状態で、操作受付部110により動画の記録を指示する動画記録指示操作が受け付けられた場合には、立体視画像の動画を記録するための記録処理を各部に実行させる。
 また、例えば、制御部121は、再生モードが設定されている状態で、操作受付部110により静止画または動画の再生を指示する再生指示操作が受け付けられた場合には、静止画または動画を再生するための再生処理を各部に実行させる。例えば、表示制御部170が、再生指示操作に係る画像コンテンツをコンテンツ記憶部160から取得し、この取得された画像コンテンツに基づいて、各画像を表示部180に表示させる。
 立体視画像撮像条件保持部122は、立体視画像撮像モードの各種撮像条件を設定するための設定情報を保持するものであり、保持されている設定情報をフォーカス制御部123に供給する。また、立体視画像撮像条件保持部122に保持されている設定情報は、立体視画像撮像モードの各種撮像条件を設定するための設定操作が操作受付部110により受け付けられる毎に、制御部121により更新される。なお、立体視画像撮像条件保持部122の保持内容については、図5Bを参照して詳細に説明する。
 フォーカス制御部123は、左眼用撮像部200および右眼用撮像部300におけるフォーカスレンズ213、313を移動させることによりフォーカス制御を行うものである。すなわち、フォーカス制御部123は、左眼用撮像部200および右眼用撮像部300から出力された各画像からAF評価値(コントラスト信号)を生成する。そして、フォーカス制御部123は、その生成されたAF評価値と、左眼用撮像部200および右眼用撮像部300から取得された各撮像情報とに基づいて、フォーカス制御を行う。すなわち、フォーカス制御部123は、撮像画像に含まれるAF領域(特定エリア)において、このAF領域内の画像の空間周波数の高周波成分を抽出し、その抽出された高周波成分の輝度差分(AF評価値)を生成する。このように生成されたAF評価値に基づいて合焦位置が検出される。なお、フォーカス制御部123は、例えば、シャッターボタン111の半押し操作または全押し操作が行われた際に、フォーカス制御を行う。また、フォーカス制御部123は、例えば、動画の記録動作中にフォーカス制御を行う。
 ここで、静止画撮像モードが設定され、左眼用撮像部200および右眼用撮像部300のうち左眼用撮像部200を基準とする場合を想定する。この場合に、フォーカス制御部123は、左眼視用画像の生成時において左眼視用画像に含まれる被写体のうち特定エリアに含まれる被写体(第1被写体)に合焦するように左眼用撮像部200におけるフォーカス制御を行う。また、フォーカス制御部123は、右眼視用画像の生成時において右眼視用画像に含まれる被写体のうち光軸方向において第1被写体とは異なる位置に存在する他の被写体(第2被写体)に合焦するように右眼用撮像部300におけるフォーカス制御を行う。すなわち、フォーカス制御部123は、左眼視用画像の生成時における被写界深度の範囲と、右眼視用画像の生成時における被写界深度の範囲とが異なるように、左眼用撮像部200および右眼用撮像部300における各フォーカス制御を行う。例えば、フォーカス制御部123は、左眼視用画像の生成時における被写界深度の範囲と、右眼視用画像の生成時における被写界深度の範囲とが重複せずに連続する範囲となるように、各フォーカス制御を行う。また、例えば、フォーカス制御部123は、左眼視用画像の生成時における被写界深度の範囲と、右眼視用画像の生成時における被写界深度の範囲とが重複するように、各フォーカス制御を行う。なお、これらの各フォーカス制御については、ユーザ設定に基づいて行うことができる。また、これらの各フォーカス制御については、一定条件を満たす場合に、撮像装置100が自動で行うようにしてもよい。例えば、撮像部101におけるレンズの焦点距離が長く、かつ、撮像部101の合焦対象となる被写体(例えば、画像における中心位置の被写体)に係る被写体距離が短い場合を一定条件とすることができる。または、F値が一定値を基準として小さい場合を一定条件とすることができる。
 このように、撮像装置100は、少なくとも左右独立した光学系を有し、被写体の焦点調整を独立して行うことができる撮像装置である。また、撮像装置100は、撮影レンズの焦点距離、被写体までの距離、露光値に応じたF値を考慮して、左右の合焦位置に差を設け、互いの被写界深度が重なるようにして立体視画像を生成する撮像装置である。なお、撮像装置100は、上述したように、動画および静止画の何れについても記録処理を行うことが可能であるが、以下では、静止画の生成処理および記録処理を中心に説明する。
 [撮像条件の設定例]
 図4A、図4B、図5Aおよび図5Bは、本開示の第1の実施の形態における入出力パネル190の表示例および立体視画像撮像条件保持部122における保持内容例を示す図である。図4Aに示す設定画面500は、フォーカス制御部123によるフォーカス制御の際に基準レンズとして用いられるレンズ(フォーカスレンズ213、313)を設定する際に入出力パネル190に表示される画面である。例えば、立体視画像を記録するための立体視画像撮像モードの設定操作が行われた直後に設定画面500が表示される。設定画面500には、左眼ボタン501と、右眼ボタン502と、決定ボタン503と、戻るボタン504とが設けられている。
 左眼ボタン501および右眼ボタン502は、フォーカス制御の際に基準レンズとして用いられるレンズを設定する際に押下されるボタンである。例えば、タッチパネルにより構成されている入出力パネル190において、所望のボタンの押下操作を行うことにより基準レンズを設定することができる。例えば、ユーザの利き目が左眼である場合には、左眼ボタン501が押下され、ユーザの利き目が右眼である場合には、右眼ボタン502が押下される。この基準レンズについては、図7を参照して詳細に説明する。
 なお、この例では、ユーザの利き目を選択することにより、基準レンズを設定する例を示すが、ユーザの好みに応じた基準レンズを設定するようにしてもよい。
 また、静止画撮像モードが設定されている場合において、静止画記録の待機状態で入出力パネル190に表示される画像(モニタリング画像)をユーザが見ながら、所望の基準レンズを設定するようにしてもよい。この場合には、例えば、モニタリング画像上に、各ボタンを重ねて配置することにより、ユーザがモニタリング画像を見た状態で容易に設定操作を行うことができる。
 決定ボタン503は、利き目を選択する押下操作がされた後に、その選択を決定する際に押下されるボタンである。また、決定ボタン503の押下操作により決定された基準レンズに関する情報(基準レンズ情報)が立体視画像撮像条件保持部122に保持される。戻るボタン504は、例えば、直前に表示されていた表示画面に戻る場合に押下されるボタンである。
 図4Bに示す設定画面510は、フォーカス制御部123によるフォーカス制御の際に基準レンズの被写界深度に対する他のレンズの被写界深度を、遠点または近点の何れとするかを設定する際に入出力パネル190に表示される画面である。例えば、図4Aに示す設定画面500において決定ボタン503が押下された直後に設定画面510が表示される。設定画面510には、遠点ボタン511と、近点ボタン512と、決定ボタン513と、戻るボタン514とが設けられている。
 遠点ボタン511および近点ボタン512は、基準レンズの被写界深度に対する他のレンズの被写界深度を、遠点または近点の何れとするかを設定する際に押下されるボタンである。例えば、入出力パネル190において、所望のボタンの押下操作を行うことにより、他のレンズの被写界深度を選択することができる。この遠点または近点の設定については、図7を参照して詳細に説明する。
 なお、この例では、ユーザ操作により、基準レンズの被写界深度に対する他のレンズの被写界深度を、遠点または近点の何れとするかを設定する例を示すが、遠点または近点を予め設定しておくようにしてもよい。
 また、例えば、主要な被写体が遠点または近点の何れに存在するかを判断基準として、撮像動作中に自動で設定するようにしてもよい。例えば、主要な被写体を人物の顔とする場合には、左眼用撮像部200および右眼用撮像部300の何れかにより生成された撮像画像に含まれる人物の顔を検出し、この検出された顔の被写体距離(例えば、式2参照)を算出する。そして、その検出された顔の被写体距離が、基準レンズの合焦位置よりも遠点側である場合には、他のレンズの被写界深度を遠点に設定する。また、その検出された顔の被写体距離が、基準レンズの合焦位置よりも近点側である場合には、他のレンズの被写界深度を近点に設定する。なお、撮像画像に含まれる特定対象物(例えば、人物の顔)の検出方法として、例えば、特定対象物の輝度分布情報が記録されているテンプレートとコンテンツ画像とのマッチングによる検出方法(例えば、特開2004-133637参照。)を用いることができる。また、特定対象物が人物の顔である場合には、撮像画像に含まれる肌色の部分や人間の顔の特徴量に基づいた顔検出方法を用いることができる。
 また、静止画撮像モードが設定されている場合において、静止画記録の待機状態で入出力パネル190に表示される画像(モニタリング画像)をユーザが見ながら、遠点または近点の何れとするかを設定するようにしてもよい。この場合には、例えば、モニタリング画像上に、各ボタンを重ねて配置することにより、ユーザがモニタリング画像を見た状態で容易に設定操作を行うことができる。
 決定ボタン513は、遠点または近点を選択する押下操作がされた後に、その選択を決定する際に押下されるボタンである。また、決定ボタン513の押下操作により決定された遠点または近点に関する情報(遠点近点情報)が立体視画像撮像条件保持部122に保持される。戻るボタン514は、例えば、直前に表示されていた表示画面に戻る場合に押下されるボタンである。
 すなわち、操作受付部110は、第2被写体を、光軸方向において第1被写体よりも撮像装置100側に存在する被写体とするか、光軸方向において第1被写体よりも遠方側に存在する被写体とするかを選択する選択操作を受け付ける。なお、第1被写体は、基準レンズの合焦対象となる被写体であり、第2被写体は、他のレンズの合焦対象となる被写体である。
 図5Aに示す設定画面515は、フォーカス制御部123によるフォーカス制御の際に基準レンズの被写界深度の範囲に対する他のレンズの被写界深度の範囲の重複率を設定する際に入出力パネル190に表示される画面である。例えば、図4Bに示す設定画面510において決定ボタン513が押下された直後に設定画面515が表示される。設定画面515には、重複率設定バー516と、重複率指定位置517と、決定ボタン518と、戻るボタン519とが設けられている。
 重複率設定バー516は、基準レンズの被写界深度の範囲に対する他のレンズの被写界深度の範囲の重複率を設定する際に用いられるバーであり、重複率指定位置517が重ねて表示されている。例えば、重複率設定バー516において、ユーザが所望する重複率の位置に、重複率設定バー516を移動させることにより、基準レンズの被写界深度の範囲に対する他のレンズの被写界深度の範囲の重複率を設定することができる。例えば、重複率を0%に設定した場合には、基準レンズの被写界深度の範囲と他のレンズの被写界深度の範囲とが重複せずに、これらの2つの範囲が連続するように他のレンズの被写界深度が設定される。一方、例えば、重複率を100%に設定した場合には、基準レンズの被写界深度の範囲と他のレンズの被写界深度の範囲とが完全に重複するように他のレンズの被写界深度が設定される。この場合には、基準レンズの合焦位置と、他のレンズの合焦位置とが同一となる。なお、重複率については、図7を参照して詳細に説明する。
 また、この例では、ユーザ操作により、基準レンズの被写界深度の範囲に対する他のレンズの被写界深度の範囲の重複率を設定する例を示すが、その重複率を予め設定しておくようにしてもよい。例えば、0%、10~20%等のように設定しておくことができる。
 また、静止画撮像モードが設定されている場合において、静止画記録の待機状態で入出力パネル190に表示される画像(モニタリング画像)をユーザが見ながら、重複率を設定するようにしてもよい。この場合には、例えば、モニタリング画像上に、重複率設定バー516や各ボタン等を重ねて配置することにより、ユーザがモニタリング画像を見た状態で容易に設定操作を行うことができる。
 決定ボタン518は、重複率を指定する指定操作がされた後に、その指定を決定する際に押下されるボタンである。また、決定ボタン518の押下操作により決定された重複率に関する情報(重複率情報)が立体視画像撮像条件保持部122に保持される。戻るボタン519は、例えば、直前に表示されていた表示画面に戻る場合に押下されるボタンである。
 図5Bには、立体視画像撮像条件保持部122における保持内容例を示す。立体視画像撮像条件保持部122は、立体視画像撮像モードの各種撮像条件を設定するための設定情報を保持するものであり、設定項目125毎に設定情報126が保持される。
 設定項目125は、図4A、図4Bおよび図5Aに示す設定画面500、510、515においてユーザによる設定操作の対象となる項目である。また、設定情報126は、図4A,図4Bおよび図5Aに示す設定画面500、510、515においてユーザによる設定操作により設定された設定情報である。
 図5Bに示す例では、設定画面500における設定操作により、基準レンズとして「左(左眼)」が設定され、設定画面510における設定操作により、基準レンズの被写界深度に対する他のレンズの被写界深度として「遠点」が設定された場合を示す。また、図5Bに示す例では、設定画面515における設定操作により、被写界深度の重複率として「0%」が設定された場合を示す。
 [許容錯乱円および被写界深度の関係例]
 図6は、本開示の第1の実施の形態における撮像素子250および350の許容錯乱円と、光学系を構成する各レンズと、被写界深度との関係を概略的に示す図である。図6では、光学系を構成する各レンズをレンズ600として模式的に示す。また、被写体からの光がレンズ600に入射される。そして、レンズ600からの入射光を受光する撮像素子(撮像素子250、350)の受光面を撮像面610として示す。
 一般に、撮像素子のサイズおよび画素数、フィルタ形式等に基づいて、撮像装置において許容することができる最大のピント径が決まる。このピント径は、一般に、許容錯乱円径と呼ばれている。この許容錯乱円径は、例えば、35mm銀塩カメラサイズでは、約0.03mmとされ、APS(Advanced Photo System)-Cでは、約0.02mmとされている。この許容錯乱円径内である場合には、フォーカスがずれて撮像された画像であっても、その画像の再生時にはフォーカスが合っているように見える。
 ここで、図6に示すように、撮像面610に結像されるスポット611が最小となる状態に対応する被写体(フォーカスが合っている被写体)の位置621を含む面を被写体面620とする。この場合には、被写体面620から近点側および遠点側に、許容錯乱円径dの結像まで(撮像面610における位置612および613)許容することができるフォーカスズレの範囲DF(近点623および遠点622)ができる。この範囲DFは、一般に、被写界深度と称される。
 また、一般に、撮像装置には、撮像装置から被写体までの距離が一定以上離れると、無限遠までフォーカスが合う(許容錯乱円径d内)距離HDが存在する。この距離HDは、一般に、過焦点距離と称される。この過焦点距離HDは、レンズの焦点距離、許容錯乱円径、レンズの絞り(F値(F No.))により一義的に決まる値である。具体的には、過焦点距離HDは、次の式1を用いて求めることができる。
  HD=f/d×F  … 式1
 なお、fは、レンズの焦点距離を示す値であり、dは、許容錯乱円径を示す値であり、Fは、F値である。
 ここで、過焦点距離HDよりも遠くの被写体を撮像対象とする場合には、その被写体は過焦点距離HDから無限遠までの間に存在するため、その被写体にはフォーカスが合っていると推定される。しかしながら、過焦点距離よりも撮像装置100側に存在する被写体を撮像対象とする場合には、フォーカスが合っている被写体と、フォーカスが合っていない被写体とが存在することが想定される。ここで、立体視画像を撮影する場合には、2つの光学系を用いて略同一の被写体を含む複数の画像を生成する。そこで、これらの複数の画像を撮像する際における被写界深度を異なる範囲に設定することにより、1つの画像を撮像する際における被写界深度よりも深い被写体深度として、略同一の被写体を含む画像を生成することができる。
 ただし、このように、立体視画像を表示するための2つの画像(左眼視用画像および右眼視用画像)を撮像した場合には、これらの2つの画像に含まれる被写体のうち、フォーカスが合っている被写体と、フォーカスが合っていない被写体とが異なることになる。しかしながら、立体視画像は、目の左右視差による錯覚を利用してユーザに立体的な画像を見せるものである。このため、2つの画像のうちの少なくとも1つの画像のフォーカスが合っていれば、それらの画像を立体的な画像として認知することができ、ユーザに与える影響は少ないと想定される。
 [被写界深度の設定例]
 図7は、本開示の第1の実施の形態におけるフォーカス制御部123により設定される被写界深度と被写体との関係を概略的に示す図である。図7(a)には、撮像装置100が備える右眼用撮像部300と、右眼用撮像部300の撮像対象となる物体A乃至Fとの関係を上側から見た場合を示す。また、図7(b)には、撮像装置100が備える左眼用撮像部200と、左眼用撮像部200の撮像対象となる物体A乃至Fとの関係を上側から見た場合を示す。なお、物体A乃至Fは、撮像装置100の光軸方向において、略一定間隔で配置されている物体であるものとする。また、図7では、左眼用撮像部200を構成する各レンズをレンズ201として模式的に示し、右眼用撮像部300を構成する各レンズをレンズ301として模式的に示す。
 ここで、本開示の第1の実施の形態では、左眼用撮像部200および右眼用撮像部300のうちの何れかを基準(基準レンズ)とする。図7では、左眼用撮像部200を基準とする例を示す。また、図7では、右眼用撮像部300の被写界深度の範囲が、左眼用撮像部200の被写界深度の範囲よりも遠方側となるように設定されている場合を例にして説明する。また、図7では、左眼用撮像部200の被写界深度の範囲に対する右眼用撮像部300の被写界深度の範囲の重複率として0%が設定されている場合を例にして説明する。すなわち、図7では、図5Bに示す設定情報126の内容が立体視画像撮像条件保持部122に保持されている場合を例にして説明する。
 また、上述したように、過焦点距離から無限遠までに存在する被写体については、フォーカスが合っている。このため、フォーカス制御部123は、撮像部101の合焦対象となる被写体が過焦点距離の範囲内に存在する場合には、フォーカスレンズ213および313を同期してフォーカス制御を行う。そこで、図7に示す例では、過焦点距離よりも撮像装置100側に存在する被写体を主に撮像対象とする場合を例にして説明する。
 ここで、物体A乃至Fのうち、左眼用撮像部200の合焦対象被写体を物体Cとする。この合焦対象被写体(物体C)は、例えば、左眼用撮像部200により生成される撮像画像における特定エリアに含まれる被写体とすることができる。なお、撮像画像における特定エリアは、例えば、撮像画像における中央部分に位置するエリアとすることができる。また、例えば、ユーザ操作(例えば、入出力パネル190におけるタッチ操作)により、撮像画像における特定エリアを設定するようにしてもよい。また、例えば、特定対象物を検出する特定対象物検出部を撮像装置100に備え、この特定対象物検出部により特定対象物が検出された場合には、その検出された特定対象物の撮像画像における位置を特定エリアとして設定するようにしてもよい。例えば、特定対象物検出部として顔検出部を撮像装置100に備え、撮像画像から人物の顔が検出された場合には、その検出された顔の撮像画像における位置を特定エリアとして設定することができる。なお、顔検出方法については、上述した顔検出方法を用いることができる。
 ここで、図7(b)に示す左眼用撮像部200の過焦点距離HDについては、上述した式1を用いて求めることができる。すなわち、次式により求めることができる。
  HD=f/d×F
 なお、f、d、Fについては、式1と同様である。
 ここで、左眼用撮像部200の合焦対象被写体(物体C)までの距離(被写体距離)をLとし、レンズ201から撮像素子250に結像される像までの距離をbとし、レンズの焦点距離をfとする場合には、次の式2が成り立つ。
  (1/L)+(1/b)=1/f  … 式2
 この式2により、被写体距離L=1/((1/f)-(1/b))を求めることができる。
 続いて、被写体距離Lを用いて、被写界深度の遠点側のフォーカスが合っている範囲のうち、撮像装置100から最も遠い距離LLを求める。距離LLについては、次の式3を用いて求めることができる(上野千鶴子、他6名 著、「写真用語事典」、株式会社日本カメラ社、1991年10月15日、p.193-195 参照)。
  LL=HD×L/(HD-L)  … 式3
 ここで、左眼用撮像部200および右眼用撮像部300の被写界深度の少なくとも一部が互いに重なり合うようにすることを想定する。この場合には、右眼用撮像部300の被写界深度の近点側のフォーカスが合っている範囲のうち、撮像装置100から最も近い距離LRが、式3により求められる距離LLよりも近い距離とする必要がある。すなわち、次の式4の関係を満たす必要がある。
  LR≦LL  … 式4
 また、図7(a)に示すように、右眼用撮像部300の合焦対象被写体までの距離(被写体距離)をLとする場合を想定する。この場合には、被写体距離Lを用いて、被写界深度の近点側のフォーカスが合っている範囲のうち、撮像装置100に最も近い距離LRを求めることができる。すなわち、距離LRについては、次の式5を用いて求めることができる(式3で示した文献参照)。
  LR=HD×L/(HD+L)  … 式5
 なお、HD=HD(=f/d×F)である。
 この例では、上述したように、左眼用撮像部200の被写界深度の範囲に対する右眼用撮像部300の被写界深度の範囲の重複率として0%が設定されている。このため、式4の関係を満たす距離LRのうち、最大の値を用いる(すなわち、LR=LL)。この場合に、LR=LL、HD=HDを式5に代入すると、次の式6を求めることができる。
  LL=HD×L/(HD+L)  … 式6
 この式6を変形することにより、右眼用撮像部300の合焦対象被写体までの距離(被写体距離)Lを求めることができる。すなわち、式7を用いて、被写体距離Lを求めることができる。
  L=HD×LL/(HD-LL)  … 式7
 このように、式7を用いて算出された被写体距離Lに合焦するように、右眼用撮像部300が備えるフォーカスレンズ313の位置を移動させる。ここで、被写体距離Lに合焦するようにフォーカスレンズ313の位置を移動させる場合には、被写体に対する合焦時における撮像装置100と被写体との距離(合焦距離)と、フォーカスレンズの位置との関係を表す特性曲線を用いる。この特性曲線は、ズームレンズの位置に対応して決定される曲線であり、誤差が考慮されたものである(例えば、特開2009-115981号(図8)参照。)。
 このように、フォーカス制御部123は、物体Cの位置(被写体距離)と、F値と、レンズの焦点距離とにより特定される被写界深度DFの範囲とは異なる範囲に含まれる物体Eに合焦するように、フォーカスレンズ313を用いたフォーカス制御を行う。このフォーカスレンズ313を用いたフォーカス制御を行うことにより、図7に示すように、右眼用撮像部300の被写界深度DFが、左眼用撮像部200の被写界深度DFよりも遠方となり、かつ、両者が連続する状態となる。この場合には、左眼用撮像部200および右眼用撮像部300の被写界深度を合わせた被写界深度DFが、左眼用撮像部200および右眼用撮像部300により生成される画像の被写界深度に相当する。
 例えば、左眼用撮像部200および右眼用撮像部300により生成される画像(左眼視用画像および右眼視用画像)を立体視画像として表示する場合には、被写界深度DFに含まれる被写体については、フォーカスが合った状態で見ることができる。すなわち、矩形631および632に含まれる被写体にフォーカスが合った状態で見ることができる。このようにフォーカス制御を行うことにより、被写界深度が比較的浅い撮像条件であっても、比較的広範囲に含まれる被写体を適切に立体視することができる立体視画像を生成することができる。このように生成された立体視画像を表示することにより、ユーザが自然な感じで立体視画像を見ることができる。
 なお、図7では、左眼用撮像部200の被写界深度の遠点の位置と、右眼用撮像部300の被写界深度の近点の位置とを合わせて、これらの被写界深度の範囲が連続する例(重複率として0%が設定されている例)を示した。ただし、図5Aに示す設定画面515において設定された重複率に応じて、被写界深度の範囲がオーバーラップするように、右眼用撮像部300の合焦位置を設定することができる。例えば、重複率RR1(ただし、0(%)<RR1<100(%))が設定されている場合には、被写界深度DFおよび被写界深度DFの重複率が、その設定されている値(または、その値を含む一定範囲内)となるように被写体距離Lが算出される。
 また、図7では、左眼用撮像部200を基準とし、右眼用撮像部300の被写界深度の範囲を、左眼用撮像部200の被写界深度の範囲よりも遠方側に設定する例を示した。以下では、左眼用撮像部200を基準とし、右眼用撮像部300の被写界深度の範囲を、左眼用撮像部200の被写界深度の範囲よりも撮像装置100側に設定する例を示す。この場合には、被写体距離Lを用いて、被写界深度の近点側のフォーカスが合っている範囲のうち、撮像装置100に最も近い距離LLを求める。距離LLについては、次の式8を用いて求めることができる(式3で示した文献参照)。
  LL=HD×L/(HD+L)  … 式8
 なお、式8は、式3の分母を「-」から「+」に変形したものである。
 また、右眼用撮像部300の合焦対象被写体までの距離(被写体距離)L1(図示せず)については、式9を用いて求めることができる。
  L1=HD×LL/(HD+LL)  … 式9
 なお、式9は、式7の分母を「-」から「+」に変形したものである。
 このように、立体視画像撮像条件保持部122に保持されている設定情報に応じて、右眼用撮像部300の合焦対象被写体までの距離(被写体距離)L1が算出される。また、図5Aに示す設定画面515において設定された重複率に応じて、被写界深度の範囲がオーバーラップするように、右眼用撮像部300の合焦位置を設定することができる。
 また、撮像装置100におけるズーム操作により、レンズの焦点距離が変化した場合には、その変化に応じて、各撮像部の合焦位置が適宜算出される。
 [立体視画像例]
 図8および図9は、本開示の第1の実施の形態における左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(静止画)例である。図8には、撮像装置100の近くから無限遠方向に向かって並べた複数本の筆記具を被写体として撮像動作を行った場合に生成された1組の画像例を示す。
 図8の上図には、左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(左眼視用画像650および右眼視用画像651)を左右に並べて示す。左眼視用画像650および右眼視用画像651は、立体視画像を表示するための1組の画像であり、左眼用撮像部200および右眼用撮像部300による撮像時における合焦位置を同一とした場合の一例である。なお、図8の上図では、左眼視用画像650および右眼視用画像651の撮像時における合焦位置を点線P1として模式的に示す。すなわち、図8の上図に示す例では、左眼視用画像650および右眼視用画像651の何れについても、合焦位置を示す点線P1に重なっている筆記具にフォーカスが合っている。また、合焦位置を示す点線P1に重なっている筆記具付近の被写体についてもフォーカスが合っている。すなわち、合焦位置を示す点線P1を基準とする被写界深度に含まれる被写体に対してフォーカスが合うことになる。
 このように、左眼視用画像650および右眼視用画像651の何れについても、略同一の被写体にフォーカスが合っている場合には、そのフォーカスが合っている被写体から比較的離れている被写体については、フォーカスが合っていないため、ボケている。すなわち、合焦位置を示す点線P1を基準とする被写界深度に含まれない被写体については、ボケることになる。例えば、左眼視用画像650および右眼視用画像651に含まれる奥側の筆記具(矢印652および653で示す)は、ボケている。
 また、左眼視用画像650および右眼視用画像651については、合焦位置が略同一であるため、フォーカスが合っている被写体およびフォーカスが合っていない被写体についても、略同様となる。このため、左眼視用画像650および右眼視用画像651を用いて表示される立体視画像については、合焦位置に対応する被写体およびこれの前後の被写体にはフォーカスが合っているが、これら以外についてはフォーカスが合っていない画像となる。
 このように、左眼視用画像650および右眼視用画像651を用いて立体視画像を表示する場合には、フォーカスが合っている被写体(点線P1が重なっている筆記具)については比較的綺麗に見ることができる。しかしながら、そのフォーカスが合っている被写体から比較的離れている被写体(例えば、矢印652および653で示す奥側の筆記具)については、フォーカスが合っていないため、ボケて見える。このため、左眼視用画像650および右眼視用画像651に対応する立体視画像を見ているユーザにとっては、裸眼視時に比べ、限定的な立体画像となり、ユーザが違和感を生じることが想定される。
 図8の下図には、左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(左眼視用画像656および右眼視用画像657)を左右に並べて示す。左眼視用画像656および右眼視用画像657は、立体視画像を表示するための1組の画像であり、左眼用撮像部200および右眼用撮像部300による撮像時における合焦位置が異なる場合の一例である。なお、図8の下図では、左眼視用画像656および右眼視用画像657の撮像時における合焦位置を点線P2およびP3として模式的に示す。すなわち、図8の下図に示す例では、左眼視用画像656については、合焦位置を示す点線P2に重なっている筆記具にフォーカスが合っている。一方、右眼視用画像657については、合焦位置を示す点線P3に重なっている筆記具にフォーカスが合っている。すなわち、左眼視用画像656および右眼視用画像657は、その撮像動作時における被写界深度の少なくとも一部が重複するように両者の被写界深度をずらして撮像された画像である。
 このように、左眼視用画像656および右眼視用画像657のそれぞれについて、フォーカスが合っている被写体が異なる場合には、光軸方向において比較的離れている被写体については、少なくとも1つの撮像画像についてフォーカスが合っている。例えば、手前側の筆記具およびこれに近接する筆記具については、左眼視用画像656においてフォーカスが合っている。また、奥側の筆記具およびこれに近接する筆記具については、右眼視用画像657においてフォーカスが合っている。
 すなわち、左眼視用画像656において、点線P2を基準とする被写界深度に含まれる手前側の被写体についてはフォーカスが合い、点線P2を基準とする被写界深度に含まれない奥側の被写体(矢印658で示す)については、ボケることになる。これに対して、右眼視用画像657において、点線P3を基準とする被写界深度に含まれる奥側の被写体についてはフォーカスが合い、点線P3を基準とする被写界深度に含まれない手前側の被写体(矢印659で示す)については、ボケることになる。
 このように、立体視画像を表示するための2つの画像(左眼視用画像656および右眼視用画像657)を撮像した場合には、これらの2つの画像について比較的深い被写界深度(2つの被写界深度の合わせた範囲)を設定することができる。ただし、これらの2つの画像に含まれる被写体のうち、フォーカスが合っている被写体と、フォーカスが合っていない被写体とが異なる。しかしながら、上述したように、立体視画像は、目の左右視差による錯覚を利用してユーザに立体的な画像を見せるものである。このため、2つの画像のうちの少なくとも1つの画像のフォーカスが合っていれば、それらの画像を立体的な画像として認知することができ、ユーザに与える影響は少ないと想定される。このため、左眼視用画像656および右眼視用画像657を用いて立体視画像を表示する場合には、光軸方向において比較的離れている被写体についても、比較的綺麗に立体視画像を見ることができる。例えば、見ようとする意識を、手前から奥に向かって変更しながら、ユーザが対象物(例えば、複数本の筆記具)を見ている場合には、その変更に合わせて、その被写体にフォーカスが合い、比較的綺麗に立体視画像を見ることができる。
 図9には、撮像装置100の近くから無限遠方向に向かって並べた複数本の金型部材を被写体として撮像動作を行った場合に生成された画像例を示す。
 図9の上図には、左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(左眼視用画像661および右眼視用画像662)を並べて示す。左眼視用画像661および右眼視用画像662は、左眼用撮像部200および右眼用撮像部300による撮像時における合焦位置を同一とした場合の一例である。
 このように、左眼視用画像661および右眼視用画像662の何れについても、略同一の被写体にフォーカスが合っている場合には、そのフォーカスが合っている被写体から比較的離れている被写体については、フォーカスが合っていないため、ボケている。すなわち、合焦位置を基準とする被写界深度に含まれない被写体については、ボケることになる。例えば、左眼視用画像661および右眼視用画像662に含まれる手前側の金型部材および奥側の金型部材は、ボケている。この場合には、図8の上図に示す例と同様に、左眼視用画像661および右眼視用画像662に対応する立体視画像を見ているユーザにとっては、裸眼視時に比べ、限定的な立体画像となり、ユーザが違和感を生じることが想定される。
 図9の下図には、左眼用撮像部200および右眼用撮像部300のそれぞれにより生成された1組の画像(左眼視用画像663および右眼視用画像664)を並べて示す。左眼視用画像663および右眼視用画像664は、左眼用撮像部200および右眼用撮像部300による撮像時における合焦位置が異なる場合の一例である。
 このように、左眼視用画像663および右眼視用画像664のそれぞれについて、フォーカスが合っている被写体が異なる場合には、光軸方向において比較的離れている被写体については、少なくとも1つの撮像画像についてフォーカスが合っている。例えば、手前側の金型部材については、左眼視用画像663においてフォーカスが合っている。また、奥側の金型部材については、右眼視用画像664においてフォーカスが合っている。また、左眼視用画像663および右眼視用画像664において、フォーカスが合っている被写体が連続している。このため、図8の下図に示す例と同様に、左眼視用画像656および右眼視用画像657を用いて立体視画像を表示する場合には、光軸方向において比較的離れている被写体についても、比較的綺麗に立体視画像を見ることができる。
 [撮像装置の動作例]
 次に、本開示の第1の実施の形態における撮像装置100の動作について図面を参照して説明する。
 図10は、本開示の第1の実施の形態における撮像装置100によるフォーカス制御処理の処理手順の一例を示すフローチャートである。この例では、静止画撮像モードが設定されている状態で、静止画の記録指示操作が行われた際におけるフォーカス制御処理を示す。
 最初に、ユーザによりシャッターボタン111の全押しが行われる。このように、シャッターボタン111の全押しが行われた場合には、2つの撮像部の合焦位置が異なるようにして立体視画像を記録する設定がされているか否かが判断される(ステップS901)。この設定は、ユーザ操作により予め設定されているものとする。2つの撮像部の合焦位置が異なるようにして立体視画像を記録する設定がされていない場合には(ステップS901)、立体視画像記録処理が行われる(ステップS917)。この立体視画像記録処理は、2つの撮像部の合焦位置が同一となるように立体視画像を生成し、生成された立体視画像を記録する処理である。
 2つの撮像部の合焦位置が異なるようにして立体視画像を記録する設定がされている場合には(ステップS901)、フォーカス制御部123が、立体視画像に関する各設定情報を立体視画像撮像条件保持部122から取得する(ステップS902)。続いて、フォーカス制御部123が、撮像部101から各撮像情報(基準レンズの焦点距離、F値等)を取得する(ステップS903)。続いて、フォーカス制御部123が、基準レンズに設定されている撮像部におけるフォーカス制御を行う(ステップS904)。すなわち、撮像画像における特定エリアに含まれる被写体(第1被写体)に合焦するようにフォーカス制御が行われる。なお、ステップS904は、特許請求の範囲に記載の第1制御手順の一例である。
 続いて、フォーカス制御部123が、基準レンズに設定されている撮像部におけるフォーカス制御により合焦対象となった被写体が過焦点距離に存在するか否かを判断する(ステップS905)。その合焦対象となった被写体が過焦点距離に存在しない場合には(ステップS905)、フォーカス制御部123が、他のレンズの被写界深度を遠点側とする設定がされているか否かを判断する(ステップS906)。
 他のレンズの被写界深度を遠点側とする設定がされている場合には(ステップS906)、フォーカス制御部123が、基準レンズの合焦位置に基づいて、他のレンズの遠点側の合焦位置を算出し(ステップS907)、ステップS909に進む。一方、他のレンズの被写界深度を近点側とする設定がされている場合には(ステップS906)、フォーカス制御部123が、基準レンズの合焦位置に基づいて、他のレンズの近点側の合焦位置を算出し(ステップS908)、ステップS909に進む。続いて、フォーカス制御部123が、算出された合焦位置に基づいて、他のレンズに対応する撮像部におけるフォーカス制御を行う(ステップS909)。すなわち、撮像画像に含まれる被写体のうち、光軸方向において第1被写体とは異なる位置に存在する他の被写体(第2被写体)に合焦するようにフォーカス制御が行われる。なお、ステップS906乃至S909は、特許請求の範囲に記載の第2制御手順の一例である。
 続いて、撮像部101が、異なる合焦位置となる2つの画像(左眼視用画像および右眼視用画像)を生成する(ステップS910)。なお、フォーカス制御が行われている場合においても、撮像部101により撮像画像の生成動作が行われているものとする。また、ステップS910は、特許請求の範囲に記載の撮像手順の一例である。
 続いて、記録制御部150が、生成された2つの画像(左眼視用画像および右眼視用画像)を立体視画像の画像ファイルとして、各属性情報を関連付けてコンテンツ記憶部160に記録させる(ステップS911)。ここで、各属性情報には、立体視画像を構成する2つの画像(左眼視用画像および右眼視用画像)が異なる合焦位置により生成された旨が含まれる。
 また、基準レンズに設定されている撮像部におけるフォーカス制御により合焦対象となった被写体が過焦点距離に存在する場合には(ステップS905)、基準レンズの合焦位置と他のレンズの合焦位置とが同一と決定される(ステップS912)。続いて、フォーカス制御部123が、基準レンズの合焦位置に基づいて、他のレンズに設定されている撮像部におけるフォーカス制御を行う(ステップS913)。続いて、撮像部101が、同一の合焦位置となる2つの画像(左眼視用画像および右眼視用画像)を生成する(ステップS914)。
 続いて、記録制御部150が、生成された2つの画像(左眼視用画像および右眼視用画像)を立体視画像の画像ファイルとして、その旨を示す属性情報を関連付けてコンテンツ記憶部160に記録させる(ステップS911)。
 この例では、静止画撮像モードが設定されている状態で、静止画の記録指示操作が行われた際におけるフォーカス制御処理を示したが、動画の記録動作中におけるフォーカス制御処理についても適用することができる。例えば、動画の記録動作中には、動画を構成する各フレーム、または、一定間隔毎のフレームについて、2つの撮像部におけるフォーカス制御が行われる。
 [合焦位置テーブルを用いたフォーカス制御例]
 以上では、左眼用撮像部200および右眼用撮像部300のうち、基準となる撮像部の合焦位置に基づいて、他の撮像部の合焦位置を算出する例を示した。しかしながら、例えば、一定の撮像条件が設定されている場合において、基準となる撮像部の合焦位置と他の撮像部の合焦位置との関係は一定の規則性を有すると想定される。そこで、以下では、基準となる撮像部の合焦位置と他の撮像部の合焦位置との関係をテーブルに保持しておき、この保持内容に基づいて、他の撮像部の合焦位置を決定する例を示す。
 図11は、本開示の第1の実施の形態の変形例における撮像装置670の機能構成例を示すブロック図である。撮像装置670は、図3に示す撮像装置100において、フォーカス制御部123の代わりにフォーカス制御部690を設け、合焦位置テーブル保持部680を追加したものである。なお、これら以外は、撮像装置100と略同様であるため、共通する部分については、同一の符号を付して、これらの一部の説明を省略する。
 合焦位置テーブル保持部680は、撮像装置670において設定されている撮像条件毎に、一の撮像部の合焦位置と他の撮像部の合焦位置との関係を保持するテーブルである。また、合焦位置テーブル保持部680は、保持されているテーブルの内容をフォーカス制御部690に供給する。なお、合焦位置テーブル保持部680に保持されているテーブルの内容については、図12を参照して詳細に説明する。
 また、フォーカス制御部690は、一の撮像部の合焦位置に関連付けられている他の撮像部の合焦位置を合焦位置テーブル保持部680から取得し、この取得された他の撮像部の合焦位置に基づいて、他の撮像部のフォーカス制御を行う。
 [テーブルの保持内容例]
 図12は、本開示の第1の実施の形態における合焦位置テーブル保持部680に保持される合焦位置テーブルの一例を示す図である。図12に示す合焦位置テーブル681は、撮像装置100における撮像情報682と、一の撮像部の合焦位置と他の撮像部の合焦位置との関係683とを関連付けて保持するテーブルである。なお、図12では、基準レンズの被写界深度に対する他のレンズの被写界深度を「遠点」とし、被写界深度の重複率を「0%」とする場合における合焦位置テーブルの一例を示す。
 例えば、撮像装置100を用いて撮像動作が行われている場合における撮像条件として、レンズ焦点距離「45~51mm」と、絞り値(F No.)「2.8~3.0」と、許容錯乱円径「0.03mm」とが設定されている場合を想定する。この撮像条件が設定されている場合において、基準となる撮像部の合焦位置(基準レンズの合焦距離)が100~103.5(cm)である場合には、他の撮像部の合焦位置(他のレンズの合焦距離)を107.2(cm)と決定することができる。同様に、基準となる撮像部の合焦位置が103.6~107.2(cm)である場合には、他の撮像部の合焦位置を111.2(cm)と決定することができる。
 このように、フォーカス制御部690が、撮像装置670に合焦位置テーブル681を保持して、この合焦位置テーブル681を用いて、基準となる撮像部の合焦位置に基づいて、他の撮像部の合焦位置を決定することができる。このため、撮像動作時において、基準となる撮像部の合焦位置に基づいて、他の撮像部の合焦位置を順次算出しなくてもよいため、演算処理に係る負荷を軽減させることができる。
 以上で示したように、本開示の第1の実施の形態では、立体視画像を生成することが可能な撮像装置100において、左右の被写界深度の差を利用して2つの撮像画像を生成し、この生成された2つの撮像画像を記録する。これにより、さらに奥行き感を拡大した立体視画像を記録することができるため、さらに自然な立体視画像を表示することができる。
 すなわち、立体視画像を見る場合において、フォーカスが合っている画像領域については、比較的綺麗に立体視画像を見ることができるが、フォーカスが合っていないためボケている画像領域についても、それなりの立体感を持った画像として見ることができる。しかしながら、例えば、見ようとする意識を、手前から奥に向かって変更しながら、ユーザが対象物を裸眼で見ている場合には、その変更に合わせて、その対象物にフォーカスを合わせることができるため、比較的綺麗にその対象物を見ることができる。このように、ユーザが対象物を裸眼で見ている感じ(自然な感じ)に近い感覚で、立体視画像を見ることができれば、その立体視画像をユーザがさらに楽しむことができると考えられる。そこで、本開示の第1の実施の形態では、フォーカスが合っている画像領域を拡張することにより、ユーザが対象物を裸眼で見ている自然な感じに近い感覚で、立体視画像を見ることができる。
 また、例えば、レンズの焦点距離が長く、かつ、被写体までの距離が近い場合、または、十分な照度が得られず絞りが開けぎみになっているような露出環境下である場合でも、比較的深い被写界深度を設定することができる。このように比較的深い被写界深度を設定することができるため、立体視画像の表示時には、比較的広範囲の被写体にフォーカスが合った立体視画像を見ることができ、さらに自然に近い形で立体視画像を観賞することができる。
 また、十分な照度が得られず絞りが開けぎみになっているような露出環境下である場合でも、照明を強化せずに、比較的深い被写界深度を得ることができる。すなわち、通常のフォーカス制御では、ボケてしまうような撮像条件下でも、被写界深度を拡張することができ、これにより、立体視の際には、拡張された被写界深度内の鮮鋭な画像を見ることができる。
 また、立体視画像の撮像時における撮像条件をユーザ操作により設定可能であるため、ユーザ好みの立体視画像を容易に記録することができる。
 <2.第2の実施の形態>
 本開示の第1の実施の形態では、2つの撮像部の合焦位置が異なるように1組の左眼視用画像および右眼視用画像を静止画ファイルとして記録する例を示した。しかしながら、ユーザによっては、2つの撮像部の合焦位置が異なるように撮像された立体視画像と、2つの撮像部の合焦位置が同一となるように撮像された立体視画像とを表示時に比較して見易い立体視画像を表示対象とすることを所望することも考えられる。
 そこで、本開示の第2の実施の形態では、2つの撮像部の合焦位置が異なるように撮像された立体視画像(静止画)と、2つの撮像部の合焦位置が同一となるように撮像された立体視画像(静止画)とを連続して記録(いわゆる、連写)する例を示す。なお、本開示の第2の実施の形態における撮像装置の構成については、図1乃至図3に示す例と略同様である。このため、本開示の第1の実施の形態と共通する部分については、同一の符号を付して、これらの説明の一部を省略する。
 [撮像モードの設定例]
 図13A及び図13Bは、本開示の第2の実施の形態における入出力パネル190の表示例および立体視画像撮像条件保持部127における保持内容例を示す図である。図13Aに示す設定画面520は、撮像装置700における撮像モードを設定する際に入出力パネル190に表示される画面である。例えば、立体視画像を記録するための立体視画像撮像モードの設定操作が行われた後(例えば、図4Bに示す設定画面510における決定操作が行われた後)に設定画面520が表示される。設定画面520には、1組記録モードボタン521と、連写モードボタン522および523と、決定ボタン524と、戻るボタン525とが設けられている。
 1組記録モードボタン521は、1組の立体視画像のみを記録する撮像モードの設定を行う際に押下されるボタンである。すなわち、1組記録モードボタン521の押下操作により1組記録モードが設定されている場合には、1度のシャッターボタン111の押下操作により、立体視画像を表示するための1組の画像(左眼視用画像および右眼視用画像)が記録される。
 連写モードボタン522および523は、連続して生成された複数組の立体視画像を記録する撮像モードの設定を行う際に押下されるボタンである。具体的には、連写モードボタン522は、連続して生成された2組の立体視画像を記録する撮像モードの設定を行う際に押下されるボタンである。この2組の立体視画像のうち、1組の立体視画像は、2つの撮像部の合焦位置が同一となるように撮像された立体視画像である。また、他の1組の立体視画像は、2つの撮像部の合焦位置が異なるように撮像された立体視画像である。
 また、連写モードボタン523は、連続して生成された3組の立体視画像を記録する撮像モードの設定を行う際に押下されるボタンである。この3組の立体視画像のうち、1組の立体視画像は、2つの撮像部の合焦位置が同一となるように撮像された立体視画像である。また、他の2組の立体視画像は、2つの撮像部の合焦位置が異なるように撮像された立体視画像である。ここで、この2組の立体視画像のうち、1組の立体視画像は、基準となる撮像部の合焦位置よりも、他の撮像部の合焦位置を遠点側にして撮像された立体視画像である。また、他の1組の立体視画像は、基準となる撮像部の合焦位置よりも、他の撮像部の合焦位置を近点側にして撮像された立体視画像である。
 このように、連写モードボタン522または523の押下操作により連写モードが設定されている場合には、1度のシャッターボタン111の押下操作により、立体視画像を表示するための複数組の画像(左眼視用画像および右眼視用画像)が記録される。
 なお、この例では、ユーザの手動操作により撮像モードを設定する例を示すが、撮像動作の状態に応じて、撮像装置700が自動で撮像モードを設定するようにしてもよい。例えば、撮像装置700において、レンズの焦点距離が長く被写体距離が短い場合、または、絞りが一定値以上開放されている場合に、連写モードを自動で設定するようにしてもよい。すなわち、被写界深度が比較的浅いと推定される場合には、連写モードを自動で設定することができる。この場合に、被写界深度の深さに応じて、2組の立体視画像を記録する(連写モードボタン522に対応)か、3組の立体視画像を記録するか(連写モードボタン523に対応)を決定するようにしてもよい。
 また、静止画撮像モードが設定されている場合において、静止画記録の待機状態で入出力パネル190に表示される画像(モニタリング画像)をユーザが見ながら、所望の撮像モードを設定するようにしてもよい。この場合には、例えば、モニタリング画像上に、各ボタンを重ねて配置することにより、ユーザがモニタリング画像を見た状態で容易に設定操作を行うことができる。
 決定ボタン524は、撮像モードを選択する押下操作がされた後に、その選択を決定する際に押下されるボタンである。また、決定ボタン524の押下操作により決定された撮像モードに関する情報(撮像モード情報)が立体視画像撮像条件保持部122に保持される。戻るボタン525は、例えば、直前に表示されていた表示画面に戻る場合に押下されるボタンである。
 図13Bには、立体視画像撮像条件保持部127における保持内容例を示す。立体視画像撮像条件保持部127は、図5Bに示す立体視画像撮像条件保持部122に設定項目「撮像モード」を追加したものである。なお、設定項目を追加した点以外は、図5Bに示す立体視画像撮像条件保持部122と略同様であるため、立体視画像撮像条件保持部122と共通する部分については、同一の符号を付して、これらの説明の一部を省略する。
 設定項目125は、図13Aに示す設定画面520においてユーザによる設定操作の対象となる項目であり、設定情報126は、図13Aに示す設定画面520においてユーザによる設定操作により設定された設定情報である。
 図13Bに示す例では、設定画面520における設定操作(連写モードボタン522の押下操作)により、撮像モードとして「連写モード(2組の立体視画像)」が設定された場合を示す。
 [立体視画像の記録例]
 図14は、本開示の第2の実施の形態における撮像装置700による撮像動作により生成される画像の記録例を模式的に示す図である。図14(a)乃至(c)では、時間軸において、立体視画像(静止画)の記録指示操作(シャッターボタン111の全押し操作)と、記録対象となる画像(静止画)との関係を模式的に示す。
 図14(a)には、図13Aに示す1組記録モードボタン521の押下操作により1組記録モードが設定されている場合における画像の記録例を示す。1組記録モードが設定されている場合には、シャッターボタン111の押下操作(いわゆる、全押し操作)により、立体視画像を表示するための1組の画像(左眼視用画像および右眼視用画像)711が記録される。すなわち、記録制御部150が、1組の画像711を関連付けてコンテンツ記憶部160に記録させる。この1組の画像711は、2つの撮像部の合焦位置が異なるように撮像された立体視画像である。なお、1組の画像711の生成時刻をt1で示す。
 図14(b)には、図13Aに示す連写モードボタン522の押下操作により連写モード(2組の立体視画像)が設定されている場合における画像の記録例を示す。この連写モードが設定されている場合には、シャッターボタン111の押下操作(いわゆる、全押し操作)により、立体視画像を表示するための2組の画像(1組の画像712および713)が記録される。すなわち、記録制御部150が、点線の矩形721で囲まれた各画像(1組の画像712および713)を関連付けてコンテンツ記憶部160に記録させる。ここで、1組の画像712は、2つの撮像部の合焦位置が同一となるように撮像された立体視画像である。また、1組の画像713は、2つの撮像部の合焦位置が異なるように撮像された立体視画像である。なお、1組の画像712の生成時刻をt11で示し、1組の画像713の生成時刻をt12で示す。
 図14(c)には、図13Aに示す連写モードボタン523の押下操作により連写モード(3組の立体視画像)が設定されている場合における画像の記録例を示す。この連写モードが設定されている場合には、シャッターボタン111の押下操作(いわゆる、全押し操作)により、立体視画像を表示するための3組の画像(1組の画像714乃至716)が記録される。すなわち、記録制御部150が、点線の矩形722で囲まれた各画像(1組の画像714乃至716)を関連付けてコンテンツ記憶部160に記録させる。ここで、1組の画像714は、2つの撮像部の合焦位置が同一となるように撮像された立体視画像である。また、1組の画像715および716は、2つの撮像部の合焦位置が異なるように撮像された立体視画像である。例えば、1組の画像715については、左眼用撮像部200の被写界深度よりも、右眼用撮像部300の被写界深度を遠点側として、2つの撮像部の合焦位置が異なるように撮像された立体視画像とすることができる。また、例えば、1組の画像716については、左眼用撮像部200の被写界深度よりも、右眼用撮像部300の被写界深度を近点側として、2つの撮像部の合焦位置が異なるように撮像された立体視画像とすることができる。なお、1組の画像714の生成時刻をt21で示し、1組の画像715の生成時刻をt22で示し、1組の画像716の生成時刻をt23で示す。
 なお、図14(b)および(c)に示す画像の生成順序および記録順序は一例であり、これらの順序を変更するようにしてもよい。
 このように、制御部121は、静止画の指示操作が受け付けられた場合には、第1撮像動作および第2撮像動作を2つの撮像部に連続して行わせる制御を行う。ここで、第1撮像動作は、2つの撮像部の合焦位置が異なるようにフォーカス制御を行うことにより2つの画像を生成する撮像動作である。また、第2撮像動作は、2つの撮像部の合焦位置が同一となるようにフォーカス制御を行うことにより2つの画像を生成する撮像動作である。すなわち、第2撮像動作では、第1撮像動作により合焦対象となる2つの被写体(光軸方向において位置が異なる2つの被写体(第1被写体および第2被写体))の少なくとも一方に合焦するようにフォーカス制御が行われる。
 ここで、連写モードが設定されている場合には、フォーカス制御部123は、基準となる撮像部の合焦位置については変更せずに、他の撮像部の合焦位置のみを変更する制御を行う。また、記録制御部150は、連続して生成された複数組の画像を関連付けて立体視画像の画像ファイルとしてコンテンツ記憶部160に記録させる。この場合に、その画像ファイルには、立体視画像である旨を示す立体視画像情報と、2つの撮像部の合焦位置が異なるように撮像された立体視画像であるか否かを示す識別情報とが属性情報として記録される。また、2つの撮像部の合焦位置が異なるように撮像された立体視画像である場合には、近点および遠点に関する情報を属性情報として記録することができる。すなわち、1組の画像を示す矩形711乃至716の下部に記載の内容を属性情報として記録することができる。
 このように属性情報を記録しておくことにより、コンテンツ記憶部160に記憶されている画像ファイルを表示する場合に、画像ファイルに記録されている属性情報(立体視画像情報および識別情報)を用いることができる。
 例えば、コンテンツ記憶部160に記憶されている画像ファイルを表示する場合には、表示制御部170が、表示対象となる画像ファイルを取得し、この画像ファイルに記録されている立体視画像情報および識別情報を取得する。そして、表示制御部170が、取得された立体視画像情報および識別情報に基づいて、複数組の画像に対応する立体視画像を表示することができる。このように立体視画像を表示する場合には、立体視画像とともに、識別情報の内容を表示させることができる。これにより、立体視画像を見ているユーザが、その立体視画像の種類を容易に把握することができる。
 <3.第3の実施の形態>
 本開示の第1および第2の実施の形態では、2つの撮像部の合焦位置が異なるようにして2つの画像(左眼視用画像および右眼視用画像)を生成する例を示した。ここで、例えば、空中に飛んでいる物体(例えば、鳥や昆虫)を被写体とする場合には、その背景が空(例えば、真っ青の空)となることがある。このように背景を空として空中に飛んでいる複数の物体を撮像対象とする場合には、複数の物体については立体的に表示させる必要があるが、その背景の空については、立体的に見せる必要がない。このため、例えば、光軸方向において、空中に飛んでいる2つの物体が比較的離れている場合には、2つの物体間に存在する空間(空)にフォーカスを合わせる必要がなく、2つの物体についてのみフォーカスを合わせればよい。このため、2つの撮像部の被写界深度を異なるものとし、これらの被写界深度を連続させる必要がない。
 そこで、第3の実施の形態では、2つの撮像部の合焦位置が異なるようにして2つの画像(左眼視用画像および右眼視用画像)を生成するが、2つの撮像部の被写界深度を連続させる必要がない場合を例にして説明する。なお、本開示の第3の実施の形態における撮像装置の構成については、図1乃至図3に示す例と略同様である。このため、本開示の第1の実施の形態と共通する部分については、同一の符号を付して、これらの説明の一部を省略する。
 [撮像動作例および撮像範囲例]
 図15は、本開示の第3の実施の形態における撮像装置750を用いて行われる撮像動作の状態およびその撮像動作により生成される画像の撮像範囲の一例を示す図である。
 図15の上図には、撮像装置750を用いて行われる撮像動作状態を簡略化して示す。具体的には、花の上を飛んでいる2頭の蝶801および802を被写体として撮像装置750を用いて撮像動作が行われている状態を示す。また、図15の上図では、撮像装置750を用いて行われる撮像動作により生成される画像の撮像範囲(垂直方向の撮像範囲)を点線で示す。
 図15の下図には、撮像装置750を用いて行われる撮像動作により生成される画像の撮像範囲(水平方向および垂直方向の撮像範囲)の一例を示す。具体的には、図15の上図に示す状態で、左眼用撮像部200および右眼用撮像部300のうち、何れかの撮像部により生成される画像の撮像範囲800を示す。
 図15の下図に示すように、花の上を飛んでいる2頭の蝶801および802のうち、撮像装置750に比較的近い位置を飛んでいる蝶801については、撮像範囲800におけるサイズが大きくなる。一方、撮像装置750から比較的離れている位置を飛んでいる蝶802については、撮像範囲800におけるサイズが小さくなる。また、蝶801および802の背景は青空であり、略同一色(すなわち、空色)であるものとする。このように、光軸方向において比較的離れている2つの物体を撮像対象とする場合において、その背景が同一色であるような場合には、その2つの物体のみにフォーカスを合わせることにより、立体視画像を適切に表示することができると想定される。すなわち、その背景にフォーカスを合わせた場合、または、その背景にフォーカスを合わせていない場合の何れにおいても、その背景は同色であるため、ボケが気にならないと想定される。そこで、本開示の第3の実施の形態では、2つの撮像部の合焦位置が異なるようにして2つの画像(左眼視用画像および右眼視用画像)を生成する場合に、2つの撮像部の被写界深度を非連続とする例を示す。
 [被写界深度の連続・非連続の設定例]
 図16A及び図16Bは、本開示の第3の実施の形態における入出力パネル190の表示例および立体視画像撮像条件保持部128における保持内容例を示す図である。図16Aには、被写界深度の連続・非連続を設定する場合に用いられる入出力パネル190の表示例を示す。
 図16Aに示す設定画面530は、フォーカス制御部123によるフォーカス制御の際に、基準レンズの被写界深度と、他のレンズの被写界深度とを非連続としてもよいか否かを設定する際に入出力パネル190に表示される画面である。例えば、立体視画像を記録するための立体視画像撮像モードの設定操作が行われた後(例えば、図4Bに示す設定画面510における決定操作が行われた後)に設定画面530が表示される。設定画面530には、連続のみボタン531と、非連続も可ボタン532と、決定ボタン533と、戻るボタン534とが設けられている。
 連続のみボタン531および非連続も可ボタン532は、フォーカス制御の際に、基準レンズの被写界深度と、他のレンズの被写界深度とを非連続としてもよいか否かを選択する際に押下されるボタンである。例えば、立体視画像を表示するための左眼視用画像および右眼視用画像の撮像動作時における被写界深度が非連続となることを所望しない場合には、連続のみボタン531が押下される。また、立体視画像を表示するための左眼視用画像および右眼視用画像の撮像動作時における被写界深度が非連続となってもよい場合には、非連続も可ボタン532が押下される。
 また、静止画撮像モードが設定されている場合において、静止画記録の待機状態で入出力パネル190に表示される画像(モニタリング画像)をユーザが見ながら、所望のボタンを押下するようにしてもよい。この場合には、例えば、モニタリング画像上に、各ボタンを重ねて配置することにより、ユーザがモニタリング画像を見た状態で容易に設定を行うことができる。
 決定ボタン533は、連続のみおよび非連続も可を選択する押下操作がされた後に、その選択を決定する際に押下されるボタンである。また、決定ボタン533の押下操作により決定された被写界深度の連続・非連続に関する情報(被写界深度の連続・非連続情報)が立体視画像撮像条件保持部122に保持される。戻るボタン534は、例えば、直前に表示されていた表示画面に戻る場合に押下されるボタンである。
 図16Bには、立体視画像撮像条件保持部128における保持内容例を示す。立体視画像撮像条件保持部128は、図13Bに示す立体視画像撮像条件保持部127に設定項目「被写界深度の連続・非連続」を追加したものである。なお、設定項目を追加した点以外は、図13Bに示す立体視画像撮像条件保持部127と略同様であるため、立体視画像撮像条件保持部127と共通する部分については、同一の符号を付して、これらの説明の一部を省略する。
 設定項目125は、図16Aに示す設定画面530においてユーザによる設定操作の対象となる項目であり、設定情報126は、図16Aに示す設定画面530においてユーザによる設定操作により設定された設定情報である。
 図16Bに示す例では、設定画面530における設定操作(非連続も可ボタン532の押下操作)により、撮像モードとして「非連続」が設定された場合を示す。
 [被写界深度の設定例]
 図17は、本開示の第3の実施の形態におけるフォーカス制御部123により設定される被写界深度と被写体との関係を概略的に示す図である。すなわち、被写界深度の非連続が設定された場合における2つの撮像部の被写界深度の設定例を示す。具体的には、左眼用撮像部200および右眼用撮像部300の光軸方向において、異なる位置に存在する2つの物体(蝶801および802)を合焦対象としてフォーカス制御を行う場合における被写界深度の一例を示す。この場合に、合焦対象とする2つの物体については、ユーザ操作(例えば、入出力パネル190におけるタッチ操作)により指定することができる。また、例えば、特定対象物を検出する特定対象物検出部を撮像装置750に備え、この特定対象物検出部より検出された特定対象物のうち、2つの特定対象物を合焦対象とするようにしてもよい。
 例えば、左眼用撮像部200の合焦位置を合焦位置P11とする。また、この例では、左眼用撮像部200および右眼用撮像部300の被写界深度を連続とする必要がない。このため、左眼用撮像部200の被写界深度DF11と連続していない被写界深度DF12となる合焦位置P12を右眼用撮像部300の合焦位置とすることができる。すなわち、左眼用撮像部200の被写界深度DF11と、右眼用撮像部300の被写界深度DF12とが、距離L1だけ離れている。
 すなわち、フォーカス制御部123は、一定条件を満たす場合に、左眼視用画像の生成時における被写界深度の範囲と、右眼視用画像の生成時における被写界深度の範囲とが非連続となるように、2つの撮像部における各フォーカス制御を行う。この一定条件として、例えば、背景が略一色であり、かつ、その背景よりも撮像装置100側に存在して光軸方向において一定値よりも離れている2つの物体を合焦対象とする条件を用いることができる。そして、その一定条件を満たす場合には、フォーカス制御部123は、2つの被写界深度の範囲が非連続となるように、2つの撮像部における各フォーカス制御を自動で行うようにしてもよい。
 このように2つの被写界深度が非連続の状態で生成された2つの撮像画像について説明する。このように生成された2つの画像のうち、左眼用撮像部200により生成された画像については、蝶801にはフォーカスが合っているが、蝶802にはフォーカスが合っていない状態で撮像される。このため、左眼用撮像部200により生成された画像に含まれる蝶801はボケがなく綺麗に撮像されるが、蝶802はボケて撮像されるものと推定される。一方、右眼用撮像部300により生成された画像については、蝶802にはフォーカスが合っているが、蝶801にはフォーカスが合っていない状態で撮像される。このため、右眼用撮像部300により生成された画像に含まれる蝶802はボケがなく綺麗に撮像されるが、蝶801はボケて撮像されるものと推定される。
 しかしながら、上述したように、2つの画像のうちの少なくとも1つの画像においてボケがなく撮像されている被写体については、立体視画像として自然に見ることができる。また、蝶801および802の背景は青空であり、略同一色であるため、ボケが気にならないと想定される。このため、光軸方向において比較的離れている蝶801および802を含む立体視画像を表示する場合でも、比較的綺麗に立体視画像を見ることができる。
 なお、この例では、ユーザによる手動操作により、被写界深度の連続・非連続を設定する例を示すが、例えば、撮像画像に含まれる被写体の属性や色等に基づいて、被写界深度の連続・非連続を自動で決定するようにしてもよい。例えば、撮像画像の色ヒストグラムを生成し、最も多い色が特定色(例えば、空色、白色)であり、かつ、光軸方向において、2つの特定対象物の相対的な距離が比較的大きい場合には、被写界深度の非連続を決定することができる。
 なお、本開示の実施の形態では、許容錯乱円径の値として固定の値を用いる場合を例にして説明した。ただし、ユーザが立体視画像を見る場合において、その立体視画像が表示される画面や用紙のサイズによっては、許容される錯乱円径が変化する。このため、許容錯乱円径の値を設定可能とし、立体視画像を見る状況に応じて、ユーザが許容錯乱円径の値を設定するようにしてもよい。例えば、表示画面が比較的小さい機器(例えば、携帯電話装置)を用いて立体視画像を見る場合には、許容錯乱円径の値を大きく設定することができる。一方、表示画面が比較的大きい機器(例えば、大画面のテレビジョン)を用いて立体視画像を見る場合には、許容錯乱円径の値を小さく設定しておくようにする。このように、撮像装置により生成される立体視画像を見る状況を想定して、その立体視画像の生成時に、許容錯乱円径の値をユーザが設定するようにしてもよい。例えば、許容錯乱円径の値を設定するための設定画面を入出力パネル190に表示して、この設定画面において、ユーザが所望する許容錯乱円径の値を入力して設定することができる。また、立体視画像を見る際における表示画面が小さい場合、立体視画像を見る際における表示画面が大きい場合、立体視画像を見る際における表示画面が通常である場合のそれぞれに対応する許容錯乱円径の値を予め設定しておく。そして、その設定された許容錯乱円径の値に対応する複数の選択ボタン(例えば、「標準」ボタン、「大画面」ボタン、「小画面」ボタン)を設定画面に設け、その選択ボタンの押下操作により、ユーザが所望する許容錯乱円径の値を設定するようにしてもよい。このように設定された許容錯乱円径の値を用いて、各フォーカス制御を行うことができる。
 また、本開示の実施の形態では、2つの撮像部(左眼用撮像部200および右眼用撮像部300)を用いて立体視画像を表示するための2つの撮像画像を生成する例を示した。ただし、3以上の撮像部を用いて立体視画像を表示するための撮像画像を生成する場合についても本開示の実施の形態を適用することができる。例えば、各撮像部の合焦位置をそれぞれ異なるようにして、各撮像部の被写界深度が重複または連続するようにする。また、一定条件を満たす場合には、各撮像部のうちの何れかの被写界深度が非連続となるようにしてもよい。
 また、立体視画像を表示するための撮像画像を、1つの撮像部を用いて生成する場合についても本開示の実施の形態を適用することができる。例えば、1つの撮像部により2つの撮像画像を連続して撮像して、この2つの撮像画像について左眼視用画像および右眼視用画像とするための画像処理を施す。また、この2つの撮像画像の連続した撮像時に被写界深度を変更して撮像するようにする。
 また、本開示の実施の形態では、撮像装置に組み込まれている制御回路によりフォーカス制御を実行させる例を示したが、撮像装置に連動する制御回路、または、コンピュータ等の情報処理装置により、フォーカス制御を実行させるようにしてもよい。この場合には、例えば、撮像部を備える機器と、制御回路またはコンピュータ等の情報処理装置とにより構成されるシステムが撮像装置を構成する。
 また、本開示の実施の形態では、コントラストAFを用いてフォーカス制御を行う撮像装置を例にして説明したが、位相差AF(位相差検出方式によるAF)を用いてフォーカス制御を行う撮像装置についても、本開示の実施の形態を適用することができる。また、本開示の実施の形態では、レンズ一体型の撮像装置を例にして説明したが、レンズ交換式の撮像装置についても、本開示の実施の形態を適用することができる。例えば、レンズ交換式の撮像装置において、本体側の撮像装置からの制御に基づいて、交換レンズにおけるフォーカスレンズを制御することによりフォーカス制御を行うことができる。なお、レンズ交換式の撮像装置は、例えば、レンズを交換することが可能なデジタルスチルカメラ(例えば、デジタル一眼カメラ)である。また、所定の輻輳角により立体視画像を生成する機能を有する撮像装置(例えば、輻輳角を可変とする3Dカメラ)についても、本開示の実施の形態を適用することができる。さらに、所定の基線長により立体視画像を生成する機能を有する撮像装置(例えば、2つのレンズ間の距離を可変とする3Dカメラ)についても、本開示の実施の形態を適用することができる。
 なお、本開示の実施の形態は本開示を具現化するための一例を示したものであり、本開示の実施の形態において明示したように、本開示の実施の形態における事項と、請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、請求の範囲における発明特定事項と、これと同一名称を付した本開示の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本開示は実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、本開示の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disk)、メモリカード、ブルーレイディスク(Blu-ray Disc(登録商標))等を用いることができる。
 100、700、750 撮像装置
 101 撮像部
 110 操作受付部
 111 シャッターボタン
 120 CPU
 121 制御部
 122 立体視画像撮像条件保持部
 123、690 フォーカス制御部
 130 同期クロック
 140 露光制御部
 150 記録制御部
 160 コンテンツ記憶部
 170 表示制御部
 180 表示部
 190 入出力パネル
 200 左眼用撮像部
 300 右眼用撮像部
 211、311 ズームレンズ
 212、312 絞り
 213、313 フォーカスレンズ
 221、321 ズームレンズ駆動モータ
 222、322 ズームレンズ制御部
 231、331 絞り駆動モータ
 232、332 絞り制御部
 241、341 フォーカスレンズ駆動モータ
 242、342 フォーカスレンズ制御部
 250、350 撮像素子
 260、360 撮像信号処理部
 680 合焦位置テーブル保持部
 

Claims (17)

  1.  被写体を撮像して当該被写体を立体視するための立体視画像を表示するための第1画像および第2画像を生成する撮像部と、
     前記第1画像の生成時において前記第1画像に含まれる被写体のうち特定エリアに含まれる被写体である第1被写体に合焦するように前記撮像部におけるフォーカス制御を行い、前記第2画像の生成時において前記第2画像に含まれる被写体のうち光軸方向において前記第1被写体とは異なる位置に存在する他の被写体である第2被写体に合焦するように前記撮像部におけるフォーカス制御を行うフォーカス制御部とを具備する撮像装置。
  2.  前記フォーカス制御部は、前記第1画像の生成時における被写界深度の範囲と前記第2画像の生成時における被写界深度の範囲とが異なるように前記各フォーカス制御を行う請求項1記載の撮像装置。
  3.  前記フォーカス制御部は、前記第1画像の生成時における被写界深度の範囲と前記第2画像の生成時における被写界深度の範囲とが重複せずに連続する範囲となるように前記各フォーカス制御を行う請求項2記載の撮像装置。
  4.  前記フォーカス制御部は、前記第1画像の生成時における被写界深度の範囲と前記第2画像の生成時における被写界深度の範囲とが重複するように前記各フォーカス制御を行う請求項2記載の撮像装置。
  5.  前記フォーカス制御部は、一定条件を満たす場合に、前記第1画像の生成時における被写界深度の範囲と前記第2画像の生成時における被写界深度の範囲とが非連続となるように前記各フォーカス制御を行う請求項2記載の撮像装置。
  6.  前記フォーカス制御部は、背景が略一色であり、かつ、当該背景よりも前記撮像装置側に存在して光軸方向において一定値よりも離れている2つの物体を前記第1被写体および前記第2被写体とする条件を前記一定条件として、前記一定条件を満たす場合に前記非連続となるように前記各フォーカス制御を行う請求項5記載の撮像装置。
  7.  前記撮像部は、前記第1画像を生成する第1撮像部と、前記第1画像に同期して前記第2画像を生成する第2撮像部とを備え、
     前記フォーカス制御部は、前記第1画像の生成時において前記第1撮像部に備えられる第1フォーカスレンズを用いて前記第1被写体に合焦するようにフォーカス制御を行うとともに、前記第2画像の生成時において前記第2撮像部に備えられる第2フォーカスレンズを用いて前記第2被写体に合焦するようにフォーカス制御を行う
    請求項1記載の撮像装置。
  8.  前記フォーカス制御部は、前記第1被写体の位置とF値とレンズの焦点距離とにより特定される第1被写界深度の範囲とは異なる範囲に含まれる前記第2被写体に合焦するように前記第2フォーカスレンズを用いたフォーカス制御を行う請求項7記載の撮像装置。
  9.  前記フォーカス制御部は、前記第1被写体および前記第2被写体が過焦点距離の範囲内に存在する場合には前記第1フォーカスレンズおよび前記第2フォーカスレンズを同期して前記フォーカス制御を行う請求項7記載の撮像装置。
  10.  前記フォーカス制御部は、前記撮像部におけるレンズの焦点距離が長く、かつ、前記第1被写体に係る被写体距離が短い場合、または、F値が一定値を基準として小さい場合に、前記第1画像に含まれる前記第1被写体に合焦するように前記撮像部におけるフォーカ
    ス制御を行い、前記第2画像に含まれる前記第2被写体に合焦するように前記撮像部におけるフォーカス制御を行う請求項1記載の撮像装置。
  11.  前記第2被写体を、前記光軸方向において前記第1被写体よりも前記撮像装置側に存在する被写体とするか、前記光軸方向において前記第1被写体よりも前記遠方側に存在する被写体とするかを選択する選択操作を受け付ける操作受付部をさらに具備し、
     前記フォーカス制御部は、前記第2画像の生成時において前記選択された被写体に合焦するようにフォーカス制御を行う請求項1記載の撮像装置。
  12.  前記生成された第1画像および第2画像を関連付けて動画コンテンツとして記録媒体に記録させる記録制御部をさらに具備する請求項1記載の画像処理装置。
  13.  前記生成された第1画像および第2画像を関連付けて静止画コンテンツとして記録媒体に記録させる記録制御部をさらに具備する請求項1記載の画像処理装置。
  14.  前記静止画を記録する指示操作を受け付ける操作受付部と、
     前記指示操作が受け付けられた場合には、前記第1被写体および前記第2被写体のそれぞれに合焦するように前記各フォーカス制御を行い前記第1画像および前記第2画像を生成する第1撮像動作と、前記第1被写体および前記第2被写体の少なくとも何れか一方に合焦するように前記各フォーカス制御を行い前記第1画像および前記第2画像を生成する第2撮像動作とを前記撮像部に連続して行わせる制御を行う制御部とをさらに具備し、
     前記記録制御部は、前記第1撮像動作により生成された第1画像および第2画像と、前記第2撮像動作により生成された第1画像および第2画像とを関連付けて静止画コンテンツとして前記記録媒体に記録させる請求項13記載の画像処理装置。
  15.  前記記録制御部は、前記第1撮像動作により生成された旨を示す識別情報を、前記第1撮像動作により生成された前記第1画像および前記第2画像に関連付けて記録する請求項14記載の画像処理装置。
  16.  被写体を撮像して当該被写体を立体視するための立体視画像を表示するための第1画像および第2画像を生成する撮像手順と、
     前記第1画像の生成時において前記第1画像に含まれる被写体のうち特定エリアに含まれる被写体である第1被写体に合焦するようにフォーカス制御を行う第1制御手順と、
     前記第2画像の生成時において前記第2画像に含まれる被写体のうち光軸方向において前記第1被写体とは異なる位置に存在する他の被写体である第2被写体に合焦するようにフォーカス制御を行う第2制御手順とを具備する撮像装置の制御方法。
  17.  被写体を撮像して当該被写体を立体視するための立体視画像を表示するための第1画像および第2画像を生成する撮像手順と、
     前記第1画像の生成時において前記第1画像に含まれる被写体のうち特定エリアに含まれる被写体である第1被写体に合焦するようにフォーカス制御を行う第1制御手順と、
     前記第2画像の生成時において前記第2画像に含まれる被写体のうち光軸方向において前記第1被写体とは異なる位置に存在する他の被写体である第2被写体に合焦するようにフォーカス制御を行う第2制御手順とをコンピュータに実行させるプログラム。
PCT/JP2011/063662 2010-07-23 2011-06-15 撮像装置、その制御方法およびプログラム WO2012011341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/392,529 US20120154547A1 (en) 2010-07-23 2011-06-15 Imaging device, control method thereof, and program
EP11809515.7A EP2597502A1 (en) 2010-07-23 2011-06-15 Imaging device, method for controlling same, and program
CN2011800038662A CN102511013A (zh) 2010-07-23 2011-06-15 摄像装置及其控制方法和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010166170A JP2012027263A (ja) 2010-07-23 2010-07-23 撮像装置、その制御方法およびプログラム
JP2010-166170 2010-07-23

Publications (1)

Publication Number Publication Date
WO2012011341A1 true WO2012011341A1 (ja) 2012-01-26

Family

ID=45496770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063662 WO2012011341A1 (ja) 2010-07-23 2011-06-15 撮像装置、その制御方法およびプログラム

Country Status (5)

Country Link
US (1) US20120154547A1 (ja)
EP (1) EP2597502A1 (ja)
JP (1) JP2012027263A (ja)
CN (1) CN102511013A (ja)
WO (1) WO2012011341A1 (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069324A (zh) * 2010-08-06 2013-04-24 松下电器产业株式会社 摄像装置
US20130057655A1 (en) * 2011-09-02 2013-03-07 Wen-Yueh Su Image processing system and automatic focusing method
US20140225991A1 (en) * 2011-09-02 2014-08-14 Htc Corporation Image capturing apparatus and method for obatining depth information of field thereof
CN104380166B (zh) 2012-07-12 2016-06-08 奥林巴斯株式会社 摄像装置
JP6103849B2 (ja) * 2012-08-02 2017-03-29 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
KR101207343B1 (ko) * 2012-08-30 2012-12-04 재단법인대구경북과학기술원 영상 밝기 조절 방법 및 그 장치와, 스테레오 카메라
JP6316534B2 (ja) * 2012-09-25 2018-04-25 シャープ株式会社 撮像装置および撮像装置制御方法
CN109963059B (zh) 2012-11-28 2021-07-27 核心光电有限公司 多孔径成像系统以及通过多孔径成像系统获取图像的方法
GB201310256D0 (en) * 2013-06-10 2013-07-24 Univ Durham Stereoscopic display and method
EP3008890A4 (en) 2013-06-13 2016-05-04 Corephotonics Ltd ZOOM OF A DIGITAL CAMERA WITH DUAL IRIS
EP3779564B1 (en) 2013-07-04 2024-04-10 Corephotonics Ltd. Miniature telephoto lens assembly
US9571731B2 (en) * 2013-08-01 2017-02-14 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
CN103702073A (zh) * 2013-12-11 2014-04-02 天津大学 一拖多个成像传感器同步成像的一体化相机电路
CN103905762B (zh) * 2014-04-14 2017-04-19 上海索广电子有限公司 投影模块的投影画面自动检查方法
EP3159722A1 (en) 2014-07-30 2017-04-26 Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. Focusing method and focusing apparatus
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
ES2907810T3 (es) 2015-04-16 2022-04-26 Corephotonics Ltd Enfoque automático y estabilización de imagen óptica en una cámara compacta de plegado
CN105100615B (zh) * 2015-07-24 2019-02-26 青岛海信移动通信技术股份有限公司 一种图像的预览方法、装置及终端
EP3787281A1 (en) 2015-08-13 2021-03-03 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
CN108141522A (zh) * 2015-11-30 2018-06-08 深圳市大疆创新科技有限公司 成像系统和方法
KR102369223B1 (ko) 2015-12-29 2022-03-02 코어포토닉스 리미티드 자동 조정가능 텔레 시야(fov)를 갖는 듀얼-애퍼처 줌 디지털 카메라
CN107205109B (zh) 2016-03-18 2020-10-09 聚晶半导体股份有限公司 具有多摄像模块的电子装置及其控制的方法
TWI604221B (zh) * 2016-05-27 2017-11-01 致伸科技股份有限公司 影像景深測量方法以及應用該方法的影像擷取裝置
EP3292685B1 (en) 2016-05-30 2019-06-05 Corephotonics Ltd. Rotational ball-guided voice coil motor
US10992917B2 (en) * 2016-06-17 2021-04-27 Sony Corporation Image processing device, image processing method, program, and image processing system that use parallax information
KR102521406B1 (ko) 2016-06-19 2023-04-12 코어포토닉스 리미티드 듀얼 애퍼처 카메라 시스템에서의 프레임 동기화
US10845565B2 (en) 2016-07-07 2020-11-24 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
DE102016117024B4 (de) * 2016-09-09 2021-08-05 Karl Storz Se & Co. Kg Vorrichtung zum Erfassen eines Stereobilds sowie Verfahren zum Justieren der Vorrichtung
WO2018122650A1 (en) 2016-12-28 2018-07-05 Corephotonics Ltd. Folded camera structure with an extended light-folding-element scanning range
EP3789810B1 (en) 2017-01-12 2022-09-28 Corephotonics Ltd. Compact folded camera
CN110582724B (zh) 2017-03-15 2022-01-04 核心光电有限公司 具有全景扫描范围的照相装置
WO2019048904A1 (en) 2017-09-06 2019-03-14 Corephotonics Ltd. STEREOSCOPIC DEPTH CARTOGRAPHY AND COMBINED PHASE DETECTION IN A DOUBLE-OPENING CAMERA
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
JP2019083364A (ja) * 2017-10-27 2019-05-30 キヤノン株式会社 画像処理装置、撮像装置および制御方法
EP3513110B1 (en) 2017-11-23 2023-08-23 Corephotonics Ltd. Compact folded camera structure
WO2019107359A1 (ja) * 2017-11-29 2019-06-06 ソニー・オリンパスメディカルソリューションズ株式会社 撮像装置
KR102091369B1 (ko) 2018-02-05 2020-05-18 코어포토닉스 리미티드 폴디드 카메라에 대한 감소된 높이 페널티
EP4191315A1 (en) 2018-02-12 2023-06-07 Corephotonics Ltd. Folded camera with optical image stabilization
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
CN114153107A (zh) 2018-04-23 2022-03-08 核心光电有限公司 相机及致动器
KR102289149B1 (ko) 2018-08-04 2021-08-12 코어포토닉스 리미티드 카메라 위의 전환 가능한 연속 디스플레이 정보 시스템
WO2020039302A1 (en) 2018-08-22 2020-02-27 Corephotonics Ltd. Two-state zoom folded camera
JP6503132B1 (ja) * 2018-12-12 2019-04-17 中日本ハイウェイ・エンジニアリング東京株式会社 画像を利用した点検方法
CN109561255B (zh) * 2018-12-20 2020-11-13 惠州Tcl移动通信有限公司 终端拍照方法、装置及存储介质
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
CN113891059B (zh) 2019-03-09 2024-02-13 核心光电有限公司 对双摄像机进行立体校准的方法
KR102365748B1 (ko) 2019-07-31 2022-02-23 코어포토닉스 리미티드 카메라 패닝 또는 모션에서 배경 블러링을 생성하는 시스템 및 방법
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11770618B2 (en) 2019-12-09 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
CN114144898B (zh) 2020-04-26 2022-11-04 核心光电有限公司 用于霍尔棒传感器校正的温度控制
CN117372249A (zh) 2020-05-17 2024-01-09 核心光电有限公司 全视场参考图像的图像拼接
KR102617779B1 (ko) 2020-05-30 2023-12-22 코어포토닉스 리미티드 슈퍼 매크로 이미지를 얻기 위한 시스템 및 방법
CN111862230B (zh) * 2020-06-05 2024-01-12 北京中科慧眼科技有限公司 一种双目相机的调校方法和装置
US11910089B2 (en) 2020-07-15 2024-02-20 Corephotonics Lid. Point of view aberrations correction in a scanning folded camera
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
EP4065934A4 (en) 2020-07-31 2023-07-26 Corephotonics Ltd. LARGE STROKE LINEAR POSITION DETECTION HALL EFFECT SENSOR MAGNET GEOMETRY
CN114424104B (zh) 2020-08-12 2023-06-30 核心光电有限公司 扫描折叠相机中的光学防抖
JP2022170788A (ja) * 2021-04-30 2022-11-11 キヤノン株式会社 撮像装置およびレンズ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133637A (ja) 2002-10-09 2004-04-30 Sony Corp 顔検出装置、顔検出方法及びプログラム、並びにロボット装置
JP2005210217A (ja) * 2004-01-20 2005-08-04 Olympus Corp ステレオカメラ
JP2009115981A (ja) 2007-11-05 2009-05-28 Sony Corp 撮影装置、その制御方法およびプログラム
JP2010107664A (ja) * 2008-10-29 2010-05-13 Fujifilm Corp 立体撮像装置及び合焦制御方法
JP2010204483A (ja) * 2009-03-04 2010-09-16 Fujifilm Corp 撮像装置、方法およびプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646438B2 (ja) * 2001-05-18 2011-03-09 オリンパス株式会社 立体画像撮影装置及びカメラの制御方法
JP4138425B2 (ja) * 2002-09-25 2008-08-27 シャープ株式会社 画像表示装置および方法
JP4533735B2 (ja) * 2004-12-07 2010-09-01 富士フイルム株式会社 立体画像撮影装置
US7599555B2 (en) * 2005-03-29 2009-10-06 Mitsubishi Electric Research Laboratories, Inc. System and method for image matting
CA2734613C (en) * 2008-08-19 2020-06-09 Digimarc Corporation Methods and systems for content processing
US8886206B2 (en) * 2009-05-01 2014-11-11 Digimarc Corporation Methods and systems for content processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133637A (ja) 2002-10-09 2004-04-30 Sony Corp 顔検出装置、顔検出方法及びプログラム、並びにロボット装置
JP2005210217A (ja) * 2004-01-20 2005-08-04 Olympus Corp ステレオカメラ
JP2009115981A (ja) 2007-11-05 2009-05-28 Sony Corp 撮影装置、その制御方法およびプログラム
JP2010107664A (ja) * 2008-10-29 2010-05-13 Fujifilm Corp 立体撮像装置及び合焦制御方法
JP2010204483A (ja) * 2009-03-04 2010-09-16 Fujifilm Corp 撮像装置、方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UENO CHIZUKO ET AL.: "Photography Terms Dictionary", 15 October 1991, NIPPON CAMERA CO., LTD., pages: 193 - 195

Also Published As

Publication number Publication date
CN102511013A (zh) 2012-06-20
JP2012027263A (ja) 2012-02-09
EP2597502A1 (en) 2013-05-29
US20120154547A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012011341A1 (ja) 撮像装置、その制御方法およびプログラム
JP5214826B2 (ja) 立体パノラマ画像作成装置、立体パノラマ画像作成方法及び立体パノラマ画像作成プログラム並びに立体パノラマ画像再生装置、立体パノラマ画像再生方法及び立体パノラマ画像再生プログラム、記録媒体
EP2590421B1 (en) Single-lens stereoscopic image capture device
JP5474234B2 (ja) 単眼立体撮像装置及びその制御方法
JP5368350B2 (ja) 立体撮像装置
WO2012002046A1 (ja) 立体パノラマ画像合成装置及び複眼撮像装置並びに立体パノラマ画像合成方法
JP5371845B2 (ja) 撮影装置及びその表示制御方法並びに3次元情報取得装置
CN102135722B (zh) 摄像机结构、摄像机系统和方法
JP5647740B2 (ja) 視差調節装置及び方法、撮影装置、再生表示装置
JPWO2011121818A1 (ja) 複眼撮像装置、その視差調整方法及びプログラム
JP5449551B2 (ja) 画像出力装置、方法およびプログラム
JP2017041887A (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
JP2012178688A (ja) 立体画像撮影装置
JP5580486B2 (ja) 画像出力装置、方法およびプログラム
JP2013021550A (ja) 撮像装置及びその制御方法
JP5918982B2 (ja) 撮像装置、再生装置、その制御方法、撮像システム、及びプログラム
JP2011030123A (ja) 撮像装置、撮像装置の制御方法、及びコンピュータプログラム
JP2012129697A (ja) 画像表示装置、画像表示方法及びそれらを用いた撮像装置
JP5222718B2 (ja) 立体画像再生装置、立体画像再生プログラム、撮像装置
JP2012134873A (ja) 撮像装置および撮像プログラム
JP2011223175A (ja) 撮像装置、撮像装置の画像処理方法及びプログラム並びに撮像システム
JP2013026773A (ja) 画像処理装置および画像処理プログラム
JP2012222765A (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003866.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13392529

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011809515

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE