EP2022951A1 - Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse - Google Patents

Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse Download PDF

Info

Publication number
EP2022951A1
EP2022951A1 EP07015627A EP07015627A EP2022951A1 EP 2022951 A1 EP2022951 A1 EP 2022951A1 EP 07015627 A EP07015627 A EP 07015627A EP 07015627 A EP07015627 A EP 07015627A EP 2022951 A1 EP2022951 A1 EP 2022951A1
Authority
EP
European Patent Office
Prior art keywords
housing
layer
outer layer
inner layer
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07015627A
Other languages
English (en)
French (fr)
Inventor
Heinz Dallinger
Kai Dr. Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07015627A priority Critical patent/EP2022951A1/de
Priority to EP08786470A priority patent/EP2176522A1/de
Priority to US12/671,069 priority patent/US20100209234A1/en
Priority to JP2010519422A priority patent/JP2010535970A/ja
Priority to CN2008801023249A priority patent/CN101779004B/zh
Priority to PCT/EP2008/059813 priority patent/WO2009019152A1/de
Publication of EP2022951A1 publication Critical patent/EP2022951A1/de
Priority to JP2012005323A priority patent/JP5450674B2/ja
Priority to US14/083,866 priority patent/US9358609B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material

Definitions

  • the invention relates to a housing for a thermal turbomachine and to a method for producing an at least two-layer housing for a turbomachine.
  • One of the measures would be to increase the steam inlet temperatures of the steam flowing into the thermal turbomachine, in particular a steam turbine. Efforts are currently underway to increase the steam inlet temperature to up to 700 ° C or even beyond.
  • Nickel-based materials are currently believed to be suitable for high steam inlet temperatures. However, this material is many times more expensive compared to conventional materials.
  • the rotor and the housing in particular the inner housing are thermally stressed.
  • the housing are designed clamshell.
  • the inner housing which is also referred to as inner housing, contains the section of steam expansion where the thermal stress is greatest and is characterized by a comparatively colder steam, such as. flows around the exhaust steam, which in turn receives the outer housing.
  • the outer housing is arranged around the inner housing.
  • the inner casings are designed as cast designs, ie they are made in one piece, so to speak, although only one flow area has to withstand the high thermal stresses. Often, a material is selected that withstands the thermal stresses and subsequently used for the entire inner housing. However, this is not cost-oriented optimal, because relatively high-temperature materials are used for areas that are less thermally stressed and where comparatively low temperatures prevail. At these points less high-temperature materials can be used, which are relatively cheaper.
  • EP 1 033 478 discloses a housing which is formed of different materials and is welded together axially.
  • the invention begins, whose task is to specify an inner housing, which is suitable for high thermal stresses and is also low in the production.
  • the object is achieved by a housing for a thermal turbomachine, wherein the housing is formed at least two layers at least from an inner layer and an outer layer, wherein the inner layer has a higher heat-resistant material than the outer layer.
  • Another object of the invention is to provide a method for producing an at least two-layer housing for a thermal turbomachine.
  • the housing is formed in two layers, wherein the inner layer is referred to as inner layer and is thermally heavily loaded during operation and therefore must be made of a higher heat-resistant material than the outer layer, which is referred to as the outer layer.
  • inner layer is thermally heavily loaded during operation and therefore must be made of a higher heat-resistant material than the outer layer, which is referred to as the outer layer.
  • the entire housing will not be formed from the highly heat-resistant material, but it is sufficient if only a part of the housing is formed with the high-temperature resistant material.
  • the inner layer is formed of a nickel-based material.
  • nickel-based materials are suitable for thermal stresses. Especially It is conceivable that 700 ° C steam turbines could be produced with this material in the future.
  • the inner layer is made of Alloy 625. This material has been proven in tests, which could be shown that this material is inexpensive to manufacture and also withstands thermal stresses.
  • a 10 wt .-% chromium steel is used for the outer layer, which is less expensive compared to the nickel-based material, but less heat-resistant.
  • the outer layer may include the material GX12CrMoVNbN9-1. It has also been shown that this material is suitable for use as an outer layer, since this material is inexpensive.
  • chromium steel in particular GX12CrMoVNbN9-1, can be selected, so to speak as material pair, and for the outer layer, a 1-2% by weight chromium steel, such as, for example,. G17CrMoV5-10.
  • the inner layer is adhesively bonded to the outer layer.
  • the process-directed solution according to the invention is widely formed in which the inner and outer castings are heat-treated during solidification.
  • the inner and outer castings may be heat treated after solidification. Subsequently, the heat treatment is in one stage at the lower tempering temperature of the Both materials of the inner and outer casting and carried out for a period of 8 - 12 hours.
  • the outer casting which uses the inner casting as a wall, mechanically improved to be connected to the inner casting.
  • an inner housing is produced with the materials listed above, with the inner layer being extrusion-welded onto the outer layer.
  • the housing can be heat treated after build-up welding.
  • FIG. 1 the upper half of a housing 1 of a thermal turbomachine is shown.
  • the thermal turbomachine can be, for example, a steam turbine.
  • the housing 1 may be, for example, an inner casing of a steam turbine.
  • steam flows between a rotor (not shown) and the inner housing in a flow direction 2.
  • the steam can reach values above 600 ° C and above 300bar.
  • the steam cools and loses pressure in the direction of flow 2.
  • the housing 1 has at least two layers 4, 5.
  • This in FIG. 1 illustrated embodiment includes an inner layer 4 and disposed around the inner layer 4 outer layer 5 on.
  • the inner layer 4 is formed of a higher heat-resistant material than the outer layer. 5
  • the inner layer 4 is made of a nickel-based material.
  • the outer layer 5 is arranged around the inner layer 4.
  • the housing 1 is arranged substantially around the axis of rotation 6, wherein the outer layer 5 is arranged around the inner layer 4 with respect to these axes of rotation 6.
  • the inner layer 4 may be formed from the material Alloy 625 or from a 10 wt .-% chromium steel.
  • the outer layer 5 may be formed of the material GX12CrMoVNbN9-1. Thus, a pair of materials is given, which is suitable for special thermal loads.
  • the inner layer 4 of a 9 - 10 wt .-% chrome steel and the outer layer 5 would form a 1 - 2 wt .-% chromium steel.
  • the materials GX12CrMoVNbN9-1 and for the outer layer 5 the material G17CrMoV5-10 can be selected here as materials for the inner layer 4.
  • the inner layer 4 is connected to the outer layer 5 cohesively with each other.
  • an inner casting is initially cast, which is formed as an inner layer 4.
  • the outer casting is cast, wherein the inner casting is used as a wall and the outer casting is formed as an outer layer 5.
  • the inner and outer castings are heat treated.
  • the heat treatment may also take place during solidification.
  • the heat treatment is carried out in one stage at a tempering temperature corresponding to the lower tempering temperature of the materials of the inner and outer castings.
  • heat treatment is carried out for a period of 8 to 12 hours at the aforementioned tempering temperature.
  • FIG. 2 is a sectional view of the housing 1 according to FIG. 1 to see.
  • the inner layer 4 is in this case limited only to the front region 3 and, as described above, attached to the outer layer 5.
  • a rear region 7 remote from the front region 3 it is possible to dispense with a two-layered design of the housing 1 when the thermal load is lower.
  • the housing 1 can be made multi-layered, wherein the individual materials to be selected is adapted to the thermal stresses.
  • FIG. 3 is a perspective view of the cut housing FIG. 2 to see.
  • the thickness of the inner layer 4 can be varied at the contact points 8 so that no cracks in the outer layer 5 are caused. Furthermore, the thickness of the inner layer 4 can be varied to counteract the thermal stress, which may vary locally.
  • housing additionally form with thermal barrier coatings to reduce the thermal stress.

Abstract

Die Erfindung betrifft ein Gehäuse (1) für eine thermische Turbomaschine, wobei das Gehäuse (1) zweischichtig ausgebildet ist mit einer inneren thermisch stärkeren belasteten Innenschicht (4) und einer thermisch weniger belasteten Außenschicht (5), wobei die Innenschicht (4) aus einem höher warmfesten Werkstoff als die Außenschicht (5) ausgebildet ist. Die Erfindung betrifft des Weiteren ein Verfahren zur Herstellung eines Gehäuses (1) für eine thermische Turbomaschine.

Description

  • Die Erfindung betrifft ein Gehäuse für eine thermische Turbomaschine sowie ein Verfahren zur Herstellung eines zumindest zweischichtigen Gehäuses für eine Turbomaschine.
  • Zur Erzielung hoher thermischer Wirkungsgrade sind mehrere Maßnahmen möglich. Eine der Maßnahmen wäre die Erhöhung der Dampfeintritttemperaturen des Dampfes, der in die thermische Strömungsmaschine, insbesondere eine Dampfturbine strömt. Zurzeit laufen Bestrebungen, die Dampfeintrittstemperatur auf bis zu 700°C oder sogar darüber hinaus zu erhöhen.
  • Solch hohe Dampfeintrittstemperaturen erfordern eine gezielte Auswahl von Materialien, die der thermischen Beanspruchung standhalten. Materialien auf Nickelbasis sind nach derzeitigen Erkenntnissen für hohe Dampfeintrittstemperaturen geeignet. Allerdings ist dieses Material im Vergleich zu herkömmlichen Materialien um ein vielfaches teurer.
  • In thermischen Strömungsmaschinen, wie beispielsweise bei Dampfturbinen, werden der Rotor und das Gehäuse insbesondere das Innengehäuse thermisch belastet. Üblicherweise werden bei Dampfturbinen die Gehäuse zweischalig ausgeführt. Dabei enthält das innere Gehäuse, das auch als Innengehäuse bezeichnet wird, den Abschnitt der Dampfexpansion, wo die thermische Beanspruchung am größten ist und wird durch einen vergleichsweise kälteren Dampf, wie z.B. den Abdampf umströmt, welchen wiederum das Außengehäuse aufnimmt. Das Außengehäuse ist um das Innengehäuse angeordnet.
  • Die Innengehäuse werden als Gusskonstruktionen ausgeführt, d.h. sie werden sozusagen aus einem Guss hergestellt, obwohl lediglich der eine Strömungsbereich den hohen thermischen Beanspruchungen standhalten muss. Häufig wird ein Material ausgewählt, das den thermischen Beanspruchungen standhält und anschließend für das gesamte Innengehäuse verwendet wird. Dies ist allerdings nicht kostenorientiert optimal, denn vergleichsweise hochwarmfeste Werkstoffe werden für Bereiche eingesetzt, die weniger thermisch belastet werden und wo vergleichsweise niedrige Temperaturen herrschen. An diesen Stellen können weniger hochwarmfeste Werkstoffe eingesetzt werden, die vergleichsweise günstiger sind.
  • Wegen der Fertigungsgrenzen für Nickelbasis-Werkstoffe ist das Gewicht der Innengehäuse für zukünftige Dampfturbinen, die für 700°C Dampfeintritttemperaturen geeignet sein sollen, problematisch, denn derartige Gehäuse können sich wegen ihres Gewichts als nicht mehr gießbar erweisen.
  • Ein weiteres Problem derartiger Innengehäuse ist der Verzug, der beim Öffnen nach einer bestimmten Betriebsdauer z.B. während einer Groß-Revision erfolgt. Dieser Verzug entsteht in Folge von hohen Temperaturdifferenzen über die Wandstärke aufgrund der beabsichtigten Kühlwirkung. Insbesondere im Einströmbereich des Innengehäuses sind solche Verzüge zu beobachten. Durch den Verzug entstehen thermische Spannungen.
  • In der EP 1 033 478 wird ein Gehäuse offenbart, das aus verschiedenen Werkstoffen ausgebildet ist und axial miteinander verschweißt ist.
  • Aus der EP 1 586 394 ist es bekannt, Bereiche von beanspruchungsresistenten Komponenten mit einem Zusatzmaterial zur Erhöhung der Resistenz auszubilden.
  • Wünschenswert wäre ein Innengehäuse, das günstig in der Herstellung ist und den thermischen Beanspruchungen standhält.
  • An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, ein Innengehäuse anzugeben, das für hohe thermische Beanspruchungen geeignet ist und darüber hinaus günstig in der Herstellung ist.
  • Die Aufgabe wird gelöst durch ein Gehäuse für eine thermische Turbomaschine, wobei das Gehäuse zumindest zweischichtig zumindest aus einer Innenschicht und einer Außenschicht ausgebildet ist, wobei die Innenschicht einen höher warmfesten Werkstoff aufweist als die Außenschicht.
  • Eine weitere Aufgabe der Erfindung ist es ein Verfahren zur Herstellung eines zumindest zweischichtigen Gehäuses für eine thermische Turbomaschine anzugeben.
  • Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung mit den Schritten:
    • Gießen eines inneren Gussteils, das als Innenschicht ausgebildet wird,
    • Gießen eines äußeren Gussteils, wobei das innere Gussteil als Wandung benutzt wird und das äußere Gussteil als Außenschicht ausgebildet ist.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. Mit der Erfindung wird der neue Weg eingeschlagen, nur Teilbereiche des Gehäuses mit einem Material auszubilden, das den thermischen Beanspruchungen standhält. Andere Bereiche des Gehäuses können aus anderen günstigeren Materialien hergestellt werden. Erfindungsgemäß wird das Gehäuse zweischichtig ausgebildet, wobei die innere Schicht als Innenschicht bezeichnet wird und thermisch stark belastet wird im Betrieb und daher aus einem höher warmfesten Werkstoff ausgebildet sein muss als die äußere Schicht, die als Außenschicht bezeichnet wird. Somit wird nicht das gesamte Gehäuse aus dem hochwarmfesten Werkstoff ausgebildet sein, sondern es genügt, wenn lediglich ein Teil des Gehäuses mit dem hochwarmfesten Werkstoff ausgebildet ist.
  • Vorteilhafter Weise ist die Innenschicht aus einem Nickelbasis-Werkstoff ausgebildet. Insbesondere Nickelbasis-Werkstoffe sind für thermische Beanspruchungen geeignet. Insbesondere ist es denkbar, dass mit diesem Werkstoff zukünftig 700°C-Dampfturbinen hergestellt werden können.
  • In einer weiteren vorteilhaften Weiterbildung wird die Innenschicht aus Alloy 625 ausgebildet. Dieses Material hat sich in Versuchen bewährt, wodurch gezeigt werden konnte, dass dieses Material günstig in der Herstellung ist und darüber hinaus thermischen Beanspruchungen standhält.
  • Vorteilhafter Weise wird für die Außenschicht ein 10 Gew.-% Chromstahl verwendet, der im Vergleich zum Nickelbasis-Werkstoff kostengünstiger, allerdings weniger warmfest ist.
  • Die Außenschicht kann insbesondere das Material GX12CrMoVNbN9-1 ein. Es hat sich ebenfalls gezeigt, dass dieses Material für den Einsatz als Außenschicht geeignet ist, da dieser Werkstoff kostengünstig ist.
  • Erfindungsgemäß kann vorteilhafter Weise sozusagen als Materialpaar zunächst für die Innenschicht 9 - 10 %-tiger Chromstahl, insbesondere GX12CrMoVNbN9-1, ausgewählt werden und für die Außenschicht ein 1 - 2 Gew.%-tiger Chromstahl, wie z.B. G17CrMoV5-10, verwendet werden.
  • Somit ist eine Werkstoffkombination gegeben, die im Vergleich zu nickelbasierten Werkstoffen günstiger ist, aber dennoch für Innengehäuse in thermisch beanspruchten Dampfturbinen geeignet ist.
  • Erfindungsgemäß wird die Innenschicht mit der Außenschicht stoffschlüssig verbunden.
  • Die auf das Verfahren hin gerichtete Lösung wird erfindungsgemäß weit gebildet, in dem das innere und äußere Gussteil während der Erstarrung wärmebehandelt wird. Alternativ dazu kann das innere und das äußere Gussteil auch nach der Erstarrung wärmebehandelt werden. Anschließend wird die Wärmebehandlung einstufig bei der niedrigeren Anlasstemperatur der beiden Materialien des inneren und äußeren Gussteils und bei einer Dauer von 8 - 12 Stunden erfolgen.
  • Vorteilhafer Weise werden zur Verbesserung der Stoffschlüssigkeit Verhakungen am inneren Gussteil angeordnet. Dadurch kann das äußere Gussteil, das das innere Gussteil als Wandung benutzt, mechanisch verbessert an das innere Gussteil verbunden werden.
  • Erfindungsgemäß wird ein Innengehäuse hergestellt mit den weiter oben aufgeführten Materialien, wobei die Innenschicht auf die Außenschicht auftragsgeschweißt wird. Vorteilhafter Weise kann das Gehäuse nach der Auftragsschweißung wärmebehandelt werden.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand von Abbildungen näher erläutert.
  • Es zeigen:
  • Figur 1
    eine perspektivische Darstellung der oberen Hälfte eines Gehäuses für eine Turbomaschine
    Figur 2
    eine Schnittdarstellung durch das Gehäuse von Figur 1 in der Seitenansicht,
    Figur 3
    eine perspektivische Darstellung des in Figur 2 dargestellten aufgeschnittenen Gehäuses.
  • In Figur 1 ist die obere Hälfte eines Gehäuses 1 einer thermischen Strömungsmaschine dargestellt. Die thermische Strömungsmaschine kann beispielweise eine Dampfturbine sein. Das Gehäuses 1 kann beispielsweise ein Innengehäuse einer Dampfturbine sein. Im Betrieb strömt zwischen einem nicht näher dargestellten Rotor und dem Innengehäuse in einer Strömungsrichtung 2 Dampf. In Hochdruck-Dampfturbinen kann der Dampf Werte annehmen von über 600°C und über 300bar. Der Dampf kühlt sich ab und verliert Druck in Strömungsrichtung 2. Das bedeutet, dass im Vorderbereich 3 des Innengehäuses eine thermisch hohe Belastung vorherrscht.
  • Um den thermischen Belastungen Stand zu halten, weist das Gehäuse 1 zumindest zwei Schichten 4, 5 auf. Das in Figur 1 dargestellte Ausführungsbeispiel umfasst eine Innenschicht 4 und eine um die Innenschicht 4 angeordnete Außenschicht 5 auf. Die Innenschicht 4 ist aus einem höher warmfesten Werkstoff ausgebildet als die Außenschicht 5.
  • Die Innenschicht 4 wird aus einem Nickelbasis-Werkstoff ausgeführt. Die Außenschicht 5 ist um die Innenschicht 4 angeordnet. Das Gehäuse 1 ist im Wesentlichen um die Rotationsachse 6 angeordnet, wobei die Außenschicht 5 bezogen auf diese Rotationsachsen 6 um die Innenschicht 4 angeordnet ist.
  • In einer alternativen Ausführungsform kann die Innenschicht 4 aus dem Werkstoff Alloy 625 oder aus einem 10 Gew.-% Chromstahl ausgebildet sein. In einer alternativen Ausführungsform kann die Außenschicht 5 aus dem Material GX12CrMoVNbN9-1 ausgebildet sein. Somit ist ein Werkstoffpaar gegeben, das für besondere thermische Belastungen geeignet ist.
  • Für andere thermische Belastungen, wie beispielsweise eine etwas geringere thermische Belastung ist ein anderes Materialpaar zu empfehlen. Hierzu wäre die Innenschicht 4 aus einem 9 - 10 Gew.-% Chromstahl und die Außenschicht 5 aus einem 1 - 2 Gew.-% Chromstahl auszubilden. Als Materialien für die Innenschicht 4 kann hierbei das Material GX12CrMoVNbN9-1 und für die Außenschicht 5 das Material G17CrMoV5-10 gewählt werden. Die Innenschicht 4 wird mit der Außenschicht 5 stoffschlüssig miteinander verbunden.
  • Bei der Herstellung des Gehäuses 1 wird zunächst ein inneres Gussteil gegossen, das als Innenschicht 4 ausgebildet ist. In einem nächsten Verfahrensschritt wird das äußere Gussteil gegossen, wobei das innere Gussteil als Wandung benutzt wird und das äußere Gussteil als Außenschicht 5 ausgebildet ist.
  • Während der Erstarrung nach dem Gießen wird das innere und äußere Gussteil wärmebehandelt. Die Wärmebehandlung kann ebenso während der Erstarrung stattfinden. Die Wärmebehandlung folgt einstufig bei einer Anlasstemperatur, die der niedrigeren Anlasstemperatur der Materialien des inneren und äußeren Gussteils entspricht. Darüber hinaus wird mit einer Dauer von 8 - 12 Stunden bei der vorgenannten Anlasstemperatur wärmebehandelt.
  • Zur Verbesserung der Stoffschlüssigkeit kann an das inneren Gussteil eine Verhakung angebracht werden. Dies führt dazu, dass das äußere Gussteil verbessert an die Innenschicht 4 angeordnet werden kann.
  • In der Figur 2 ist eine Schnittdarstellung des Gehäuses 1 gemäß Figur 1 zu sehen. Die Innenschicht 4 ist hierbei lediglich auf den Vorderbereich 3 begrenzt und, wie weiter oben beschrieben, an die Außenschicht 5 angebracht. In einem vom Vorderbereich 3 entfernten Hinterbereich 7 kann auf eine zweischichtige Ausführung des Gehäuses 1 verzichtet werden, wenn die thermische Belastung niedriger ist. Das Gehäuse 1 kann mehrschichtig ausgeführt werden, wobei die einzelnen auszuwählenden Materialien den thermischen Beanspruchungen angepasst ist.
  • In Figur 3 ist eine perspektivische Ansicht des aufgeschnittenen Gehäuses aus Figur 2 zu sehen.
  • Um Kerben zu vermeiden, kann an den Berührungsstellen 8 die Dicke der Innenschicht 4 variiert werden, damit keine Risse in der Außenschicht 5 verursacht werden. Des Weiteren kann die Dicke der Innenschicht 4 variiert werden, um der thermischen Belastung entgegen zu wirken, die örtlich unterschiedlich sein kann.
  • Es ist sinnvoll, das in den Figuren 1 - 3 dargestellte Gehäuse zusätzlich mit Wärmedämmschichten auszubilden, um die thermische Beanspruchung zu verringern.

Claims (20)

  1. Gehäuse (1) für eine thermische Turbomaschine,
    dadurch gekennzeichnet, dass
    das Gehäuse (1) zumindest zweischichtig zumindest aus einer Innenschicht (4) und einer Außenschicht (5) ausgebildet ist,
    wobei die Innenschicht (4) einen höher warmfesten Werkstoff aufweist als die Außenschicht (5).
  2. Gehäuse (1) nach Anspruch 1,
    wobei die Außenschicht (5) um die Innenschicht (4) angeordnet ist.
  3. Gehäuse (1) nach Anspruch 2,
    wobei die Außenschicht (5) bezogen auf eine Rotationsachse um die Innenschicht (4) angeordnet ist.
  4. Gehäuse (1) nach Anspruch 1, 2 oder 3,
    wobei die Innenschicht (4) aus einem Nickelbasis-Werkstoff ausgebildet ist.
  5. Gehäuse (1) nach Anspruch 4,
    wobei die Innenschicht (4) aus Alloy 625 ausgebildet ist.
  6. Gehäuse (1) nach einem der vorhergehenden Ansprüche,
    wobei die Außenschicht (5) aus einem 10Gew.-% Chromstahl ausgebildet ist.
  7. Gehäuse (1) nach Anspruch 6,
    wobei die Außenschicht (5) aus dem Material GX12CrMoVNbN9-1 ausgebildet ist.
  8. Gehäuse (1) nach Anspruch 1, 2 oder 3,
    wobei die Innenschicht (4) aus einem 9 - 10 Gew.-% Chromstahl ausbildet ist.
  9. Gehäuse (1) nach Anspruch 4,
    wobei die Innenschicht (4) aus dem Material GX12CrMoVNbN9-1 ausgebildet ist.
  10. Gehäuse (1) nach einem der Ansprüche 8 oder 9,
    wobei die Außenschicht (5) aus einem 1 - 2 Gew.-% Chromstahl ausgebildet ist.
  11. Gehäuse (1) nach Anspruch 10,
    wobei die Außenschicht (5) aus dem Material G17CrMoV5-10 ausgebildet ist.
  12. Gehäuse (1) nach einem der vorhergehenden Ansprüche,
    wobei die Innenschicht (4) mit der Außenschicht (5) stoffschlüssig verbunden ist.
  13. Verfahren zur Herstellung eines zumindest zweischichtigen Gehäuses (1) für eine thermische Turbomaschine, mit den Schritten:
    - Gießen eines inneren Gussteils, das als Innenschicht (4) ausgebildet wird,
    - Gießen eines äußeren Gussteils, wobei das innere Gussteil als Wandung benutzt wird und das äußere Gussteil als Außenschicht (5) ausgebildet ist.
  14. Verfahren nach Anspruch 13,
    wobei das innere und äußere Gussteil während der Erstarrung wärmebehandelt wird.
  15. Verfahren nach Anspruch 13,
    wobei das innere und äußere Gussteil nach der Erstarrung wärmebehandelt ist.
  16. Verfahren nach Anspruch 14 oder 15,
    wobei die Wärmebehandlung einstufig bei der niedrigeren Anlasstemperatur der Materialien des inneren und äußeren Gussteils und bei einer Dauer von 8 - 12 Stunden erfolgt.
  17. Verfahren nach einem der Ansprüche 13 bis 16,
    wobei am inneren Gussteil Verhakungen zur Verbesserung der Stoffschlüssigkeit angebracht werden.
  18. Verfahren nach einem der Ansprüche 13 bis 17 zur Herstellung des Gehäuses (1) nach einem der Ansprüche 1 bis 12.
  19. Verfahren zur Herstellung des Gehäuses (1) nach einem der Ansprüche 1 bis 12,
    wobei die Innenschicht (4) auf die Außenschicht (5) auftragsgeschweißt wird.
  20. Verfahren nach Anspruch 15,
    wobei das Gehäuse (1) nach der Auftragsschweißung wärmebehandelt wird.
EP07015627A 2007-08-08 2007-08-08 Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse Withdrawn EP2022951A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07015627A EP2022951A1 (de) 2007-08-08 2007-08-08 Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
EP08786470A EP2176522A1 (de) 2007-08-08 2008-07-25 Verfahren zur herstellung eines turbinengehäuses sowie turbinengehäuse
US12/671,069 US20100209234A1 (en) 2007-08-08 2008-07-25 Method for producing a turbine housing and turbine housing
JP2010519422A JP2010535970A (ja) 2007-08-08 2008-07-25 タービン車室の製造方法とそのタービン車室
CN2008801023249A CN101779004B (zh) 2007-08-08 2008-07-25 涡轮机壳体制造方法和涡轮机壳体
PCT/EP2008/059813 WO2009019152A1 (de) 2007-08-08 2008-07-25 Verfahren zur herstellung eines turbinengehäuses sowie turbinengehäuse
JP2012005323A JP5450674B2 (ja) 2007-08-08 2012-01-13 タービン車室の製造方法とそのタービン車室
US14/083,866 US9358609B2 (en) 2007-08-08 2013-11-19 Process for producing a turbine housing and turbine housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07015627A EP2022951A1 (de) 2007-08-08 2007-08-08 Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse

Publications (1)

Publication Number Publication Date
EP2022951A1 true EP2022951A1 (de) 2009-02-11

Family

ID=39102941

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07015627A Withdrawn EP2022951A1 (de) 2007-08-08 2007-08-08 Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
EP08786470A Withdrawn EP2176522A1 (de) 2007-08-08 2008-07-25 Verfahren zur herstellung eines turbinengehäuses sowie turbinengehäuse

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08786470A Withdrawn EP2176522A1 (de) 2007-08-08 2008-07-25 Verfahren zur herstellung eines turbinengehäuses sowie turbinengehäuse

Country Status (5)

Country Link
US (2) US20100209234A1 (de)
EP (2) EP2022951A1 (de)
JP (2) JP2010535970A (de)
CN (1) CN101779004B (de)
WO (1) WO2009019152A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051446A1 (de) 2011-06-29 2013-01-03 Siempelkamp Giesserei Gmbh Gusseisen mit Kugelgraphit, insbesondere für Hochtemperaturanwendungen
US8834110B2 (en) 2009-10-28 2014-09-16 Alstom Technology Ltd Steam turbine casing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173576A (zh) * 2020-01-15 2020-05-19 中国能源建设集团广东省电力设计研究院有限公司 一种汽轮机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559872A1 (de) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Strömungsmaschine
EP1586394A1 (de) * 2004-04-08 2005-10-19 Siemens Aktiengesellschaft Gas- oder Dieselturbine mit einer beanspruchungsresistenten Komponente
EP1734145A1 (de) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Schichtsystem für ein Bauteil mit Wärmedämmschicht und metallischer Erosionsschutzschicht, Verfahren zur Herstellung und Verfahren zum Betreiben einer Dampfturbine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023613A (en) * 1971-12-29 1977-05-17 Toyo Kogyo Co., Ltd. Method of making a composite metal casting
US4005991A (en) * 1971-12-29 1977-02-01 Toyo Kogyo Co., Ltd. Metal made of steel plate and aluminum material
US4066117A (en) * 1975-10-28 1978-01-03 The International Nickel Company, Inc. Spray casting of gas atomized molten metal to produce high density ingots
JPS52138017A (en) * 1976-05-14 1977-11-17 Taiho Kogyo Co Ltd Compound material of aluminium group casting base and ferrous group annexation and its production method
SE431723B (sv) * 1980-06-23 1984-02-27 Sandvik Ab Svetsbar slitdetalj med hog slitstyrka
US5226469A (en) * 1987-07-01 1993-07-13 Kawasaki Jukogyo Kabushiki Kaisha Composite structures and methods of manufacturing the same
US5143140A (en) * 1991-03-04 1992-09-01 Olin Corporation Spray casting of molten metal
WO1997002947A1 (en) * 1995-07-13 1997-01-30 Advanced Materials Technologies, Inc. Method for bonding thermal barrier coatings to superalloy substrates
US6135194A (en) * 1996-04-26 2000-10-24 Bechtel Bwxt Idaho, Llc Spray casting of metallic preforms
JP4234904B2 (ja) * 1997-11-03 2009-03-04 シーメンス アクチエンゲゼルシヤフト タービン車室とその製造方法
JP2002194525A (ja) * 2000-12-27 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd 耐摩耗性を有するツインフロー型タービンハウジング及び該ツインフロー型タービンハウジングの耐摩耗溶射方法
DE10112062A1 (de) * 2001-03-14 2002-09-19 Alstom Switzerland Ltd Verfahren zum Zusammenschweißen zweier thermisch unterschiedlich belasteter Teile sowie nach einem solchen Verfahren hergestellte Turbomaschine
US7066235B2 (en) * 2002-05-07 2006-06-27 Nanometal, Llc Method for manufacturing clad components
EP1712745A1 (de) * 2005-04-14 2006-10-18 Siemens Aktiengesellschaft Komponente einer Dampfturbinenanlage, Dampfturbinenanlage, Verwendung und Herstellungsverfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559872A1 (de) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Strömungsmaschine
EP1586394A1 (de) * 2004-04-08 2005-10-19 Siemens Aktiengesellschaft Gas- oder Dieselturbine mit einer beanspruchungsresistenten Komponente
EP1734145A1 (de) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Schichtsystem für ein Bauteil mit Wärmedämmschicht und metallischer Erosionsschutzschicht, Verfahren zur Herstellung und Verfahren zum Betreiben einer Dampfturbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834110B2 (en) 2009-10-28 2014-09-16 Alstom Technology Ltd Steam turbine casing system
DE102011051446A1 (de) 2011-06-29 2013-01-03 Siempelkamp Giesserei Gmbh Gusseisen mit Kugelgraphit, insbesondere für Hochtemperaturanwendungen
WO2013000836A1 (de) 2011-06-29 2013-01-03 Siempelkamp Giesserei Gmbh Gusseisen mit kugelgraphit, insbesondere für hochtemperaturanwendungen

Also Published As

Publication number Publication date
JP2012140961A (ja) 2012-07-26
WO2009019152A1 (de) 2009-02-12
CN101779004A (zh) 2010-07-14
EP2176522A1 (de) 2010-04-21
US20140076466A1 (en) 2014-03-20
CN101779004B (zh) 2013-03-06
JP2010535970A (ja) 2010-11-25
US20100209234A1 (en) 2010-08-19
US9358609B2 (en) 2016-06-07
JP5450674B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
EP1702138B1 (de) Gasturbinenbauteil
DE3537882C2 (de)
WO2002090724A1 (de) Mantelring
EP3468740B1 (de) Verfahren zum fügen von werkstoffen durch verwendung einer mit einem additiven verfahren hergestellten gitterstruktur
DE102015205329A1 (de) Turbinengehäuse und zugehöriger Abgasturbolader
EP1541810A1 (de) Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
WO2009115437A2 (de) Leitgitteranordnung eines abgasturboladers, abgasturbolader und verfahren zur herstellung einer leitgitteranordnung
DE102015100362A1 (de) Dampfturbinenmaschinenventil mit einem Ventilglied und einer Dichtungsanordnung
EP1692371A1 (de) Turbinenbauteil mit wä rmedä mmschicht und erosionsschutz schicht
EP1653049B1 (de) Leitschaufelring einer Strömungsmaschine und zugehöriges Modifikationsverfahren
CH705838A1 (de) Abgasgehäuse für eine Gasturbine sowie Gasturbine mit einem Abgasgehäuse.
EP1817528B1 (de) Verfahren zur herstellung eines hitzeschildelementes
CH699716A1 (de) Bauteil für eine hochtemperaturdampfturbine sowie hochtemperaturdampfturbine.
CH694257A5 (de) Dampfturbine.
EP2411631B1 (de) Dichtplatte und Laufschaufelsystem
EP2282014A1 (de) Rinförmiger Strömungskanalabschnitt für eine Turbomaschine
WO2014198453A1 (de) Abgasturbolader mit einem radial-axial-turbinenrad
EP2022951A1 (de) Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
EP2805023A1 (de) Turbinenschaufel sowie zugehöriges verfahren zum herstellen einer turbinenschaufel
EP2344730B1 (de) Innengehäuse für eine strömungsmaschine
DE102009043184A1 (de) Verfahren zur Reparatur eines integralen Rotors und integraler Rotor
EP2112334A1 (de) Außengehäuse für eine Strömungsmaschine
EP2176520B1 (de) Verfahren zur herstellung einer turbinenkomponente und entsprechende turbinenkomponente
DE10217390A1 (de) Turbinenschaufel
EP2024605A1 (de) Geschweisste nd-turbinenwelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090812

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566