WO2012008213A1 - コンバインドサイクル発電装置 - Google Patents

コンバインドサイクル発電装置 Download PDF

Info

Publication number
WO2012008213A1
WO2012008213A1 PCT/JP2011/061111 JP2011061111W WO2012008213A1 WO 2012008213 A1 WO2012008213 A1 WO 2012008213A1 JP 2011061111 W JP2011061111 W JP 2011061111W WO 2012008213 A1 WO2012008213 A1 WO 2012008213A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
turbine
intermediate pressure
cooling
pressure chamber
Prior art date
Application number
PCT/JP2011/061111
Other languages
English (en)
French (fr)
Inventor
丸山 隆
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127034012A priority Critical patent/KR101457783B1/ko
Priority to CN201180025630.9A priority patent/CN102906376B/zh
Priority to EP11806544.0A priority patent/EP2597271B1/en
Publication of WO2012008213A1 publication Critical patent/WO2012008213A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle power generation apparatus that reheats steam discharged from a high pressure chamber of a steam turbine by exhaust heat of a gas turbine, introduces the reheated steam into an intermediate pressure chamber, and drives the steam turbine.
  • the present invention relates to a combined cycle power generator capable of effectively cooling the turbine rotor of the intermediate pressure turbine.
  • a combined cycle power generation device combining a gas turbine and a steam turbine is known.
  • a combined cycle power generation device that combines a gas turbine and a steam turbine can generate power efficiently by driving the steam turbine using the exhaust heat of the gas turbine. It is expanding.
  • the combined cycle power generator reheats the steam discharged from the high pressure chamber of the steam turbine by exhaust heat of the gas turbine, and introduces the reheated steam (reheated steam) into the intermediate pressure chamber. It drives a steam turbine.
  • the temperature of the main steam introduced into the high-pressure turbine and the temperature of the reheat steam introduced into the intermediate-pressure turbine are substantially the same.
  • the blade diameter of the blade used is large, so the centrifugal force of the blade accompanying the driving of the steam turbine is large, especially in the turbine rotor and blade root near the steam inlet of the medium pressure turbine, there is a problem in terms of creep strength Remain. Therefore, it is necessary to cool the turbine rotor in the intermediate pressure turbine in the combined cycle power generation apparatus.
  • FIG. 4 is an explanatory diagram related to cooling of a turbine rotor of a medium pressure turbine in a conventional combined cycle power generation device, and is a periphery of a high pressure turbine inlet portion and a periphery of a medium pressure turbine inlet portion of a steam turbine system constituting the combined cycle power generation device. Is shown.
  • the steam turbine system 03 includes an intermediate pressure turbine 2 and a high pressure turbine 4.
  • the intermediate pressure turbine 2 supports a stationary blade row composed of a plurality of stationary blades 24a, 24b, 24c, and the blade root 23a and the tip 23b of the first-stage stationary blade 24a and the second and subsequent stages.
  • the intermediate pressure chamber 22 that supports the blade roots of the stationary blades 24b, 24c,... And the moving blade row that includes a plurality of blades 26a, 26b, 26c,.
  • the high-pressure turbine 4 supports a stationary blade row composed of a plurality of stationary blades 44a, 44b, 44c,... And a blade root 43a and a tip 43b of the first-stage stationary blade 44a and the second and subsequent stages.
  • Has a high-pressure casing 42 that supports the blade roots of the stationary blades 44b, 44c..., And a moving blade row composed of a plurality of moving blades 46a, 46b, 46c.
  • a reheat steam inlet 3 for introducing reheat steam into the intermediate pressure turbine 2 and a main steam inlet 5 for introducing main steam into the high pressure turbine 4 are provided.
  • the steam inlet of the intermediate pressure turbine 2 and the high pressure turbine 4 are provided.
  • the steam inlets are arranged in opposite directions.
  • a high-pressure dummy portion 7 is provided, and a space portion 8 is provided between the intermediate-pressure dummy portion 6 and the high-pressure dummy portion 7.
  • the pressure is reduced by the first stage stationary blade 44a from between the first stage stationary blade 44a and the first stage moving blade 44b of the high-pressure turbine 4.
  • a part of the main steam is extracted as cooling steam and introduced into the intermediate pressure chamber 4 through the high pressure dummy portion 7 and the low pressure dummy portion 6 to cool the turbine rotor 28 in the intermediate pressure turbine 2.
  • 4 indicates the flow of the cooling steam, part of which is used for cooling the turbine rotor 28, and part of the cooling steam passes through the space 8. Then, it merges with the exhaust of the high-pressure turbine 4 and is reheated by a reheater (not shown) to become part of the reheated steam.
  • the combined cycle power generation apparatus as shown in FIG. 4 is reheated by the main steam temperature introduced into the high-pressure turbine and the exhaust heat of the gas turbine, along with the development of high-temperature technology for the gas turbine.
  • the reheat steam temperature introduced into the medium pressure turbine is high.
  • the use of blades used in high-pressure turbines is becoming more reactive blades in order to improve the cycle efficiency of the combined cycle power generator as a whole, and the cooling steam temperature tends to be higher than when conventional impulse blades are used. There is. Therefore, in the technique shown in FIG. 4, the cooling effect of the turbine rotor 28 of the intermediate pressure turbine may not be sufficient.
  • Patent Document 1 discloses a gas turbine plant including a compressor, a combustor, a gas turbine, a high-pressure turbine, Combined power generation equipped with a steam turbine plant that includes a medium-pressure turbine and a low-pressure turbine, and a waste heat recovery boiler that generates high-pressure steam, medium-pressure steam, and low-pressure steam that drives each steam turbine using gas turbine exhaust heat
  • the steam generated in the exhaust heat recovery boiler that has a medium pressure and is higher than the saturation temperature of the medium pressure drum is used as the cooling steam for the combustor tail cylinder.
  • the gas turbine blades were cooled using steam extracted from the high-pressure turbine outlet, and the temperature was raised after cooling. Techniques for recovering vapor ⁇ to the intermediate portion of the reheater of the waste heat recovery boiler is disclosed.
  • Patent Document 1 uses the steam generated in the exhaust heat recovery boiler that has an intermediate pressure and is higher than the saturation temperature of the intermediate pressure drum as the cooling steam for the combustor tail cylinder.
  • the steam cylinder cooling steam
  • the transitional cooling steam is introduced into the intermediate pressure turbine.
  • the intermediate pressure turbine can be cooled.
  • the transitional cooling steam is mixed with the reheated steam before the introduction of the intermediate pressure turbine, the reheated steam is also cooled by the transitional cooling steam. There is a problem that the thermal cycle efficiency of the entire Indian power plant is reduced.
  • an object of the present invention is to provide a combined cycle power generation apparatus that can efficiently cool the turbine rotor of an intermediate pressure turbine without reducing the overall thermal cycle efficiency. To do.
  • the steam discharged from the high pressure chamber of the steam turbine is reheated by exhaust heat of the gas turbine, the steam is introduced into the intermediate pressure chamber, and the steam turbine is driven.
  • a combined cycle power generation device wherein the reheat is higher than the steam discharged from the high pressure chamber, and the cooling steam after cooling the gas turbine is reheated by the exhaust heat of the gas turbine.
  • a cooling steam inlet separate from the reheat steam inlet into which the steam is introduced is introduced into the intermediate pressure chamber for cooling.
  • the cooling chamber By introducing the cooling steam into the intermediate pressure chamber from the cooling steam inlet separate from the reheat steam, the cooling chamber can be introduced into the intermediate pressure chamber without cooling the reheat steam, A reduction in the thermal cycle efficiency of the combined power plant as a whole can be avoided. Furthermore, since the cooling steam after cooling the gas turbine is lower in temperature than the reheated steam, the turbine steam of the intermediate pressure turbine is efficiently cooled by introducing the cooling steam into the intermediate pressure chamber. In addition, since the outlet steam of the high pressure chamber is significantly lower in temperature than the reheat steam, if the outlet steam of the high pressure chamber is used as the cooling steam, the reheat steam and the outlet steam of the high pressure chamber Due to the large temperature difference, it becomes difficult to control the temperature in the intermediate pressure chamber. Therefore, in order to facilitate the temperature management in the intermediate pressure chamber, it is necessary to use steam having a higher temperature than the steam discharged from the high pressure chamber as the cooling steam.
  • the intermediate pressure chamber supports the blade roots and tips of the first stage stationary blades disposed immediately after the reheat steam inlet, and supports the blade roots of the second and subsequent stator blade rows.
  • the first stage stationary blade and the first stage moving blade communicate with each other through a gap between the intermediate pressure casing and the intermediate pressure rotor at a position supported by the casing. Good.
  • the cooling steam is introduced into the intermediate pressure chamber. Therefore, the cooling steam can be introduced into the intermediate pressure chamber without lowering the reheat temperature, and the reheat steam can be made to work more efficiently in the intermediate pressure chamber.
  • the cooling steam is higher in pressure than the reheat steam, and a dummy part is provided between the medium pressure chamber and the high pressure chamber to partition the high pressure chamber and the medium pressure chamber, and the dummy part is reheated. It is good to communicate with the steam inlet. Accordingly, the dummy portion can be cooled by the cooling steam, and the cooling range is expanded.
  • the said cooling steam is good in it being the tail-tube cooling steam after cooling the combustor of the said gas turbine. Since the transition piece cooling steam is usually mixed with the reheat steam and processed, the reheat steam is cooled by the tail pipe cooling steam and the thermal efficiency is lowered. However, the use of the transitional cooling steam as the cooling steam eliminates the need for mixing the transitional cooling steam with the reheated steam, thereby preventing the reheated steam from being cooled by the transitional cooling steam and reducing the thermal efficiency. can do.
  • Embodiment 1 is a schematic system diagram of a combined cycle power generator according to Embodiment 1 of the present invention. It is explanatory drawing which concerns on cooling of the turbine rotor of the intermediate pressure turbine in the combined cycle electric power generating apparatus which concerns on Embodiment 1 of this invention. It is explanatory drawing which concerns on cooling of the turbine rotor of the intermediate pressure turbine in the combined cycle power generation apparatus which concerns on Embodiment 2 of this invention. It is explanatory drawing which concerns on cooling of the turbine rotor of the intermediate pressure turbine in the conventional combined cycle power generation device.
  • FIG. 1 is a schematic system diagram of a combined cycle power generator according to Embodiment 1 of the present invention.
  • the combined cycle power generation apparatus 1 includes a gas turbine 01, an exhaust heat recovery boiler 02, and a steam turbine system 03 including a high pressure turbine 4, an intermediate pressure turbine, and a low pressure turbine 10.
  • the compressor 12 constituting the gas turbine 01 in the combined cycle power generator 1 shown in FIG. 1 sucks the atmosphere and compresses it to a predetermined pressure, and then the combustor 13 reaches a predetermined temperature at the inlet of the turbine 11.
  • the adjusted fuel and the air pressurized by the compressor 12 are mixed and burned.
  • the exhaust gas that has finished work in the combustor 13 is supplied from the exhaust gas duct 9 to the exhaust heat recovery boiler 02.
  • the steam generated in the intermediate pressure drum 15 is guided to the tail cylinder of the combustor 13 by the cooling steam pipe 18 to cool the tail cylinder of the combustor 6.
  • the steam heated by cooling the tail cylinder of the combustor 6 is heated to a temperature higher than that of the steam discharged from the high-pressure turbine 4, and will be described later via a cooling steam recovery pipe 19. Led to 2.
  • the reheated steam guided to the intermediate pressure turbine 2 is expanded in the intermediate pressure turbine 2 to generate an output, and then generated in the low pressure drum 14 and supplied via the low pressure steam pipe 20. Mix and supply to the inlet of the low pressure turbine 10.
  • the steam supplied to the inlet of the low-pressure turbine 10 expands by the low-pressure turbine 10 and generates an output to a generator (not shown). Thereafter, the steam is condensed by a condenser (condensate), pressurized to a predetermined pressure by a pressure pump, and then the condensed water is supplied to the exhaust heat recovery boiler 02 through a water supply pipe.
  • a condenser condensate
  • a pressure pump pressurized to a predetermined pressure by a pressure pump
  • FIG. 2 is an explanatory diagram relating to cooling of the turbine rotor of the intermediate pressure turbine in the combined cycle power generator according to Embodiment 1 of the present invention, and shows the periphery of the high pressure turbine inlet and the periphery of the intermediate pressure turbine of the steam turbine system. It is shown.
  • the steam turbine system 03 includes an intermediate pressure turbine 2 and a high pressure turbine 4 as shown in FIG.
  • the intermediate pressure turbine 2 supports a stationary blade row composed of a plurality of stationary blades 24a, 24b, 24c, and the blade root 23a and the tip 23b of the first-stage stationary blade 24a and the second and subsequent stages.
  • the medium pressure chamber 22 that supports the blade roots of the stationary blades 24b, 24c,..., And a moving blade row that includes a plurality of blades 26a, 26b, 26c,.
  • the high-pressure turbine 4 supports a stationary blade row composed of a plurality of stationary blades 44a, 44b, 44c,... And a blade root 43a and a tip 43b of the first-stage stationary blade 44a and the second and subsequent stages.
  • a moving blade row composed of a plurality of moving blades 46a, 46b, 46c.
  • a reheat steam inlet 3 for introducing reheat steam into the intermediate pressure turbine 2 and a main steam inlet 5 for introducing main steam into the high pressure turbine 4 are provided.
  • the steam inlet of the intermediate pressure turbine 2 and the high pressure turbine 4 are provided.
  • the steam inlets are arranged in opposite directions.
  • a high-pressure dummy portion 7 is provided, and a space portion 8 is provided between the intermediate-pressure dummy portion 6 and the high-pressure dummy portion 7.
  • a communication passage 31 is provided that communicates between the high-speed dummy portion 7 and the low-pressure dummy portion 6 between 24a and the first stage blade 26a.
  • the cooling steam is extracted and introduced into the intermediate pressure turbine 4 via the communication path 31 between the first stage stationary blade 24a and the first stage moving blade 26a of the intermediate pressure turbine 2,
  • the turbine rotor 28 in the pressure turbine 2 is cooled. 2 indicate the flow of the cooling steam from the high-pressure turbine 4, and the cooling steam is partly used for cooling the turbine rotor 28 of the intermediate-pressure turbine 2.
  • a part of the reheater 18 merges with the exhaust gas of the high-pressure turbine 4 via a pipe 8 ′ that joins the space 8 and the pipe 8 ′ through which the exhaust gas of the high-pressure turbine 4 flows. Is reheated to become part of the reheated steam.
  • a cooling steam recovery pipe 19 through which cooling steam heated by cooling the tail cylinder of the combustor 6 (hereinafter referred to as tail pipe cooling steam) flows is an intermediate pressure dummy section 6.
  • the intermediate pressure turbine 2 merge into the communication path 31.
  • the tail-cylinder cooling steam that has cooled the tail cylinder of the combustor 6 of the gas turbine 01 passes through the cooling steam recovery pipe 19 and the communication path 31, and the first stage stationary blade 24 a and the first stage of the intermediate pressure turbine 2.
  • the turbine rotor 28 in the intermediate pressure turbine 2 is cooled by the tail cylinder cooling steam introduced between the rotor blades 26a of the eyes.
  • the black arrow shown by A in FIG. 2 has shown the flow of the said tail-tube cooling steam.
  • the turbine rotor 28 of the intermediate pressure turbine 2 is used for cooling. Since the transition pipe cooling steam is at a lower temperature than the flowing cooling steam as shown by the arrow B in FIG. 2, the cooling efficiency is improved by using the transition pipe cooling steam for cooling the turbine rotor of the intermediate pressure turbine 2. Can do. Although it is conceivable to use the outlet steam of the high-pressure turbine 4 as steam having a temperature lower than that of the tail cylinder cooling steam in the process of the combined power generation apparatus, when the outlet air is used, the outlet steam is reheated.
  • Cooling steam is optimal.
  • the cooling steam and the tail cylinder cooling steam are introduced between the first stage stationary blade 24 a and the first stage moving blade 26 a of the intermediate pressure turbine 2. Accordingly, the reheat steam can be introduced into the intermediate pressure turbine 2 without lowering the temperature by the cooling steam and the tail cylinder cooling steam, and the reheat steam can efficiently work in the intermediate pressure turbine 2. it can. That is, the turbine rotor of the intermediate pressure turbine can be efficiently cooled without reducing the overall thermal cycle efficiency.
  • FIG. 3 is an explanatory diagram relating to cooling of the turbine rotor of the intermediate pressure turbine in the combined cycle power generator according to Embodiment 2 of the present invention, and shows the periphery of the high pressure turbine inlet and the periphery of the intermediate pressure turbine of the steam turbine system. It is shown.
  • the system diagram of the combined cycle power generation apparatus as a whole is the same as the system diagram shown in FIG. 1 in the first embodiment except for the connection destination of the space 8, so that FIG. Is omitted.
  • the pipe 8 ′ is merged with the b ′ portion in FIG.
  • the space 8 has substantially the same pressure as the connection destination of the pipe 8 ′. Therefore, in FIG. 3, the space portion has substantially the same pressure as the inlet of the intermediate pressure turbine 2, which is lower in pressure than the above-described tail-tube cooling steam. Therefore, in the second embodiment, as shown by the arrow A ′ in FIG. 3, a part of the transitional cooling steam is used for cooling the turbine rotor 28 of the intermediate pressure turbine 2 and the remaining part is an intermediate pressure dummy. It flows from the space portion 8 through the portion 6 to the intermediate pressure turbine inlet (portion b shown in FIG. 1) and merges with the reheated steam.
  • the intermediate pressure dummy portion 6 can also be cooled by the tail cylinder cooling steam, and the cooling range is expanded.
  • It can be used as a combined cycle power generator that can efficiently cool the turbine rotor of a medium pressure turbine without reducing the overall thermal cycle efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

ガスタービンの排熱によって、蒸気タービンの高圧室から排出された蒸気を再熱し、該蒸気を中圧室に導入して、前記蒸気タービンを駆動するコンバインドサイクル発電装置であって、前記高圧室から排出された蒸気よりも高温であって、かつ、前記ガスタービンを冷却した後の冷却蒸気を、前記ガスタービンの排熱によって再熱された再熱蒸気が導入される再熱蒸気入口とは別個の冷却蒸気入口から、前記中圧室に導入して冷却するようにした。

Description

コンバインドサイクル発電装置
 本発明は、ガスタービンの排熱によって蒸気タービンの高圧室から排出された蒸気を再熱し、該再熱した蒸気を中圧室に導入して、前記蒸気タービンを駆動するコンバインドサイクル発電装置に関するものであって、特に前記中圧タービンのタービンロータを効果的に冷却することができるコンバインドサイクル発電装置に関するものである。
 従来より、ガスタービンと蒸気タービンを組み合わせたコンバインドサイクル発電装置が知られている。ガスタービンと蒸気タービンを組み合わせたコンバインドサイクル発電装置は、ガスタービンの排熱を利用して蒸気タービンを駆動することによって効率良く発電出来るため、燃料消費が少なく、排出CO2も少ないので、近年需要が拡大している。
 前記コンバインドサイクル発電装置は、ガスタービンの排熱によって、蒸気タービンの高圧室から排出された蒸気を再熱し、該再熱された蒸気(再熱蒸気)を中圧室に導入する事で、前記蒸気タービンを駆動するものである。
 前述のガスタービンと蒸気タービンを組み合わせたコンバインドサイクル発電装置では、高圧タービンに導入される主蒸気と中圧タービンに導入される再熱蒸気の温度は略同等であるが、中圧タービンは高圧タービンと比較すると使用される翼の翼径が大きいため、蒸気タービンの駆動に伴う翼の遠心力が大きく、特に中圧タービンの蒸気入口部付近におけるタービンロータや翼根部ではクリープ強度の面で課題が残る。そのため、コンバインドサイクル発電装置における中圧タービンではタービンロータを冷却する必要がある。
 図4は、従来のコンバインドサイクル発電装置における中圧タービンのタービンロータの冷却に係る説明図であって、コンバインドサイクル発電装置を構成する蒸気タービンシステムの高圧タービン入口部周辺及び中圧タービン入口部周辺を示したものである。
 蒸気タービンシステム03は、中圧タービン2及び高圧タービン4を有している。中圧タービン2は、複数の静翼24a、24b、24c・・・からなる静翼列と、第1段目の静翼24aの翼根23a及び先端23bを支持するとともに第2段目以降の静翼24b、24c・・・の翼根を支持する中圧車室22と、複数の動翼26a、26b、26c・・・からなる動翼列を有している。また高圧タービン4は、複数の静翼44a、44b、44c・・・からなる静翼列と、第1段目の静翼44aの翼根43a及び先端43bを支持するとともに第2段目以降の静翼44b、44c・・・の翼根を支持する高圧車室42と、複数の動翼46a、46b、46c・・・からなる動翼列を有している。
 また、中圧タービン2に再熱蒸気を導入する再熱蒸気入口3と、高圧タービン4に主蒸気を導入する主蒸気入口5が設けられており、中圧タービン2の蒸気入口と高圧タービン4の蒸気入口は対向する向きに配置されている。また中圧タービン2と高圧タービン4との間には、中圧タービン2で発生するスラスト力とのバランスをとるための中圧ダミー部6と、高圧タービン4で発生するスラスト力とのバランスをとるための高圧ダミー部7とが設けられており、中圧ダミー部6と高圧ダミー部7との間には空間部8が設けられている。
 図4に示した蒸気タービンシステム03においては、高圧タービン4の第1段目の静翼44aと第1段目の動翼44bとの間から、第1段目の静翼44aによって減圧された主蒸気の一部を冷却蒸気として抜き出し、高圧ダミー部7及び低圧ダミー部6を介して、中圧室4に導入することで中圧タービン2内のタービンロータ28を冷却している。なお、図4中にCで示した黒塗りの矢印は前記冷却蒸気の流れを示しており、該冷却蒸気は、一部はタービンロータ28の冷却に使用され、一部は空間部8を介して高圧タービン4の排気と合流して、再熱器(不図示)によって再熱されて再熱蒸気の一部となる。
 しかしながら、近年、図4に示したようなコンバインドサイクル発電装置では、ガスタービンの高温化技術開発の進展に伴い、高圧タービンに導入される主蒸気温度と、ガスタービンの排熱によって再熱されて中圧タービンに導入される再熱蒸気温度が高温化している。さらに、コンバインドサイクル発電装置全体のサイクルの効率化のために高圧タービンで用いられる翼の反動翼化が進んでおり、従来の衝動翼を用いた場合と比較して前記冷却蒸気温度が高くなる傾向がある。そのため、図4に示した技術では、中圧タービンのタービンロータ28の冷却効果が充分とはならない可能性がある。
 また、コンバインドサイクル発電装置において、中圧タービンのタービンロータ28を冷却することができるその他の技術として、特許文献1には、圧縮機、燃焼器、ガスタービンを含むガスタービンプラントと、高圧タービン、中圧タービン、低圧タービンを含む蒸気タービンプラントを組み合わせ、ガスタービン排熱を利用して前記各蒸気タービンを駆動する高圧蒸気、中圧蒸気、低圧蒸気を発生させる排熱回収ボイラを備えたコンバインド発電プラントにおいて、排熱回収ボイラの中圧発生蒸気であって中圧ドラムの飽和温度より高い温度の蒸気を燃焼器尾筒の冷却蒸気として用い、冷却後昇温した冷却蒸気を中圧タービンへ回収するとともに、高圧タービン出口より抽気した蒸気を用いてガスタービン翼を冷却し、冷却後昇温した冷却蒸気を排熱回収ボイラの再熱器の中間部へ回収する技術が開示されている。
特許第3500020号公報
 しかしながら、特許文献1に開示された技術は、前記排熱回収ボイラの中圧発生蒸気であって中圧ドラムの飽和温度より高い温度の蒸気を、燃焼器尾筒の冷却蒸気として用いた後昇温して中圧タービンへ回収することで、該蒸気(尾筒冷却蒸気)を中圧タービンのタービンロータの冷却に用いることができるものの、該尾筒冷却蒸気を中圧タービンに導入する再熱蒸気と混合してから尾筒冷却蒸気を中圧タービンに導入している。これにより、中圧タービンの冷却は可能であるが、尾筒冷却蒸気を中圧タービン導入前の再熱蒸気と混合するため、尾筒冷却蒸気により再熱蒸気までもが冷却されてしまい、コンパインド発電プラント全体の熱サイクル効率が低下してしまうという課題がある。
 従って、本発明は従来技術の問題点に鑑み、全体の熱サイクル効率を低下させることなく、中圧タービンのタービンロータを効率的に冷却することができるコンバインドサイクル発電装置を提供することを目的とする。
 上記の課題を解決するため本発明においては、ガスタービンの排熱によって、蒸気タービンの高圧室から排出された蒸気を再熱し、該蒸気を中圧室に導入して、前記蒸気タービンを駆動するコンバインドサイクル発電装置であって、前記高圧室から排出された蒸気よりも高温であって、かつ、前記ガスタービンを冷却した後の冷却蒸気を、前記ガスタービンの排熱によって再熱された再熱蒸気が導入される再熱蒸気入口とは別個の冷却蒸気入口から、前記中圧室に導入して冷却するようにしたことを特徴とする。
 前記冷却蒸気を、前記再熱蒸気と別個の冷却蒸気入口から前記中圧室に導入することで、再熱蒸気を冷却してしまうことなく前記冷却室を中圧室に導入することができ、コンバインド発電プラント全体の熱サイクル効率の低下を免れることができる。
 さらに、前記ガスタービンを冷却した後の冷却蒸気は、前記再熱蒸気よりも低温であるので、該冷却蒸気を中圧室に導入することで、中圧タービンのタービンロータを効率的に冷却することができる
 なお、前記高圧室の出口蒸気は再熱蒸気と比較すると大幅に低温であるので、仮に高圧室の出口蒸気を前記冷却蒸気として使用すると、再熱蒸気と高圧室の出口蒸気との大きな温度差により、中圧室内の温度を制御することが難しくなる。そのため、中圧室内の温度管理を容易とするため、前記冷却蒸気として前記高圧室から排出された蒸気よりも高温である蒸気を使用する必要がある。
 また、前記中圧室は、前記再熱蒸気入口の直後に配置された第1段目の静翼の翼根および先端を支持するとともに、第2段目以降の静翼列の翼根を支持する中圧車室と、中圧動翼列を有し、前記中圧車室に収納される中圧ロータとを含み、前記冷却蒸気入口は、前記第1段目の静翼が前記中圧車室に支持された位置における、前記中圧車室と前記中圧ロータとの間隙を介して、前記第1段目の静翼と第1段目の動翼との間に連通しているとよい。
 これにより、再熱蒸気が第1段目の静翼で仕事をして前記冷却蒸気と近い温度まで低下した後に前記冷却蒸気が中圧室に導入される。そのため、前記冷却蒸気によって再熱温度を低下させることなく中圧室に導入することができ、再熱蒸気に中圧室でさらに効率的に仕事をさせることができる。
 また、前記冷却蒸気は、前記再熱蒸気よりも高圧であり、前記中圧室と高圧室との間に前記高圧室および前記中圧室を仕切るダミー部を設け、該ダミー部を前記再熱蒸気入口と連通させるとよい。
 これにより、前記冷却蒸気によって前記ダミー部も冷却することができて冷却範囲が広がる。
 また、前記冷却蒸気は、前記ガスタービンの燃焼器を冷却した後の尾筒冷却蒸気であるとよい。
 前記尾筒冷却蒸気は通常再熱蒸気と混合して処理するので、該尾筒冷却蒸気により再熱蒸気が冷却され熱効率が低下する。しかし、前記尾筒冷却蒸気を前記冷却蒸気として使用することで、尾筒冷却蒸気を再熱蒸気と混合する必要がなく、尾筒冷却蒸気によって再熱蒸気を冷却し熱効率が低下することを防止することができる。
 本発明によれば、全体の熱サイクル効率を低下させることなく、中圧タービンのタービンロータを効率的に冷却することができるコンバインドサイクル発電装置を提供することができる。
本発明の実施形態1に係るコンバインドサイクル発電装置の概略系統図である。 本発明の実施形態1に係るコンバインドサイクル発電装置における中圧タービンのタービンロータの冷却に係る説明図である。 本発明の実施形態2に係るコンバインドサイクル発電装置における中圧タービンのタービンロータの冷却に係る説明図である。 従来のコンバインドサイクル発電装置における中圧タービンのタービンロータの冷却に係る説明図である。
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
(実施形態1)
 図1は、本発明の実施形態1に係るコンバインドサイクル発電装置の概略系統図である。
 コンバインドサイクル発電装置1は、ガスタービン01、排熱回収ボイラ02、並びに高圧タービン4、中圧タービン及び低圧タービン10からなる蒸気タービンシステム03を備えている。
 図1に示したコンバインドサイクル発電装置1におけるガスタービン01を構成する圧縮機12により大気を吸い込んで所定の圧力まで圧縮した後に、燃焼器13において、タービン11の入口で所定の温度になるように調整された燃料と圧縮機12により加圧された空気を混合して燃焼させている。燃焼器13で仕事を終えた排ガスは、排ガスダクト9から排熱回収ボイラ02へ供給される。
 また、排熱回収ボイラ02では、低圧ドラム14、中圧ドラム15、高圧ドラム16で過熱蒸気を発生させ、高圧ドラム16で発生した蒸気は高圧蒸気配管17により主蒸気として高圧タービン4に導かれ、高圧タービン4で膨張して出力を発生する。高圧タービン4の出口蒸気は、排熱回収ボイラ02の再熱器18に導かれて再熱され、再熱蒸気として中圧タービン2に導かれる。
 また、中圧ドラム15で発生した蒸気は、冷却蒸気配管18により燃焼器13の尾筒に導かれ、燃焼器6の尾筒を冷却する。燃焼器6の尾筒を冷却することによって加温された前記蒸気は、高圧タービン4から排出される蒸気よりも高温まで加温され、冷却蒸気回収配管19を介して後述するように中圧タービン2に導かれる。
 また、中圧タービン2に導かれた前記再熱蒸気は、中圧タービン2で膨張されて出力を発生した後、低圧ドラム14で発生して低圧蒸気配管20を介して供給された過熱蒸気と混合し、低圧タービン10の入口へ供給される。
 低圧タービン10の入口へ供給された蒸気は低圧タービン10により膨張し、発電機(不図示)への出力を発生する。その後、復水器(復水)により蒸気を復水させ、加圧ポンプにより所定の圧力まで加圧した後、給水配管を経て排熱回収ボイラ02に復水した水を供給する。
 次に、図1に示したコンバインドサイクル発電装置1に係る、中圧タービン2の冷却について説明する。図2は、本発明の実施形態1に係るコンバインドサイクル発電装置における中圧タービンのタービンロータの冷却に係る説明図であって、蒸気タービンシステムの高圧タービン入口部周辺及び中圧タービン入口部周辺を示したものである。
 蒸気タービンシステム03は、図1にも示したように中圧タービン2及び高圧タービン4を有している。中圧タービン2は、複数の静翼24a、24b、24c・・・からなる静翼列と、第1段目の静翼24aの翼根23a及び先端23bを支持するとともに第2段目以降の静翼24b、24c・・・の翼根を支持する中圧車室22と、複数の動翼26a、26b、26c・・・からなる動翼列から構成される。また高圧タービン4は、複数の静翼44a、44b、44c・・・からなる静翼列と、第1段目の静翼44aの翼根43a及び先端43bを支持するとともに第2段目以降の静翼44b、44c・・・の翼根を支持する高圧車室42と、複数の動翼46a、46b、46c・・・からなる動翼列から構成される。
 また、中圧タービン2に再熱蒸気を導入する再熱蒸気入口3と、高圧タービン4に主蒸気を導入する主蒸気入口5が設けられており、中圧タービン2の蒸気入口と高圧タービン4の蒸気入口は対向する向きに配置されている。また中圧タービン2と高圧タービン4との間には、中圧タービン2で発生するスラスト力とのバランスをとるための中圧ダミー部6と、高圧タービン4で発生するスラスト力とのバランスをとるための高圧ダミー部7とが設けられており、中圧ダミー部6と高圧ダミー部7との間には空間部8が設けられている。
 図2に示した蒸気タービンシステム03においては、高圧タービン4の第1段目の静翼44aと第1段目の動翼44bとの間と、中圧タービン2の第1段目の静翼24aと第1段目の動翼26aとの間とを、高圧ダミー部7及び低圧ダミー部6を介して連通する連通路31が設けられている。これにより、高圧タービン4の第1段目の静翼44aと第1段目の動翼44bとの間から、第1段目の静翼44aによって減圧された主蒸気の一部が冷却蒸気として抜き出され、該冷却蒸気が、連通路31を介して中圧タービン4に中圧タービン2の第1段目の静翼24aと第1段目の動翼26aとの間に導入され、中圧タービン2内のタービンロータ28を冷却している。なお、図2中にBで示した黒塗りの矢印は高圧タービン4からの前記冷却蒸気の流れを示しており、該冷却蒸気は、一部は中圧タービン2のタービンロータ28の冷却に使用され、一部は空間部8、及び図1に示したa部にて高圧タービン4の排気が流れる配管と合流する配管8’を介して高圧タービン4の排気と合流して、再熱器18によって再熱されて再熱蒸気の一部となる。
 さらに、本発明に特徴的な構成として、燃焼器6の尾筒を冷却することで加熱された冷却蒸気(以下尾筒冷却蒸気と称する)が流れる冷却蒸気回収配管19が、中圧ダミー部6と中圧タービン2との間で連通路31に合流している。これにより、ガスタービン01の燃焼器6の尾筒を冷却した尾筒冷却蒸気を、冷却蒸気回収配管19及び連通路31を経て中圧タービン2の第1段目の静翼24aと第1段目の動翼26aとの間に導入し、前記尾筒冷却蒸気により中圧タービン2内のタービンロータ28を冷却している。なお、図2中にAで示した黒塗りの矢印は前記尾筒冷却蒸気の流れを示している。
 本実施形態によれば、図2に矢印Bで示したように流れる高圧タービン4から中圧タービン2に流れる冷却蒸気に加えて、図2に矢印Aで示したように流れる尾筒冷却蒸気を用いて中圧タービン2のタービンロータ28の冷却を行っている。前記尾筒冷却蒸気は、図2に矢印Bで示したように流れる冷却蒸気よりも低温であるため、中圧タービン2のタービンロータの冷却に尾筒冷却蒸気を用いることで冷却効率を高めることができる。
 なお、コンバインド発電装置のプロセス中において前記尾筒冷却蒸気よりも低温の蒸気として、高圧タービン4の出口蒸気を使用することも考えられるが、該出口空気を使用すると、該出口蒸気は前記再熱蒸気と比較すると極端に温度が低いため、冷却効果が大きすぎ中圧タービン2における温度管理が難しくなる。そのため、高圧タービン4の出口空気よりも高温であって、図2に矢印Bで示したように流れる冷却蒸気よりも低温である蒸気を使用することが好ましく、当該条件にあてはまる蒸気として前記尾筒冷却蒸気が最適である。
 さらに、前記冷却蒸気及び尾筒冷却蒸気を中圧タービン2の第1段目の静翼24aと第1段目の動翼26aとの間に導入している。これにより、再熱蒸気を前記冷却蒸気及び尾筒冷却蒸気によって温度を低下させることなく中圧タービン2に導入することができ、再熱蒸気に中圧タービン2で効率的に仕事をさせることができる。
 即ち、全体の熱サイクル効率を低下させることなく、中圧タービンのタービンロータを効率的に冷却することができる。
(実施形態2)
 図3は、本発明の実施形態2に係るコンバインドサイクル発電装置における中圧タービンのタービンロータの冷却に係る説明図であって、蒸気タービンシステムの高圧タービン入口部周辺及び中圧タービン入口部周辺を示したものである。
 図3において、図2と同一符号は同一物を表しその説明を省略する。また、実施形態2において、コンバインドサイクル発電装置全体の系統図は、空間部8の接続先以外は実施形態1にて図1に示した系統図と同様であるため、図1を援用しその説明を省略する。
 図3においては、配管8’を図1におけるb’部と合流させている。
 空間部8は、配管8’の接続先と略同圧となる。そのため図3においては空間部は中圧タービン2の入口と略同圧になり、これは前記尾筒冷却蒸気よりも低圧である。
 従って、実施形態2においては、尾筒冷却蒸気は図3に矢印A’で示したように、一部は中圧タービン2のタービンロータ28の冷却に用いられ、残りの一部は中圧ダミー部6を経て空間部8から中圧タービン入口(図1に示したb部)に流れて再熱蒸気と合流する。またこの時、高圧タービン4からの冷却蒸気は図3に矢印B’で示したように全量が空間部8から配管8’を介して中圧タービン入口(図1に示したb部)に流れて再熱蒸気と合流する。
 実施形態2においては、実施形態1と同様の効果に加えて、尾筒冷却蒸気によって中圧ダミー部6も冷却することができて冷却範囲が広がる。
 全体の熱サイクル効率を低下させることなく、中圧タービンのタービンロータを効率的に冷却することができるコンバインドサイクル発電装置として利用することができる。

Claims (4)

  1.  ガスタービンの排熱によって、蒸気タービンの高圧室から排出された蒸気を再熱し、該蒸気を中圧室に導入して、前記蒸気タービンを駆動するコンバインドサイクル発電装置であって、
     前記高圧室から排出された蒸気よりも高温であって、かつ、前記ガスタービンを冷却した後の冷却蒸気を、前記ガスタービンの排熱によって再熱された再熱蒸気が導入される再熱蒸気入口とは別個の冷却蒸気入口から、前記中圧室に導入して冷却するようにしたコンバインドサイクル発電装置。
  2.  前記中圧室は、前記再熱蒸気入口の直後に配置された第1段目の静翼の翼根および先端を支持するとともに、第2段目以降の静翼列の翼根を支持する中圧車室と、中圧動翼列を有し、前記中圧車室に収納される中圧ロータとを含み、
     前記冷却蒸気入口は、前記第1段目の静翼が前記中圧車室に支持された位置における、前記中圧車室と前記中圧ロータとの間隙を介して、前記第1段目の静翼と第1段目の動翼との間に連通していることを特徴とする請求項1に記載のコンバインドサイクル発電装置。
  3.  前記冷却蒸気は、前記再熱蒸気よりも高圧であり、
     前記中圧室と高圧室との間に前記高圧室および前記中圧室を仕切るダミー部を設け、該ダミー部を前記再熱蒸気入口と連通させたことを特徴とする請求項1又は2に記載のコンバインドサイクル発電装置。
  4.  前記冷却蒸気は、前記ガスタービンの燃焼器を冷却した後の尾筒冷却蒸気であることを特徴とする請求項1乃至3のいずれか一項に記載のコンバインドサイクル発電装置。
PCT/JP2011/061111 2010-07-14 2011-05-13 コンバインドサイクル発電装置 WO2012008213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127034012A KR101457783B1 (ko) 2010-07-14 2011-05-13 컴바인드 사이클 발전 장치
CN201180025630.9A CN102906376B (zh) 2010-07-14 2011-05-13 复合循环发电装置
EP11806544.0A EP2597271B1 (en) 2010-07-14 2011-05-13 Combined cycle power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-159304 2010-07-14
JP2010159304A JP5495995B2 (ja) 2010-07-14 2010-07-14 コンバインドサイクル発電装置

Publications (1)

Publication Number Publication Date
WO2012008213A1 true WO2012008213A1 (ja) 2012-01-19

Family

ID=45469224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061111 WO2012008213A1 (ja) 2010-07-14 2011-05-13 コンバインドサイクル発電装置

Country Status (6)

Country Link
US (1) US20120031069A1 (ja)
EP (1) EP2597271B1 (ja)
JP (1) JP5495995B2 (ja)
KR (1) KR101457783B1 (ja)
CN (1) CN102906376B (ja)
WO (1) WO2012008213A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958101A (ja) * 1982-09-27 1984-04-03 Toshiba Corp 蒸気タ−ビン装置
JPS62153506A (ja) * 1985-12-26 1987-07-08 Toshiba Corp 蒸気タ−ビン
JPH10159584A (ja) * 1996-11-29 1998-06-16 Mitsubishi Heavy Ind Ltd 蒸気冷却ガスタービンシステム
JPH10331610A (ja) * 1997-05-30 1998-12-15 Toshiba Corp コンバインドサイクル発電システム
JP2008151013A (ja) * 2006-12-15 2008-07-03 Toshiba Corp タービンロータおよび蒸気タービン

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628179A (en) * 1993-11-04 1997-05-13 General Electric Co. Steam attemperation circuit for a combined cycle steam cooled gas turbine
JPH09189236A (ja) * 1996-01-09 1997-07-22 Hitachi Ltd コンバインド発電プラント及びコンバインド発電プラントの運転方法
JPH10131719A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd 蒸気冷却ガスタービンシステム
JP3564241B2 (ja) * 1996-10-29 2004-09-08 三菱重工業株式会社 コンバインドサイクル発電プラント
JPH1150812A (ja) * 1997-07-31 1999-02-23 Toshiba Corp 排気再燃式コンバインドサイクル発電プラント
JPH11247669A (ja) * 1998-03-04 1999-09-14 Mitsubishi Heavy Ind Ltd ガスタービンコンバインドサイクル
JP2001263092A (ja) * 2000-03-15 2001-09-26 Mitsubishi Heavy Ind Ltd ガスタービン
JP2003106170A (ja) * 2001-10-01 2003-04-09 Mitsubishi Heavy Ind Ltd ガスタービンおよびガスタービン複合プラント、並びに冷却蒸気圧力調整方法
EP1452688A1 (de) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
JP2007291966A (ja) * 2006-04-26 2007-11-08 Toshiba Corp 蒸気タービンおよびタービンロータ
US8376687B2 (en) * 2009-10-13 2013-02-19 General Electric Company System and method for cooling steam turbine rotors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958101A (ja) * 1982-09-27 1984-04-03 Toshiba Corp 蒸気タ−ビン装置
JPS62153506A (ja) * 1985-12-26 1987-07-08 Toshiba Corp 蒸気タ−ビン
JPH10159584A (ja) * 1996-11-29 1998-06-16 Mitsubishi Heavy Ind Ltd 蒸気冷却ガスタービンシステム
JP3500020B2 (ja) 1996-11-29 2004-02-23 三菱重工業株式会社 蒸気冷却ガスタービンシステム
JPH10331610A (ja) * 1997-05-30 1998-12-15 Toshiba Corp コンバインドサイクル発電システム
JP2008151013A (ja) * 2006-12-15 2008-07-03 Toshiba Corp タービンロータおよび蒸気タービン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597271A4

Also Published As

Publication number Publication date
CN102906376A (zh) 2013-01-30
KR101457783B1 (ko) 2014-11-03
EP2597271A4 (en) 2017-05-31
US20120031069A1 (en) 2012-02-09
JP2012021447A (ja) 2012-02-02
EP2597271A1 (en) 2013-05-29
CN102906376B (zh) 2015-03-11
JP5495995B2 (ja) 2014-05-21
KR20130036259A (ko) 2013-04-11
EP2597271B1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP3068529B2 (ja) 回転軸出力を発生する方法及び発電プラント
RU2719413C2 (ru) Системы с замкнутым регенеративным термодинамическим циклом выработки электроэнергии и способы их работы
JP2004525301A (ja) ガスタービン設備とその冷却方法
JP2008248822A (ja) 火力発電所
US20060254280A1 (en) Combined cycle power plant using compressor air extraction
JP2011085133A (ja) 再熱ガスタービン
JP2001214759A (ja) ガスタービンコンバインドサイクル
JP3564241B2 (ja) コンバインドサイクル発電プラント
US8899909B2 (en) Systems and methods for steam turbine wheel space cooling
Kumar et al. Performance evaluation of gas-steam combined cycle having transpiration cooled gas turbine
JPS6267239A (ja) ガスタ−ビン動力発生法
JPH09125909A (ja) 複合サイクル用蒸気タービン
JP5495995B2 (ja) コンバインドサイクル発電装置
US6301874B1 (en) Combined cycle power plant with steam-cooled gas turbine
US8888436B2 (en) Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
JP4488787B2 (ja) 蒸気タービンプラントおよびその中圧タービンの冷却方法
JP2002129977A (ja) ガスタービン設備
JP2012145108A (ja) ガスタービンからの酸素排出量を制御するための装置及び方法
US8869532B2 (en) Steam turbine utilizing IP extraction flow for inner shell cooling
JP2012021447A5 (ja)
JP3389019B2 (ja) 蒸気冷却ガスタービン
JPH0988518A (ja) 複合発電プラント
JP2002221007A (ja) 火力発電プラント
JP5475315B2 (ja) コンバインドサイクル発電システム
RU2820930C1 (ru) Компрессор для цикла co2 с по меньшей мере двумя каскадными ступенями сжатия для обеспечения сверхкритических условий

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025630.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2797/MUMNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127034012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011806544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE