EP2565401A1 - Verfahren zur Temperaturausgleichung in einer Dampfturbine - Google Patents

Verfahren zur Temperaturausgleichung in einer Dampfturbine Download PDF

Info

Publication number
EP2565401A1
EP2565401A1 EP11180026A EP11180026A EP2565401A1 EP 2565401 A1 EP2565401 A1 EP 2565401A1 EP 11180026 A EP11180026 A EP 11180026A EP 11180026 A EP11180026 A EP 11180026A EP 2565401 A1 EP2565401 A1 EP 2565401A1
Authority
EP
European Patent Office
Prior art keywords
sealing
housing
outer housing
steam turbine
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11180026A
Other languages
English (en)
French (fr)
Inventor
Daniel Gloss
Frank Deister
Ingo Förster
Christian Musch
Heinrich STÜER
Frank Truckenmüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11180026A priority Critical patent/EP2565401A1/de
Priority to CN201280043198.0A priority patent/CN103764956B/zh
Priority to PCT/EP2012/065215 priority patent/WO2013034377A1/de
Priority to JP2014527568A priority patent/JP5837204B2/ja
Priority to US14/241,273 priority patent/US9416684B2/en
Priority to EP12745820.6A priority patent/EP2723996B1/de
Publication of EP2565401A1 publication Critical patent/EP2565401A1/de
Priority to JP2015097255A priority patent/JP5996717B2/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a steam turbine comprising an outer housing, an inner housing disposed within the outer housing and a rotatably mounted within the inner rotor, wherein a gap is formed between the inner housing and the outer housing, wherein between the outer housing and the rotor, a sealing vapor seal is formed.
  • the invention relates to a method for avoiding a housing bend of a steam turbine.
  • the turbine housing of a steam turbine generally comprises an inner housing and an outer housing, wherein a gap is formed between the inner housing and the outer housing. These two housing parts in turn have an upper half and a lower half, in high-pressure turbines, the outer housing is designed as a pot design. In particular, after switching off the steam turbine occur on and between the housings temperature differences, which may be several Kelvin between the lower half and the relatively hot surface.
  • steam turbines have an inner housing and an outer housing surrounding the inner housing, wherein a gap is formed by this double-shell housing construction.
  • the inner housing is at least partially encased in its axial extent by a casing, which is arranged in the intermediate space.
  • a steam turbine After a shutdown or a load shedding a steam turbine is in the space between the inner and outer housing a certain amount of steam, which is dependent on the prevailing pressure. Natural convection creates a temperature stratification between the upper and the lower area in the housing or in the intermediate space. These different temperatures lead to a curvature of the outer housing, which is also referred to as humping. This so-called humping is to avoid, since the inner housing rests in the outer housing and it can lead to a displacement of the inner housing relative to the rotor as a result of the curvature, resulting in the worst case to bridging the radial play and evt1. a rubbing result.
  • the invention has for its object to prevent curvature of the outer casing, in particular when cooling the turbine, or at least to keep low. Furthermore, a method for avoiding a housing distortion when switching off the turbine should be specified.
  • the first object is achieved by a steam turbine comprising an outer housing, an inner housing disposed within the outer housing and a rotatably mounted within the inner housing rotor, wherein between the Inner housing and the outer housing, a gap is formed, wherein between the outer housing and the rotor, a sealing vapor seal is formed, wherein the outer housing has an inflow opening for flowing from the sealing vapor in the intermediate space.
  • the object directed to a method according to the invention is achieved by a method for preventing a housing bending of a steam turbine when switching off the steam turbine, wherein in a space formed between an inner housing and an outer housing surrounding the outer housing, a forced turbulence of the medium located in the intermediate space by an influx of Sealing vapor via an opening in the outer housing in the intermediate space.
  • the invention is based on the consideration that a formation of temperature layers in the intermediate space is avoided by the injection of sealing vapor. This leads to a turbulence of the layers and thus to a reduction in the thermal stresses, which in turn reduces the curvature of the outer housing.
  • the inflow opening is fluidically connected to the sealing vapor seal, which is a relatively inexpensive solution.
  • a sealing steam line is formed which, on the one hand, allows inflow to the sealing vapor seal with sealing vapor and, moreover, has a branch, which is fluidically connected to the inflow opening.
  • FIG. 1 shows a steam turbine 1 shown in cross-sectional view, comprising an outer housing 2 and an inner housing 3 disposed within the outer housing 2.
  • a rotor 4 is rotatably mounted about a rotation axis 5.
  • a gap 6 is formed between the inner housing 3 and the outer housing 4, a gap 6 is formed.
  • the inner housing 3 and the outer housing 2 can each be divided into a first, upper portion, the upper half, and in a second, lower portion, the lower half.
  • the steam turbine 1 further has a sealing region 7, which separates an outer space 8 from an inner space 9 of the steam turbine 1.
  • the sealing region 7 has a sealing steam opening 10, which is designed such that a cold sealing steam, which can be supplied externally, can flow into a gap between the outer housing 2 and the rotor 4.
  • Wrasendampfabsaugungen 11 With the help of so-called Wrasendampfabsaugungen 11, a mixed steam is sucked off again.
  • the outer housing 2 has an inflow opening 13 for the flow of sealing vapor into the intermediate space 6.
  • the vapor in the gap 6 is swirled by the inflowing sealing vapor via the inflow opening 13, which thus increases the natural convection in the intermediate space 6 and thereby avoids buckling of the outer housing 2.
  • the inflow opening 13 is fluidically connected to the sealing steam opening 10.
  • FIG. 2 shows a seen in the rotational axis direction 5 cross-section of the steam turbine 1 on.
  • the inflow opening 13 is arranged in a 12:00 o'clock position in the outer housing 2.
  • FIG. 1 shows a sealing steam line 14, in which sealing steam is formed in a sealing space between sealing vapor seal 12 and rotor 4.
  • the sealing steam line 14 is shown in dashed lines. On a representation of the sealing steam line for the others in the FIG. 1 shown sealing steam openings 10 has been omitted for reasons of clarity.
  • the sealing steam line 14 comprises a branch 16, which is fluidically connected to the inflow opening 13. To regulate the sealing steam flow in the branch 16, a valve 17 is arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Eine Dampfturbine (1) umfassend ein Innengehäuse (3) und ein Außengehäuse (2), wobei ein Zwischenraum (6) zwischen dem Innengehäuse (3) und dem Außengehäuse (2) ausgebildet ist und in diesen Zwischenraum (6) kalter Sperrdampf zugeführt wird, um ein Buckeln des Außengehäuses (2) zu vermeiden.

Description

  • Die Erfindung betrifft eine Dampfturbine umfassend ein Außengehäuse, ein innerhalb des Außengehäuses angeordnetes Innengehäuse und einen innerhalb des Innengehäuses drehbar gelagerten Rotor, wobei zwischen dem Innengehäuse und dem Außengehäuse ein Zwischenraum ausgebildet ist, wobei zwischen dem Außengehäuse und dem Rotor eine Sperrdampfdichtung ausgebildet ist.
  • Des Weiteren betrifft die Erfindung ein Verfahren zur Vermeidung einer Gehäuseverkrümmung einer Dampfturbine.
  • Das Turbinengehäuse einer Dampfturbine umfasst in der Regel ein Innengehäuse und ein Außengehäuse, wobei zwischen dem Innengehäuse und dem Außengehäuse ein Zwischenraum ausgebildet ist. Diese beiden Gehäuseteile weisen wiederum eine Oberhälfte und eine Unterhälfte auf, bei Hochdruckturbinen ist das Außengehäuse auch als Topfdesign ausgeführt. Insbesondere nach dem Abschalten der Dampfturbine treten an und zwischen den Gehäusen Temperaturdifferenzen auf, die zwischen der Unterhälfte und der vergleichsweise heißen Oberfläche mehrere Kelvin betragen können.
  • Wird die Dampfturbine abgeschaltet, so kühlt das Außengehäuse schneller aus als das Innengehäuse. Dadurch wird infolge freier oder natürlicher Konvektion (Naturkonvektion) im Zwischenraum zwischen dem Innengehäuse und dem Außengehäuse eine Auftriebsströmung induziert, die einen Wärmeeintrag in die Oberhälfte des Außengehäuses bewirkt. Dies wiederum kann zu einer Gehäusekrümmung insbesondere in der Oberhälfte des Außengehäuses führen, mit der Folge, dass dort unerwünschte Spannungen des Gehäusematerials und Spielüberbrückungen entstehen. Eine Verkrümmung des Innengehäuses kann zu unerwünschten Anstreifschäden führen, wenn in ungünstigen Fällen Turbinenschaufeln das Gehäuse streifen.
  • In der Regel weisen Dampfturbinen ein Innengehäuse und ein das Innengehäuse umgebendes Außengehäuse auf, wobei durch diese Doppel-Mantel-Gehäusekonstruktion ein Zwischenraum gebildet ist. Das Innengehäuse ist in seiner axialen Erstreckung zumindest teilweise von einer Verschalung ummantelt, welche im Zwischenraum angeordnet ist.
  • Nach einem Abfahren oder einem Lastabwurf einer Dampfturbine ist im Raum zwischen dem Innen- und Außengehäuse eine bestimmte Menge Dampf, was abhängig ist vom herrschenden Druck. Durch natürliche Konvektion entsteht eine Temperaturschichtung zwischen dem oberen und dem unteren Bereich im Gehäuse bzw. im Zwischenraum. Diese unterschiedlichen Temperaturen führen zu einer Verkrümmung des Außengehäuses, was auch als Buckeln bezeichnet wird. Dieses sogenannte Buckeln gilt es zu vermeiden, da das Innengehäuse im Außengehäuse aufliegt und es in Folge der Verkrümmung zu einer Verlagerung des Innengehäuses gegenüber dem Rotor führen kann, was im schlimmsten Fall zu einer Überbrückung der Radialspiele führt und evt1. ein Anstreifen zur Folge hat.
  • Bisher wurde dieses Problem dadurch gelöst, dass ein genügend großes Radialspiel berücksichtigt wurde. Allerdings wird dadurch eine Verschlechterung des Wirkungsgrades hervorgerufen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Verkrümmung des Außengehäuses, insbesondere beim Abkühlen der Turbine, zu verhindern oder zumindest gering zu halten. Des Weiteren soll ein Verfahren zur Vermeidung einer Gehäuseverkrümmung beim Abschalten der Turbine angegeben werden.
  • Die erstgenannte Aufgabe wird erfindungsgemäß gelöst durch eine Dampfturbine umfassend ein Außengehäuse, ein innerhalb des Außengehäuse angeordnetes Innengehäuse und ein innerhalb des Innengehäuse drehbar gelagerten Rotor, wobei zwischen dem Innengehäuse und dem Außengehäuse ein Zwischenraum ausgebildet ist, wobei zwischen dem Außengehäuse und dem Rotor eine Sperrdampfdichtung ausgebildet ist, wobei das Außengehäuse ein Zuströmöffnung zum Zuströmen vom Sperrdampf in den Zwischenraum aufweist.
  • Die auf ein Verfahren gerichtete Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Vermeidung einer Gehäuseverkrümmung einer Dampfturbine beim Abschalten der Dampfturbine, bei dem in einem zwischen einem Innengehäuse und einem das Innengehäuse umgebenden Außengehäuse gebildeten Zwischenraum eine erzwungene Verwirbelung des im Zwischenraum befindlichen Mediums durch ein Zuströmen von Sperrdampf über eine Öffnung im Außengehäuse in den Zwischenraum.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • Die Erfindung geht dabei von der Überlegung aus, dass eine Ausbildung von Temperaturschichten im Zwischenraum vermieden wird durch das Eindüsen von Sperrdampf. Dies führt zu einer Verwirbelung der Schichten und somit zu einer Verringerung der thermischen Spannungen, was wiederum die Verkrümmung des Außengehäuses reduziert.
  • In einer ersten vorteilhaften Weiterbildung wird die Zuströmöffnung strömungstechnisch mit der Sperrdampfdichtung verbunden, was eine vergleichsweise kostengünstige Lösung ist.
  • Vorteilhafterweise wird eine Sperrdampfleitung ausgebildet, die zum einen eine Zuströmung zur Sperrdampfdichtung mit Sperrdampf ermöglicht und des Weiteren eine Abzweigung aufweist, die mit der Zuströmöffnung strömungstechnisch verbunden ist.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer schematischen Zeichnung näher erläutert.
  • Es zeigen:
  • FIG 1
    Querschnittsansicht einer Dampfturbine,
    FIG 2
    Querschnittansicht einer Dampfturbine in Strömungsrichtung gesehen.
  • Die FIG 1 zeigt eine in Querschnittsansicht dargestellte Dampfturbine 1, die ein Außengehäuse 2 und ein innerhalb des Außengehäuses 2 angeordnetes Innengehäuse 3 umfasst. Innerhalb des Innengehäuses 3 ist ein Rotor 4 um eine Rotationsachse 5 drehbar gelagert. Zwischen dem Innengehäuse 3 und dem Außengehäuse 4 ist ein Zwischenraum 6 ausgebildet. Das Innengehäuse 3 und das Außengehäuse 2 lassen sich jeweils in einen ersten, oberen Teilbereich, die Oberhälfte, sowie in einen zweiten, unteren Teilbereich, die Unterhälfte, aufteilen.
  • Die Dampfturbine 1 weist des Weiteren einen Dichtungsbereich 7 auf, der einen Außenraum 8 von einem Innenraum 9 der Dampfturbine 1 trennt. Zwischen dem Rotor und dem Außengehäuse 2 im Dichtungsbereich 7 sollte keine strömungstechnische Verbindung erfolgen. Dazu weist der Dichtungsbereich 7 eine Sperrdampföffnung 10 auf, die derart ausgebildet ist, dass ein kalter Sperrdampf, der von extern zugeführt werden kann, in einen Spalt zwischen dem Außengehäuse 2 und dem Rotor 4 strömen kann. Mit Hilfe sogenannter Wrasendampfabsaugungen 11, wird ein Mischdampf wieder abgesaugt.
  • Zwischen dem Außengehäuse 2 und dem Rotor 4 ist somit eine Sperrdampfdichtung 12 ausgebildet. Das Außengehäuse 2 weist eine Zuströmöffnung 13 zum Zuströmen von Sperrdampf in den Zwischenraum 6 auf. Somit wird der im Zwischenraum 6 befindliche Dampf durch den einströmenden Sperrdampf über die Zuströmöffnung 13 verwirbelt, was somit die natürliche Konvektion im Zwischenraum 6 erhöht und dadurch ein Buckeln des Außengehäuses 2 vermeidet.
  • Die Zuströmöffnung 13 ist strömungstechnisch mit der Sperrdampföffnung 10 verbunden.
  • Die FIG 2 zeigt einen in Rotationsachsenrichtung 5 gesehenen Querschnitt der Dampfturbine 1 auf. In dem in FIG 2 dargestellten Ausführungsbeispiel ist die Zuströmöffnung 13 in einer 12:00 Uhr Position im Außengehäuse 2 angeordnet.
  • Die FIG 1 zeigt eine Sperrdampfleitung 14, in der Sperrdampf in einem Dichtraum zwischen Sperrdampfdichtung 12 und Rotor 4 ausgebildet ist.
  • Die Sperrdampfleitung 14 ist gestrichelt dargestellt. Auf eine Darstellung der Sperrdampfleitung für die weiteren in der FIG 1 gezeigten Sperrdampföffnungen 10 wurde aus Gründen der Übersichtlichkeit verzichtet.
  • Die Sperrdampfleitung 14 umfasst eine Abzweigung 16, die strömungstechnisch mit der Zuströmöffnung 13 verbunden ist. Zur Regulierung des Sperrdampfstroms in der Abzweigung 16 ist ein Ventil 17 angeordnet.
  • Durch die infolge der über die Zuströmöffnung 13 erzwungene Verwirbelung des im Zwischenraum 6 befindlichen Dampfes bewirkte Vergleichmäßigung der Temperaturverteilung im Außengehäuse 2 wird somit der Naturkonvektion derart entgegengewirkt, dass Gehäuseverkrümmungen nach dem Abschalten beim Abkühlen der Turbine zuverlässig verhindert sind.

Claims (7)

  1. Dampfturbine (1)
    umfassend ein Außengehäuse (2), ein innerhalb des Außengehäuse (2) angeordnetes Innengehäuse (3) und einen innerhalb des Innengehäuse (3) drehbar gelagerten Rotor (4),
    wobei zwischen dem Innengehäuse (3) und dem Außengehäuse (2) ein Zwischenraum (6) ausgebildet ist,
    wobei zwischen dem Außengehäuse (2) und dem Rotor (4) eine Sperrdampfdichtung (12) ausgebildet ist,
    wobei das Außengehäuse (2) eine Zuströmöffnung (13) zum Zuströmen von Sperrdampf in den Zwischenraum (6) aufweist.
  2. Dampfturbine (1) nach Anspruch 1,
    wobei die Zuströmöffnung (13) strömungstechnisch mit der Sperrdampfdichtung (12) verbunden ist.
  3. Dampfturbine (1) nach Anspruch 1 oder 2,
    mit einer Sperrdampfleitung (13), die zum Führen von Sperrdampf in einem Dichtungsraum (7) zwischen Sperrdampfdichtung (12) und Rotor (4) ausgebildet ist.
  4. Dampfturbine (1) nach Anspruch 3,
    wobei die Sperrdampfleitung (14) eine Abzweigung (16) aufweist, die mit der Zuströmöffnung (13) strömungstechnisch verbunden ist.
  5. Dampfturbine nach Anspruch 4,
    wobei die Abzweigung (16) ein Ventil (17) umfasst.
  6. Verfahren zur Vermeidung einer Gehäuseverkrümmung einer Dampfturbine (1) beim Abschalten der Dampfturbine,
    bei dem in einem zwischen einem Innengehäuse (3) und einem das Innengehäuse (3) umgebende Außengehäuse (2) gebildeten Zwischenraum (6) eine erzwungene Verwirbelung des im Zwischenraum (6) befindlichen Mediums durch ein Zuströmen von Sperrdampf über eine Öffnung (13)im Außengehäuse (2) in den Zwischenraum (6) erfolgt.
  7. Verfahren nach Anspruch 6,
    wobei der Sperrdampf aus einer Sperrdampfleitung (14), die Sperrdampf zur Sperrdampfdichtung (12) führt, abgezweigt wird.
EP11180026A 2011-09-05 2011-09-05 Verfahren zur Temperaturausgleichung in einer Dampfturbine Withdrawn EP2565401A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11180026A EP2565401A1 (de) 2011-09-05 2011-09-05 Verfahren zur Temperaturausgleichung in einer Dampfturbine
CN201280043198.0A CN103764956B (zh) 2011-09-05 2012-08-03 用于在蒸汽轮机中进行温度补偿的方法
PCT/EP2012/065215 WO2013034377A1 (de) 2011-09-05 2012-08-03 Verfahren zur temperaturausgleichung in einer dampfturbine
JP2014527568A JP5837204B2 (ja) 2011-09-05 2012-08-03 蒸気タービンの温度補償のための方法
US14/241,273 US9416684B2 (en) 2011-09-05 2012-08-03 Method for a temperature compensation in a steam turbine
EP12745820.6A EP2723996B1 (de) 2011-09-05 2012-08-03 Verfahren zur temperaturausgleichung in einer dampfturbine
JP2015097255A JP5996717B2 (ja) 2011-09-05 2015-05-12 蒸気タービンの温度補償のための方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11180026A EP2565401A1 (de) 2011-09-05 2011-09-05 Verfahren zur Temperaturausgleichung in einer Dampfturbine

Publications (1)

Publication Number Publication Date
EP2565401A1 true EP2565401A1 (de) 2013-03-06

Family

ID=46642506

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11180026A Withdrawn EP2565401A1 (de) 2011-09-05 2011-09-05 Verfahren zur Temperaturausgleichung in einer Dampfturbine
EP12745820.6A Active EP2723996B1 (de) 2011-09-05 2012-08-03 Verfahren zur temperaturausgleichung in einer dampfturbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12745820.6A Active EP2723996B1 (de) 2011-09-05 2012-08-03 Verfahren zur temperaturausgleichung in einer dampfturbine

Country Status (5)

Country Link
US (1) US9416684B2 (de)
EP (2) EP2565401A1 (de)
JP (2) JP5837204B2 (de)
CN (1) CN103764956B (de)
WO (1) WO2013034377A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106194284B (zh) * 2016-07-22 2017-07-28 东方电气集团东方汽轮机有限公司 一种汽轮机夹层蒸汽参数调整及运行的方法
US11181041B2 (en) * 2017-02-02 2021-11-23 General Electric Company Heat recovery steam generator with electrical heater system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815645A (en) * 1955-03-01 1957-12-10 Gen Electric Super-critical pressure elastic fluid turbine
JP2004346932A (ja) * 2003-04-30 2004-12-09 Toshiba Corp 蒸気タービンおよびその冷却方法、ならびに蒸気タービンプラント
EP1630360A1 (de) * 2004-08-23 2006-03-01 Siemens Aktiengesellschaft Dampfzu- oder abführung zur kühlung der aussengehäuse in einer dampfturbine
WO2008104465A2 (de) * 2007-02-26 2008-09-04 Siemens Aktiengesellschaft Verfahren zum betreiben einer mehrstufigen dampfturbine
EP2067933A2 (de) * 2007-08-31 2009-06-10 Siemens Aktiengesellschaft Sicherheitskonzept für eine Dampfturbine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051560B2 (ja) 1992-04-09 2000-06-12 三菱重工業株式会社 蒸気タービンにおける外車室上下半部間温度差の低減方法及び装置
WO1999017000A1 (de) 1997-09-26 1999-04-08 Siemens Aktiengesellschaft Gehäuse für eine strömungsmaschine
EP1105623B1 (de) 1998-08-18 2003-05-28 Siemens Aktiengesellschaft Turbinengehäuse
JP2003148109A (ja) 2001-11-12 2003-05-21 Mitsubishi Heavy Ind Ltd 蒸気タービン車室の変形量調整装置
JP2003254010A (ja) 2002-03-01 2003-09-10 Mitsubishi Heavy Ind Ltd 蒸気タービン車室
JP2003328702A (ja) 2002-05-14 2003-11-19 Mitsubishi Heavy Ind Ltd 蒸気タービンの内部強制冷却システム
ES2344686T3 (es) * 2003-03-06 2010-09-03 Siemens Aktiengesellschaft Procedimiento para refrigerar una turbina y turbina para ello.
US7003956B2 (en) 2003-04-30 2006-02-28 Kabushiki Kaisha Toshiba Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
JP4509664B2 (ja) 2003-07-30 2010-07-21 株式会社東芝 蒸気タービン発電設備
US20060233634A1 (en) * 2005-04-18 2006-10-19 General Electric Company Method of indicating sealing steam temperature and related apparatus
JP5433183B2 (ja) 2008-08-07 2014-03-05 株式会社東芝 蒸気タービンおよび蒸気タービンプラントシステム
EP2261464A1 (de) * 2009-06-09 2010-12-15 Siemens Aktiengesellschaft Turbomaschine
US8545166B2 (en) * 2010-07-28 2013-10-01 General Electric Company System and method for controlling leak steam to steam seal header for improving steam turbine performance
EP2431570A1 (de) * 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Dampfturbine mit einem Schubausgleichskolben und Nassdampfabsperrung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815645A (en) * 1955-03-01 1957-12-10 Gen Electric Super-critical pressure elastic fluid turbine
JP2004346932A (ja) * 2003-04-30 2004-12-09 Toshiba Corp 蒸気タービンおよびその冷却方法、ならびに蒸気タービンプラント
EP1630360A1 (de) * 2004-08-23 2006-03-01 Siemens Aktiengesellschaft Dampfzu- oder abführung zur kühlung der aussengehäuse in einer dampfturbine
WO2008104465A2 (de) * 2007-02-26 2008-09-04 Siemens Aktiengesellschaft Verfahren zum betreiben einer mehrstufigen dampfturbine
EP2067933A2 (de) * 2007-08-31 2009-06-10 Siemens Aktiengesellschaft Sicherheitskonzept für eine Dampfturbine

Also Published As

Publication number Publication date
JP2015148232A (ja) 2015-08-20
EP2723996A1 (de) 2014-04-30
JP5996717B2 (ja) 2016-09-21
CN103764956A (zh) 2014-04-30
US20140366538A1 (en) 2014-12-18
US9416684B2 (en) 2016-08-16
WO2013034377A1 (de) 2013-03-14
EP2723996B1 (de) 2019-10-16
JP2014525538A (ja) 2014-09-29
CN103764956B (zh) 2015-11-25
JP5837204B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
EP2000649B1 (de) Strahltriebwerk mit Verdichterluftzirkulation und Verfahren zum Betreiben desselben
EP1541810A1 (de) Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
EP2639411B1 (de) Gehäuse einer Stömungsmaschine mit einem Fluidleitsystem
EP3333398B1 (de) Zylinderkopf
DE102017104091A1 (de) System und Verfahren zum Aufheizen von Komponenten eines Abhitzedampferzeugers
EP3130748A1 (de) Rotorkühlung für eine dampfturbine
EP2723996B1 (de) Verfahren zur temperaturausgleichung in einer dampfturbine
EP2802748B1 (de) Strömungsmaschine mit schraubenkühlung
EP2918793A1 (de) Regelkonzept zur Fernwärmeauskopplung bei einer Dampfkraftanlage
DE102010012583A1 (de) Verfahren zum Betrieb einer Dampfturbine mit einem Impulsrotor sowie Dampfturbine zur Durchführung des Verfahrens
EP1280980A1 (de) Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine
EP2031183B1 (de) Dampfturbinenwelle mit Wärmedämmschicht
WO2010063575A1 (de) Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle
EP2112334A1 (de) Außengehäuse für eine Strömungsmaschine
EP2598724B1 (de) Dampfturbine sowie verfahren zum kühlen einer solchen
EP2511485A1 (de) Strömungsmaschine, Dampfturbinenanlage und Verfahren zum Wärmen einer Dampfturbinenwelle
DE102012109719A1 (de) Zweiflutige Dampfturbine mit Dampfkühlung
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
EP1953351A1 (de) Konzept zum Vorwärmen und Anfahren von Dampfturbinen mit Eintrittstemperaturen über 650°C
EP2022951A1 (de) Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
EP3191691B1 (de) Einströmungskontur für einwellenanordnung
EP2295725A1 (de) Ströhmungsmaschine mit Dampfentnahme
EP2112335A1 (de) Dampfturbine mit Kühlvorrichtung
EP3488082B1 (de) Dampfturbine mit strömungsabschirmung
EP2655834B1 (de) Einspritzblende für ein dampfkraftwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130907