JP4488787B2 - 蒸気タービンプラントおよびその中圧タービンの冷却方法 - Google Patents

蒸気タービンプラントおよびその中圧タービンの冷却方法 Download PDF

Info

Publication number
JP4488787B2
JP4488787B2 JP2004133582A JP2004133582A JP4488787B2 JP 4488787 B2 JP4488787 B2 JP 4488787B2 JP 2004133582 A JP2004133582 A JP 2004133582A JP 2004133582 A JP2004133582 A JP 2004133582A JP 4488787 B2 JP4488787 B2 JP 4488787B2
Authority
JP
Japan
Prior art keywords
steam
turbine
cooling
pressure turbine
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133582A
Other languages
English (en)
Other versions
JP2004346932A (ja
Inventor
勝也 山下
浩平 永根
幸雄 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004133582A priority Critical patent/JP4488787B2/ja
Publication of JP2004346932A publication Critical patent/JP2004346932A/ja
Application granted granted Critical
Publication of JP4488787B2 publication Critical patent/JP4488787B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気の温度を高温化させてプラント熱効率の向上を図るとともに、蒸気の高温化に対処し、冷却蒸気を供給して構成部品の強度保証を高める蒸気タービンプラントおよびその中圧タービンの冷却方法に関する。
最近の蒸気タービンプラントでは、プラント熱効率の向上の強化見直しの一環として蒸気の高温化が検討されている。
蒸気の高温化は、ランキンサイクルの特性であり、蒸気温度を高くすればする程、プラント熱効率を向上させることができるとされている。
このため、蒸気タービンプラントは、ひところの比較的低温、低圧の蒸気条件から蒸気温度538℃/566℃または538℃/538℃の一段再熱にほぼ定着しつつある。
しかし、最近のように、温暖化現象や環境破壊等が地球規模レベルでクローズアップされている今日、蒸気タービンプラントの分野でも燃料の消費をより一層少なくさせて単機容量を増加させる研究開発が進められており、その一つに再熱蒸気温度を700℃以上にし、この超高温再熱蒸気を中圧タービンに供給することが提案されている。
600℃程度の高温の蒸気を中圧タービンに導入する技術について、中圧タービンの主蒸気インレット管を二重構造として蒸気冷却することなども提案されている(例えば、特許文献1参照。)。
特開平11−350911号公報
しかしながら再熱蒸気温度を700℃以上にする場合については、解決すべき多くの問題が残されており、特にタービン構成部品の強度保証を如何にして行うかについては現在模索中である。従来、火力発電プラントでは、蒸気タービンに使用するタービンロータ、タービンノズル、タービン動翼、ノズルボックス(蒸気室)、蒸気供給管等のタービン構成部品に改良された耐熱鋼を使用していたが、再熱蒸気温度が700℃以上になると、タービン構成部品の強度保証を高く維持させることが難しくなりつつある。
このため、蒸気タービンプラントでは、従来の改良された耐熱鋼をタービン構成部品にそのまま使用しても強度保証を高く維持できる新たな技術の実現が望まれており、その手段として蒸気冷却の採用が検討されている。
しかし、蒸気冷却の採用と言えども、この技術分野にとっては未開発の分野であり、試行錯誤を繰り返している。
本発明は、このような背景技術に基づいてなされたもので、再熱蒸気の温度を超高温化させてプラント熱効率をより一層向上させるとともに、再熱蒸気の高温化に対処してタービン構成部品に高い強度保証を維持させる蒸気タービンおよびその冷却方法、ならびに蒸気タービンプラントを提供することを目的とする。
上述の目的を達成するために、本発明に係る蒸気タービンプラントは、請求項1に記載したように、蒸気発生器と、当該蒸気発生器にて発生した蒸気により駆動される高圧タービンと、前記高圧タービンからの排気を前記蒸気発生器にて再熱した再熱蒸気を導くノズルボックスと前記高圧タービンからの抽気蒸気を冷却蒸気として案内する冷却蒸気導入部を有し当該再熱蒸気によって駆動される中圧タービンと、当該中圧タービンからの排気蒸気により駆動される低圧タービンと、当該低圧タービンからの排気蒸気を凝縮させる復水器と、当該復水器にて凝縮した復水を加熱する複数の給水加熱器とを備え、前記中圧タービンは、外側ケーシングと内側ケーシングから構成されるケーシングと、前記内側ケーシング内に収納されて回転するロータと、前記内側ケーシング側に固定され前記ロータの回転軸に対する円周方向に配置されたノズルおよび当該ノズルと隣接する位置にて前記ロータに植設され前記ロータとともに回転する動翼の1対からなるタービン段落を複数配置してなる通路部と、前記ロータと前記内側ケーシングのとの間隙に前記ロータの回転軸と同心状に配置されて前記通路部に連通するとともに、再熱蒸気が供給されるノズルボックスと、前記ロータと前記内側ケーシングの間および前記内側ケーシングと外側ケーシングの間の空間にそれぞれ冷却用蒸気を通流させるように設けられた冷却蒸気導入部と、ケーシングの外部から蒸気を導入するとともに、端部がノズルボックスに嵌合される内管と当該内管と同軸に配置された外管からなり、前記内管と外管との間隙に冷却蒸気導入部からの冷却蒸気を通流可能に構成された蒸気供給管と、当該蒸気供給管の前記外管と外部ケーシングの間および前記蒸気供給管の内管と内部ケーシングとの間にそれぞれ設けられたシール装置と、を備えることを特徴とするものである。
また、本発明に係る蒸気タービンプラントの中圧タービンの冷却方法は、請求項に記載したように、中圧タービンの、前記ロータと前記内側ケーシングの間の空間と、前記内側ケーシングと外側ケーシングの間の空間にそれぞれ冷却蒸気を導入し、当該冷却蒸気により前記ノズルボックス、前記蒸気供給管、および前記タービン段落のうちの少なくとも最も上流に位置する段落を冷却することを特徴とするものである。
本発明にによれば、中圧タービンの各構成高温部品を冷却蒸気によって十分に冷却するので、再熱蒸気の高温化に対処してタービン構成部品に高い強度保証を維持することができ、よって高効率な蒸気タービンプラントを提供することができる。
以下、本発明に係る蒸気タービンプラントおよび蒸気タービンプラントの冷却方法の実施形態を図面および図面に付した符号を引用して説明する。
図1は、本発明に係る蒸気タービンプラントおよび蒸気タービンプラントの冷却方法の第1実施例を示す系統図である。
本実施例に係る蒸気タービンプラントは、蒸気タービン1,蒸気発生器であるボイラ9,復水系13,および給水系14から構成されている。
蒸気タービン1は、中圧タービン2,高圧タービン3,複流タイプの低圧タービン7,および発電機8が互いに軸結合され一軸として構成されている。蒸気発生器であるボイラ9は主蒸気を発生させ、この主蒸気は高圧タービン3に導かれ高圧タービン3内を膨張しながら流れることで膨張仕事をして高圧タービンを駆動する。また、高圧タービン3には、その中間段落から蒸気を抽気する高圧タービン抽気系5が設けられている。
高圧タービン3内で膨張仕事を終えた高圧タービン排気は低温排熱系10により再びボイラ9に導かれ、ボイラ9の再熱器11に供給され、ここで温度700℃以上の再熱蒸気となる。この再熱蒸気は中圧タービン2へと供給され、膨張仕事をして中圧タービン2を駆動する。さらに中圧タービン2には、高圧タービン3からの抽気蒸気の一部を高圧タービン抽気系5から分岐させて冷却蒸気として導く蒸気冷却系4が当該中圧タービンの上流部に接続されている。また、中圧タービン2の中間段落から蒸気を抽気する抽気配管が接続されている。
そして中圧タービン2で膨張仕事を終えた中圧タービン排気は低圧タービン7へ導かれ、さらにここでも膨張仕事をして低圧タービン7を駆動する。このようにして高圧タービン3,中圧タービン2,低圧タービン7がそれぞれ駆動され、これにより発電機8を駆動している。低圧タービン7にもその中間段落から蒸気を抽気する抽気配管が接続されている。
復水系13は、復水の流れに沿って復水器15、復水ポンプ16、第1低圧給水加熱器17、第2低圧給水加熱器18、第3低圧給水加熱器19、第4低圧給水加熱器20を備え、低圧タービン7からの低圧タービン排気を復水器15で凝縮して復水にし、この復水を復水ポンプ16で昇圧させ、第1〜第4低圧給水加熱器17,18,19,20で低圧タービン7から抽気配管を介して供給される低圧抽気蒸気を熱源として順次予熱(再生)させている。
一方、給水系14は、給水の流れに沿って脱気器21、給水ポンプ22、第1高圧給水加熱器23、第2高圧給水加熱器24、第3高圧給水加熱器25、過熱低減器27を備える。脱気器21は、復水系13の第4低圧給水加熱器20から供給される復水を蒸気タービン1の中圧タービン2の下流部からの抽気蒸気を熱源として加熱脱気させて給水としている。過熱低減器27は、蒸気タービン1の中圧タービン2の比較的上流側に接続された抽気配管から供給される過熱度の高い過熱蒸気の顕熱により給水を加熱するものであり、給水系14の最下流部に設けられている。
脱気器21にて得られた給水は、給水ポンプ22で昇圧され、第1〜第3高圧給水加熱器23,24,25で順次予熱され、最後に過熱低減器6に導かれてさらに予熱される。ここで、第1高圧給水加熱器における給水の加熱源は過熱低減器6にて顕熱をほぼ奪われて飽和蒸気に近づいた蒸気であり、第2高圧給水加熱器,第3高圧給水加熱器における給水の加熱源はそれぞれ、高圧タービン3からの高圧タービン排気,高圧タービン3からの高圧抽気蒸気である。これらの第1〜第3高圧給水加熱器23〜25,および過熱低減器6を通過して順次予熱された給水はボイラ9に戻される。
本実施例では、蒸気タービン1において高圧タービン抽気系5,蒸気冷却系4を介して中圧タービン2aに供給された冷却蒸気が、中圧タービン2のタービンロータ、ノズルボックス、ケーシング、グランド部、再熱蒸気管等のタービン構成部品を冷却させ、材料の強度保証を高く維持させている。
なお、蒸気タービン1において、中圧タービン2に温度700℃以上の再熱蒸気に膨張仕事をさせるのは、中圧タービン2のほうが高圧タービン3と比較して容量(タービン段落数)が多く、その多い分だけ蒸気により多くの膨張仕事をさせることができるからであり、高圧タービン3の入口温度を高くするよりも中圧タービン2の入口温度を高くしたほうが結果としてプラント熱効率が高くなるためことに基づく。
このように、本実施例の蒸気タービンプラントは、蒸気タービン1の高圧タービン3からの高圧タービン抽気を冷却蒸気として供給する蒸気冷却系4を第1中圧タービン2に設けて中圧タービン2の構成部品の材料強度保証を高く維持させることができる。
また、本実施例では中圧タービン2の中間段落からの過熱度の高い抽気蒸気を給水系14の給水の予熱(再生)に有効に活用するために、過熱低減器6を用いて中圧タービン抽気蒸気の持つ熱量のうち、顕熱のみを熱交換する過熱低減器6を設けた。これによって、プラント熱効率をより一層向上させることができ、700℃程度の高温の再熱蒸気でも蒸気冷却による高い材料強度の維持し、かつ高効率な運転を行わせることができる。
図2は、本実施例におけるボイラ9の再熱器11から供給される温度700℃以上の再熱蒸気に膨張仕事をさせる中圧タービン2の一部切欠縦断面図である。
中圧タービン2は、外部ケーシング27と内部ケーシング28との二重ケーシング構造の軸流タイプに構成するとともに、内部ケーシング28にタービン段落29を備えたタービンロータ30を収容している。
タービンロータ30は、両端を軸受(図示せず)で軸支させるとともに、再熱蒸気上流側の外部ケーシング27、内部ケーシング28のそれぞれとの間に外部ケーシング用グランド部31、内部ケーシング用グラント部32をそれぞれ設けるとともに、タービンノズル33とタービン動翼34を組み合せたタービン段落29を再熱蒸気管35側のタービン初段落からタービン排気室36側のタービン最終段落まで複数段落に亘って備えており、この部分を蒸気の通路部として構成している。
タービン段落29を構成するタービンノズル33とタービン動翼34とのうち、タービンノズル33は、両端をダイアフラム外輪36とダイアフラム内輪37とで支持させるとともに、ダイアフラム外輪36を内部ケーシング28に係合させることで、タービンロータ30の円周方向に沿って配置されている。また、タービン動翼34は、タービンロータ30に一体削り出しのタービンディスク38に植設され、タービンノズル33と隣接する位置にタービンロータ30の円周方向に配置されている。
また、中圧タービン2は、ボイラ9の再熱器11から供給される再熱蒸気をノズルボックス(蒸気室)45を介してタービン初段落のタービンノズル33に供給する蒸気供給管である再熱蒸気管35を備えている。
ノズルボックス45は、タービンロータ30と内部ケーシング28のとの間隙にタービンロータ30の回転軸と同心状に配置されており、再熱蒸気管35から供給された約700℃の高温蒸気を蒸気の通路部であるタービン段落29に導入させる部材であり、高温の蒸気が中圧タービンの構成部品に直接あたることを防ぎ、また、蒸気温度を保ったままタービン通路部29へと蒸気を導くことで効率の低下を防止している。
再熱蒸気管35は、図3に示すように、外管39と内管40との二重管構造に構成し、同心状に配置された外管39と内管40との間に冷却蒸気通路41を形成して冷却蒸気が通流可能に構成するとともに、外管39と外部ケーシング27のフランジ42との間に外部ケーシング用シール装置43を装着している。
この外部ケーシング用シール装置43は、外部ケーシング27のフランジ42との間に外管39の管軸に沿ってリング片44を層状に装着し、リング片44から漏出する冷却蒸気を流出口46を介して例えば熱交換器に回収させている。
また、再熱蒸気管35は、図4に示すように、内部ケーシング28との挿通部分に内部ケーシング用シール装置47を装着している。なお、再熱蒸気管35は、再熱蒸気の熱による伸びを考慮して他端を無拘束の自由端にしている。
この内部ケーシング用シール装置47は、再熱蒸気管35の管軸に沿ってリング片48を層状に装着し、リング片48から漏出する冷却蒸気をタービン段落29の後流側、外部ケーシングや再熱蒸気管35に向って流出させている。
一方、内部ケーシング28は、タービン初段落との間に空間室49を形成し、ここに案内された冷却蒸気をタービン2段落のダイアフラム外輪36の側面側および頭部側のそれぞれを通過させた後、流出口50から外部ケーシング側に向って流出させている。
他方、タービンロータ30から一体削り出しのタービンディスク38は、タービン初段落とタービン2段落とのそれぞれにバランスホール51を形成し、ノズルボックス45を冷却させた冷却蒸気をバランスホール51を介してタービン次段落に順次供給するとともに、タービン前段落とタービン後段落との間に、例えば鉤形状のシール片52を備えている。
次に、蒸気タービンプラントの冷却方法を説明する。
蒸気タービン1に配置された中圧タービン2には、プラント熱効率をより一層向上させるために、温度700℃以上の超高温再熱蒸気が供給される。
このため、中圧タービン2には、図1に示すように、各構成高温部品に蒸気タービン部1の高圧タービン3の中間段落から抽気する高圧タービン抽気が冷却蒸気として高圧タービン抽気系5から分岐する蒸気冷却系4を介して供給される。本実施例においては、冷却蒸気は内部ケーシング内の内部ケーシング用グランド部32近傍に設けられた冷却蒸気導入部100から導入され、タービンロータ30と内部ケーシング28の間の空間に導かれる。これとともに、冷却蒸気の一部は冷却蒸気導入部100から内部ケーシング用グランド部32を通過して減圧され、内部ケーシング28と外部ケーシング27との間の空間にも導かれれる。
冷却蒸気導入部100から中圧タービン2に供給された冷却蒸気のうちタービンロータ30と内部ケーシング28の間の空間に導かれ冷却蒸気は、図2に示すように、ノズルボックス45の外周面、再熱蒸気管35、内部ケーシング28、外部ケーシング27、タービンディスク38、タービンノズル33を支持するダイアフラム外輪36、ダイアフラム内輪37などを冷却する。また、冷却蒸気導入部100から内部ケーシング用グランド部32を介して内部ケーシング28と外部ケーシング27との間の空間に供給された冷却蒸気は、内部ケーシング用グランド部32、外部ケーシング用グランド部31、再熱蒸気管35、内部ケーシング28、外部ケーシング27などを冷却する。これによって、中圧タービン2の各構成部品の強度保証を行っている。
まず、再熱蒸気管35からノズルボックス45に供給される再熱蒸気が温度700℃以上になっているのに対し、蒸気冷却系4から供給される冷却蒸気は、温度500℃以下である。さらに、圧力に関しても、蒸気冷却系から供給される冷却蒸気は高圧タービン3からの抽気蒸気であって80気圧程度の圧力を有する。中圧タービン2に供給される再熱蒸気は50気圧程度の圧力であり、冷却蒸気はこれよりも数十気圧高い圧力を有している。このため、蒸気冷却系4から供給されるこれらの冷却蒸気によりノズルボックス45を充分に冷却して強度保証することができる。
ノズルボックス45の外表面を冷却した冷却蒸気は、内部ケーシング28および外部ケーシング27を挿通する再熱蒸気管35、内部ケーシング28、外部ケーシング27、タービンディスク38を冷却し、各構成部品の高温部を冷却するとともに、内部ケーシング用グランド部32を介して内部ケーシング28と外部ケーシング27との間の空間に供給され、外部ケーシング用グランド部31、また再熱蒸気管35を冷却する。
内部ケーシング28を挿通する再熱蒸気管35に供給される冷却蒸気は、図4に示すように、一部を再熱蒸気管35と内部ケーシング28との間に装着する内部ケーシング用シール装置47のリング片48を通って再熱蒸気管35を冷却させるとともに、残りをタービン初段落と内部ケーシング28との間に形成する空間室49に供給される。空間室49に供給された蒸気はタービン段落29のタービンノズル33を支持するダイアフラム外輪36の側面および頭部側と内部ケーシング28との間隙を通流し、この部分を介して内部ケーシング28に形成する流出口50から外部ケーシング側に流出し、ダイアフラム外輪36および内部ケーシング28の内径側を冷却させている。
本実施例では、内部ケーシング28に形成された流出口50は中圧タービン2の2段落のタービンノズル33を支持するダイアフラム外輪36の頭部側付近に設けられているが、これは中圧タービン2内において再熱蒸気が膨張仕事をして蒸気温度が従来の蒸気タービンと同程度まで下がることによる。つまり、中圧タービン2の構成部分のうち高温部分だけを効果的に冷却するように構成している。
また、ノズルボックス45の外表面を冷却した冷却蒸気は、タービン初段落およびタービン2段落のそれぞれに設けたタービンディスク38,38のバランスホール51,51にタービンディスク38,38の回転に伴って発生するポンピング力によって誘引される。
ポンピング力のよって誘引された冷却蒸気は、バランスホール51,51を出た後、半径方向(外側)に向って流れようとするが、鉤状のシール片52,52によって封止され、この間に高温再熱蒸気に晒されているタービンディスク38、およびタービンノズル33を支持するのダイアフラム内輪37を冷却する。
他方、内部ケーシング28を挿通する再熱蒸気管35、内部ケーシング用グランド部32、外部ケーシング用グランド部31のそれぞれを冷却した冷却蒸気は、図3に示すように、外部ケーシング27を挿通する再熱蒸気管35の外管39に装着した外部ケーシング用シール装置43と再熱蒸気管35の外管39と内管40とで形成する冷却蒸気通路41に供給される。
外部ケーシング用シール装置43に供給された冷却蒸気は、再熱蒸気管35の外管39を冷却する。この間に、外部ケーシング用シール装置43から漏出する冷却蒸気は、フランジ42に形成する流出口46から、例えば熱交換器に熱源として供給される。
また、冷却通路41に供給された冷却蒸気は、外管39、内管40を冷却した後、噴出口53から他の機器に供給される。
このように、本実施例の蒸気タービンの冷却方法は、蒸気タービン1の中圧タービン2に、高圧タービン3からの高圧タービン抽気を冷却蒸気として冷却蒸気導入部100から供給し、供給された冷却蒸気をタービンロータ30と内部ケーシング28の間の空間と内部ケーシング28と外部ケーシング27の間の空間とにそれぞれ導入し、ノズルボックス45、タービンディスク38、タービンノズル33を支持するダイアフラム外輪36、ダイアフラム内輪37内部ケーシング用グランド部32、外部ケーシング用グランド部31、再熱蒸気管35、内部ケーシング28、外部ケーシング27などの各構成高温部品を冷却するので、再熱蒸気管35に供給される温度700℃以上の高温の再熱蒸気であっても各構成高温部品の強度保証を充分に維持させることができる。
本発明に係る蒸気タービンプラントおよび蒸気タービンプラントの冷却方法の実施形態を示す図。 本発明に係る蒸気タービンプラントのうち、中圧タービンの実施形態を示す一部切欠縦断面図。 本発明に係る蒸気タービンプラントのうち、再熱蒸気管の実施形態を示す一部切欠断面図。 本発明に係る蒸気タービンプラントのうち、タービン初段落、タービン段落の実施形態を示す一部切欠断面図。
1 蒸気タービン
2 中圧タービン
3 高圧タービン
4 蒸気冷却系
5 高圧タービン抽気系
6 過熱器
7 低圧タービン
8 発電機
9 ボイラ
10 低温再熱系
11 再熱器
12 中圧タービン排気系
13 復水系
14 給水系
15 復水器
16 復水ポンプ
17 第1低圧給水加熱器
18 第2低圧給水加熱器
19 第3低圧給水加熱器
20 第4低圧給水加熱器
21 脱気器
22 給水ポンプ
23 第1高圧給水加熱器
24 第2高圧給水加熱器
25 第3高圧給水加熱器
27 外部ケーシング
28 内部ケーシング
29 タービン段落
30 タービンロータ
31 外部ケーシング用グラント部
32 内部ケーシング用グラント部
33 タービンノズル
34 タービン動翼
35 再熱蒸気管
36 ダイアフラム外輪
37 ダイアフラム内輪
38 タービンディスク
39 外管
40 内管
41 冷却蒸気通路
42 フランジ
43 外部ケーシング用シール装置
44 リング片
45 ノズルボックス
46 流出口
47 内部ケーシング用シール装置
48 リング片
49 空間室
50 流出口
51 バランスホール
52 シール片
53 流出口

Claims (5)

  1. 蒸気発生器と、
    当該蒸気発生器にて発生した蒸気により駆動される高圧タービンと、
    前記高圧タービンからの排気を前記蒸気発生器にて再熱した再熱蒸気を導くノズルボックスと前記高圧タービンからの抽気蒸気を冷却蒸気として案内する冷却蒸気導入部を有し当該再熱蒸気によって駆動される中圧タービンと、
    当該中圧タービンからの排気蒸気により駆動される低圧タービンと、
    当該低圧タービンからの排気蒸気を凝縮させる復水器と、
    当該復水器にて凝縮した復水を給水として加熱する複数の給水加熱器とを備え
    前記中圧タービンは、
    外側ケーシングと内側ケーシングから構成されるケーシングと、
    前記内側ケーシング内に収納されて回転するロータと、
    前記内側ケーシング側に固定され前記ロータの回転軸に対する円周方向に配置されたノズルおよび当該ノズルと隣接する位置にて前記ロータに植設され前記ロータとともに回転する動翼の1対からなるタービン段落を複数配置してなる通路部と、
    前記ロータと前記内側ケーシングのとの間隙に前記ロータの回転軸と同心状に配置されて前記通路部に連通するとともに、再熱蒸気が供給されるノズルボックスと、
    前記ロータと前記内側ケーシングの間および前記内側ケーシングと外側ケーシングの間の空間にそれぞれ冷却用蒸気を通流させるように設けられた冷却蒸気導入部と、
    ケーシングの外部から蒸気を導入するとともに、端部がノズルボックスに嵌合される内管と当該内管と同軸に配置された外管からなり、前記内管と外管との間隙に冷却蒸気導入部からの冷却蒸気を通流可能に構成された蒸気供給管と、
    当該蒸気供給管の前記外管と外部ケーシングの間および前記蒸気供給管の内管と内部ケーシングとの間にそれぞれ設けられたシール装置と、
    を備えることを特徴とする蒸気タービンプラント。
  2. 蒸気供給管の外管と外部ケーシングとの間に設けられたシール部より漏洩した蒸気を回収するための流出口を更に設けたことを特徴とする請求項1記載の蒸気タービンプラント。
  3. 内側ケーシングに装着されるとともにノズルの外周側を保持する環状のダイアフラム外輪と、ノズルの内周側を保持する環状のダイアフラム内輪とを備え、前記ダイアフラム外輪と前記内側ケーシングの少なくとも一つとの間隙に冷却蒸気が通流するように構成されていることを特徴とする請求項2記載の蒸気タービンプラント。
  4. 内側ケーシングは、当該内側ケーシングとダイアフラム外輪との間隙を通流した冷却蒸気を前記内側ケーシングと外側ケーシングの間の空間に導く流出口を備えることを特徴とする請求項3記載の蒸気タービンプラント。
  5. 請求項1乃至4のいずれか1項に記載の蒸気タービンプラントの中圧タービンの冷却方法において、前記ロータと前記内側ケーシングの間の空間と、前記内側ケーシングと外側ケーシングの間の空間にそれぞれ冷却蒸気を導入し、当該冷却蒸気により前記ノズルボックス、前記蒸気供給管、および前記タービン段落のうちの少なくとも最も上流に位置する段落を冷却することを特徴とする蒸気タービンプラントの中圧タービンの冷却方法。
JP2004133582A 2003-04-30 2004-04-28 蒸気タービンプラントおよびその中圧タービンの冷却方法 Expired - Fee Related JP4488787B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133582A JP4488787B2 (ja) 2003-04-30 2004-04-28 蒸気タービンプラントおよびその中圧タービンの冷却方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003125672 2003-04-30
JP2004133582A JP4488787B2 (ja) 2003-04-30 2004-04-28 蒸気タービンプラントおよびその中圧タービンの冷却方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010023527A Division JP4776729B2 (ja) 2003-04-30 2010-02-04 蒸気タービンプラントおよびその中圧タービンの冷却方法

Publications (2)

Publication Number Publication Date
JP2004346932A JP2004346932A (ja) 2004-12-09
JP4488787B2 true JP4488787B2 (ja) 2010-06-23

Family

ID=33543412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133582A Expired - Fee Related JP4488787B2 (ja) 2003-04-30 2004-04-28 蒸気タービンプラントおよびその中圧タービンの冷却方法

Country Status (1)

Country Link
JP (1) JP4488787B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664857B2 (ja) * 2006-04-28 2011-04-06 株式会社東芝 蒸気タービン
JP5367497B2 (ja) * 2009-08-07 2013-12-11 株式会社東芝 蒸気タービン
JP5292347B2 (ja) * 2010-03-26 2013-09-18 株式会社日立製作所 発電プラント、および発電プラントの運用方法
EP2565401A1 (de) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft Verfahren zur Temperaturausgleichung in einer Dampfturbine
US20130323522A1 (en) * 2012-06-05 2013-12-05 General Electric Company Cast superalloy pressure containment vessel
JP6235772B2 (ja) * 2012-07-20 2017-11-22 8 リバーズ キャピタル,エルエルシー タービン

Also Published As

Publication number Publication date
JP2004346932A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4776729B2 (ja) 蒸気タービンプラントおよびその中圧タービンの冷却方法
EP2151547B1 (en) Steam turbine and steam turbine plant system
CN104314627B (zh) 蒸汽涡轮发电设备的冷却方法及装置
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
JP2011047364A (ja) 蒸気タービン発電設備およびその運転方法
JP2011085133A (ja) 再熱ガスタービン
JP2008248822A (ja) 火力発電所
JP6261052B2 (ja) 有機ランキンサイクルによるエネルギ発生の為のorcシステム及び方法
JP2001214759A (ja) ガスタービンコンバインドサイクル
JP4488787B2 (ja) 蒸気タービンプラントおよびその中圧タービンの冷却方法
JP2019108835A (ja) 蒸気タービンプラント及びその運転方法
CA2943477C (en) Turbine with centripetal and centrifugal expansion stages and related method
US20090288415A1 (en) Method for Warming-Up a Steam Turbine
JP5784417B2 (ja) 蒸気タービン
JP4028070B2 (ja) コンバインドサイクル発電プラント
JP6265536B2 (ja) 排熱回収システム、これを備えているガスタービンプラント、及び排熱回収方法
EP2752566A1 (en) Gas turbine cooling system, and gas turbine cooling method
US8869532B2 (en) Steam turbine utilizing IP extraction flow for inner shell cooling
JP2013060931A (ja) 蒸気タービン
JP2006097544A (ja) 蒸気タービンプラントおよび蒸気タービンプラントの冷却方法
JP3389019B2 (ja) 蒸気冷却ガスタービン
JP7059347B2 (ja) 排熱回収プラント、及びコンバインドサイクルプラント
JP2960371B2 (ja) 水素燃焼タービンプラント
JP4460943B2 (ja) 蒸気タービン
JP5475315B2 (ja) コンバインドサイクル発電システム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees