WO2012011163A1 - 車両想起音発生装置及び車両想起音発生方法 - Google Patents
車両想起音発生装置及び車両想起音発生方法 Download PDFInfo
- Publication number
- WO2012011163A1 WO2012011163A1 PCT/JP2010/062160 JP2010062160W WO2012011163A1 WO 2012011163 A1 WO2012011163 A1 WO 2012011163A1 JP 2010062160 W JP2010062160 W JP 2010062160W WO 2012011163 A1 WO2012011163 A1 WO 2012011163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- sound
- unit
- level
- waveform
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q5/00—Arrangement or adaptation of acoustic signal devices
- B60Q5/005—Arrangement or adaptation of acoustic signal devices automatically actuated
- B60Q5/008—Arrangement or adaptation of acoustic signal devices automatically actuated for signaling silent vehicles, e.g. for warning that a hybrid or electric vehicle is approaching
Definitions
- the present invention relates to a vehicle-like sound generation device, a vehicle-like sound generation method, a vehicle-like sound generation program, and a recording medium on which the vehicle-like sound generation program is recorded.
- Patent Document 1 hereinafter, “ It is called “conventional example”.
- the output volume of the notification sound is increased as the detected ambient sound level is higher.
- the output volume of the notification sound is determined by the level of the surrounding sound of the host vehicle. For this reason, when there is another vehicle that outputs a notification sound nearby and the notification sound is output in the same manner as the own vehicle, the own vehicle has a level of ambient sound including the notification sound output by the other vehicle. A notification sound having a volume corresponding to the above is output. On the other hand, the other vehicle outputs a notification sound having a volume corresponding to the level of the ambient sound including the notification sound output by the own vehicle.
- the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a new vehicle-evoked sound generating apparatus and vehicle-evoked sound generating method capable of optimizing the volume of the vehicle-evoked sound. .
- the present invention is a vehicle-evoked sound generator that is mounted on a vehicle and outputs a vehicle-evoked sound toward the outside of the vehicle while the vehicle is running, and generates a vehicle-evoked sound signal
- a generating unit that detects an ambient sound waveform of the vehicle; an extraction unit that extracts a predetermined waveform component indicating the presence of another vehicle from the detected ambient sound waveform; and the detection
- the level of the vehicle-recollected sound output from the vehicle is controlled by controlling the level of the generated vehicle-recollected sound signal based on the waveform of the ambient sound and the extraction result of the extraction unit.
- a vehicle recalling sound generating device comprising: a volume control unit to be controlled; and a speaker unit that outputs the vehicle recalling sound according to a vehicle recalling sound signal whose level is adjusted by the volume control unit.
- the vehicle includes: a generation unit that is mounted on a vehicle and generates a vehicle-like sound signal; and an ambient sound detection unit that detects a waveform of the ambient sound of the vehicle.
- a vehicle-evoked sound generating method used in a vehicle-evoked sound generating device that outputs a vehicle-evoked sound to the outside of the vehicle, and a predetermined signal indicating the presence of another vehicle from the detected ambient sound waveform An extraction step of extracting a component of the waveform; and by performing level adjustment control on the generated vehicle recalling sound signal based on the detected ambient sound waveform and the extraction result in the extraction step, And a volume control step for controlling an output volume of the vehicle-like sound output from the vehicle.
- the present invention is a vehicle-evoked sound generation program characterized in that the vehicle-evoked sound generating method of the present invention is executed by a calculation unit.
- the present invention is a recording medium in which the vehicle-like sound generation program of the present invention is recorded so as to be readable by an arithmetic unit.
- FIG. 1 is a block diagram illustrating a schematic configuration of a pseudo engine sound generating device 100 as a vehicle-like sound generating device according to an embodiment.
- the pseudo engine sound generation device 100 is mounted on an electric vehicle CR (hereinafter simply referred to as “vehicle CR”), and includes an accelerator information sensor 910 and a rotation speed information sensor 920 mounted on the vehicle CR. And a vehicle speed sensor 930.
- vehicle CR electric vehicle CR
- the accelerator information sensor 910 measures the accelerator opening corresponding to the accelerator depression amount, and outputs a measurement signal ARS reflecting the measurement result.
- the rotation speed information sensor 920 measures the motor rotation speed and outputs a measurement signal ERS reflecting the measurement result.
- the vehicle speed sensor 930 measures the rotation speed of the wheel or axle corresponding to the vehicle speed, and outputs a measurement signal SPS reflecting the measurement result.
- the output harness that is pulled out for the add-on vehicle-mounted device by biting the detection harness into a signal harness connected to an ECU (Electrical Control Unit) that controls the traveling of the vehicle CR.
- the accelerator information sensor 910, the rotation speed information sensor 920, and the vehicle speed sensor 930 are connected to the simulated engine sound generator 100.
- the measurement signals ARS, ERS, and SPS are supplied to the pseudo engine sound generator 100.
- the pseudo engine sound generating device mounted on the other vehicle is the pseudo engine sound according to the present embodiment. Assume that the configuration is the same as that of the generator 100.
- the pseudo engine sound generation apparatus 100 includes an acquisition unit 110, a digital processing unit 120, an analog processing unit 130, and two speakers 140 L and 140 R as speaker units.
- the pseudo engine sound generating apparatus 100 includes a sound collection unit 150 as an ambient sound detection unit, and a photographing unit 160 as a part of the distance detection unit.
- the acquisition unit 110 receives the measurement signal ARS sent from the accelerator information sensor 910 installed in the vehicle CR and the measurement signal ERS sent from the rotation speed information sensor 920. Then, the acquisition unit 110 converts the measurement signal ARS into a signal in a form that can be processed by the digital processing unit 120, and sends the signal to the digital processing unit 120 as accelerator information AR. In addition, the acquisition unit 110 converts the measurement signal ERS into a signal that can be processed by the digital processing unit 120, and sends the signal to the digital processing unit 120 as the rotation speed information ER.
- the acquisition unit 110 receives the measurement signal SPS sent from the vehicle speed sensor 930 equipped in the vehicle CR. Then, the acquisition unit 110 converts the measurement signal SPS into a signal in a form that can be processed by the digital processing unit 120 and sends the signal to the digital processing unit 120 as vehicle speed information SP.
- the digital processing unit 120 receives the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110. Then, the digital processing unit 120 generates a pseudo engine sound signal PED that is a digital signal based on the accelerator information AR and the rotation speed information ER. The generated pseudo engine sound signal PED is sent to the analog processing unit 130.
- the digital processing unit 120 further receives the vehicle speed information SP sent from the acquisition unit 110, the sound collection data ASD sent from the sound collection unit 150, and the shooting data IMD sent from the shooting unit 160.
- Generated level specified value LC L, LC R is sent to the analog processing unit 130.
- Additional analog processing unit 130 a pseudo engine sound signal sent from the digital processing unit 120 PED and the level specified value LC L, subjected to LC R. Then, the analog processing unit 130, which has a level according to the level specified value LC L, generates an output sound signal AOS L is an analog signal having a waveform that reflects the pseudo engine sound signal PED. The output sound signal AOS L generated in this way is sent to the speaker 140 L.
- the analog processing unit 130 which has a level according to the level specified value LC R, generates an output sound signal AOS R is an analog signal having a waveform that reflects the pseudo engine sound signal PED.
- the output sound signal AOS R thus generated is sent to the speaker 140 R.
- the speaker 140 L receives the output sound signal AOS L sent from the analog processing unit 130. Then, the speaker 140 L outputs a pseudo engine sound according to the output sound signal AOS L.
- the speaker 140 R receives the output sound signal AOS R sent from the analog processing unit 130. Then, the speaker 140 R outputs a pseudo engine sound according to the output sound signal AOS R.
- the above-described sound collection unit 150 includes a microphone.
- the sound collection unit 150 collects sounds around the vehicle CR. Then, the sound collection unit 150 sends the sound collection result to the digital processing unit 120 as sound collection data ASD in digital format.
- the photographing unit 160 is configured to include an imaging camera.
- the imaging unit 160 performs imaging in front of the vehicle CR.
- the photographing unit 160 sends the photographing result to the digital processing unit 120 as photographing data IMD in digital format.
- the installation position of the embodiment of the speaker 140 L, 140 R, the sound collection unit 150 and the imaging unit 160 described above is shown in FIG.
- the speakers 140 L is arranged in the vicinity of the left end of the front bumper of the vehicle CR, and outputs a pseudo engine sound toward the front.
- the speaker 140 R is disposed near the right end of the front bumper of the vehicle CR, and outputs a pseudo engine sound toward the front.
- the sound collection unit 150 is disposed on the outer surface of the vehicle interior ceiling member of the vehicle CR. Since the sound collection unit 150 is disposed on the rear side of the vehicle CR with respect to the speakers 140 L and 140 R , the sound collection unit 150 is not affected by the pseudo engine sound output from the speakers 140 L and 140 R , or is almost not. Without receiving the noise, noise generated around the vehicle CR is picked up.
- the photographing unit 160 is disposed at a position where the front of the vehicle CR can be seen, such as the back side of the rear mirror of the vehicle CR.
- the photographing unit 160 can photograph the front of the vehicle CR with a wide-angle visual field.
- the pseudo engine sound signal PED includes a pseudo engine sound component in the audible band and a high frequency component having a frequency higher than the audible band.
- the reason why the high-frequency component is included in the pseudo engine sound signal PED is to indicate that the pseudo engine sound used for alerting a person to be alerted such as a pedestrian is being output. .
- the high frequency component has a single frequency at each time point.
- the frequency F (T) periodically changes in advance. That is, in the present embodiment, the frequency F (T) is the frequency F 1 over time T1, the state of frequency F 3 over time T2, the state of frequency F 1 over time T3, and the frequency over time T4. The frequency change within one period configured from the state of F 2 is repeated.
- the level of the high frequency component is set to a predetermined ratio RT having a constant value with the level of the audible band component, that is, the level of the pseudo engine sound component.
- the predetermined ratio RT is determined in advance based on experiments, simulations, experiences, and the like.
- the digital processing unit 120 includes a generation unit 121, a waveform extraction unit 122 as an extraction unit, a distance calculation unit 123 as a part of the distance detection unit, and a level control as a volume control unit. Part 124.
- the generation unit 121 has a waveform table WFT inside.
- the waveform pattern of the pseudo engine sound at the standardization level is registered in association with the combination of the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110.
- the relationship between the combination of the rotation speed information ER and the accelerator information AR and the waveform pattern is an average relationship for the vehicle type of the vehicle CR obtained in advance based on experiments, experiences, and the like.
- the generation unit 121 receives the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110. Then, the generation unit 121 refers to the waveform table WFT based on the accelerator information AR and the rotation speed information ER, and reads a waveform pattern corresponding to the combination of the accelerator information AR and the rotation speed information ER. Subsequently, the generation unit 121 generates a pseudo engine sound component in the audible band based on the read waveform pattern.
- the generation unit 121 immediately after the operation starts, the generation unit 121 generates the above-described high-frequency component having a level of the predetermined ratio RT with respect to the standardization level. And the production
- the pseudo engine sound signal PED generated in this way is sent to the analog processing unit 130.
- the waveform extraction unit 122 receives the sound collection data ASD sent from the sound collection unit 150. And the waveform extraction part 122 extracts the high frequency component mentioned above contained in the sound collection data ASD. The extracted waveform EW extracted by the waveform extraction unit 122 is sent to the level control unit 124.
- the distance calculation unit 123 receives the shooting data IMD sent from the shooting unit 160. Then, the distance calculation unit 123 analyzes the image indicated by the shooting data IMD and determines whether or not a person to be alerted such as a pedestrian or a bicycle rider exists in the shooting field of view. The result of this determination is sent to the level control unit 124 as a determination flag FL.
- the distance calculation unit 123 sets the determination flag FL to “ON” when it is determined that there is an alert target person, and the alert target person does not exist. If it is determined, the determination flag FL is set to “OFF”.
- the distance calculation unit 123 further analyzes the image indicated by the shooting data IMD when it is determined that the alert target person exists, and the distance DT from the vehicle CR to the alert target person, and The direction DR in which the alert target person exists is calculated. The calculated distance DT and direction DR are sent to the level controller 124.
- calculation information CI is written in this sense.
- the level control unit 124 includes the rotation speed information ER and the vehicle speed information SP sent from the acquisition unit 110, the sound collection data ASD sent from the sound collection unit 150, the extracted waveform EW sent from the waveform extraction unit 122, and The determination flag FL, the distance DT, and the direction DR sent from the distance calculation unit 123 are received.
- the level control unit 124 having such a function includes a noise level estimation unit 126 as an estimation unit and an output level designation unit 127 as a determination unit.
- the noise level estimation unit 126 receives the sound collection data ASD sent from the sound collection unit 150 and the extracted waveform EW sent from the waveform extraction unit 122. Then, the noise level estimation unit 126 calculates the noise level NL around the vehicle CR included in the ambient sound corresponding to the sound collection data ASD based on the sound collection data ASD and the extracted waveform EW. The calculated noise level NL is sent to the output level designation unit 127.
- the output level designation unit 127 receives the vehicle speed information SP sent from the acquisition unit 110. Then, the output level designation unit 127 calculates the reference distance DT 0 based on the vehicle speed information SP.
- the reference distance DT 0 is included in the vehicle speed information SP from the viewpoint that a time T 0 necessary and sufficient for taking necessary measures for safety is given to the alert target person who has listened to the pseudo engine sound.
- the corresponding vehicle speed value is VT, it is calculated using the following (1).
- DT 0 VT ⁇ T 0 (1)
- the time T 0 is determined in advance based on experiments, simulations, experiences, and the like, and is held in the output level designation unit 127.
- the output level designation unit 127 is sent from the rotation speed information ER sent from the acquisition unit 110, the determination flag FL sent from the distance calculation unit 123, the distance DT and the direction DR, and the noise level estimation unit 126. Receives noise level NL. Then, the output level specifying unit 127, the rotation speed information ER, the determination flag FL, the distance DT, based on the direction DR, the noise level NL and a reference distance DT 0, levels specified value LC L, generates a LC R, it is generated level specified value LC L, sends the LC R to the analog processing unit 130. Such levels specified value LC L, processing for generating LC R will be described later.
- the level specified value LC L is the specified value for adjusting the output volume from the speaker 130 L.
- the level specified value LC R is a specified value for adjusting the output volume from the speaker 130 R.
- the analog processing unit 130 includes a DA (Digital to Analogue) conversion unit 131, level adjustment units 132 L and 132 R , and power amplification units 133 L and 133 R.
- DA Digital to Analogue
- the DA converter 131 includes a DA converter.
- the DA converter 131 receives the pseudo engine sound signal PED sent from the digital processor 120.
- the DA conversion unit 131 converts the pseudo engine sound signal PED into an analog signal.
- An analog conversion signal PES which is a conversion result by the DA conversion unit 131 is sent to the level adjustment units 132 L and 132 R.
- Level adjusting portion 132 L of the above is configured to include an electronic volume element.
- the level adjustment unit 132 L performs level adjustment processing on the analog conversion signal PES sent from the DA conversion unit 131 according to the level designation value LC L sent from the digital processing unit 120.
- the level adjustment signal LCS L that is the adjustment result by the level adjustment unit 132 L is sent to the power amplification unit 133 L.
- the level adjustment unit 132 R includes an electronic volume element and the like, similar to the level adjustment unit 132 L described above.
- the level adjusting unit 132 R in accordance sent levels specified value LC R from the digital processing unit 120 performs level adjustment processing on the analog conversion signal PES transmitted from the DA conversion unit 131.
- the level adjustment signal LCS R that is the adjustment result by the level adjustment unit 132 R is sent to the power amplification unit 133 R.
- the power amplification unit 133 L is configured to include a power amplifier.
- the power amplification unit 133 L receives the level adjustment signal LCS L sent from the level adjustment unit 132 L. Then, the power amplifier 133 L power-amplifies the level adjustment signal LCS L.
- the output sound signal AOS L that is an amplification result by the power amplifier 133 L is sent to the speaker 140 L.
- the power amplifying unit 133 R is configured to include a power amplifier similarly to the power amplifying unit 133 L described above.
- the power amplification unit 133 R receives the level adjustment signal LCS R sent from the level adjustment unit 132 R. Then, the power amplifier 133 R power-amplifies the level adjustment signal LCS R.
- the output sound signal AOS R that is an amplification result by the power amplifier 133 R is sent to the speaker 140 R.
- the acquisition unit 110 receives the measurement signal ARS sent from the accelerator information sensor 910 and the measurement signal ERS sent from the rotation speed information sensor 920. Then, the acquisition unit 110 includes the accelerator information AR in which the measurement signal ARS is converted into a form that can be processed by the digital processing unit 120, and the rotation speed information in which the measurement signal ERS is converted into a form that can be processed by the digital processing unit 120. ER is generated, and the generated accelerator information AR and rotation speed information ER are sent to the digital processing unit 120 (see FIG. 1).
- the acquisition unit 110 receives the measurement signal SPS sent from the vehicle speed sensor 930. Then, the acquisition unit 110 generates vehicle speed information SP by converting the measurement signal SPS into a signal that can be processed by the digital processing unit 120, and sends the generated vehicle speed information SP to the digital processing unit 120 (see FIG. 1). ).
- the waveform extraction unit 122 receives the sound collection data ASD sent from the sound collection unit 150. And the waveform extraction part 122 extracts the high frequency component mentioned above contained in the sound collection data ASD.
- the waveform extraction unit 122 When extracting such high frequency components, the waveform extraction unit 122 first extracts components of the frequencies F 1 , F 2 , and F 3 at each time point. Subsequently, the waveform extraction unit 122 can assume that the levels of the components of the frequencies F 1 , F 2 , and F 3 in the same high-frequency component are constant for the period of one cycle time TP, and the frequency of the known high-frequency component. The high frequency components included in the collected sound data ASD are extracted on the basis of the time change (see FIG. 3). And the waveform extraction part 122 sends the waveform of the extracted high frequency component to the level control part 124 as the extraction waveform EW (refer FIG. 4).
- the waveform extraction unit 122 analyzes the temporal changes in the levels of the frequencies F 1 , F 2 , and F 3 extracted for the period of one cycle time TP for each cycle time TP, thereby obtaining the sound collection data ASD. Extract high-frequency components included. As a result, when there are a plurality of high frequency components whose periods are shifted from each other, extraction is performed for each of the plurality of high frequency components.
- the distance calculation unit 123 receives the shooting data IMD sent from the shooting unit 160. Then, the distance calculation unit 123 analyzes the image indicated by the shooting data IMD and calculates the determination flag FL, the distance DT, and the direction DR. The determination flag FL, the distance DT, and the direction DR calculated in this way are sent to the level control unit 124 (see FIG. 4).
- the generation process of the pseudo engine sound signal PED is executed by the generation unit 121 of the digital processing unit 120 that receives the accelerator information AR and the rotation speed information ER transmitted from the acquisition unit 110 as described above.
- step S11 the generation unit 121 determines whether or not the accelerator information AR or the rotation speed information ER is newly received. If the result of this determination is negative (step S11: N), the process of step S11 is repeated.
- step S11 If the generation unit 121 newly receives the accelerator information AR and the rotation speed information ER and the result of the determination in step S11 is affirmative (step S11: Y), the process proceeds to step S12.
- step S12 the generation unit 121 reads a waveform pattern registered in the waveform table WFT in association with the combination of the accelerator information AR and the rotation speed information ER newly sent from the acquisition unit 110.
- step S13 the generation unit 121 determines whether or not the waveform pattern should be changed by determining whether or not the newly read waveform pattern has changed from the current waveform pattern. If the result of this determination is negative (step S13: N), the process returns to step S11.
- step S13 determines whether the result of the determination in step S13 is affirmative (step S13: Y).
- step S14 the generation unit 121 starts generating a pseudo engine sound component based on the newly read waveform pattern. Subsequently, the generated pseudo engine sound component and the continuously generated high frequency component are synthesized to generate a pseudo engine sound signal PED. The pseudo engine sound signal PED generated in this way is sent to the analog processing unit 130 (see FIG. 4). Then, the process returns to step S11.
- step S14 The generation process of the pseudo engine sound signal PED based on the newly read waveform pattern started in step S14 is continued until the next step S14 is executed.
- Control processing of output volume of simulated engine sound is performed from the rotation speed information ER and the vehicle speed information SP sent from the acquisition unit 110 as described above, the sound collection data ASD sent from the sound collection unit 150, and the waveform extraction unit 122.
- the level control unit 124 receives the extracted waveform EW sent, the determination flag FL, the distance DT, and the direction DR sent from the distance calculation unit 123.
- the process for controlling the output volume of the pseudo engine sound includes a process for estimating the noise level and a process for specifying the output volume of the pseudo engine sound.
- noise level estimation processing is performed by the noise level estimation unit 126 that receives the sound collection data ASD and the extracted waveform EW.
- step S21 the noise level estimation unit 126 determines whether or not the extracted waveform EW has been newly received. If the result of this determination is negative (step S21: N), the process of step S21 is repeated.
- step S21 If the extracted waveform EW is newly received and the result of the determination in step S21 is affirmative (step S21: Y), the process proceeds to step S22.
- step S22 the noise level estimation unit 126 calculates the level of the high frequency component corresponding to the extracted waveform EW.
- the noise level estimation unit 126 calculates a level for each high frequency component corresponding to each waveform.
- step S23 the noise level estimation unit 126 calculates the level of the pseudo engine sound component corresponding to the high frequency component based on the calculated level of the high frequency component and the predetermined ratio RT.
- the level of the output pseudo engine sound component is calculated.
- the noise level estimation unit 126 calculates the level of the pseudo engine sound component for each calculated level.
- step S24 the noise level estimation unit 126 calculates the level of the audible band component in the ambient sound corresponding to the collected sound data ASD.
- the noise level estimation unit 126 first performs a low-pass filtering process on the ambient sound corresponding to the collected sound data ASD to extract the audible band component. Then, the noise level estimation unit 126 calculates the level of the extracted audible band component.
- step S25 the noise level estimation unit 126 estimates the noise level NL in the ambient sound.
- the noise level estimation unit 126 subtracts the level of the pseudo engine sound component calculated in step S23 from the level of the audible band component in the ambient sound calculated in step S24. Then, the noise level estimation unit 126 estimates that the subtraction result is the noise level NL. Subsequently, the noise level estimation unit 126 sends the estimated noise level NL to the output level designation unit 127.
- step S25 when the process of step S25 ends, the process returns to step S21. Thereafter, the processes in steps S21 to S25 are repeated. As a result, each time a new extracted waveform EW is received, the noise level NL is estimated, and the estimated noise level NL is sent to the output level designation unit 127.
- (B) Process for specifying output volume of pseudo engine sound The process for specifying the output volume of pseudo engine sound is performed by the rotation speed information ER and vehicle speed information SP sent from the acquisition unit 110 and the distance calculation unit 123 as described above.
- the output level designation unit 127 receives the received determination flag FL, distance DT and direction DR, and the noise level NL sent from the noise level estimation unit 126.
- step S31 the output level designation unit 127 performs the rotation speed information ER and the vehicle speed information SP, the noise level NL, the determination flag FL, the distance. It is determined whether or not any of the calculation information CI including the DT and the direction DR is newly received. If the result of this determination is negative (step S31: N), the process of step S31 is repeated.
- step S31 determines whether or not an alert target person has been detected.
- the output level specifying unit 127 determines whether or not the alert target person has been detected by determining whether or not the latest received determination flag FL is “ON”.
- step S32 determines whether or not the pseudo engine sound is being output from the speakers 140 L and 140 R at the present time. In such a determination, the output level specifying unit 127, the level specified value LC L at the present time, as LC R, by determining whether or not both the silence level specified value, whether or not output a pseudo engine sound at the present time Determine.
- step S33: N If the result of the determination in step S33 is negative (step S33: N), the process returns to step S31. On the other hand, when the result of the determination in step S33 is affirmative (step S33: Y), the process proceeds to step S34.
- step S34 the output level specifying unit 127 stops the output of the pseudo engine sound from the speakers 140 L and 140 R.
- the output level specifying unit 127 may set the level specified value LC L, both LC R silence level specified value, the level specified value LC L sends the LC R to level adjusting section 132 L, 132 R of the analog processing unit 130 (see FIG. 4). As a result, the output of the pseudo engine sound from the speakers 140 L and 140 R is stopped.
- step S32 determines whether the result of the determination in step S32 described above is affirmative (step S32: Y). If the result of the determination in step S32 described above is affirmative (step S32: Y), the process proceeds to step S35.
- step S35 the output level designation unit 127 calculates the reference distance DT 0 . At the time of such calculation, the output level designation unit 127 calculates using the above-described equation (1) based on the vehicle speed VT corresponding to the latest received vehicle speed information SP and the time T 0 held therein.
- step S36 the output level specifying unit 127, performs calculation processing of the speaker 140 levels specified value for L LC L and the speaker 140 levels specified value for R LC R.
- levels specified value LC L the content of calculation processing of LC R will be described later.
- step S37 the output level specifying unit 127, the calculated level specified value LC L, by sending an LC R to the analog processing unit 130, specifies the output volume of the pseudo engine sound (see Figure 4). Then, the process returns to step S31. Thereafter, the processes of steps S31 to S37 described above are repeated.
- step S41 the output level designation unit 127 calculates a basic level value L1 based on the rotation speed information ER.
- the basic level value L1 calculated in this way increases as the value of the rotation speed information ER increases.
- step S42 the output level specifying unit 127 determines whether the distance at the present time to alert the subject is less than the reference distance DT 0. In this determination, the output level designation unit 127 regards the latest received distance DT as the current distance to the alert target person and compares it with the reference distance DT 0 .
- step S42 If the result of the determination in step S42 is negative (step S42: N), the process proceeds to step S43.
- step S43 the output level designation unit 127 calculates a level correction value L2 based on the noise level NL. Then, the process proceeds to step S45.
- the latest received noise level NL is set as the level correction value L2 as it is.
- step S42 determines whether the result of the determination in step S42 is affirmative (step S42: Y).
- the process proceeds to step S44.
- step S44 the output level designating unit 127 employs the current value of the level correction value as the level correction value L2. Therefore, the distance DT is when it becomes a long state than the reference distance DT 0 shorter state than the reference distance DT 0 is the distance DT in the reference distance DT 0 noise level NL received immediately before shorter than The level correction value calculated based on this is used as the level correction value L2 during the period in which the distance DT is shorter than the reference distance DT 0 . Then, the process proceeds to step S45.
- step S45 the output level designating unit 127 calculates the level adjustment value LV by adding the basic level value L1 and the level correction value L2. Subsequently, in step S46, the output level designating unit 127 is in a state equivalent to the state in which the pseudo engine sound having the volume corresponding to the level adjustment value LV is output in the direction DR based on the latest received direction DR. level specified for implementing the value LC L, calculates the LC R. Thus the level specified value LC L, the LC R is calculated, the processing of step S46 is completed, the process proceeds to step S37 in FIG. 8 described above.
- the level specified value LC L the algorithm for calculating the LC R, the attachment position of the speaker 140 L, 140 R, based on the output characteristic of the speaker 140 L, 140 R, is predetermined.
- Analog processing unit 130 a pseudo engine sound signal PED and level specified sent from the digital processing unit 120 as described above value LC L, receives the LC R, the output sound signal AOS L, to generate the AOS R.
- the DA conversion unit 131 that receives the pseudo engine sound signal PED performs DA conversion on the pseudo engine sound signal PED. Then, the DA conversion unit 131 sends an analog conversion signal PES that is a result of the DA conversion to the level adjustment units 132 L and 132 R (see FIG. 5).
- Level adjusting portion 132 L having received the analog converted signal PES transmitted from the DA conversion unit 131, in accordance sent levels specified value LC L from the digital processing unit 120 performs level adjustment processing on the analog converted signal PES. Then, the level adjustment unit 132 L sends a level adjustment signal LCS L that is a result of the level adjustment process to the power amplification unit 133 L (see FIG. 5).
- the level adjustment unit 132 R that has received the analog converted signal PES transmitted from the DA conversion unit 131, according to the level specified value LC R sent from the digital processing unit 120, a level adjustment process on the analog converted signal PES Apply. Then, the level adjustment unit 132 R sends a level adjustment signal LCS R that is a result of the level adjustment process to the power amplification unit 133 R (see FIG. 5).
- the power amplification unit 133 L Upon receiving the level adjustment signal LCS L sent from the level adjustment unit 132 L, the power amplification unit 133 L performs power amplification of the level adjustment signal LCS L. Then, the power amplifying unit 133 L sends an output sound signal AOS L which is a result of power amplification to the speaker 140 L (see FIG. 5).
- the power amplifying unit 133 R that has received the level adjustment signal LCS R sent from the level adjustment unit 132 R performs power amplification of the level adjustment signal LCS R. Then, the power amplifying unit 133 R sends the output sound signal AOS R that is the result of the power amplification to the speaker 140 R (see FIG. 5).
- the speaker 140 L that has received the output sound signal AOS L sent from the analog processing unit 130 outputs a pseudo engine sound and a high-frequency component in accordance with the output sound signal AOS L.
- the speaker 140 R that has received the output sound signal AOS R sent from the analog processing unit 130 outputs a pseudo engine sound component and a high frequency component in accordance with the output sound signal AOS R.
- the generation unit 121 refers to the waveform table WFT based on the measurement result obtained by the accelerator information sensor 910 and the measurement result obtained by the rotation speed information sensor 920, and generates the pseudo engine sound component. Specify the waveform pattern. Then, a pseudo engine sound component of the specified waveform pattern is generated. And the production
- the waveform extraction unit 122 extracts a high-frequency component of a predetermined waveform included in the ambient sound of the vehicle CR based on the sound collection result by the sound collection unit 150. Based on the extraction result and the sound collection result by the sound collection unit 150, the noise level estimation unit 126 removes the pseudo engine sound component corresponding to the high-frequency component of the predetermined waveform from the audible band component of the ambient sound. Is calculated to estimate the noise level of the vehicle CR.
- the output level designation unit 127 calculates a level designation value for outputting a pseudo engine sound having a volume corresponding to the estimated noise level, and sends the calculated level designation value to the analog processing unit 130.
- the analog processing unit 130 adjusts the level of the pseudo engine sound signal according to the level specification value.
- the ambient sound of the vehicle CR includes the pseudo engine sound output from the other vehicle, the ambient sound does not depend on the level of the pseudo engine sound output from the other vehicle.
- a pseudo engine sound is output at a volume corresponding to the level of the included noise.
- the distance calculation unit 123 determines whether or not there is a person to be alerted based on the result of photographing by the photographing unit 160, and when the person to be alerted exists, The distance is calculated. Then, when the distance to the alert target person is equal to or greater than the reference distance, the output level designation unit 127 calculates a level designation value for outputting the pseudo engine sound with the volume corresponding to the estimated noise level. To do. On the other hand, when the distance to the attention target person is less than the reference distance, the output level designation unit 127 responds to the noise level at the time when the reference distance DT 0 is the latest, regardless of the noise level. A level specification value for outputting the pseudo engine sound according to the sound volume is calculated.
- a pseudo engine sound can be generated as a vehicle recall sound at a volume that is not drowned out by the noise level around the vehicle.
- the pseudo engine accompanying the change in the noise level around the vehicle Stop sound volume control. Therefore, according to the present embodiment, a pseudo engine sound that can contribute to traffic safety can be generated.
- a left speaker and a right speaker that output pseudo engine sound are prepared, and the distance calculation unit 123 further calculates a direction to the alert target person. Then, the output level designation unit 127 calculates a level designation value for the left speaker and a level designation value for the right speaker based on the direction to the attention target calculated by the distance calculation unit 123, and these levels are calculated.
- the pseudo engine sound is output from the left speaker and the right speaker at a volume adjusted according to the designated value. For this reason, while being able to ensure the audibility of the pseudo engine sound of the person to be alerted, it is possible to suppress the generation of unnecessary noise to the surroundings due to the generation of the pseudo engine sound.
- the reference distance is calculated based on the vehicle speed. For this reason, contribution to traffic safety can be further aimed at.
- the pseudo engine sound is adopted as the vehicle recall sound, but a warning sound different from the pseudo engine sound may be adopted as the vehicle recall sound.
- the basic level value L1 may be a predetermined constant value.
- the type of vehicle recall sound is common even if the vehicles are different. However, if the waveform of the high frequency component and the predetermined ratio RT are common, the type of vehicle recall sound is different for each vehicle. May be.
- the noise level in the ambient sound is estimated, and then the output volume of the vehicle recall sound is controlled based on the estimated noise level.
- the level of the high frequency component of the predetermined waveform in the ambient sound is lower than the predetermined threshold, the output volume of the vehicle recall sound is controlled based on the ambient sound level, and the high frequency component of the predetermined waveform in the ambient sound is controlled.
- the vehicle-recollected sound is output at the output volume corresponding to the ambient sound level at the time when the level of the high-frequency component has recently reached the predetermined threshold regardless of the ambient sound level. Also good.
- two speakers are prepared for directivity in the output direction of the pseudo engine sound.
- the pseudo engine is prepared by providing three or more speakers and outputting from each speaker. The sound volume may be controlled.
- At least one speaker placed on a member whose rotation can be controlled may be provided, and the rotation of the member may be controlled according to the direction of the person to be alerted.
- the distance to the attention target person is calculated by performing image analysis.
- the distance measurement apparatus is further provided, and the distance to the attention target person by the distance measurement apparatus is calculated.
- the measurement result may be used together to calculate the distance between the alert target person and the vehicle CR.
- the reference distance DT 0 is calculated based on the vehicle speed.
- the reference distance DT 0 may be set to a predetermined constant value.
- the present invention is applied to a device mounted on an electric vehicle.
- the present invention can be applied to a device mounted on a hybrid vehicle, a mountain bike, or the like.
- the digital processing unit in the above embodiment is configured as a computer system including a central processing unit (CPU: Central Processor Unit) and a DSP (Digital Signal Processor), and the functions of the digital processing unit described above are realized by executing a program.
- CPU Central Processor Unit
- DSP Digital Signal Processor
- These programs may be acquired in a form recorded on a portable recording medium such as a CD-ROM or DVD, or may be acquired in a form distributed via a network such as the Internet. Good.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
Abstract
波形抽出部122が、収音部150による収音結果に基づいて、車両CRの周囲音に含まれる所定波形の高周波成分を抽出する。かかる抽出結果と、収音部150による収音結果とに基づいて、騒音レベル推定部126が、周囲音の可聴帯域の成分から所定波形の高周波成分に対応する擬似エンジン音成分を除去したもののレベルを算出することにより、車両CRの騒音レベルを推定する。そして、出力レベル指定部127が、推定された騒音レベルに対応する音量による擬似エンジン音を出力するためのレベル指定値を算出し、算出されたレベル指定値をアナログ処理部130へ送る。レベル指定値を受けたアナログ処理部130では、レベル指定値に従って、擬似エンジン音信号のレベルを調整する。
Description
本発明は、車両想起音発生装置、車両想起音発生方法及び車両想起音発生プログラム、並びに、当該車両想起音発生プログラムが記録された記録媒体に関する。
近年、電池を駆動力源とする電気自動車や、電池を駆動力源の一部とするハイブリッド車の普及が進んでいる。こうした車両が、電池を駆動力源として走行する場合には、従来のガソリン車と比べて、車外における駆動音のレベルが飛躍的に低くなる。この結果、歩行者や自転車の運転者が、後方等の視野外から接近する車両の存在に気付けない事態が起こり得る。かかる事態の発生は、交通安全上、深刻な問題である。
このため、車両の走行状況に対応する擬似エンジン音を車外へ出力する技術について、様々な提案がなされている。こうした提案技術の中に、車両の周囲音のレベルを検出し、検出された周囲音レベルに対応した音量及び/又は種類の報知音を車外へ出力する技術がある(特許文献1:以下、「従来例」と呼ぶ)。この従来例の技術では、検出された周囲音レベルが高いほど報知音の出力音量を大きくするようになっている。
上述した従来例の技術では、報知音の出力音量は、自車両の周囲音のレベルによって定まる。このため、自車両と同様に報知音を出力する他車両が近くに存在し、かつ、報知音を出力していると、自車両は、他車両が出力した報知音を含めた周囲音のレベルに対応する音量の報知音を出力することになる。一方、他車両は、自車両が出力した報知音を含めた周囲音のレベルに対応する音量の報知音を出力することになる。
こうした自車両と他車両との間における報知音の相互作用により、例えば、自車両と他車両とが互いに接近する走行を行っている場合には、自車両及び他車両が出力する報知音の音量の双方が、共に、増大することになる。この結果、自車両及び他車両からは、本来必要な音量と比べて、過大な音量の報知音が出力される事態が発生することになる。
このため、車両の接近を歩行者等に確実に知らせる機能を確保しつつ、報知音として車外へ出力される車両想起音の音量の不要な増大を防止することができる技術が望まれている。かかる要請に応えることが、本発明が解決すべき課題の一つとして挙げられる。
本発明は、上記の事情を鑑みてなされたものであり、車両想起音の音量の適正化を図ることができる新たな車両想起音発生装置及び車両想起音発生方法を提供することを目的とする。
本発明は、第1の観点からすると、車両に搭載され、前記車両の走行中に前記車両の外部へ向けて車両想起音を出力する車両想起音発生装置であって、車両想起音信号を生成する生成部と;前記車両の周囲音の波形を検出する周囲音検出部と;前記検出された周囲音の波形から、他車両の存在を示す所定波形の成分を抽出する抽出部と;前記検出された周囲音の波形と、前記抽出部による抽出結果とに基づいて、前記生成された車両想起音信号に対するレベル調整の制御を行うことにより、前記車両から出力される車両想起音の出力音量を制御する音量制御部と;前記音量制御部によりレベル調整された車両想起音信号に従って、前記車両想起音を出力するスピーカ部と;を備えることを特徴とする車両想起音発生装置である。
本発明は、第2の観点からすると、車両に搭載され、車両想起音信号を生成する生成部と;前記車両の周囲音の波形を検出する周囲音検出部と;を備え、前記車両の走行中に車両想起音を前記車両の外部へ向けて出力する車両想起音発生装置において使用される車両想起音発生方法であって、前記検出された周囲音の波形から、他車両の存在を示す所定波形の成分を抽出する抽出工程と;前記検出された周囲音の波形と、前記抽出工程における抽出結果とに基づいて、前記生成された車両想起音信号に対するレベル調整の制御を行うことにより、前記車両から出力される車両想起音の出力音量を制御する音量制御工程と;を備えることを特徴とする車両想起音発生方法である。
本発明は、第3の観点からすると、本発明の車両想起音発生方法を演算部により実行させる、ことを特徴とする車両想起音発生プログラムである。
本発明は、第4の観点からすると、本発明の車両想起音発生プログラムが、演算部により読取可能に記録されている、ことを特徴とする記録媒体である。
以下、本発明の一実施形態を、図1~図9を参照して説明する。なお、以下の説明及び図面においては、同一又は同等の要素には同一符号を付し、重複する説明を省略する。
[構成]
図1には、一実施形態に係る車両想起音発生装置としての擬似エンジン音発生装置100の概略的な構成が、ブロック図にて示されている。この図1に示されるように、擬似エンジン音発生装置100は、電気自動車CR(以下、単に「車両CR」という)に搭載され、車両CRに装備されたアクセル情報センサ910、回転数情報センサ920及び車速センサ930と接続されている。
図1には、一実施形態に係る車両想起音発生装置としての擬似エンジン音発生装置100の概略的な構成が、ブロック図にて示されている。この図1に示されるように、擬似エンジン音発生装置100は、電気自動車CR(以下、単に「車両CR」という)に搭載され、車両CRに装備されたアクセル情報センサ910、回転数情報センサ920及び車速センサ930と接続されている。
ここで、アクセル情報センサ910は、アクセル踏み込み量に対応するアクセル開度を測定し、測定結果を反映した測定信号ARSを出力する。また、回転数情報センサ920は、モータ回転数を測定し、測定結果を反映した測定信号ERSを出力する。また、車速センサ930は、車速に対応する車輪又は車軸の回転数を測定し、測定結果を反映した測定信号SPSを出力する。
なお、本実施形態では、車両CRの走行を制御するECU(Electrical Control Unit)に接続される信号ハーネスに検出ハーネスを噛ませることにより、又は、ECUからアドオン車載装置向けに引き出されている出力ハーネスを利用することにより、アクセル情報センサ910、回転数情報センサ920、及び、車速センサ930のそれぞれと擬似エンジン音発生装置100とを接続している。この結果、測定信号ARS,ERS,SPSが擬似エンジン音発生装置100に供給されるようになっている。
また、以下の説明においては、車両CRとは異なる他車両が擬似エンジン音発生装置を搭載している場合には、他車両に搭載された擬似エンジン音発生装置は、本実施形態の擬似エンジン音発生装置100と同様の構成を有しているものとする。
擬似エンジン音発生装置100は、取得部110と、デジタル処理部120と、アナログ処理部130と、スピーカ部としての2個のスピーカ140L,140Rとを備えている。また、擬似エンジン音発生装置100は、周囲音検出部としての収音部150と、距離検出部の一部としての撮影部160とを備えている。
上記の取得部110は、車両CRに装備されたアクセル情報センサ910から送られた測定信号ARSと、回転数情報センサ920から送られた測定信号ERSとを受ける。そして、取得部110は、測定信号ARSをデジタル処理部120で処理可能な形態の信号に変換し、アクセル情報ARとしてデジタル処理部120へ送る。また、取得部110は、測定信号ERSをデジタル処理部120で処理可能な形態の信号に変換し、回転数情報ERとしてデジタル処理部120へ送る。
さらに、取得部110は、車両CRに装備された車速センサ930から送られた測定信号SPSを受ける。そして、取得部110は、測定信号SPSをデジタル処理部120で処理可能な形態の信号に変換し、車速情報SPとしてデジタル処理部120へ送る。
上記のデジタル処理部120は、取得部110から送られたアクセル情報AR及び回転数情報ERを受ける。そして、デジタル処理部120は、アクセル情報AR及び回転数情報ERに基づいて、デジタル信号である擬似エンジン音信号PEDを生成する。生成された擬似エンジン音信号PEDは、アナログ処理部130へ送られる。
また、デジタル処理部120は、取得部110から送られた車速情報SP、収音部150から送られた収音データASD、及び、撮影部160から送られた撮影データIMDを更に受ける。そして、デジタル処理部120は、回転数情報ER、車速情報SP、収音データASD及び撮影データIMDに基づいて、レベル指定値LCL,LCRを生成する。生成されたレベル指定値LCL,LCRは、アナログ処理部130へ送られる。
なお、デジタル処理部120の構成及び擬似エンジン音信号PEDの詳細については、後述する。
上記のアナログ処理部130は、デジタル処理部120から送られた擬似エンジン音信号PED及びレベル指定値LCL,LCRを受ける。そして、アナログ処理部130は、レベル指定値LCLに従ったレベルを有するとともに、擬似エンジン音信号PEDを反映した波形のアナログ信号である出力音信号AOSLを生成する。こうして生成された出力音信号AOSLは、スピーカ140Lへ送られる。
また、アナログ処理部130は、レベル指定値LCRに従ったレベルを有するとともに、擬似エンジン音信号PEDを反映した波形のアナログ信号である出力音信号AOSRを生成する。こうして生成された出力音信号AOSRは、スピーカ140Rへ送られる。
なお、アナログ処理部130の構成の詳細については、後述する。
上記のスピーカ140Lは、アナログ処理部130から送られた出力音信号AOSLを受ける。そして、スピーカ140Lは、出力音信号AOSLに従って擬似エンジン音を出力する。
上記のスピーカ140Rは、アナログ処理部130から送られた出力音信号AOSRを受ける。そして、スピーカ140Rは、出力音信号AOSRに従って擬似エンジン音を出力する。
上記の収音部150は、マイクロフォンを備えて構成される。収音部150は、車両CRの周辺の音を収音する。そして、収音部150は、収音結果を、デジタル形式の収音データASDとして、デジタル処理部120へ送る。
上記の撮影部160は、撮像カメラを備えて構成される。撮影部160は、車両CRの前方の撮影を行う。そして、撮影部160は、撮影結果を、デジタル形式の撮影データIMDとして、デジタル処理部120へ送る。
なお、上述したスピーカ140L,140R、収音部150及び撮影部160の本実施形態における配設位置が、図2に示されている。この図2に示されるように、スピーカ140Lは、車両CRの前方バンパーの左側端部付近に配設され、前方へ向けて擬似エンジン音を出力するようになっている。また、スピーカ140Rは、車両CRの前方バンパーの右側端部付近に配設され、前方へ向けて擬似エンジン音を出力するようになっている。
収音部150は、車両CRの車室天井部材の外面上に配置される。この収音部150は、スピーカ140L,140Rよりも車両CRの後方側に配設されているので、スピーカ140L,140Rから出力された擬似エンジン音の影響を受けず、又は、殆ど受けずに、車両CRの周辺において発生している騒音を収音するようになっている。
撮影部160は、車両CRのルームミラーの裏側等の車両CRの前方を見渡せる位置に配設される。この撮影部160は、広角視野で車両CRの前方を撮影することができるようになっている。
次に、上記の擬似エンジン音信号PEDについて説明する。この擬似エンジン音信号PEDは、可聴帯域の擬似エンジン音成分と、可聴帯域よりも周波数が高い高周波成分とを含んでいる。ここで、擬似エンジン音信号PEDに当該高周波成分を含むようにしているのは、歩行者等の注意喚起対象者に対する注意喚起のために利用される擬似エンジン音が出力されていることを示すためである。
本実施形態では、当該高周波成分は、各時点においては単一周波数を有するようになっている。そして、図3に示されるように、周波数F(T)が、周期的に予め定められた変化をするようになっている。すなわち、本実施形態では、周波数F(T)が、時間T1にわたって周波数F1である状態、時間T2にわたって周波数F3である状態、時間T3にわたって周波数F1である状態、及び、時間T4にわたって周波数F2である状態から構成される1周期内の周波数変化が繰り返されるようになっている。
かかる高周波成分の周波数の時間変化の態様は、すなわち、周波数F1~F3の値及び時間T1~T4の値は、車両CRの走行経路の周辺における騒音では発生することがあり得ないといえるとの観点から、実験、シミュレーション、経験等に基づいて、予め定められる。また、1周期の長さTP(=T1+T2+T3+T4)は、高周波成分のレベルが変化したとしても僅かであり、高周波成分のレベルが一定であると見なすことができる時間とされている。なお、可聴帯域よりも周波数F1~F3を高くしているのは、到達距離を確保するためである。
また、高周波成分のレベルは、可聴帯域成分のレベル、すなわち、擬似エンジン音成分のレベルとの比率が、一定値である所定比率RTとなるようになっている。かかる所定比率RTは、実験、シミュレーション、経験等に基づいて、予め定められる。
次いで、上記のデジタル処理部120の構成について、より詳細に説明する。デジタル処理部120は、図4に示されるように、生成部121と、抽出部としての波形抽出部122と、距離検出部の一部としての距離算出部123と、音量制御部としてのレベル制御部124とを備えている。
上記の生成部121は、内部に波形テーブルWFTを有している。この波形テーブルWFTには、取得部110から送られるアクセル情報ARと回転数情報ERとの組み合わせに関連付けて、規格化レベルの擬似エンジン音の波形パターンが登録されている。かかる回転数情報ERとアクセル情報ARとの組み合わせと、波形パターンとの関係は、実験、経験等に基づいて予め得られた車両CRの車種について平均的な関係となっている。
生成部121は、取得部110から送られたアクセル情報AR及び回転数情報ERを受ける。そして、生成部121は、アクセル情報AR及び回転数情報ERに基づいて波形テーブルWFTを参照し、アクセル情報ARと回転数情報ERとの組み合わせに対応する波形パターンを読み取る。引き続き、生成部121は、読み取られた波形パターンに基づいて、可聴帯域の擬似エンジン音成分を生成する。
また、生成部121は、動作開始の直後から、当該規格化レベルに対する所定比率RTのレベルを有する上述の高周波成分を生成する。そして、生成部121は、生成された擬似エンジン音成分と高周波成分とを合成して、擬似エンジン音信号PEDを生成する。こうして生成された擬似エンジン音信号PEDは、アナログ処理部130へ送られる。
上記の波形抽出部122は、収音部150から送られた収音データASDを受ける。そして、波形抽出部122は、収音データASDに含まれる上述した高周波成分を抽出する。波形抽出部122により抽出された抽出波形EWは、レベル制御部124へ送られる。
上記の距離算出部123は、撮影部160から送られた撮影データIMDを受ける。そして、距離算出部123は、撮影データIMDが示す画像を解析して、撮影視野内に、歩行者、自転車搭乗者等の注意喚起対象者が存在しているか否かを判定する。この判定の結果は、判定フラグFLとして、レベル制御部124へ送られる。
なお、本実施形態では、距離算出部123は、注意喚起対象者が存在していると判定された場合には判定フラグFLを「ON」に設定し、注意喚起対象者が存在していないと判定された場合には判定フラグFLを「OFF」に設定するようになっている。
また、距離算出部123は、注意喚起対象者が存在していると判定された場合に、撮影データIMDが示す画像を更に解析して、車両CRから注意喚起対象者までの距離DT、及び、注意喚起対象者が存在する方向DRを算出する。算出された距離DT及び方向DRは、レベル制御部124へ送られる。
なお、判定フラグFL、距離DT及び方向DRを総称する場合には、算出情報CIと呼ぶものとする。図4においては、この意味で、「CI」を記している。
上記のレベル制御部124は、取得部110から送られた回転数情報ER及び車速情報SP、収音部150から送られた収音データASD、波形抽出部122から送られた抽出波形EW、並びに、距離算出部123から送られた判定フラグFL、距離DT及び方向DRを受ける。そして、レベル制御部124は、回転数情報ER、車速情報SP、収音データASD、抽出波形EW、判定フラグFL、距離DT及び方向DRに基づいて、レベル指定値LCL,LCRを生成する。かかる機能を有するレベル制御部124は、推定部としての騒音レベル推定部126と、決定部としての出力レベル指定部127とを備えている。
上記の騒音レベル推定部126は、収音部150から送られた収音データASD、及び、波形抽出部122から送られた抽出波形EWを受ける。そして、騒音レベル推定部126は、収音データASD及び抽出波形EWに基づいて、収音データASDに対応する周囲音に含まれる車両CRの周囲における騒音レベルNLを算出する。算出された騒音レベルNLは、出力レベル指定部127へ送られる。
上記の出力レベル指定部127は、取得部110から送られた車速情報SPを受ける。そして、出力レベル指定部127は、車速情報SPに基づいて、参照距離DT0を算出する。ここで、参照距離DT0は、安全のために必要な措置をとるのに必要かつ十分な時間T0を、擬似エンジン音を聴取した注意喚起対象者に与えるとの観点から、車速情報SPに対応する車速値をVTとした場合に、次の(1)を用いて算出される。
DT0=VT・T0 …(1)
DT0=VT・T0 …(1)
なお、時間T0は、実験、シミュレーション、経験等に基づいて予め定められ、出力レベル指定部127内に保持される。
また、出力レベル指定部127は、取得部110から送られた回転数情報ER、距離算出部123から送られた判定フラグFL、距離DT及び方向DR、並びに、騒音レベル推定部126から送られた騒音レベルNLを受ける。そして、出力レベル指定部127は、回転数情報ER、判定フラグFL、距離DT、方向DR、騒音レベルNL及び参照距離DT0に基づいて、レベル指定値LCL,LCRを生成し、生成されたレベル指定値LCL,LCRをアナログ処理部130へ送る。かかるレベル指定値LCL,LCRの生成処理については、後述する。
なお、レベル指定値LCLは、スピーカ130Lからの出力音量を調整するための指定値である。また、レベル指定値LCRは、スピーカ130Rからの出力音量を調整するための指定値である。
次に、上述したアナログ処理部130の構成について、より詳細に説明する。アナログ処理部130は、図5に示されるように、DA(Digital to Analogue)変換部131と、レベル調整部132L,132Rと、パワー増幅部133L,133Rとを備えている。
上記のDA変換部131は、DA変換器を備えて構成されている。このDA変換部131は、デジタル処理部120から送られた擬似エンジン音信号PEDを受ける。そして、DA変換部131は、擬似エンジン音信号PEDをアナログ信号に変換する。DA変換部131による変換結果であるアナログ変換信号PESは、レベル調整部132L,132Rへ送られる。
上記のレベル調整部132Lは、電子ボリューム素子等を備えて構成されている。このレベル調整部132Lは、デジタル処理部120から送られたレベル指定値LCLに従って、DA変換部131から送られたアナログ変換信号PESに対してレベル調整処理を施す。レベル調整部132Lによる調整結果であるレベル調整信号LCSLは、パワー増幅部133Lへ送られる。
上記のレベル調整部132Rは、上述したレベル調整部132Lと同様に、電子ボリューム素子等を備えて構成されている。このレベル調整部132Rは、デジタル処理部120から送られたレベル指定値LCRに従って、DA変換部131から送られたアナログ変換信号PESに対してレベル調整処理を施す。レベル調整部132Rによる調整結果であるレベル調整信号LCSRは、パワー増幅部133Rへ送られる。
上記のパワー増幅部133Lは、パワー増幅器を備えて構成される。このパワー増幅部133Lは、レベル調整部132Lから送られたレベル調整信号LCSLを受ける。そして、パワー増幅部133Lは、レベル調整信号LCSLをパワー増幅する。パワー増幅部133Lによる増幅結果である出力音信号AOSLは、スピーカ140Lへ送られる。
上記のパワー増幅部133Rは、上述したパワー増幅部133Lと同様に、パワー増幅器を備えて構成される。このパワー増幅部133Rは、レベル調整部132Rから送られたレベル調整信号LCSRを受ける。そして、パワー増幅部133Rは、レベル調整信号LCSRをパワー増幅する。パワー増幅部133Rによる増幅結果である出力音信号AOSRは、スピーカ140Rへ送られる。
<動作>
次に、上記のように構成された擬似エンジン音発生装置100の動作について、デジタル処理部120における擬似エンジン音信号PEDの生成処理及び擬似エンジン音の出力音量の制御処理に主に着目して説明する。
次に、上記のように構成された擬似エンジン音発生装置100の動作について、デジタル処理部120における擬似エンジン音信号PEDの生成処理及び擬似エンジン音の出力音量の制御処理に主に着目して説明する。
擬似エンジン音発生装置100では、取得部110が、アクセル情報センサ910から送られた測定信号ARSと、回転数情報センサ920から送られた測定信号ERSとを受ける。そして、取得部110は、測定信号ARSがデジタル処理部120で処理可能な形態に変換されたアクセル情報AR、及び、測定信号ERSがデジタル処理部120で処理可能な形態に変換された回転数情報ERを生成し、生成されたアクセル情報AR及び回転数情報ERをデジタル処理部120へ送る(図1参照)。
さらに、取得部110は、車速センサ930から送られた測定信号SPSを受ける。そして、取得部110は、測定信号SPSをデジタル処理部120で処理可能な形態の信号に変換して車速情報SPを生成し、生成された車速情報SPをデジタル処理部120へ送る(図1参照)。
また、デジタル処理部120では、波形抽出部122が、収音部150から送られた収音データASDを受ける。そして、波形抽出部122は、収音データASDに含まれる上述した高周波成分を抽出する。
かかる高周波成分の抽出に際して、波形抽出部122は、まず、各時点における周波数F1,F2,F3の成分を抽出する。引き続き、波形抽出部122は、1周期時間TPの期間であれば、同一の高周波成分における周波数F1,F2,F3の成分のレベルが一定と見なせること、及び、既知の高周波成分の周波数の時間変化(図3参照)に基づいて、収音データASDに含まれる高周波成分の抽出を行う。そして、波形抽出部122は、抽出された高周波成分の波形を、抽出波形EWとして、レベル制御部124へ送る(図4参照)。
なお、波形抽出部122は、1周期時間TPごとに、1周期時間TPの期間について抽出された周波数F1,F2,F3のレベルの時間変化を解析することにより、収音データASDに含まれる高周波成分の抽出を行う。この結果、互いに周期がずれた複数の高周波成分が存在する場合には、複数の高周波成分のそれぞれごとに抽出が行われる。
また、デジタル処理部120では、距離算出部123が、撮影部160から送られた撮影データIMDを受ける。そして、距離算出部123は、撮影データIMDが示す画像を解析して、判定フラグFL、距離DT及び方向DRを算出する。こうして算出された判定フラグFL、距離DT及び方向DRは、レベル制御部124へ送られる(図4参照)。
なお、距離算出部123は、注意喚起対象者候補が複数人存在する場合には、注意喚起対象者候補のそれぞれまでの距離を算出する。引き続き、距離算出部123は、算出された距離が最短であった注意喚起対象者候補を注意喚起対象者に特定し、特定された注意喚起対象者までの距離を、距離DTとして特定する。そして、距離算出部123は、特定された注意喚起対象者への方向を、方向DRとして算出する。
上述したアクセル情報AR、回転数情報ER及び車速情報SP、収音データASD、抽出波形EW、並びに、判定フラグFL、距離DT及び方向DRに基づいて、擬似エンジン音信号PEDの生成処理及びレベル指定値LCL,LCRの算出処理が行われる。
《擬似エンジン音信号PEDの生成処理》
擬似エンジン音信号PEDの生成処理は、上述のようにして取得部110から送られたアクセル情報AR及び回転数情報ERを受けたデジタル処理部120の生成部121により実行される。
擬似エンジン音信号PEDの生成処理は、上述のようにして取得部110から送られたアクセル情報AR及び回転数情報ERを受けたデジタル処理部120の生成部121により実行される。
かかる生成処理に際しては、図6に示されるように、まず、ステップS11において、生成部121が、新たにアクセル情報AR又は回転数情報ERを受けたか否かを判定する。この判定の結果が否定的であった場合(ステップS11:N)には、ステップS11の処理が繰り返される。
生成部121が新たにアクセル情報AR及び回転数情報ERを受け、ステップS11における判定の結果が肯定的となると(ステップS11:Y)、処理はステップS12へ進む。このステップS12では、生成部121が、新たに取得部110から送られたアクセル情報AR及び回転数情報ERとの組み合わせに関連付けて波形テーブルWFTに登録された波形パターンを読み取る。
次に、ステップS13において、生成部121が、新たに読み取られた波形パターンが現時点における波形パターンから変化しているか否かを判定することにより、波形パターンを変化させるべきか否かを判定する。この判定の結果が否定的であった場合(ステップS13:N)には、処理はステップS11へ戻る。
一方、ステップS13における判定の結果が肯定的であった場合(ステップS13:Y)には、処理はステップS14へ進む。このステップS14では、生成部121が、新たに読み取られた波形パターンに基づいた擬似エンジン音成分の生成を開始する。引き続き、生成された擬似エンジン音成分と、継続的に生成している高周波成分とを合成し、擬似エンジン音信号PEDを生成する。こうして生成された擬似エンジン音信号PEDは、アナログ処理部130へ送られる(図4参照)。そして、処理はステップS11へ戻る。
なお、ステップS14で開始された新たに読み取られた波形パターンに基づく擬似エンジン音信号PEDの生成処理は、次にステップS14が実行されるまで継続するようになっている。
《擬似エンジン音の出力音量の制御処理》
擬似エンジン音の出力音量の制御処理は、上述のようにして取得部110から送られた回転数情報ER及び車速情報SP、収音部150から送られた収音データASD、波形抽出部122から送られた抽出波形EW、並びに、距離算出部123から送られた判定フラグFL、距離DT及び方向DRを受けたレベル制御部124により実行される。かかる擬似エンジン音の出力音量の制御処理には、騒音レベルの推定処理及び擬似エンジン音の出力音量の指定処理が含まれている。
擬似エンジン音の出力音量の制御処理は、上述のようにして取得部110から送られた回転数情報ER及び車速情報SP、収音部150から送られた収音データASD、波形抽出部122から送られた抽出波形EW、並びに、距離算出部123から送られた判定フラグFL、距離DT及び方向DRを受けたレベル制御部124により実行される。かかる擬似エンジン音の出力音量の制御処理には、騒音レベルの推定処理及び擬似エンジン音の出力音量の指定処理が含まれている。
(a)騒音レベルの推定処理
騒音レベルの推定処理は、収音データASD及び抽出波形EWを受ける騒音レベル推定部126により行われる。
騒音レベルの推定処理は、収音データASD及び抽出波形EWを受ける騒音レベル推定部126により行われる。
かかる騒音レベルの推定処理に際しては、図7に示されるように、まず、ステップS21において、騒音レベル推定部126が、抽出波形EWを新たに受けたか否かを判定する。この判定の結果が否定的であった場合(ステップS21:N)には、ステップS21の処理が繰り返される。
抽出波形EWを新たに受け、ステップS21における判定の結果が肯定的となると(ステップS21:Y)、処理はステップS22へ進む。このステップS22では、騒音レベル推定部126が、抽出波形EWに対応する高周波成分のレベルを算出する。なお、抽出波形EWに複数の波形が含まれている場合には、騒音レベル推定部126は、個々の波形に対応する高周波成分ごとのレベルを算出する。
次に、ステップS23において、騒音レベル推定部126が、算出された高周波成分のレベル及び所定比率RTに基づいて、当該高周波成分に対応する擬似エンジン音成分のレベルを算出することにより、他車両から出力された擬似エンジン音成分のレベルを算出する。なお、算出された高周波成分のレベルが複数ある場合には、騒音レベル推定部126は、算出されたレベルごとに、擬似エンジン音成分のレベルを算出する。
次いで、ステップS24において、騒音レベル推定部126は、収音データASDに対応する周囲音における可聴帯域成分のレベルを算出する。かかる周囲音における可聴帯域成分のレベルの算出に際して、騒音レベル推定部126は、まず、収音データASDに対応する周囲音に対してローパスフィルタリング処理を行って、可聴帯域成分を抽出する。そして、騒音レベル推定部126は、抽出された可聴帯域成分のレベルを算出する。
次に、ステップS25において、騒音レベル推定部126が、周囲音における騒音レベルNLを推定する。かかる騒音レベルNLの推定に際し、騒音レベル推定部126は、ステップS24において算出された周囲音における可聴帯域成分のレベルから、ステップS23において算出された擬似エンジン音成分のレベルを差し引く。そして、騒音レベル推定部126は、差し引き結果が、騒音レベルNLであると推定する。引き続き、騒音レベル推定部126は、推定された騒音レベルNLを出力レベル指定部127へ送る。
こうしてステップS25の処理が終了すると、処理はステップS21へ戻る。この後、ステップS21~S25の処理が繰り返される。この結果、抽出波形EWを新たに受けるたびに、騒音レベルNLが推定され、推定された騒音レベルNLが、出力レベル指定部127へ送られる。
(b)擬似エンジン音の出力音量の指定処理
擬似エンジン音の出力音量の指定処理は、上述のようにして取得部110から送られた回転数情報ER及び車速情報SP、距離算出部123から送られた判定フラグFL、距離DT及び方向DR、並びに、騒音レベル推定部126から送られた騒音レベルNLを受けた出力レベル指定部127により実行される。
擬似エンジン音の出力音量の指定処理は、上述のようにして取得部110から送られた回転数情報ER及び車速情報SP、距離算出部123から送られた判定フラグFL、距離DT及び方向DR、並びに、騒音レベル推定部126から送られた騒音レベルNLを受けた出力レベル指定部127により実行される。
かかる出力音量の指定処理に際しては、図8に示されるように、まず、ステップS31において、出力レベル指定部127が、回転数情報ER及び車速情報SP、騒音レベルNL、並びに、判定フラグFL、距離DT及び方向DRから成る算出情報CIのいずれかを新たに受けたか否かを判定する。この判定の結果が否定的であった場合(ステップS31:N)には、ステップS31の処理が繰り返される。
ステップS31における判定の結果が肯定的となると(ステップS31:Y)、処理はステップS32へ進む。このステップS32では、出力レベル指定部127が、注意喚起対象者が検出されているか否かを判定する。かかる判定に際して、出力レベル指定部127は、最新に受けた判定フラグFLが「ON」であるか否かを判定することにより、注意喚起対象者が検出されているか否かを判定する。
ステップS32における判定の結果が否定的であった場合(ステップS32:N)には、処理はステップS33へ進む。このステップS33では、出力レベル指定部127が、現時点において擬似エンジン音をスピーカ140L,140Rから出力中か否かを判定する。かかる判定に際して、出力レベル指定部127は、現時点におけるレベル指定値LCL,LCRとして、双方を無音レベル指定値としているか否かを判定することにより、現時点において擬似エンジン音を出力中か否かを判定する。
ステップS33における判定の結果が否定的であった場合(ステップS33:N)には、処理はステップS31へ戻る。一方、ステップS33における判定の結果が肯定的であった場合(ステップS33:Y)には、処理はステップS34へ進む。
ステップS34では、出力レベル指定部127が、スピーカ140L,140Rからの擬似エンジン音の出力を中止させる。かかるスピーカ140L,140Rからの擬似エンジン音の出力の中止に際して、出力レベル指定部127は、レベル指定値LCL,LCRの双方を無音レベル指定値に設定して、レベル指定値LCL,LCRをアナログ処理部130のレベル調整部132L,132Rへ送る(図4参照)。この結果、スピーカ140L,140Rからの擬似エンジン音の出力が中止される。
上述したステップS32における判定の結果が肯定的であった場合(ステップS32:Y)には、処理はステップS35へ進む。このステップS35では、出力レベル指定部127が、参照距離DT0を算出する。かかる算出に際して、出力レベル指定部127は、最新に受けた車速情報SPに対応する車速VTと、内部に保持している時間T0に基づき、上述した(1)式を利用して算出する。
次に、ステップS36において、出力レベル指定部127が、スピーカ140L用のレベル指定値LCL及びスピーカ140R用のレベル指定値LCRの算出処理を行う。かかるレベル指定値LCL,LCRの算出処理の内容については、後述する。
引き続き、ステップS37において、出力レベル指定部127が、算出されたレベル指定値LCL,LCRをアナログ処理部130へ送ることにより、擬似エンジン音の出力音量を指定する(図4参照)。そして、処理はステップS31へ戻る。この後、上述したステップS31~S37の処理が繰り返される。
次に、上述したステップS36におけるレベル指定値LCL,LCRの算出処理の内容について説明する。かかる算出処理に際しては、図9に示されるように、まず、ステップS41において、出力レベル指定部127が、回転数情報ERに基づいて、基本レベル値L1を算出する。こうして算出された基本レベル値L1は、回転数情報ERの値が大きくなるに従って、大きくなるようになっている。この結果、エンジン回転数が大きくなる従ってエンジン音の音量が大きくなるガソリンエンジン車の場合と同様の態様で、モータ回転数に対応した音量の擬似エンジン音が、スピーカ140L,140Rから出力されるようになる。
なお、回転数情報ERと基本レベル値L1との関係は、実験、シミュレーション、経験等に基づいて予め定められる。
次に、ステップS42において、出力レベル指定部127が、注意喚起対象者までの現時点における距離が参照距離DT0未満であるか否かを判定する。この判定に際して、出力レベル指定部127は、最新に受信した距離DTを注意喚起対象者までの現時点における距離とみなして、参照距離DT0との比較を行う。
ステップS42における判定の結果が否定的であった場合(ステップS42:N)には、処理はステップS43へ進む。このステップS43では、出力レベル指定部127が、騒音レベルNLに基づいて、レベル補正値L2を算出する。そして、処理はステップS45へ進む。
なお、本実施形態では、最新に受信した騒音レベルNLを、そのままレベル補正値L2としている。
一方、ステップS42における判定の結果が肯定的であった場合(ステップS42:Y)には、処理はステップS44へ進む。このステップS44では、出力レベル指定部127が、レベル補正値L2として、レベル補正値の現在値を採用する。このため、距離DTが、参照距離DT0よりも長い状態から参照距離DT0よりも短い状態となった場合には、距離DTが参照距離DT0よりも短くなる直前に受信した騒音レベルNLに基づいて算出されたレベル補正値が、距離DTが参照距離DT0よりも短い状態が継続する期間におけるレベル補正値L2として利用される。そして、処理はステップS45へ進む。
ステップS45では、出力レベル指定部127が、基本レベル値L1とレベル補正値L2とを加算して、レベル調整値LVを算出する。引き続き、ステップS46において、出力レベル指定部127が、最新に受信した方向DRに基づいて、レベル調整値LVに対応する音量の擬似エンジン音が、方向DRへ向けて出力される状態と同等な状態を実現するためのレベル指定値LCL,LCRを算出する。こうしてレベル指定値LCL,LCRが算出されると、ステップS46の処理が終了し、処理は、上述した図8のステップS37へ進む。
なお、レベル指定値LCL,LCRの算出アルゴリズムは、スピーカ140L,140Rの取り付け位置、スピーカ140L,140Rの出力特性に基づいて、予め定められる。
アナログ処理部130は、上述のようにしてデジタル処理部120から送られた擬似エンジン音信号PED及びレベル指定値LCL,LCRを受けると、出力音信号AOSL,AOSRを生成する。かかる出力音信号AOSL,AOSRの生成に際して、アナログ処理部130では、擬似エンジン音信号PEDを受けたDA変換部131が、擬似エンジン音信号PEDをDA変換する。そして、DA変換部131は、DA変換の結果であるアナログ変換信号PESを、レベル調整部132L,132Rへ送る(図5参照)。
DA変換部131から送られたアナログ変換信号PESを受けたレベル調整部132Lは、デジタル処理部120から送られたレベル指定値LCLに従って、アナログ変換信号PESに対してレベル調整処理を施す。そして、レベル調整部132Lは、レベル調整処理の結果であるレベル調整信号LCSLを、パワー増幅部133Lへ送る(図5参照)。
また、DA変換部131から送られたアナログ変換信号PESを受けたレベル調整部132Rは、デジタル処理部120から送られたレベル指定値LCRに従って、アナログ変換信号PESに対してレベル調整処理を施す。そして、レベル調整部132Rは、レベル調整処理の結果であるレベル調整信号LCSRを、パワー増幅部133Rへ送る(図5参照)。
レベル調整部132Lから送られたレベル調整信号LCSLを受けたパワー増幅部133Lは、レベル調整信号LCSLのパワー増幅を行う。そして、パワー増幅部133Lは、パワー増幅の結果である出力音信号AOSLを、スピーカ140Lへ送る(図5参照)。
また、レベル調整部132Rから送られたレベル調整信号LCSRを受けたパワー増幅部133Rは、レベル調整信号LCSRのパワー増幅を行う。そして、パワー増幅部133Rは、パワー増幅の結果である出力音信号AOSRを、スピーカ140Rへ送る(図5参照)。
アナログ処理部130から送られた出力音信号AOSLを受けたスピーカ140Lは、出力音信号AOSLに従って擬似エンジン音及び高周波成分を出力する。また、アナログ処理部130から送られた出力音信号AOSRを受けたスピーカ140Rは、出力音信号AOSRに従って擬似エンジン音成分及び高周波成分を出力する。
以上説明したように、本実施形態では、生成部121が、アクセル情報センサ910による測定結果と、回転数情報センサ920による測定結果とに基づいて、波形テーブルWFTを参照し、擬似エンジン音成分の波形パターンを特定する。そして、特定された波形パターンの擬似エンジン音成分を生成する。そして、生成部121が、擬似エンジン音成分と、継続的に生成している高周波成分とを合成し、擬似エンジン音信号PEDを生成する。
一方、波形抽出部122が、収音部150による収音結果に基づいて、車両CRの周囲音に含まれる所定波形の高周波成分を抽出する。かかる抽出結果と、収音部150による収音結果とに基づいて、騒音レベル推定部126が、周囲音の可聴帯域の成分から所定波形の高周波成分に対応する擬似エンジン音成分を除去したもののレベルを算出することにより、車両CRの騒音レベルを推定する。
そして、出力レベル指定部127が、推定された騒音レベルに対応する音量による擬似エンジン音を出力するためのレベル指定値を算出し、算出されたレベル指定値をアナログ処理部130へ送る。レベル指定値を受けたアナログ処理部130では、レベル指定値に従って、擬似エンジン音信号のレベルを調整する。
このため、本実施形態では、車両CRの周囲音に他車両から出力された擬似エンジン音が含まれていたとしても、他車両から出力された擬似エンジン音のレベルに依存せず、周囲音に含まれる騒音のレベルに対応した音量で、擬似エンジン音を出力する。この結果、車両CRの接近を歩行者等に確実に知らせる機能を確保しつつ、車両CRから出力される擬似エンジン音の音量の不要な増大を防止することができる。
また、本実施形態では、距離算出部123が、撮影部160による撮影結果に基づいて、注意喚起対象者の存在の有無を判定し、注意喚起対象者が存在する場合に当該注意喚起対象者までの距離を算出する。そして、出力レベル指定部127が、注意喚起対象者までの距離が参照距離以上であった場合には、推定された騒音レベルに対応する音量による擬似エンジン音の出力するためのレベル指定値を算出する。一方、出力レベル指定部127は、注意喚起対象者までの距離が当該参照距離未満であった場合には、騒音レベルにかかわらず、最新に参照距離DT0となった時点における騒音レベルに対応する音量による擬似エンジン音の出力するためのレベル指定値を算出する。
このため、注意喚起対象者までの距離が参照距離以上の場合には、車両の周辺の騒音レベルにかき消されることのない音量で車両想起音としての擬似エンジン音を発生できる。また、注意喚起対象者までの距離が参照距離未満となり、注意喚起対象者が車両の接近を車両想起音により把握できるようにすべき場合には、車両の周辺の騒音レベルの変化に伴う擬似エンジン音の音量制御を止める。したがって、本実施形態によれば、交通安全に寄与できる擬似エンジン音を発生することができる。
また、本実施形態では、擬似エンジン音を出力する左スピーカ及び右スピーカを用意するとともに、距離算出部123が、注意喚起対象者への方向を更に算出するようにしている。そして、出力レベル指定部127が、距離算出部123により算出された注意喚起対象者への方向に基づいて、左スピーカ用のレベル指定値及び右スピーカ用のレベル指定値を算出し、これらのレベル指定値に従って調整された音量で、左スピーカ及び右スピーカから擬似エンジン音を出力する。このため、注意喚起対象者の擬似エンジン音の可聴性を確保するとともに、擬似エンジン音の発生による周囲へ不要な騒音の発生を抑制することができる。
また、本実施形態では、注意喚起対象者が存在しない場合には、擬似エンジン音を発生しないようにしている。このため、擬似エンジン音の発生による周囲へ不要な騒音の発生を更に抑制することができる。
また、本実施形態では、参照距離を車両の車速に基づいて算出するようにしている。このため、交通安全への寄与を更に図ることができる。
[実施形態の変形]
本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
例えば、上記の実施形態では、車両想起音として擬似エンジン音を採用したが、擬似エンジン音とは異なる警告音を車両想起音として採用することもできる。この場合、基本レベル値L1を所定の一定値としてもよい。
また、上記の実施形態では、車両が異なっても車両想起音の種類を共通としたが、高周波成分の波形及び所定比率RTが共通であれば、車両ごとに車両想起音の種類が異なるようにしてもよい。
また、上記の実施形態では、周囲音における騒音レベルを推定した上で、推定された騒音レベルに基づいて車両想起音の出力音量を制御するようにした。これに対し、周囲音における所定波形の高周波成分のレベルが所定閾値よりも低い場合には、周囲音レベルに基づいて車両想起音の出力音量を制御するとともに、周囲音における所定波形の高周波成分のレベルが所定閾値以上の場合には、周囲音レベルにかかわらず、最新に当該高周波成分のレベルが所定閾値となった時点における周囲音レベルに対応する出力音量で車両想起音を出力するようにしてもよい。
また、上記の実施形態では、擬似エンジン音の出力方向の指向性のために2個のスピーカを用意するようにしたが、3個以上のスピーカを用意し、それぞれのスピーカから出力される擬似エンジン音の音量を制御するようにしてもよい。
さらに、回転を制御可能な部材に載置されたスピーカを少なくとも1個備えるようにし、注意喚起対象者の方向に応じて、当該部材の回転制御を行うようにしてもよい。
また、上記の実施形態では、画像解析を行って、注意喚起対象者までの距離を算出するようにしたが、測距装置を更に備えるようにし、測距装置による注意喚起対象者までの距離の測定結果を併用して、注意喚起対象者と車両CRとの距離を算出するようにしてもよい。
また、上記の実施形態では、参照距離DT0を車両の車速に基づいて算出するようにしたが、参照距離DT0を予め定められた一定値とするようにしてもよい。
また、上記の実施形態では、電気自動車に搭載される装置に本願発明を適用したが、ハイブリッド車やマウンテンバイク等に搭載される装置に本願発明を適用することができるのは、勿論である。
なお、上記の実施形態におけるデジタル処理部を中央処理装置(CPU:Central Processor Unit)やDSP(Digital Signal Processor)を備えるコンピュータシステムとして構成し、上述したデジタル処理部の機能を、プログラムの実行によって実現するようにすることができる。これらのプログラムは、CD-ROM、DVD等の可搬型記録媒体に記録された形態で取得されるようにしてもよいし、インターネットなどのネットワークを介した配信の形態で取得されるようにしてもよい。
Claims (11)
- 車両に搭載され、前記車両の走行中に前記車両の外部へ向けて車両想起音を出力する車両想起音発生装置であって、
車両想起音信号を生成する生成部と;
前記車両の周囲音の波形を検出する周囲音検出部と;
前記検出された周囲音の波形から、他車両の存在を示す所定波形の成分を抽出する抽出部と;
前記検出された周囲音の波形と、前記抽出部による抽出結果とに基づいて、前記生成された車両想起音信号に対するレベル調整の制御を行うことにより、前記車両から出力される車両想起音の出力音量を制御する音量制御部と;
前記音量制御部によりレベル調整された車両想起音信号に従って、前記車両想起音を出力するスピーカ部と;
を備えることを特徴とする車両想起音発生装置。 - 前記音量制御部は、
前記検出された周囲音の波形と前記抽出部による抽出結果とに基づいて、前記車両の周囲の騒音レベルを推定する推定部と;
前記推定された騒音レベルに基づいて、前記車両から出力される車両想起音の出力音量を決定する決定部と;
を備えることを特徴とする請求項1に記載の車両想起音発生装置。 - 前記推定部は、前記検出された周囲音の波形から、前記検出された周囲音に含まれる前記抽出部により抽出された前記所定波形の成分を差し引いた成分のレベルを算出することにより、前記騒音レベルを推定する、ことを特徴とする請求項2に記載の車両想起音発生装置。
- 前記車両想起音は、可聴帯域の周波数成分から構成され、
前記所定波形の成分は、前記可聴帯域よりも周波数が高く、かつ、所定高域波形を有する高周波成分から構成される、
ことを特徴とする請求項1~3のいずれか一項に記載の車両想起音発生装置。 - 前記車両の周囲における注意喚起対象者の検出を行い、前記注意喚起対象者が検出された場合に、前記車両から前記検出された注意喚起対象者までの距離を検出する距離検出部を更に備え、
前記音量制御部は、前記検出された距離を更に考慮して、前記車両想起音の出力音量を制御する、
ことを特徴とする請求項1~4のいずれか一項に記載の車両想起音発生装置。 - 前記音量制御部は、前記距離検出部により注意喚起対象者が検出されなかった場合には、前記車両想起音を出力させない制御を行う、ことを特徴とする請求項5に記載の車両想起音発生装置。
- 前記音量制御部は、前記検出された距離が所定距離以上である場合には、前記検出された周囲音の波形の変化に対応して前記出力音量を変化させる第1音量制御を実行し、前記検出された距離が所定距離未満である場合には、前記検出された周囲音の波形の変化に対応して前記出力音量を変化させない第2音量制御を実行する、ことを特徴とする請求項5又は6に記載の車両想起音発生装置。
- 前記音量制御部は、前記第2音量制御の実行に際し、前記検出された周囲音の波形に対応する制御として、最新に前記所定距離となった時点における制御態様を継続する、ことを特徴とする請求項7に記載の車両想起音発生装置。
- 車両に搭載され、車両想起音信号を生成する生成部と;前記車両の周囲音の波形を検出する周囲音検出部と;を備え、前記車両の走行中に車両想起音を前記車両の外部へ向けて出力する車両想起音発生装置において使用される車両想起音発生方法であって、
前記検出された周囲音の波形から、他車両の存在を示す所定波形の成分を抽出する抽出工程と;
前記検出された周囲音の波形と、前記抽出工程における抽出結果とに基づいて、前記生成された車両想起音信号に対するレベル調整の制御を行うことにより、前記車両から出力される車両想起音の出力音量を制御する音量制御工程と;
を備えることを特徴とする車両想起音発生方法。 - 請求項9に記載の車両想起音発生方法を演算部により実行させる、ことを特徴とする車両想起音発生プログラム。
- 請求項10に記載の車両想起音発生プログラムが、演算部により読取可能に記録されている、ことを特徴とする記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/062160 WO2012011163A1 (ja) | 2010-07-20 | 2010-07-20 | 車両想起音発生装置及び車両想起音発生方法 |
JP2011544520A JP4972231B2 (ja) | 2010-07-20 | 2010-07-20 | 車両想起音発生装置及び車両想起音発生方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/062160 WO2012011163A1 (ja) | 2010-07-20 | 2010-07-20 | 車両想起音発生装置及び車両想起音発生方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012011163A1 true WO2012011163A1 (ja) | 2012-01-26 |
Family
ID=45496604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062160 WO2012011163A1 (ja) | 2010-07-20 | 2010-07-20 | 車両想起音発生装置及び車両想起音発生方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4972231B2 (ja) |
WO (1) | WO2012011163A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2874147A3 (en) * | 2013-11-19 | 2015-11-04 | Harman International Industries, Incorporated | Apparatus for providing environmental noise compensation for a synthesized vehicle sound |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5592458B2 (ja) * | 2012-11-02 | 2014-09-17 | 株式会社日本ロック | 電気自動車等の接近警報装置用音量調整装置 |
TWM585219U (zh) * | 2019-07-29 | 2019-10-21 | 承銘科技股份有限公司 | 電動機車的聲浪動態調節系統 |
KR20220150689A (ko) | 2021-05-04 | 2022-11-11 | 현대자동차주식회사 | 차량의 가상 엔진음 튜닝 장치 및 그 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09136573A (ja) * | 1995-11-15 | 1997-05-27 | Honda Motor Co Ltd | 車両用周囲状況監視装置 |
JP2009040317A (ja) * | 2007-08-10 | 2009-02-26 | Toyota Motor Corp | 車両接近告知装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4654513B2 (ja) * | 2000-12-25 | 2011-03-23 | ヤマハ株式会社 | 楽器 |
-
2010
- 2010-07-20 WO PCT/JP2010/062160 patent/WO2012011163A1/ja active Application Filing
- 2010-07-20 JP JP2011544520A patent/JP4972231B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09136573A (ja) * | 1995-11-15 | 1997-05-27 | Honda Motor Co Ltd | 車両用周囲状況監視装置 |
JP2009040317A (ja) * | 2007-08-10 | 2009-02-26 | Toyota Motor Corp | 車両接近告知装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2874147A3 (en) * | 2013-11-19 | 2015-11-04 | Harman International Industries, Incorporated | Apparatus for providing environmental noise compensation for a synthesized vehicle sound |
US10414337B2 (en) | 2013-11-19 | 2019-09-17 | Harman International Industries, Inc. | Apparatus for providing environmental noise compensation for a synthesized vehicle sound |
US11084327B2 (en) | 2013-11-19 | 2021-08-10 | Harman International Industries, Incorporated | Apparatus for providing environmental noise compensation for a synthesized vehicle sound |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012011163A1 (ja) | 2013-09-09 |
JP4972231B2 (ja) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4134989B2 (ja) | 車載用音響機器 | |
US20150269925A1 (en) | Vehicle approach notification apparatus | |
JP5585764B2 (ja) | 車両用発音装置 | |
JP6627361B2 (ja) | 運転情報記録装置、運転情報再生装置、制御装置、運転情報記録方法、及び運転情報記録プログラム | |
JP2010510690A (ja) | 音を検出するための装置および方法 | |
JP4790876B1 (ja) | 車両想起音発生装置及び車両想起音発生方法 | |
JP4972231B2 (ja) | 車両想起音発生装置及び車両想起音発生方法 | |
JP4742750B2 (ja) | 車外音処理装置 | |
JP2008273251A (ja) | 車両の警報装置 | |
EP3378706B1 (en) | Vehicular notification device and vehicular notification method | |
JP6525658B2 (ja) | 車両接近通報装置 | |
JP2011255830A (ja) | 車両接近報知装置 | |
CN106023617A (zh) | 车辆行驶安全的检测方法和装置 | |
JP2009292337A (ja) | モータ搭載自動車及びモータ音発生方法 | |
JP6146470B2 (ja) | 物体検出装置及び物体検出方法 | |
KR20130118388A (ko) | 자동차용 소리 발생 장치 및 방법 | |
JP2009040317A (ja) | 車両接近告知装置 | |
JP2009043146A (ja) | 車両接近告知装置 | |
JP5678878B2 (ja) | 車両接近通報装置 | |
WO2013145082A1 (ja) | 注意喚起装置、注意喚起方法、注意喚起プログラム、及び、当該注意喚起プログラムが記録された記録媒体 | |
JP2011152842A (ja) | 車両接近音制御装置 | |
JP2011255891A (ja) | 車両想起音出力装置及び車両想起音出力方法 | |
WO2013073047A1 (ja) | 警告臭出力装置及び警告臭出力制御方法 | |
JP4944283B1 (ja) | 音響装置及び出力音制御方法 | |
JP2007216787A (ja) | 車体振動検出装置及び騒音制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011544520 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10855000 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10855000 Country of ref document: EP Kind code of ref document: A1 |