WO2010063575A1 - Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle - Google Patents

Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle Download PDF

Info

Publication number
WO2010063575A1
WO2010063575A1 PCT/EP2009/065359 EP2009065359W WO2010063575A1 WO 2010063575 A1 WO2010063575 A1 WO 2010063575A1 EP 2009065359 W EP2009065359 W EP 2009065359W WO 2010063575 A1 WO2010063575 A1 WO 2010063575A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulation
wall portion
axial compressor
vane
guide
Prior art date
Application number
PCT/EP2009/065359
Other languages
English (en)
French (fr)
Inventor
Francois Benkler
Karl Klein
Torsten Matthias
Achim Schirrmacher
Oliver Schneider
Vadim Shevchenko
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09759708.2A priority Critical patent/EP2358979B1/de
Priority to US13/132,126 priority patent/US20110236184A1/en
Publication of WO2010063575A1 publication Critical patent/WO2010063575A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50211Expansivity similar

Definitions

  • the invention relates to an axial compressor for a gas turbine with passive radial gap control, with at least one fixed to a vane carrier vane ring, each having a plurality of vanes, the blade tips each under
  • a gas turbine has a turbocompressor, for example, in axial construction.
  • the turbocompressor has a housing with attached stators and a rotor which is surrounded by the housing.
  • the rotor has a shaft on which the rotor is driven in rotation.
  • a shaft cover Surrounding the shaft, a shaft cover is provided whose outer contour, together with the inner contour of the housing, forms a flow channel through the turbocompressor.
  • the flow channel has a cross section which widens in the flow direction, so that the flow channel is designed as a diffuser.
  • the rotor has a plurality of rotor stages, each formed by a row of rotor blades. Further, the stator has a plurality of rows of vanes, which are arranged in the axial direction alternately arranged to the rotor blade rows. Conventionally, seen in compressors in the flow direction after the last row of rotor blades still a row of vanes and then a Nachleitschaufelsch arranged.
  • the rows of vanes have a plurality of vanes, which are fixed with their outer end respectively to the housing and point with its inner end in the direction of the shaft.
  • a Blade tip formed facing the shaft cover and opposite.
  • the distance between the blade tips and the shaft cover is formed as a radial gap which is dimensioned such that on the one hand the blade tips in the operation of the gas turbine to the
  • the casing of the turbo-compressor is massively designed to withstand the pressure and temperature stresses in the operation of the gas turbine. Furthermore, the housing is rigid, so that the load application to the housing during operation of the gas turbine has only a small deformation of the housing result. In contrast, the
  • the shaft cover is formed with smaller wall thicknesses compared to the housing and typically has different material properties than the housing, the shaft cover heats up faster than the housing with the guide blade rows attached thereto.
  • the shaft cover and the housing have a different thermal expansion rate, so that when starting and stopping the gas turbine, the size of the radial gap changes, the radial gap is temporarily smaller when starting and larger when starting.
  • the radial gap is provided with a minimum height dimensioned such that in each operating state of the gas turbine - stationary and unsteady - the blade tips almost never touch the shaft cover. This has the consequence that at the blade tips a correspondingly sized radial gap is maintained, which leads to a reduction of the efficiency of the gas turbine.
  • the blockage caused by the radial gap leads to a reduction of the main flow component, whereby the pressure recovery in the diffuser is reduced and disadvantageous detachment phenomena may occur.
  • the object of the invention to provide an axial compressor for a gas turbine with a passive radial gap control, which has a high efficiency is achieved with such having the features of claim 1.
  • the axial compressor according to the invention with at least one vane ring fastened to a vane carrier, which has a plurality of vanes whose vane tips face each other on the hub side with respect to the vane carrier thermally faster responding wall portion forming a radial gap has a heat insulation at the blade tip immediately opposite wall portion, the tuned in its batheintragverzögerungs Koch on the wall portion and the vane support such that the thermal expansion behavior of Leitschaufelani and wall portion during transient operation of the axial compressor over time at least equal, preferably almost identical.
  • the heat insulation when mounted on the wall portion, causes the wall portion to be thermally insulated from the hot gas flow. Since no cooling of the wall portion provided, the wall portion with heat insulation portion in the later-adjusting stationary state will assume the same temperature as a wall portion without heat insulation portion. As a result, with the heat insulation, the heat input from the hot gas flow into the wall section is only delayed.
  • the heat input into the wall section can be determined such that both the housing with its vane ring and the wall section have a similar thermal expansion behavior over time and not a time-varying manner as in the prior art.
  • the radial gap in its height over time is approximately constant, which moves approximately synchronously when approaching a still cold gas turbine, the wall portion at a constant distance from the blade tip.
  • the radial gap can be designed with a lower height without the blade tip abutting the heat insulation during operation of the gas turbine. As a result, a high reliability of the gas turbine is achieved, which has a high efficiency.
  • the heat insulation can be performed by the provision of circumferential segments segmented annular.
  • the heat insulation may comprise sealing elements which are provided between the peripheral segments.
  • the gaps between the peripheral segments are advantageously sealed, so that the leakage rate through the radial gap is low.
  • the heat insulation can be fastened to the wall section. It is further preferred that the heat insulation can be fastened as a ring on the wall section by means of a hooking means and / or a screwing means.
  • the heat insulation can be fixed stably to the wall section, so that the heat insulation during operation of the gas turbine can not change its position relative to the wall section.
  • the heat insulation can also be formed from a heat protection layer applied to the wall section, which is preferably ceramic. A simple production and simple attachment is thus given, even for already operationally used axial compressor.
  • a shaft cover has the wall portion. It is also preferred that with the guide vanes at least two adjacent vane rings are formed whose radial gaps are influenced by the heat insulation.
  • vanes do not have to be on a separate
  • the guide vanes can be fastened directly to a housing of the axial compressor, which as a rule is also thicker than the relevant wall section.
  • Fig. 2 shows the section A of Fig. 1 and
  • FIG. 3 is a longitudinal section of FIG. 1 with an alternative embodiment of an axial compressor according to the invention.
  • an axial compressor 1 has a housing 2 which has a housing contour 3 on its inside. Further, the axial compressor 1 has a shaft (not shown) covered by a shaft cover 4 radially outward. Both the shaft cover 4 and the housing contour 3 form a flow channel, which is formed as a diffuser 5. In addition, the axial compressor 1 has a rotor with a rotor blading 6, wherein the rotor is rotationally rigidly connected to the shaft.
  • a stator blading 7 is provided, which is located upstream of the rotor blading 6. Downstream of the rotor blading 6 is a guide grid 8 and downstream of a Nachleitgitter 9 is arranged, wherein the guide grid 8 and the Nachleitgitter 9 form the outflow region of the axial compressor 1. Both the guide grid 8 and the guide grid 9 are formed by a plurality of stator blades, which extend radially in the axial compressor 1.
  • the stator blades have a radially outer end and a radially inner end, wherein the stator blades are attached to the housing 2 at its radially outer end.
  • At the radial inside a respective blade tip 14 is formed, which faces the center of the shaft.
  • the blade tips 14 is a non-rotatably arranged shaft cover 4 opposite, so that between the blade tips 14 and the shaft cover 4, a radial gap 10 is formed.
  • a heat insulation 11 is attached as a heat insulating ring on the shaft cover 4, for example, by screwing.
  • the heat insulating ring 11 extends in the axial direction of the axial compressor 1 both via the guide grid 8 as on the Nachleitgitter 9 away.
  • the heat insulating ring 11 is mounted on the shaft cover 4 and includes circumferentially distributed peripheral segments 12 so that the heat insulating ring 11 has a segmented structure. Between the peripheral segments 12 intermediate spaces are formed, in each of which a sealing element 13 is inserted. The sealing elements 13 are introduced braced between the peripheral segments 12.
  • the heat insulating ring 11 is made of a material and dimensioned geometrically such that in the region of the guide grid 8 and the Nachleitgitters 9, the shaft cover 4 is thermally insulated from the diffuser 9, so that the thermal expansion behavior of the shaft cover 4 approximately corresponds to the housing 2.
  • the radial gap 10 formed from the distance between the peripheral edge of the heat insulating ring heat insulation 11 facing the diffuser 5 and the blade tips 14 becomes approximately constant over time.
  • the radial gap 10 can be made smaller than would be necessary if the heat insulating ring 11 would not have been provided on the shaft cover 4 and abutment of the blade tips 14 are prevented on the shaft cover 4 should.
  • the mass flow of the leakage flow through the radial gap 10 can be reduced, so that both the efficiency of the axial compressor 1 and the pressure gain in the diffuser 5 are further improved.
  • the heat insulating ring 11 has the circumferential segments 12, so that a thermal radial expansion of the heat insulating ring 11 is prevented.
  • the vote regarding the choice of material and the geometric dimensioning of the heat insulating ring 11 with respect to the shaft cover 4 is simple.
  • FIG. 3 shows how Fig. 1 shows a longitudinal section through a portion of the gas turbine, wherein in Fig. 3 to Fig. 1 identical components are provided with the same reference numerals.
  • the heat insulation ring 11 formed from peripheral segments 12 shown in FIG. 1, however, is replaced by an equivalent solution to FIG. 1 by a heat protection layer 15 applied directly to the wall section 4.
  • the thermal insulation layer is, for example, a conventional one ceramic thermal barrier coating.
  • the invention relates to an axial compressor 1 for a gas turbine with passive radial gap control comprising a guide vane on which in a ring 8, 9 arranged vanes are fixed, the blade tips 14 a wall portion 4 opposite.
  • a thermal insulation ring 11 is mounted in the section opposite the blade tips 14 for equalizing the expansion behavior of the guide blade carrier and the wall section 4, which thermally react differently per se, which in its heat input delay effect on the wall section 4 and on the guide vane carrier tuned such that the thermal expansion behavior of vane support and wall section 4 during transient operation of the axial compressor 1 over time is at least equalized.
  • the alignment prevents contact between the blade tips 14 and the wall section 4, which could hitherto occur during transient operation or, in particular, after the cold start. By aligning can be achieved at best that the radial position of the blade tip 14 relative to the heat insulating ring 11 during operation of the axial compressor 1 over time is substantially constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft einen Axialverdichter (1) für eine Gasturbine mit passiver Radialspaltkontrolle umfassend einen Leitschaufelträger, an dem in einem Kranz (8, 9) angeordnete Leitschaufeln befestigt sind, deren Schaufelspitzen (14) einem Wandabschnitt (4) gegenüberliegen. An dem Wandabschnitt (4) ist zur Angleichung des Dehnverhaltens von Leitschaufelträger und Wandabschnitt (4), welche an sich thermisch unterschiedlich reagieren, eine Wärmeisolation (11) in dem den Schaufelspitzen (14) gegenüberliegendem Abschnitt angebracht, der in seiner Wärmeeintragsverzögerungswirkung auf den Wandabschnitt (4) und auf den Leitschaufelträger derart abgestimmt, dass das thermische bedingte Dehnverhalten von Leitschaufelträger und Wandabschnitt (4) beim transienten Betrieb des Axialverdichters (1) über die Zeit zumindest angeglichen ist.

Description

Beschreibung
Axialverdichter für eine Gasturbine mit passiver Radialspaltkontrolle
Die Erfindung betrifft einen Axialverdichter für eine Gasturbine mit passiver Radialspaltkontrolle, mit mindestens einem an einem Leitschaufelträger befestigten Leitschaufelkranz, der jeweils eine Mehrzahl von Leitschaufeln aufweist, deren Schaufelspitzen jeweils unter
Bildung eines Radialspalts nabenseitig einem in Bezug auf den Leitschaufelträger thermisch schneller reagierenden Wandabschnitt gegenüberliegen.
Eine Gasturbine weist einen Turboverdichter beispielsweise in Axialbauweise auf. Der Turboverdichter weist ein Gehäuse mit daran angebrachten Statoren und einen Rotor auf, der von dem Gehäuse umgeben ist. Der Rotor weist eine Welle auf, an der der Rotor drehantreibbar ist. Die Welle umgebend ist eine Wellenabdeckung vorgesehen, deren Außenkontur zusammen mit der Innenkontur des Gehäuses einen Strömungskanal durch den Turboverdichter bildet. Der Strömungskanal hat einen in Strömungsrichtung sich aufweitenden Querschnitt, so dass der Strömungskanal als ein Diffusor ausgebildet ist.
Der Rotor weist eine Mehrzahl von Rotorstufen auf, die jeweils von einer Rotorschaufelreihe gebildet sind. Ferner weist der Stator eine Mehrzahl von Leitschaufelreihen auf, die in Axialrichtung gesehen abwechselnd zu den Rotorschaufelreihen angeordnet sind. Herkömmlich ist bei Verdichtern in Strömungsrichtung gesehen nach der letzten Rotorschaufelreihe noch eine Leitschaufelreihe und danach eine Nachleitschaufelreihe angeordnet.
Die Leitschaufelreihen weisen eine Mehrzahl an Schaufeln auf, die mit ihrem äußeren Ende jeweils an dem Gehäuse befestigt sind und mit ihrem inneren Ende in Richtung zu der Welle zeigen. An dem inneren Ende der Leitschaufel ist eine Schaufelspitze ausgebildet, die der Wellenabdeckung zugewandt und gegenüber liegt. Der Abstand zwischen den Schaufelspitzen und der Wellenabdeckung ist als ein Radialspalt ausgebildet, der derart dimensioniert ist, dass einerseits die Schaufelspitzen beim Betrieb der Gasturbine an die
Wellenabdeckung nicht anstoßen und andererseits die beim Betrieb der Gasturbine sich einstellende Leckageströmung durch den Radialspalt möglichst gering ist. Dieser Spalt ist deshalb so gering wie möglich auszulegen, damit ein hoher Wirkungsgrad erzielt und sowohl das volle
Beschaufelungspotential des Verdichters ausgeschöpft als auch ein möglichst hoher Druckgewinn im nachgeschalteten Diffusor erzielt werden kann.
Das Gehäuse des Turboverdichters ist massiv konstruiert, um den Druck- und Temperaturbeanspruchungen beim Betrieb der Gasturbine standhalten zu können. Ferner ist das Gehäuse steif ausgeführt, damit der Lasteintrag auf das Gehäuse beim Betrieb der Gasturbine eine nur kleine Verformung des Gehäuses zur Folge hat. Im Gegensatz dazu ist die
Wellenabdeckung beim Betrieb der Gasturbine geringeren mechanischen Beanspruchungen ausgesetzt, wodurch die Wellenabdeckung dünner und weniger massiv als das Gehäuse ausgeführt ist.
Dadurch, dass die Wellenabdeckung mit kleineren Wandstärken im Vergleich zum Gehäuse ausgebildet ist und in der Regel andere Materialeigenschaften als das Gehäuse hat, erwärmt sich die Wellenabdeckung schneller als das Gehäuse mit den daran befestigten Leitschaufelreihen. Dies hat zur Folge, dass beim Anfahren und Abfahren der Gasturbine die Wellenabdeckung und das Gehäuse eine unterschiedliche Wärmeausdehnungsgeschwindigkeit haben, so dass sich beim Anfahren und Abfahren der Gasturbine die Größe des Radialspalts ändert, wobei der Radialspalt beim Anfahren temporär kleiner und beim Abfahren größer ist. Damit beim Betrieb des Turboverdichters die Schaufelspitzen der Leitschaufelreihe nicht an die Wellenabdeckung anstoßen und diese beschädigen, ist der Radialspalt mit einer derart dimensionierten Minimalhöhe versehen, dass in jedem Betriebszustand der Gasturbine - stationär wie instationär - die Schaufelspitzen die Wellenabdeckung so gut wie nie berühren. Dies hat zur Folge, dass an den Schaufelspitzen ein entsprechend dimensionierter Radialspalt vorgehalten ist, der zu einer Reduktion des Wirkungsgrades der Gasturbine führt.
Ferner führt die von dem Radialspalt verursachte Blockage zu einer Reduktion der Hauptströmungskomponente, wodurch der Druckrückgewinn im Diffusor reduziert wird und nachteilige Ablösephänomene auftreten können.
Die Aufgabe der Erfindung, einen Axialverdichter für eine Gasturbine mit einer passiven Radialspaltkontrolle zu schaffen, welcher einen hohen Wirkungsgrad hat, wird mit einem solchen die Merkmale des Anspruchs 1 aufweisenden gelöst.
Der erfindungsgemäße Axialverdichter mit mindestens einem an einem Leitschaufelträger befestigten Leitschaufelkranz, der eine Mehrzahl von Leitschaufeln aufweist, deren Schaufelspitzen jeweils unter Bildung eines Radialspalts nabenseitig einem in Bezug auf den Leitschaufelträger thermisch schneller reagierenden Wandabschnitt gegenüberliegen, weist eine Wärmeisolation am den Schaufelspitze unmittelbar gegenüberliegenden Wandabschnitt auf, der in seiner Wärmeeintragverzögerungswirkung auf den Wandabschnitt und auf den Leitschaufelträger derart abgestimmt, dass das thermische bedingte Dehnverhalten von Leitschaufelträger und Wandabschnitt beim transienten Betrieb des Axialverdichters über die Zeit zumindest angeglichen, vorzugsweise nahezu identisch ist.
Beim Betrieb des Verdichters einer Gasturbine stehen der Leitschaufelträger bzw. das Gehäuse mit dem daran befestigten Leitschaufelkranz und der Wandabschnitt mit einem heißen Gasstrom in Kontakt. Beim Kaltstart bewirkt die Wärmeisolation, wenn sie auf dem Wandabschnitt angebracht ist, dass der Wandabschnitt von dem heißen Gasstrom thermisch isoliert ist. Da keine Kühlung des Wandabschnitts vorgesehen, wird der Wandabschnitt mit Wärmeisolationsabschnitt im sich später einstellenden stationären Zustand die identische Temperatur annehmen wie ein Wandabschnitt ohne Wärmeisolationsabschnitt. Dadurch ist mit der Wärmeisolation der Wärmeeintrag von dem heißen Gasstrom in den Wandabschnitt nur verzögert. Somit kann mittels der Wärmeisolation der Wärmeeintrag in den Wandabschnitt derart festgelegt sein, dass sowohl das Gehäuse mit seinem Leitschaufelkranz als auch der Wandabschnitt zeitlich ein ähnliches Wärmeausdehnungsverhalten haben und nicht wie beim Stand der Technik, ein zeitlich unterschiedliches. Als Folge davon ist der Radialspalt in seiner Höhe über die Zeit in etwa konstant, wodurch sich etwa beim Anfahren einer noch kalten Gasturbine der Wandabschnitt in konstantem Abstand zur Schaufelspitze in etwa synchron bewegt.
Somit kann der Radialspalt mit einer geringeren Höhe konstruiert werden, ohne dass die Schaufelspitze beim Betrieb der Gasturbine an die Wärmeisolation anstößt. Dadurch ist eine hohe Betriebssicherheit der Gasturbine erreicht, die einen hohen Wirkungsgrad hat.
Bevorzugtermaßen kann die Wärmeisolation durch das Vorsehen von Umfangssegmenten ringförmig segmentiert ausgeführt sein.
Dadurch ist die thermisch bedingte radiale Ausdehnung der Wärmeisolation verringert, so dass bei der Radialbewegung der Wärmeisolation in erster Linie die radiale thermische Ausdehnung des Wandabschnitts zum Tragen kommt.
Gemäß einer weiteren, vorteilhaften Ausgestaltung kann die Wärmeisolation Dichtungselemente aufweisen, die zwischen den Umfangssegmenten vorgesehen sind. Dadurch sind vorteilhaft die Spalte zwischen den Umfangssegmenten abgedichtet, so dass die Leckagerate durch den Radialspalt gering ist.
Vorteilhafterweise ist die Wärmeisolation an dem Wandabschnitt befestigbar. Dabei ist es ferner bevorzugt, dass die Wärmeisolation als Ring an dem Wandabschnitt mittels einem Verhakungsmittel und/oder einem Verschraubungsmittel befestigbar ist.
Dadurch ist die Wärmeisolation stabil an dem Wandabschnitt befestigbar, so dass die Wärmeisolation beim Betrieb der Gasturbine seine Lage bezüglich des Wandabschnitts nicht verändern kann.
Anstelle eines separaten Wärmeisolationsring kann die Wärmeisolation auch aus einer auf dem Wandabschnitt aufgetragenen Wärmeschutzschicht gebildet sein, die dabei vorzugsweise keramisch ist. Eine einfache Herstellung und einfacher Anbringung ist damit gegeben, selbst für bereits betriebsbeanspruchte Axialverdichter .
Ferner ist es bevorzugt, dass eine Wellenabdeckung den Wandabschnitt aufweist. Bevorzugt ist ebenso, dass mit den Leitschaufeln mindestens zwei nebeneinander liegende Leitschaufelkränze gebildet sind, deren Radialspalte von der Wärmeisolation beeinflusst sind.
Die Leitschaufeln müssen nicht an einem separaten
Leitschaufelträger befestigt sein. Auch ist es möglich, dass die Leitschaufeln unmittelbar an einem Gehäuse des Axialverdichters befestigt sind, welcher in der Regel auch dickwandiger ist als der betreffende Wandabschnitt.
Dadurch, dass an der stromabliegenden letzten Verdichterleitreihe und der Nachleitreihe die Wärmeisolation zur passiven Spaltkontrolle vorgesehen ist, ist die Druckrückgewinnung in dem Diffusor des Axialverdichters hoch.
Im Folgenden wird ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Axialverdichters und einer erfindungsgemäßen Wärmeisolation anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:
Fig. 1 einen Längsschnitt durch den Austrittsbereich eines Axialverdichters,
Fig. 2 den Schnitt A aus Fig. 1 und
Fig. 3 einen Längsschnitt gemäß Fig. 1 mit einer alternativen Ausgestaltung eines erfindungsgemäßen Axialverdichters.
Wie es aus Fig. 1 ersichtlich ist, weist ein Axialverdichter 1 ein Gehäuse 2 auf, das an seiner Innenseite eine Gehäusekontur 3 hat. Ferner weist der Axialverdichter 1 eine Welle (nicht gezeigt) auf, die von einer Wellenabdeckung 4 radial nach außen abgedeckt ist. Sowohl die Wellenabdeckung 4 als auch die Gehäusekontur 3 bilden einen Strömungskanal, der als ein Diffusor 5 ausgebildet ist. Außerdem weist der Axialverdichter 1 einen Rotor mit einer Rotorbeschaufelung 6 auf, wobei der Rotor mit der Welle drehstarr verbunden ist.
An dem Gehäuse 2 befestigt ist eine Statorbeschaufelung 7 vorgesehen, die stromauf der Rotorbeschaufelung 6 angesiedelt ist. Stromab der Rotorbeschaufelung 6 ist ein Leitgitter 8 und stromab davon ein Nachleitgitter 9 angeordnet, wobei das Leitgitter 8 und das Nachleitgitter 9 den Abströmbereich des Axialverdichters 1 bilden. Sowohl das Leitgitter 8 als auch das Nachleitgitter 9 sind von einer Mehrzahl von Statorschaufeln gebildet, die sich radial in dem Axialverdichter 1 erstrecken. Die Statorschaufeln weisen ein radial außen liegendes Ende und ein radial innen liegendes Ende auf, wobei die Statorschaufeln an ihrem radial außen liegenden Ende an dem Gehäuse 2 befestigt sind. An dem radial innen liegenden Ende ist jeweils eine Schaufelspitze 14 ausgebildet, die zur Mitte der Welle zeigt. Den Schaufelspitzen 14 liegt eine drehfest angeordnete Wellenabdeckung 4 gegenüber, so dass zwischen den Schaufelspitzen 14 und der Wellenabdeckung 4 ein Radialspalt 10 ausgebildet ist.
Auf der Wellenabdeckung 4 ist unmittelbar benachbart zu den Schaufelspitzen 14 eine Wärmeisolation 11 als Wärmeisolationsring auf der Wellenabdeckung 4 beispielsweise durch Verschrauben angebracht. Der Wärmeisolationsring 11 erstreckt sich in Axialrichtung des Axialverdichters 1 sowohl über das Leitgitter 8 als über das Nachleitgitter 9 hinweg.
In Fig. 2 ist der Schnitt A aus Fig. 1 gezeigt, wobei die
Wellenabdeckung 4 und der Wärmeisolationsring 11 abgebildet sind. Der Wärmeisolationsring 11 ist auf der Wellenabdeckung 4 angebracht und umfasst über den Umfang verteilte Umfangssegmente 12, so dass der Wärmeisolationsring 11 einen segmentierten Aufbau aufweist. Zwischen den Umfangssegmenten 12 sind Zwischenräume ausgebildet, in die jeweils ein Dichtungselement 13 eingesetzt ist. Die Dichtungselemente 13 sind zwischen den Umfangssegmenten 12 verspannt eingebracht.
Der Wärmeisolationsring 11 ist aus einem Material hergestellt und derart geometrisch dimensioniert, dass im Bereich des Leitgitters 8 und des Nachleitgitters 9 die Wellenabdeckung 4 von dem Diffusor 9 thermisch isoliert ist, so dass das thermische Ausdehnungsverhalten der Wellenabdeckung 4 in etwa dem Gehäuse 2 entspricht.
Beim Anfahren des Axialverdichters 9 strömt heißes Gas durch den Diffusor 5 und steht in direktem Kontakt sowohl mit dem Gehäuse 2, dem Leitgitter 8 und dem Nachleitgitter 9 als auch mit der Wellenabdeckung 4. Im Bereich des Leitgitters 8 und des Nachleitgitters 9 steht die Wellenabdeckung 4 mit dem heißen Gas im Diffusor 5 auf Grund der Anbringung des WärmeisolationsringWärmeisolations 11 nicht in direktem Kontakt, so dass der Wärmeeintrag in diesem Bereich in die Wellenabdeckung 4 vermindert ist. Dadurch ist die thermische Ausdehnungsgeschwindigkeit, insbesondere beim Anfahren des Axialverdichters 1, von dem Gehäuse 2 mit dem Leitgitter 8 sowie dem Nachleitgitter 9 und der Wellenabdeckung 4 mit dem WärmeisolationsringWärmeisolation 11 in etwa gleich.
Dadurch bildet sich beim Betrieb des Axialverdichters 1 der Radialspalt 10, der von dem Abstand zwischen dem Umfangsrand des WärmeisolationsringWärmeisolations 11, der dem Diffusor 5 zugewandt ist, und den Schaufelspitzen 14 ausgebildet ist, als über die Zeit in etwa konstant aus. Als Folge davon ist vorteilhaft erreicht, dass beim Anfahren des Axialverdichter 1 der Radialspalt 10 kleiner vorgesehen werden kann, als es notwendig wäre, wenn der Wärmeisolationsring 11 auf der Wellenabdeckung 4 nicht vorgesehen worden wäre und ein Anstoßen der Schaufelspitzen 14 an der Wellenabdeckung 4 unterbunden sein soll. Somit kann der Massenstrom der Leckageströmung durch den Radialspalt 10 verringert werden, so dass sowohl der Wirkungsgrad des Axialverdichters 1 als auch der Druckgewinn im Diffusor 5 weiter verbessert sind.
Ferner weist der Wärmeisolationsring 11 die Umfangssegmente 12 auf, so dass eine thermische Radialausdehnung des Wärmeisolationsrings 11 unterbunden ist. Dadurch ist die Abstimmung hinsichtlich der Materialwahl und der geometrischen Dimensionierung des Wärmeisolationsrings 11 bezüglich der Wellenabdeckung 4 einfach.
Auch Fig. 3 zeigt wie Fig. 1 einen Längsschnitt durch einen Teil der Gasturbine, wobei in Fig. 3 zu Fig. 1 identische Bauteile mit gleichen Bezugzeichen versehen sind. Der in Fig. 1 gezeigte aus Umfangssegmenten 12 gebildete Wärmeisolationsring 11 ist jedoch als zu Fig. 1 alternative äquivalente Lösung durch eine auf dem Wandabschnitt 4 unmittelbar aufgetragene Wärmeschutzschicht 15 ersetzt. Die Wärmeschutzschicht ist beispielsweise eine konventionelle keramische Wärmedämmschicht.
Ingesamt betrifft die Erfindung einen Axialverdichter 1 für eine Gasturbine mit passiver Radialspaltkontrolle umfassend einen Leitschaufelträger, an dem in einem Kranz 8, 9 angeordnete Leitschaufeln befestigt sind, deren Schaufelspitzen 14 einem Wandabschnitt 4 gegenüberliegen. An dem Wandabschnitt 4 ist zur Angleichung des Dehnverhaltens von Leitschaufelträger und Wandabschnitt 4, welche an sich thermisch unterschiedlich reagieren, ein Wärmeisolationsring 11 in dem den Schaufelspitzen 14 gegenüberliegendem Abschnitt angebracht, der in seiner Wärmeeintragsverzögerungswirkung auf den Wandabschnitt 4 und auf den Leitschaufelträger derart abgestimmt, dass das thermische bedingte Dehnverhalten von Leitschaufelträger und Wandabschnitt 4 beim transienten Betrieb des Axialverdichters 1 über die Zeit zumindest angeglichen ist. Durch die Angleichung wird ein Kontakt der Schaufelspitzen 14 mit dem Wandabschnitt 4 verhindert, welcher bisher während des transienten Betriebs oder insbesondere nach dem Kaltstart auftreten konnte. Durch die Angleichung kann bestenfalls erzielt werden, dass die Radialposition der Schaufelspitze 14 bezogen auf den Wärmeisolationsring 11 beim Betrieb des Axialverdichters 1 über die Zeit im Wesentlichen konstant ist.

Claims

Patentansprüche
1. Axialverdichter (1) für eine Gasturbine, mit mindestens einem an einem Leitschaufelträger befestigten Leitschaufelkranz, der eine Mehrzahl von
Leitschaufeln (8, 9) aufweist, deren Schaufelspitzen (14) jeweils unter Bildung eines Radialspalts (10) nabenseitig einem in Bezug auf den Leitschaufelträger thermisch schneller reagierenden Wandabschnitt (4) gegenüberliegen, dadurch gekennzeichnet, dass eine Wärmeisolation (11) am Wandabschnitt (4) vorgesehen ist, der in seiner
Wärmeeintragverzögerungswirkung auf den Wandabschnitt (4) und auf den Leitschaufelträger derart abgestimmt ist, dass das thermische bedingte Dehnverhalten von
Leitschaufelträger und Wandabschnitt (4) beim transienten Betrieb des Axialverdichters (1) über die
Zeit zumindest angeglichen ist.
2. Axialverdichter (1) gemäß Anspruch 1, wobei die Wärmeisolation (11) ringförmig segmentiert durch das Vorsehen von Umfangsegmenten (12) ausgeführt ist .
3. Axialverdichter (1) gemäß Anspruch 2, wobei die Wärmeisolation (11) Dichtungselemente (13) aufweist, die zwischen den Umfangssegmenten (12) vorgesehen sind.
4. Axialverdichter (1) gemäß einem der Ansprüche 1 bis 3, wobei die Wärmeisolation (11) an dem Wandabschnitt (4) befestigbar ist.
5. Axialverdichter (1) gemäß Anspruch 4, wobei die Wärmeisolation (11) an dem Wandabschnitt (4) befestigbar ist mittels einem Verhakungsmittel und/oder einem Verschraubungsmittel .
6. Axialverdichter (1) nach Anspruch 1, bei dem die Wärmeisolation (11) als auf dem Wandabschnitt (4) aufgetragene Wärmeschutzschicht ausgebildet ist.
7. Axialverdichter (1) nach einem der Ansprüche 1 bis 6, wobei der Wandabschnitt als Wellenabdeckung (4) und/oder der Leitschaufelträger als Gehäuse ausgebildet ist .
8. Axialverdichter (1) nach einem der Ansprüche 1 bis 7, wobei mit den Leitschaufeln mindestens zwei nebeneinander liegende Leitschaufelkränze (8, 9) gebildet sind, deren Radialspalte (10) von der Wärmeisolation (11) kontrolliert sind.
PCT/EP2009/065359 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle WO2010063575A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09759708.2A EP2358979B1 (de) 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle
US13/132,126 US20110236184A1 (en) 2008-12-03 2009-11-18 Axial Compressor for a Gas Turbine Having Passive Radial Gap Control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20080020995 EP2194234A1 (de) 2008-12-03 2008-12-03 Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine
EP08020995.0 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010063575A1 true WO2010063575A1 (de) 2010-06-10

Family

ID=40802146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065359 WO2010063575A1 (de) 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle

Country Status (3)

Country Link
US (1) US20110236184A1 (de)
EP (2) EP2194234A1 (de)
WO (1) WO2010063575A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280053A1 (en) * 2010-12-15 2013-10-24 Alstom Technology Ltd Axial compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474744A1 (de) 2011-01-11 2012-07-11 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für einen Axialverdichter
DE102012215413B4 (de) * 2012-08-30 2020-04-02 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine
DE102012215412A1 (de) * 2012-08-30 2014-03-06 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
US11225907B2 (en) 2016-02-11 2022-01-18 General Electric Company Gas turbine engine pipe cover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB902645A (en) * 1957-11-26 1962-08-09 Bristol Siddeley Engines Ltd Improvements in turbines, rotary compressors and the like
US3056579A (en) * 1959-04-13 1962-10-02 Gen Electric Rotor construction
DE19945581A1 (de) * 1999-09-23 2001-03-29 Abb Ag Baden Turbomaschine
DE102005015146A1 (de) * 2005-03-31 2006-10-05 Alstom Technology Ltd. Schleifbeschichtung an einem Rotor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146992A (en) * 1962-12-10 1964-09-01 Gen Electric Turbine shroud support structure
NO123552B (de) * 1968-12-17 1971-12-06 Kongsberg Vapenfab As
US4411594A (en) * 1979-06-30 1983-10-25 Rolls-Royce Limited Support member and a component supported thereby
US4920742A (en) * 1988-05-31 1990-05-01 General Electric Company Heat shield for gas turbine engine frame
US5180281A (en) * 1990-09-12 1993-01-19 United Technologies Corporation Case tying means for gas turbine engine
DE19938443A1 (de) * 1999-08-13 2001-02-15 Abb Alstom Power Ch Ag Befestigungs- und Fixierungsvorrichtung
US6514041B1 (en) * 2001-09-12 2003-02-04 Alstom (Switzerland) Ltd Carrier for guide vane and heat shield segment
JP2004036443A (ja) * 2002-07-02 2004-02-05 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンシュラウド構造
US7445426B1 (en) * 2005-06-15 2008-11-04 Florida Turbine Technologies, Inc. Guide vane outer shroud bias arrangement
US7494317B2 (en) * 2005-06-23 2009-02-24 Siemens Energy, Inc. Ring seal attachment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB902645A (en) * 1957-11-26 1962-08-09 Bristol Siddeley Engines Ltd Improvements in turbines, rotary compressors and the like
US3056579A (en) * 1959-04-13 1962-10-02 Gen Electric Rotor construction
DE19945581A1 (de) * 1999-09-23 2001-03-29 Abb Ag Baden Turbomaschine
DE102005015146A1 (de) * 2005-03-31 2006-10-05 Alstom Technology Ltd. Schleifbeschichtung an einem Rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280053A1 (en) * 2010-12-15 2013-10-24 Alstom Technology Ltd Axial compressor
US9810226B2 (en) * 2010-12-15 2017-11-07 Ansaldo Energia Ip Uk Limited Axial compressor

Also Published As

Publication number Publication date
US20110236184A1 (en) 2011-09-29
EP2358979A1 (de) 2011-08-24
EP2194234A1 (de) 2010-06-09
EP2358979B1 (de) 2015-10-28

Similar Documents

Publication Publication Date Title
EP3056813B1 (de) Abdichtung eines randspalts zwischen effusionsschindeln einer gasturbinenbrennkammer
DE60113796T2 (de) Statorschaufel-Struktur einer Gasturbine
DE3941174A1 (de) Spitzenspiel-einstellung an turbomaschinen
EP2358979B1 (de) Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle
EP3000984A1 (de) Leitschaufelverstellvorrichtung einer gasturbine
EP2647795A1 (de) Dichtungssystem für eine Strömungsmaschine
EP2179143A2 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
DE102015116935A1 (de) Sicherungsvorrichtung zur axialen Sicherung einer Laufschaufel und Rotorvorrichtung mit einer derartigen Sicherungsvorrichtung
EP3287611B1 (de) Gasturbine
EP3336313A1 (de) Turbinen-laufschaufelanordnung für eine gasturbine und verfahren zum bereitstellen von dichtluft in einer turbinen-laufschaufelanordnung
DE102007050916A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Gasturbinen-Triebwerken
EP2084368A1 (de) Turbinenschaufel
DE19839592A1 (de) Strömungsmaschine mit gekühlter Rotorwelle
EP2474744A1 (de) Ringförmiger Strömungskanal für einen Axialverdichter
EP2526263B1 (de) Gehäusesystem für eine axialströmungsmaschine
EP1960636B1 (de) Strömungsmaschine
EP2611992B1 (de) Gehäuseseitige struktur einer turbomaschine
DE102018206601A1 (de) Schaufel, Schaufelsegment und Baugruppe für eine Turbomaschine und Turbomaschine
EP3312388A1 (de) Pultdach dichtfin
EP2218876A1 (de) Dichtungsring zum Abdichten eines Radialspalts in einer Gasturbine
DE102004050739B4 (de) Turbomaschine, insbesondere Gasturbine
EP2031183B1 (de) Dampfturbinenwelle mit Wärmedämmschicht
EP2980481A1 (de) Fluggasturbine mit einer dichtung zur abdichtung einer zündkerze an der brennkammerwand einer gasturbine
EP3401503A1 (de) Rotorvorrichtung einer strömungsmaschine
DE102012109719A1 (de) Zweiflutige Dampfturbine mit Dampfkühlung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09759708

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009759708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13132126

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE