WO2012008424A1 - 二枚貝等の底棲生物の養殖装置 - Google Patents

二枚貝等の底棲生物の養殖装置 Download PDF

Info

Publication number
WO2012008424A1
WO2012008424A1 PCT/JP2011/065834 JP2011065834W WO2012008424A1 WO 2012008424 A1 WO2012008424 A1 WO 2012008424A1 JP 2011065834 W JP2011065834 W JP 2011065834W WO 2012008424 A1 WO2012008424 A1 WO 2012008424A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
seawater
water tank
bivalves
farming
Prior art date
Application number
PCT/JP2011/065834
Other languages
English (en)
French (fr)
Inventor
義裕 藤芳
Original Assignee
Fujiyoshi Yoshihiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiyoshi Yoshihiro filed Critical Fujiyoshi Yoshihiro
Priority to CN201180034799.0A priority Critical patent/CN103118534B/zh
Priority to US13/809,809 priority patent/US9167803B2/en
Priority to KR1020137000946A priority patent/KR101867109B1/ko
Publication of WO2012008424A1 publication Critical patent/WO2012008424A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/54Culture of aquatic animals of shellfish of bivalves, e.g. oysters or mussels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/047Liquid pumps for aquaria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to an apparatus for culturing benthic organisms such as bivalves, and in particular, an apparatus used for cultivating benthic organisms that inhabit tidal currents such as clams, clams and swordfish. It is about.
  • Bivalves represented by clams, clams, swordfish, etc. are the most popular fish and shellfish in Japan and are a source of marine protein that can be obtained at low cost by the common people.
  • the amount of resources and catch is drastically reduced due to water pollution in the sea area and the decrease in sandy beaches and tidal flats due to coastal revetment work.
  • aquaculture is carried out in various places, but most of the cultivation methods are artificially sprinkling juveniles on the beach to grow them in the natural environment. It is.
  • such a conventional aquaculture method is affected by environmental changes in the sea area, the production cost is not cheap, and a stable amount cannot be supplied to the market.
  • the bivalve feeding method is based on filtering the fine phytoplankton suspended in the seawater and detritus, which is a fragment of them, with gills and seeing the filtration capacity.
  • about 3 liters of seawater per day is filtered with a clam with a shell length of about 3 cm, contributing to the purification of the sea area to remove eutrophication substances.
  • the technologies that have been proposed as conventional shellfish farming equipment can be broadly classified into underwater and land farming.
  • the underwater aquaculture device has a merit that it is easy to prepare an environment that is relatively close to the natural habitat state because it is brought up under the sea by surrounding a plate or the like on which a juvenile shellfish is attached with a net (Patent Document 1 and Patent Document 2). reference.).
  • Patent Document 1 and Patent Document 2 reference.
  • the bivalve shellfish have a low selling price, and the production cost is an issue, and it remains low as a cultured seafood.
  • the current situation is that land farming is hardly implemented due to cost issues.
  • Patent Document 3 describes an abalone aquaculture facility on land.
  • This abalone culture facility has abalone breeding tanks installed in multiple stages, provided with a water supply pipe and an overflow pipe for supplying seawater to the breeding tank, and further provided with an air supply pipe and a feeding station.
  • seawater is flowed into a lower tank, and the flow of seawater is promoted.
  • air is sucked into the air supply pipe by a blower, and compressed air is ejected in the form of bubbles. As a result, replenishment of dissolved oxygen is performed.
  • the present invention solves the problems of conventional aquaculture technology that must be left to the natural environment, and can provide not only stable and low-cost organisms such as bivalves to the market, but also freshness.
  • An object is to provide an aquaculture device that can create a flow of water, prepare an environment close to natural habitat, and increase the number of breeding per unit area.
  • the apparatus for cultivating benthic organisms such as bivalves of the present invention is vertically immersed in a plurality of dish-like containers that are immersed in a water tank or water area and serve as a breeding floor for benthic organisms such as bivalves.
  • the first feature is that a horizontal cavity is defined between a central cavity that passes through the hierarchy growth floor in the vertical direction and each growth bed that communicates with the cavity.
  • the second feature is that the dish-like container is configured to be split.
  • a third feature is that a bubble generator or a water flow generator is provided to flow water into and out of the apparatus.
  • the water tank is provided with a water supply / drain pipe and a valve so that the water level and the water supply / drainage amount of the water tank can be adjusted.
  • the aquaculture apparatus 1 includes a plurality of circular growth dishes 2 stacked in multiple stages and accommodated in a cup-shaped water tank 3 whose diameter is lower than the upper part. Configured.
  • the central portion of the stacked growth dishes 2 has a structure in which a circular central cavity 4 is formed from the bottom to the top in the water tank 3.
  • the growing dish 2 is configured by combining four shell housing portions 2a divided in a fan shape in the circumferential direction, and a net body 2b such as a punching metal or a mesh filter is formed on the bottom surface of the shell housing portion 2a. It is stretched. Then, by stacking the growth dishes 2 in the vertical direction, the arcuate recesses 2c of the growth dishes 2 are layered so that a cylindrical central cavity 4 is defined on the central axis. Thus, observation and harvesting can be easily performed by dividing and constructing the growing dish 2.
  • the apparatus shown in FIG. 2 has a structure in which a cylindrical tube 5 is inserted into and engaged with this circular tubular central cavity 4.
  • a protrusion 5a is formed at an arbitrary position on the surface of the cylindrical tube 5 so as to be fitted into the engagement dimple 2d of the arc recess 2c of the contact surface of the growth dish 2.
  • the central cavity 4 has a configuration in which the central cavity 4 is partitioned and formed by stacking the conical plates 2e.
  • the shape of the central cavity 4 is not limited to the circular tube shape as described above, and may be, for example, a rectangular tube shape or an elliptic tube shape.
  • the bottom part of each Example apparatus has the raising bottom structure so that space may be made, you may use a bottom face as a base end depending on a use condition.
  • the growth dish 2 according to the present embodiment is divided into a fan shape as shown in FIG. 1, but it may have a circular integrated structure, and can be appropriately changed according to the situation at the time of use and production.
  • the shape of the structure is not limited as long as the structure can exhibit the function.
  • the bottom of the shell housing portion 2a has a perforated punching structure or a mesh filter structure, and has a structure through which seawater and fresh water used for growth can pass.
  • the bottom plate may have a structure in which water does not penetrate.
  • a chimney-like central cavity 4 is defined on the central axis of the laminated body when the growing dishes 2 are layered in multiple stages. fit lies in being a structure that a gap D 1 when the.
  • the outer shape of the growth dish 2 is described as a circle, but may be oval or rectangular as long as the function and action are maintained.
  • mollusc organisms to be cultivated are not limited to these, and shellfish that grow in fresh water such as oysters and swordfish Is also applicable.
  • the growth medium 6 such as sand suitable for the target shellfish S is spread on the upper part of the dish, and the target shellfish S such as clams and clams are placed on the growth dish 2 at each stage. .
  • the clams and clams become stable habitats by submerging themselves after the operation.
  • the aquaculture apparatus 1 pours water after assembling the growth dish 2 in the water tank 3 in multiple stages. That is, this aquaculture device 1 has a structure in which the sandy beach is layered, and the area of the culture medium 6 with respect to the installation area of the device is dramatically increased.
  • the method explained in full detail below is employ
  • the movement of the water flow in the water tank by the aeration by the microbubbles that is, the upward flow by the aeration and the water supply from the lower part of the water tank 3 will be described.
  • the seawater W in the water tank 3 and the supplied seawater W rise in the central cavity 4 by the ascending force of the bubbles and the supplied water pressure.
  • the entraining action of the seawater W which flows from the second central opening, the seawater W which exists in the gap D 1 of the inter-stage the cultivating trays 2 is gradually drawn into the cavity 4.
  • Seawater W sucked into the cavity 4 are discharged after reaching the cavity 4 from the other gap D 1 to the top of the water tank 3 with water seawater W, other seawater W is cultivating trays 2 and the water tank return from the gap D 2 between the third wall surface in the gap D 1 of the respective layers to form a circulating flow.
  • the gap farming medium 6 such as sand spread in cultivating trays 2 by osmosis filtration flow in the lower part of the gap D 1.
  • FIG. 6 shows a cross section of the growth dish 2 in a state where the bivalve S is submerged.
  • the main body of the bivalve S is in the submerged sand 6, the intake of dissolved oxygen and the intake of suspended organic matter in the sea, which is the food for respiration, expose the inlet pipe Sa and outlet pipe Sb on the sand 6.
  • the water is absorbed and filtered from the seawater W just above the sand surface. Therefore, an important condition for these bivalves S to inhabit is how to improve the breeding environment just above the sand surface. For example, clams can only absorb seawater with a width of several centimeters directly above the sand surface. It doesn't matter how good sea water there is above it, or whether it's food.
  • aquaculture apparatus 1 in the gap D 1 of the between the cultivating trays 2 stage always the flow occurs in capturing flow seawater W which communicates with the central cavity four directions, the gap by adjusting the spacing width of D 1, it is possible to change its flow rate, it is possible to set an optimum flow rate in accordance with the type of development to the bottom ⁇ thereof.
  • the width of the gap D 1 may be holding the water depth of the bottom ⁇ product available range of development, effectively dissolved oxygen and suspended state food consumption with a smaller seawater feed rate can do.
  • the air sent from the air hose 8 is aerated by using a diffuser blower 7 to generate microbubbles below the central cavity 4 to generate an upward flow. It also contributes to the supply of dissolved oxygen.
  • the gap D 1 is essential, and the gap D 1 is as narrow as possible so that an effective flow rate can be generated with a small amount of seawater. Enables transportation.
  • the concentration of pollutants increases. It is necessary to exchange the seawater in the aquarium 3 depending on the pollution situation, but the ratio of the seawater used for the breeding organisms S in the aquarium 3 is very high. As a result, a smaller amount of seawater can be exchanged, leading to equipment costs such as a pump for supplying seawater and cost reduction.
  • FIG. 9 shows a water supply method from the outside of the water tank 3. According to this, if the dissolved oxygen and the amount of feed in the supplied seawater are sufficient, the desired effect can be obtained without aeration.
  • the drainage may overflow from the upper part of the water tank 3 or may be drained from the upper drainage pipe 5.
  • the efficiency of the circulating flow in the water tank is increased.
  • FIG. 10 shows a method of injecting seawater from the upper part of the central cavity 4.
  • the upper part of the central cavity 4 needs to be raised above the water surface of the water tank 3.
  • the upward flow of the central cavity 4 and its entrainment action do not occur.
  • the seawater W which is supplied to the central cavity 4 in each stage gap D 1 it acts such as dissolved oxygen, food supply is the same as the method described above.
  • This method is effective when seawater can be sufficiently supplied from the outside of the aquarium 3, and the supply body contains abundant substances such as dissolved oxygen and feed amount.
  • the seawater W can be effectively contacted and circulated with the culture medium 6, and compared with the conventional beach-side aquaculture using the entire bottom surface, the growth floor is layered and three-dimensionalized. Individual density per unit area can be dramatically increased.
  • FIG. 11 shows a method of using only the growth dish 2 without using the water tank 3.
  • the gist of the present invention is that the power flow is generated in the gap D 1 of the between the cultivating trays 2. Therefore, if this function is exhibited, the desired aquaculture effect can be obtained without intentionally generating a circulating flow. That is, the aquarium 3 is indispensable if it is aquaculture on land, but it is also possible to sink only the growth dish 2 that is layered in the inner bay or fishing port and generate an upward flow or downward flow in the central cavity 4.
  • the plant here refers to a system in which a plurality of aquaculture devices 1 including only the growth dish 2 or the water tank 3 are connected and used.
  • the connection method can be broadly classified as a system that always uses the water to be used (seawater, freshwater, brackish water, etc., but here we use “seawater” as a representative name).
  • water storage system a system that repeats the normal tideland, low tide found on sandy beaches, water storage, low tide, and dry conditions that incorporate the high tide phenomenon (herein referred to as the tidal system) It is.
  • FIG. 12 (a) shows that the seawater W containing feed is supplied into the aquarium 3 from the lower part of the aquarium 3 of the aquaculture apparatus 1 in which a plurality of cultivating dishes 2 are stacked in the aquarium 3, and the aquarium 3 is always stored.
  • the seawater W overflowed from the water is discharged to the drain pipe 11.
  • the feature of this water storage system is a system that uses aeration that generates an upward flow in the central cavity 4 by the blower 7.
  • seawater W can flow through the gap D 1 of the inter-repeat stages by some degree circulating flow.
  • the seawater exchange rate of the aquarium 3 can be adjusted independently.
  • FIG. 12B shows a plant in which the upper drainage port 3a of the upstream water tank 3A to which seawater is supplied and the lower water supply ports 3b of the downstream water tanks 3B and 3C are sequentially connected.
  • the supplied seawater W flows from the upstream water tank 3A toward the downstream water tanks 3B and 3C and is used sequentially from the upstream water tank 3A. Therefore, the amount of feed in the seawater as it goes to the downstream water tanks 3B and 3C.
  • the pollutant eluted from the culture medium 6 into the seawater also increases in concentration as it goes to the downstream water tanks 3B and 3C.
  • the water supply facility and the drainage facility are relatively simple and the number of members can be reduced.
  • the plant shown in FIG. 12 (c) supplies water by dropping into the central cavity 4 from a position higher than the water surface of the central cavity 4.
  • a downward flow corresponding to the amount of water supply is generated in the central cavity 4, and the distribution flow is supplied from the central cavity 4 to the gap between the two stages of the growth dishes, eliminating the need for aeration.
  • This method is effective when the amount of supplied seawater (including dissolved oxygen and feed) can be used relatively abundantly, and since the circulation flow does not occur, the supplied seawater W passes through the apparatus 1 only once. Will not. For this reason, although the waste_water
  • FIG. 13 shows a plant in which the lower parts of the water tanks 33A, 3B, and 3C are connected to each other by a branch pipe 9a of a water supply pipe 9.
  • the branch pipe 11a of the drain pipe 11 of the last water tank 3C is an inverted U-shaped siphon. It is designed to drain using the principle of Therefore, at the beginning, when the water supply is started, the water level rises at almost the same water level in all the water tanks 3A, 3B, and 3C, and the water level rise is continued to the upper part of the branch pipe 11a of the drain pipe 11. Thereafter, when the water surface reaches the highest position of the branch pipe 11a of the drain pipe 11, drainage begins, and the water level begins to drop.
  • FIG. 14 shows a plant in which each of the water tanks 3A, 3B and 3C is connected by an inverted U-shaped pipe (hereinafter referred to as a drainage siphon) 12.
  • the drainage siphon 12 is adopted as a water supply pipe in each of the water tanks 3A, 3B, and 3C, and a phase difference occurs in the water level fluctuation of each of the water tanks 3A, 3B, and 3C. That is, when the first water tank 3A upstream of the water supply reaches the full water level L, the drainage siphon 12 of the first water tank 3A starts supplying water to the second water tank 3B, and the second water tank 3B rises in water level and the first water tank. The water level of 3A falls.
  • both water tanks 3A and 3B will turn to the water level rise to the full water level L (the horizontal line shown with a dashed-two dotted line in a figure) at the same water level. And when these become the full water level L, the water absorption to the 3rd water tank 3C is started, and the supply of the seawater W moves to the downstream water tanks 3B and 3C sequentially in the same state.
  • L the horizontal line shown with a dashed-two dotted line in a figure
  • the drainage of all the water tanks 3A, 3B and 3C from the drainage siphon 12 of the last tail water tank 3C is started from the last water discharge port.
  • the minimum water level of each of the water tanks 3A, 3B, and 3C varies depending on the difference between the amount of water discharged from the last tail water tank 3C and the amount of water supplied from the uppermost water tank 3A. If the amount of water discharged is larger than the amount of water supplied, the drain port 3b of the last tail water tank 3C. After the water level drops, the outside air enters the last drain outlet 3b and the drainage stops.
  • the plant shown in FIG. 15 is substantially the same as the plant shown in FIG. 14, except that the drainage siphon system of the last water tank 3 ⁇ / b> C is changed to the overflow pipe 12 and the control type adjustment valve 13. Similarly, the water supply side can be arbitrarily supplied and drained by the control type adjustment valve 13. This method does not use the natural physical phenomenon described, but completely controls the water supply and drainage and water level fluctuation, and can control the drying time freely. Therefore, the drying time can be adjusted according to the characteristics of the growing organism or the consumption of the feed amount.
  • FIG. 16 shows a plant in which the growing dish 2 is incorporated in the same pool 14.
  • the tidal water level is controlled by the water supply pipe 14a and the drain outlet 14b of the entire pool 14, but an individual water tank and piping system are not required for each growing dish 2.
  • the water pollution rate can be moderated more than the system using the water tank 3 individually.
  • this plant in the natural sea tidal range, it is possible to use only the stacked cultivating dishes 2 in a place where natural tidal tide occurs such as the coast.
  • the conventional aquaculture method using the beach is a so-called “one-story house”
  • this device can be said to be a “high-rise apartment house” and dramatically increase production efficiency.
  • a horizontal cavity is provided between the center cavity vertically passing through the layered growth floors and the respective growth beds communicating with the cavities to promote the flow of water in the apparatus.
  • a bubble generator or a water flow generator is installed so that water can flow more into and out of the apparatus.
  • it is placed in a water tank equipped with a water supply pipe and a valve, and the water level of the water tank and the water supply / drainage amount of the water tank are adjusted. Thereby, it is possible to adjust the amount of contaminants and the amount of food in the water tank, and the production efficiency can be further increased.
  • this device enables land farming, but it can also be used in beach farming, and is useful as a comprehensive plant.
  • this device can be configured from one to thousands of large-scale systems, it can be used not only in the field of aquaculture, but also in small-scale food and beverage industries, leisure industries, and huge production factories. Is wide.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

【課題】二枚貝等の底棲生物を安価かつ安定した量を市場に提供することができるばかりでなく、新鮮な水の流れを造り、自然の生息環境に近い環境を整え、単位面積当たりの育成数量を増加することができる養殖装置を提供する。 【解決手段】水槽3に浸漬されると共に、二枚貝等の底棲生物Sの育成床となる複数の皿状容器2を鉛直方向に階層し、階層した育成床を鉛直方向に貫通する中央空洞4及びこの空洞4と通ずる各育成床間に水平方向の間隙D1を画成する。

Description

二枚貝等の底棲生物の養殖装置
 本発明は、二枚貝等の底棲生物の養殖装置に関するものであり、とくに、アサリやハマグリ、シジミのように潮流にさらされる環境で生息している底棲生物を養殖するために使用される装置に関するものである。
 アサリ、ハマグリ、シジミ等に代表される二枚貝類は、わが国の代表的な大衆魚介類であり、庶民が安価に取れる水産タンパク源である。しかし今日、海域の水質汚染、沿岸の護岸工事等による砂浜と干潟の減少等により、資源量及び漁獲量は激減している。現在、二枚貝類の資源量及び漁獲量を確保するため、各地で養殖が行われているが、その養殖方法の多くは、稚貝を海浜に人為的に撒いて自然環境の中で育成させるものである。しかし、このような従来の養殖方法は、海域の環境変化に影響され、生産コストも決して安価ではなく、かつ安定した量を市場に供給できない。
 一方、二枚貝の環境に及ぼす作用をみると、二枚貝の摂餌方法は、海水中に浮遊懸濁している微細な植物プランクトンやそれらの破片であるデトライタスをエラによって濾過し、その濾過能力をみると、殻長3cm程度のアサリで一日当たり海水約3リットルを濾過しており、富栄養化物質を除去する海域浄化に貢献している。
 従来の貝類養殖装置として提案されている技術を大きく分類すると、海中養殖と陸上養殖とに分けられる。海中での養殖装置は稚貝を付着させる板等を網で囲んで海中に下ろして育成させるため、自然な生息状態に比較的近い環境を整え易いというメリットがある(特許文献1及び特許文献2参照。)。しかし、二枚貝類は売価が安いということもあり、生産コストが課題となって養殖魚介類としては低位に留まっている。とくに、陸上養殖に至ってはコスト面が課題となってほとんど実施されていないのが現状である。
 例えば、特許文献3には、陸上におけるアワビの養殖施設が記載されている。このアワビの養殖施設は、アワビの飼育水槽を多段に設置し、この飼育水槽に海水を供給する給水管とオーバーフロー管を備え、さらに飼育水槽に給気管及び給餌場が付設されている。そして、ポンプで給水管に海水を流入させると共に、オーバーフロー管を下げることによって海水を下段の水槽へ流し、海水の流動を促進させる。また、給気管にはブロアーで空気を吸入し、圧縮空気を泡状に噴出させる。これにより溶存酸素の補給を行うようになっている。
特許第3913669号公報 特許第3979746号公報 特許第3493357号公報
 しかしながら、従来の貝類の陸上養殖装置では、貝類が生息しているような潮通しがよくてきれいな環境を実現することが難しい。具体的には、水が淀みやすいために水中の溶存酸素量が減少し、残餌や排泄物を除去することが困難で病気に罹り易いという問題があった。本発明は、自然環境に委ねるしかなかった従来の養殖技術が抱える課題を解決するものであり、二枚貝等の底棲生物を安価かつ安定して市場に提供することができるばかりでなく、新鮮な水の流れを造り、自然の生息環境に近い環境を整え、単位面積当たりの育成数量を増加することができる養殖装置を提供することを目的とする。
 上記目的を達成するため、本発明の二枚貝等の底棲生物の養殖装置は、水槽又は水域中に浸漬されると共に、二枚貝等の底棲生物の育成床となる複数の皿状容器を鉛直方向に階層し、当該階層育成床を鉛直方向に貫通する中央空洞及びこの空洞と通ずる各育成床間に水平方向の間隙を画成したことを第1の特徴とする。また、皿状容器を分割可能に構成したことを第2の特徴とする。さらに、装置内外へ水を流動するべく、気泡発生器若しくは水流発生器を備えたことを第3の特徴とする。さらにまた、水槽に給排水管及び弁を備え、当該水槽の水位及び給排水量を調整可能にしたことを第4の特徴とする。
本発明に係る養殖装置の一実施例を示すスケルトン斜視図である。 本発明に係る養殖装置の他の実施例を示すスケルトン斜視図である。 本発明に係る養殖装置の他の実施例を示すスケルトン斜視図である。 育成皿(育成床)を示す斜視図である。 本発明に係る閉水状態を示す養殖装置の縦断面図である。 育成皿(育成床)の要部断面図である。 育成皿(育成床)間の間隙を示す要部断面図である。 育成皿(育成床)間の間隙を示す要部断面図である。 養殖装置への下部からの給水状態を示す縦断面図である。 養殖装置への上部からの給水状態を示す縦断面図である。 養殖装置に水槽を使用しない例を示す縦断面図である。 本発明装置を使用した養殖プラントの模式図である。 本発明装置を使用した養殖プラントの模式図である。 本発明装置を使用した養殖プラントの模式図である。 本発明装置を使用した養殖プラントの模式図である。 本発明装置を使用した養殖プラントの模式図である。
 本発明に係る養殖装置1は、図1及び図2に示すように、円形の育成皿2を多段に複数枚積層して、その上部よりも下部が縮径したカップ状の水槽3に収容して構成される。積層された育成皿2の中央部は水槽3内で底部から上部まで円管状の中央空洞4が形成される構造となっている。
 ここで、育成皿2は、円周方向に扇状に分割された4つの貝収容部2aを組み合わせて構成されており、貝収容部2aの底面にはパンチングメタルあるいはメッシュフィルター等の網体2bが張設されている。そして、育成皿2を鉛直方向に積層することで、育成皿2の弧状凹所2cが階層して中心軸線上に円管状の中央空洞4が画成されるようになっている。このように育成皿2を分割して構成することで観察や収穫を容易に行うことができる。
 さらに、図2に示す装置は、この円管状の中心空洞4内に円筒管5を差し入れ係合させた構造となっている。円筒管5の表面任意箇所には、育成皿2の接触面の弧凹所2cの係合ディンプル2dに雌雄嵌合する突起5aが形成されている。
 図3に示す養殖装置1は中央空洞4を錐形板2eの積層によって区画形成する構成となっている。このように、中心空洞4の形状は上述のような円管形に限定されるものではなく、例えば矩形管形でも楕円管形でも構わない。また、各実施例装置の底部は空間ができるように上げ底構造となっているが、使用状況によっては底面を基端としても構わない。
 本実施例に係る育成皿2は、図1に示すように扇状に分割されているが、円形の一体構造としてもよく、使用時、作製時の状況に応じて適宜変更が可能であり、その機能が発揮できる構造体であれば、その形状は限定されない。また、上述したように、貝収容部2aの底部は、穴開きパンチング構造、あるいはメッシュフィルター構造となっており、育成に使用される海水、淡水が通過できる構造となっているが、使用状況によっては底板を水が浸透しない構造としても構わない。
 本発明装置の最大の特徴は、育成皿2を多段に階層したときに積層体の中心軸上に煙突様の中心空洞4が画成されることにあり、育成皿2の外周縁は、重ね合わせたときに隙間Dができる構造とされている点にある。尚、本実施例では、育成皿2の外形を円形で説明しているが、その機能、作用が維持されるなら、楕円でも矩形でもよい。
 また、本実施例では、アサリ、ハマグリ等の底棲二枚貝を養殖する場合について説明しているが、育成する底棲生物はこれらに限定されず、牡蠣、シジミ貝等の淡水で成長する貝類についても適用できる。
 各段の育成皿2には、図4に示すように、対象貝類Sに適した砂等の育成培地6を皿の上部まで敷き詰め、そこにアサリ、ハマグリ等の育成対象貝類Sを載置する。アサリ、ハマグリは装置稼動後に自ら潜砂して安定生息状態となる。
 本発明に係る養殖装置1は、育成皿2を水槽3内に多段に組上げた後に注水する。つまり、本養殖装置1は砂浜海岸を階層した構造となり、装置の設置面積に対する養殖培地6の面積を飛躍的に引き上げている。尚、養殖装置1内で貝類を育成するためには、海水を流動させる必要があり、海水を流動させるためには、下記に詳述する方法が採用されるが、利用状況に合わせて選択、またこれらを合成した手法を用いても構わない。
 ここで、微小気泡による曝気、すなわちエアレーションによる上昇流と水槽3の下部からの給水による水槽内の水流の動きを説明する。図5に示すように、水槽3内にある海水W及び給水された海水Wは、気泡の上昇力と給水された水圧で中心部空洞4内を上昇するが、その際に各段の育成皿2の中心開口部から流動する海水Wの連行作用によって、各育成皿2の段間の間隙Dに存在する海水Wが空洞4に吸い込まれていく。空洞4に吸い込まれた海水Wは、空洞4内を他の間隙Dから吸水された海水Wと共に水槽3の上部まで到達した後に当然排出されるが、その他の海水Wは育成皿2と水槽3の壁面間の間隙Dから各階層の間隙Dに戻り循環流を形成する。また、育成皿2に敷き詰めた砂等の養殖培地6の空隙を浸透濾過して下段の間隙Dに流動する。これにより、酸素を十分含んだ水流を効率的に供給でき、呼吸がし易く潮通しのよい生息環境を提供することができる。
 図6は、二枚貝Sが潜砂した状態の育成皿2の断面を示したものである。二枚貝Sの本体は潜砂した砂6中にあるが、呼吸のため溶存酸素の取り込みと餌である海中の懸濁態有機物の取り込みは、入水管Sa及び出水管Sbを砂6上に露出して砂面直上の海水Wから吸水、濾過摂食する。したがって、これら二枚貝Sが生息するための重要な条件は、砂面直上の育成環境をいかに良好にするかということである。例えば、アサリは砂面直上数センチ程度の幅の海水しか吸水することができない。それより上層にどれだけ良い海水があろうが、餌があろうが関係ない。
 図7及び図8に示すように、養殖装置1は各育成皿2段間の間隙Dに、中央空洞4方向に連通される海水Wの捕流で常に流れが発生することになり、間隙Dの間隔幅を調整することで、その流速を変化させることができ、育成する底棲生物の種別に応じた最適な流速を設定することができる。加えて、間隙Dの幅を狭くすることで、育成する底棲生物が利用可能な範囲の水深を保持すればよく、より少ない海水量で効果的に溶存酸素や懸濁態餌量を供給することができる。本装置1ではエアホース8から送気した空気を散気ブロアー7を使用して微小気泡を中央空洞4の下方で発生させてエアレーションし、上昇流を発生させているが、このエアレーションは海水中の溶存酸素の供給にも資している。
 一方、砂6には、海水からの沈降物と、育成貝の糞や偽糞といわれる口から直接吐き出される凝集有機物態が砂中に吐き出され堆積してくる。これらの有機汚物は砂6中のバクテリアによって分解されることになるが、砂6中に十分酸素が無いと、嫌気性の分解過程を経て、生息生物にとって有害な硫化水素等の汚染物質が増加して、いずれは育成生物が生息できなくなる。これを回避するためには、砂6中にも十分な酸素を供給し続ける必要がある。また、バクテリアによる分解によって生成された物質をできるだけ蓄積させないように、溶出、洗い出し作用を継続させる必要がある。本装置1では、各育成皿2段間の間隙D内に常に水流が発生するので、間隙Dの天井部、つまり育成皿2の底部のパンチ穴やメッシュフィルターも洗浄される。
 このように、間隙Dが肝要な働きをしており、間隙Dの幅はできるだけ狭い幅を取ることで少量の海水で効果的な流速を発生させることができ、溶存酸素及び餌量の運搬を可能にする。当然、水槽3内の海水を交換しなければ汚染物質の濃度は上昇する。汚濁状況に応じて水槽3内の海水は交換する必要があるが、水槽3内の育成生物Sに利用される海水の比率は非常に高いために、無駄な海水の交換の比率を下げることができ、結果的に、より少量な海水交換量で済み、海水を供給するポンプ等の設備費やコスト削減につながる。
 また、海水中の餌量は育成生物Sの摂餌活動で減少していくので、減少に応じた分の微細藻等の餌の供給は必要となるが、供給海水中、あるいは水槽3内海水中に十分な餌量や酸素が存在していれば、敢えて餌量や酸素を供給する必要はない。また、生育期間が短くて良い場合は、水槽3の外部から海水の注入をしない独立循環型での利用も可能である。
 図9は、水槽3の外部からの給水法を示している。これによれば、供給海水中の溶存酸素及び餌量が十分であれば、エアレーションせずとも所期の効果を得ることができる。排水は水槽3上部からオーバーフローさせても、上部排水管5から排水させてもよい。もちろん、中央空洞4内で微小気泡を発生させて、エアーリフト方式で空洞内上昇流を促進させると水槽内循環流の効率が高くなることは前述のとおりである。
 図10には、中央空洞4の上部より海水を注入する方法を示している、この場合は、中央空洞4の上部を水槽3の水面より嵩上げする必要がある。この方法では、中央空洞4の上昇流とその連行作用は発生しない。逆に、中央空洞4内に供給される海水Wを各段間隙D内に分配することになるが、溶存酸素、餌の供給といった作用は、前述の方法と同様である。この方法は、水槽3外から海水が十分に供給可能であり、供給体に溶存酸素や餌量といった物質が豊富に含まれている場合に有効である。
 上記いずれの方法も、養殖培地6に海水Wを効果的に接触、循環させることができ、底部一面利用の従来の海浜利用養殖に比較して、育成床を階層して立体化することで、単位面積当たりの個体収容密度を飛躍的に高めることができる。
 図11は、水槽3を使用することなく、育成皿2のみを使用する方法を示している。本発明の要旨は、各育成皿2間の間隙Dに潮流が発生することである。したがって、この機能が発揮されれば、敢えて循環流を発生させなくても所期の養殖効果は得られる。つまり、陸上養殖であれば水槽3は必須であるが、内湾や漁港内に階層した育成皿2のみを沈降して、中央空洞4内に上昇流又は下降流を発生させるものでもよい。
 以下、本発明装置を使用した養殖プラントについて説明する。ここでいうプラントとは、育成皿2のみ又は水槽3を含む養殖装置1を複数連結して使用するシステムを指している。その連結法は大別すると、使用する水(海水、淡水、汽水等が考えられるが、ここではこれらの代表呼称として「海水」を使用する。)を常に駐留あるいは貯水した状態で使用するシステム(ここでは、貯水システムと呼ぶことにする)と通常の干潟、砂浜で見られる干潮、満潮現象を取り入れた貯水状態と干潮、干出状態を繰り返すシステム(ここでは、干満システムと呼ぶことにする)である。
貯水システムプラント:
 図12(a)は、育成皿2を水槽3内に複数枚積層した養殖装置1の水槽3の下部より餌を含んだ海水Wを水槽3内に供給し、常時貯留させた状態で水槽3からオーバーフローした海水Wを排水パイプ11に排出するシステムである。この貯水システムの特徴はブロアー7によって中央空洞4内に上昇流を発生させるエアレーションを併用するシステムで、水槽3下部から各水槽3に個別に海水Wを供給するために、例えば、各水槽3の育成生物の個体収容密度が異なっている場合や、稚貝育成水槽と成貝育成水槽が同一システム内に混在している場合に、供給する微細藻等餌量の調整を海水供給量で調整する場合などに有効である。海水Wはある程度循環流により繰り返し各段間の間隙Dを流通することができる。この作用を活かすためには給水量を極力抑えながら供給することで、育成生物に利用されなかった海水Wを無駄に排水することを抑制することができ、且つ、給水バルブ10の操作だけで各水槽3の海水交換率を独立して調整することができる。
 図12(b)は、海水が給水される上流側の水槽3Aの上部排水口3aと、下流側の水槽3B及び3Cの下部給水口3bを順次連結したプラントを示すものである。供給された海水Wは上流側水槽3Aから下流側水槽3B及び3Cに向けて流れ、上流側水槽3Aから順次使用されていくために、下流側水槽3B及び3Cに行くにしたがい海水中の餌量は減少していき、培地6から海水中に溶出した汚濁物質も下流側水槽3B及び3C行くにしたがって、濃度が増加してしまう。しかしながら、給水設備及び排水設備が比較的簡単、省部材化が図れるという利点がある。
 図12(c)に示すプラントは、中央空洞部4の水面より高い位置から中央空洞部4内に落水させて給水するものである。これにより、中央部空洞4内には給水量に応じた下降流が発生し、各育成皿2段間の間隙には中央空洞部4より分配流が供給されることになり、エアレーションが不要になる。この方法は供給海水量(溶存酸素及び餌を含む)が比較的豊富に使用できる場合に有効であり、また、循環流が発生しないために、供給された海水Wは装置1内を一度しか通過しないことになる。このため育成生物Sに利用されなかった餌が混入した排水は多くなるが、育成生物Sは常に新鮮な海水に晒されるという利点がある。
干満システムプラント:
 図13は各水槽33A、3B及び3Cの下部同士を給水パイプ9の枝管9aで連結したプラントを示すもので、最後尾の水槽3Cの排水パイプ11の枝管11aは逆U字型でサイフォンの原理を利用して排水されるようになっている。したがって、当初、給水が始まると、全水槽3A、3B及び3Cがほぼ同じ水位で水面が上昇していき、排水パイプ11の枝管11aの上部まで水面上昇が継続される。その後、水面が排水パイプ11の枝管11aの最高位置まで到達した時点で排水が始まり、水位は低下し始める。水面が排水パイプ11の枝管11aの取水口まで低下すると、外気を吸入して排水は停止し、再度全水槽3A、3B及び3Cがほぼ同時に水面上昇に転ずる。その後はこの水面の上昇と下降を繰り返す。水面の上昇下降の水位変動の時間は、供給海水量の給水スピード及び排水パイプ11の枝管11aの管径または給水を間欠的に行うかどうかで調整できる。
 図14は各水槽3A、3B及び3Cを逆U字型パイプ(以下、排水サイフォンという)12で連結したプラントを示すものである。この方式は各水槽3A、3B及び3Cに排水サイフォン12を給水パイプとして採用したものであり、各水槽3A、3B及び3Cの水位変動には位相差が生じる。つまり、給水側上流の第1水槽3Aが満水位Lに到達すると、第1水槽3Aの排水サイフォン12が第2水槽3Bに給水を開始して、第2水槽3Bが水位上昇すると共に第1水槽3Aの水位が低下する。そして、第1水槽3Aと第2水槽3Bの水位が一致した時点で、両水槽3A及び3Bが同水位で満水位L(図中、二点鎖線で示す水平線)まで水位の上昇に転ずる。そして、これらが満水位Lになった時点で第3水槽3Cへの吸水が開始され、順次下流側水槽3B及び3Cへ海水Wの供給が同じ状態で移動していく。
 そして、最後尾の水槽3Cが満水位Lになると、最後尾水槽3Cの排水サイフォン12から全水槽3A、3B及び3Cの排水が最後尾排水口より開始される。各水槽3A、3B及び3Cの最低水位は、最後尾水槽3Cの排水量と最上流水槽3Aの給水量の差で変化するが、排水量が給水量より多い場合は、最後尾水槽3Cの排水口3bまで水位が低下した後に、最後尾排水口3bに外気が入り込んで排水はストップする。その後、最上流水槽3Aより貯水が始まり、順次下流側水槽3B及び3Cに移動することを繰り返すことになる。このプラントは、下流側水槽3B及び3Cに行くにしたがって、干出時間が長くなる。また、上層段の育成皿2のほうが干出時間が長くなる。したがって、長い干出時間好む育成種と短い干出時間好む育成種など、性質の異なる育成種を同一プラント内に混在して養殖する場合に適している。
 図15に示すプラントは、図14に示したプラントとほぼ同じであるが、最後尾の水槽3Cの排水サイフォン方式をオーバーフロー管12と制御型調整バルブ13に変更したものである。また、給水側も同様に制御型調整バルブ13で任意に給水と排水を行うことができるようになっている。この方式は叙述してきた自然な物理現象を利用するのではなく、完全に人為的に給排水及び水位変動を制御するものであり、干出時間を自由に制御できる。したがって、育成生物の特性、あるいは餌量の消費量に応じて干出時間を調整することが可能となる。
 図16は、育成皿2を同一プール14内に組み込んだプラントを示すものである。この場合の干満水位の制御は、プール14全体の給水管14a、排水口14bで行うことになるが、各育成皿2に対して個別の水槽及び配管システムが要らなくなる。また、水質の汚濁速度は個別に水槽3を使うシステムより緩和することができる。このプラントを自然海の干満差で利用する場合は、積層した育成皿2だけを海岸などの自然の干満潮が発生する場所に設置することで利用可能となる。
 従来の海浜を利用した養殖方法が、いわば「平屋建ての住宅」であるのに対し、本装置は「高層の集合住宅」といえ、生産効率を飛躍的に高めるものである。さらに、生産効率を高めるため、階層した育成床を鉛直方向に貫通する中心空洞及びこの空洞と通ずる各育成床間に水平方向の間隙を設け、装置内の水の流動を促進させる。さらに、本装置内外へ水がより流動するよう、気泡発生器若しくは水流発生器を設置する。さらに、人為的に育成環境を制御するため、給水管及び弁を備えた水槽に納め、水槽の水位及び水槽の給排水量を調整する。これにより、水槽内の汚濁物や餌量の調整を可能とし、より生産効率を高めることができる。
 さらに、このような給排水管及び弁を備えた複数の水槽を、管により連結すると、大規模な養殖プラントに発展させることができ、生産効率は飛躍的に高まる。また、このプラントにおいて、排水側の配管にサイフォン管を採用して連結すれば、水槽内の水位が自然に上昇下降し、人工的に干潮満潮を再現できることから、養殖対称に適した干出時間の調整が容易にできる。
 とくに、陸上養殖を可能とするが、海浜養殖においても利用が可能であり、総合的なプラントとして有用である。また、本装置は、一台から数千台といった大規模なシステムまで構成が可能であることから、単に水産養殖の分野に留まらず小規模な飲食産業、レジャー産業から巨大生産工場までその利用範囲は広い。

Claims (4)

  1. 水槽又は水域中に浸漬されると共に、二枚貝等の底棲生物の育成床となる複数の皿状容器を鉛直方向に階層し、当該階層育成床を鉛直方向に貫通する中央空洞及びこの空洞と通ずる各育成床間に水平方向の間隙を画成したことを特徴とする二枚貝等の底棲生物の養殖装置。
  2. 皿状容器を分割可能に構成したことを特徴とする請求項1記載の二枚貝等の底棲生物の養殖装置。
  3. 装置内外へ水を流動するべく、気泡発生器若しくは水流発生器を備えたことを特徴とする請求項1又は請求項2記載の二枚貝等の底棲生物の養殖装置。
  4. 水槽に給排水管及び弁を備え、当該水槽の水位及び給排水量を調整可能にしたことを特徴とする養殖装置。
PCT/JP2011/065834 2010-07-15 2011-07-12 二枚貝等の底棲生物の養殖装置 WO2012008424A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180034799.0A CN103118534B (zh) 2010-07-15 2011-07-12 双壳贝等底栖生物的养殖装置
US13/809,809 US9167803B2 (en) 2010-07-15 2011-07-12 Device for farming benthic organisms such as bivalves
KR1020137000946A KR101867109B1 (ko) 2010-07-15 2011-07-12 쌍각류 등의 저서 생물의 양식 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010160815A JP5029854B2 (ja) 2010-07-15 2010-07-15 二枚貝等の底棲生物の養殖装置
JP2010-160815 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008424A1 true WO2012008424A1 (ja) 2012-01-19

Family

ID=45469422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065834 WO2012008424A1 (ja) 2010-07-15 2011-07-12 二枚貝等の底棲生物の養殖装置

Country Status (6)

Country Link
US (1) US9167803B2 (ja)
JP (1) JP5029854B2 (ja)
KR (1) KR101867109B1 (ja)
CN (1) CN103118534B (ja)
TW (1) TWI568349B (ja)
WO (1) WO2012008424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860277A (zh) * 2012-10-17 2013-01-09 浙江大学舟山海洋研究中心 一种贝类养殖试验水槽

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954629B2 (ja) * 2012-07-27 2016-07-20 義裕 藤芳 二枚貝類の養殖兼富栄養化水域の水質及び底質浄化システム
JP6179917B2 (ja) * 2013-01-29 2017-08-16 株式会社オフィスエス−ワン 貝の養殖システム
ES2551654B1 (es) * 2014-05-19 2016-11-22 Instaebre Morelló, S.L. Procedimiento de optimización de cultivo de mejillón en entorno abierto y dispositivo para su aplicación
US11064842B2 (en) * 2014-11-21 2021-07-20 Tim McDonald Washing bucket for household, commercial and industrial use for cleaning mops and for chemical cleaning
US11134821B2 (en) * 2014-11-21 2021-10-05 Tim McDonald Washing bucket for household, commercial and industrial use for cleaning mops
CN104756933B (zh) * 2015-04-09 2017-05-10 中国水产科学研究院渔业机械仪器研究所 一种分层高密度底栖养殖鱼池
CN104855307B (zh) * 2015-04-22 2017-03-15 中国科学院南海海洋研究所 一种香港牡蛎单体的无损伤制备方法
CN107182886B (zh) * 2017-06-02 2020-02-14 中国科学院海洋研究所 一种陆基型贝类上升流养殖设备
JP2019205396A (ja) * 2018-05-30 2019-12-05 浜松ホトニクス株式会社 養殖装置
CN109089983A (zh) * 2018-09-28 2018-12-28 北海冠腾生物科技有限公司 用于养殖生蚝的装置
US11076581B2 (en) * 2018-11-07 2021-08-03 Bonnie Jean Warecki Nested raceway system
JP7336226B2 (ja) * 2019-03-27 2023-08-31 太平洋セメント株式会社 貝類の養殖方法
NO345209B1 (no) * 2019-04-11 2020-11-02 Ms Solutions As Anlegg og framgangsmåte for fôring av bentiske organismer
TWI703926B (zh) * 2019-06-24 2020-09-11 鑫鑽藻業生物科技股份有限公司 養殖系統
FR3098087B1 (fr) * 2019-07-01 2022-12-30 Earl Cambon Et Fils Écrin, colonne et procédé d’élevage de bivalves
DE102020115538B3 (de) 2020-06-11 2021-09-16 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung Vorrichtung zur Versorgung von Muscheln in einer Aquakultur
USD1031789S1 (en) * 2020-07-10 2024-06-18 Kenneth J. Andrea Bivalve harvesting platform
WO2022164384A1 (en) * 2021-02-01 2022-08-04 Singapore Crawfish Pte. Ltd. System and device for spawning and auto-separation of eggs and live-birth aquatic animals
CN114391500B (zh) * 2022-01-13 2022-11-22 上海海圣生物实验设备有限公司 海洋贝类养殖系统
TWI797982B (zh) * 2022-01-28 2023-04-01 震亞物聯網科技有限公司 階層式養殖裝置、階層式養殖裝置群組與養殖塔
CN115474573B (zh) * 2022-09-20 2024-02-20 浙江省海洋水产养殖研究所 一种贝类育苗智能化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216952B1 (ja) * 1970-08-12 1977-05-12
JP2002010723A (ja) * 2000-06-28 2002-01-15 Denshi Bussei Sogo Kenkyusho:Kk 魚介類養殖装置
JP3493357B2 (ja) * 2001-10-29 2004-02-03 中塚建設株式会社 貝類の陸上養殖装置
JP2007159507A (ja) * 2005-12-15 2007-06-28 Hidekatsu Yamamoto 貝類養殖槽および貝類養殖方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US517652A (en) * 1894-04-03 Live-box for shell-fish
US3650244A (en) * 1969-12-18 1972-03-21 Edwin C Fordham Method and apparatus for protecting and enhancing the growth of young shellfish sets
US3727579A (en) * 1970-12-21 1973-04-17 Olsen O Lobster preservation system
US3870019A (en) * 1971-02-10 1975-03-11 Douglas Mcnicol Oyster culture basket
JPS5229860B2 (ja) 1972-04-29 1977-08-04
US3815546A (en) * 1972-10-10 1974-06-11 E Plante Lobster plant
US3889639A (en) * 1973-02-22 1975-06-17 Ocean Protein Corp Rearing tank for aquatic animals
US4007709A (en) * 1975-03-24 1977-02-15 Wishner Frederick B Apparatus and process for raising lobsters
JPS5216952A (en) 1975-07-30 1977-02-08 Hitachi Ltd Transistor amplifying circuit
US4198924A (en) * 1978-06-26 1980-04-22 Sanders Associates, Inc. Aquaculture rearing system
US4377987A (en) * 1981-10-30 1983-03-29 Satre Alf R System for growing oysters
USD304870S (en) * 1986-01-09 1989-11-28 Marine Lobster Farms Ltd. Tray for holding aquatic organisms or the like
JP3008390B2 (ja) * 1991-08-13 2000-02-14 正裕 岡村 アワビまたはサザエの養殖方法
US5515813A (en) * 1994-05-09 1996-05-14 Wilkerson; Douglas D. Aquatic cultivator
JP3979746B2 (ja) * 1999-05-07 2007-09-19 悦郎 小原 海洋生物養殖装置
CN2422820Y (zh) * 2000-05-30 2001-03-14 孙纯孝 仿生养蝎塔
US6578523B2 (en) * 2001-03-16 2003-06-17 Gilles Gagnon Mussel cultivation device
JP3913669B2 (ja) 2002-11-18 2007-05-09 株式会社中山製鋼所 貝類養殖装置
JP2004329042A (ja) * 2003-05-01 2004-11-25 Kyotofu Suisan Shinko Jigyodan 円型水槽によるアワビ養殖の装置
NO319974B1 (no) * 2004-01-13 2005-10-03 Kjetil Froyland T Anordning og fremgangsmate ved oppavling, frakt og utsetting av skalldyryngel
TWM259474U (en) * 2004-06-16 2005-03-21 Chuen-Lian Juang 3D aquafarm equipment for fish, shrimp, and shellfish cultivation
KR200387099Y1 (ko) * 2005-03-29 2005-06-17 이창환 전복 양식집
CN2877283Y (zh) * 2006-03-03 2007-03-14 孙建明 一种鲍鱼、海胆、海参的养殖装置
CN100499998C (zh) * 2006-03-03 2009-06-17 孙建明 一种多层抽屉式底栖类水产动物的养殖装置
TWM335936U (en) * 2008-01-28 2008-07-11 Tan Hou Ocean Dev Co Ltd Aquaculture cultivation device
USD681771S1 (en) * 2012-08-02 2013-05-07 Shoreline Industries, LLC Mollusk trap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216952B1 (ja) * 1970-08-12 1977-05-12
JP2002010723A (ja) * 2000-06-28 2002-01-15 Denshi Bussei Sogo Kenkyusho:Kk 魚介類養殖装置
JP3493357B2 (ja) * 2001-10-29 2004-02-03 中塚建設株式会社 貝類の陸上養殖装置
JP2007159507A (ja) * 2005-12-15 2007-06-28 Hidekatsu Yamamoto 貝類養殖槽および貝類養殖方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860277A (zh) * 2012-10-17 2013-01-09 浙江大学舟山海洋研究中心 一种贝类养殖试验水槽

Also Published As

Publication number Publication date
TW201216842A (en) 2012-05-01
JP5029854B2 (ja) 2012-09-19
KR101867109B1 (ko) 2018-06-12
US9167803B2 (en) 2015-10-27
US20130180461A1 (en) 2013-07-18
TWI568349B (zh) 2017-02-01
KR20130041107A (ko) 2013-04-24
CN103118534A (zh) 2013-05-22
CN103118534B (zh) 2015-11-25
JP2012019746A (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5029854B2 (ja) 二枚貝等の底棲生物の養殖装置
JP5610296B2 (ja) 二枚貝等の底棲生物の多段式養殖装置及び養殖方法並びにこれを用いたバイオフィルター
US20170127656A1 (en) Algae Farm
CN101828538A (zh) 一种箱式生物浮床及其使用方法
JP5954629B2 (ja) 二枚貝類の養殖兼富栄養化水域の水質及び底質浄化システム
CN104996348A (zh) 一种循环水海水养鱼网箱
KR20130044599A (ko) 에어리프트를 이용한 순환식 양식 시스템
CN102823521A (zh) 半咸水人工湿地室内养殖对虾的方法
KR101170304B1 (ko) 양식어류와 갯지렁이의 복합양식 시스템 및 방법
JP2009060830A (ja) 循環式水槽およびこれを用いた魚介類の飼育方法
JP4232151B2 (ja) 飼育水浄化装置、これを用いた飼育水槽及び飼育水の浄化方法
CN217677008U (zh) 一种原位修复水生态系统的生物孵化净水平台
JP2005169309A (ja) 閉鎖性水域の水質浄化方法および閉鎖性水域用の水質浄化装置
CN205803121U (zh) 一种浮岛流水聚藻控藻系统
CN105502675B (zh) 一种浮岛流水聚藻控藻系统
JP6480071B1 (ja) 養殖装置
JPH07284355A (ja) 養殖生簀のための海水濾過装置
JPH07274767A (ja) 養殖生簀
JPH10244290A (ja) 水槽水の濾過方法及び濾過装置
CN108684598A (zh) 智能化海水池塘休闲景观生态养殖系统
CN218649760U (zh) 一种水产育苗养殖箱
JP6931784B1 (ja) 水産生物育成用水の浄化システム
CN217429011U (zh) 一种养殖系统多层立体充氧装置
CN214339464U (zh) 高密度培育名贵鱼类优质苗种的设备
JP6973832B1 (ja) 水棲動物の養殖装置、および養殖方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034799.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137000946

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13809809

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11806754

Country of ref document: EP

Kind code of ref document: A1