EP2194234A1 - Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine - Google Patents

Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine Download PDF

Info

Publication number
EP2194234A1
EP2194234A1 EP20080020995 EP08020995A EP2194234A1 EP 2194234 A1 EP2194234 A1 EP 2194234A1 EP 20080020995 EP20080020995 EP 20080020995 EP 08020995 A EP08020995 A EP 08020995A EP 2194234 A1 EP2194234 A1 EP 2194234A1
Authority
EP
European Patent Office
Prior art keywords
heat insulating
insulating ring
gas turbine
wall portion
blade tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20080020995
Other languages
English (en)
French (fr)
Inventor
Francois Dr. Benkler
Karl Dr. Klein
Torsten Matthias
Achim Schirrmacher
Oliver Dr. Schneider
Vadim Shevchenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20080020995 priority Critical patent/EP2194234A1/de
Priority to EP09759708.2A priority patent/EP2358979B1/de
Priority to US13/132,126 priority patent/US20110236184A1/en
Priority to PCT/EP2009/065359 priority patent/WO2010063575A1/de
Publication of EP2194234A1 publication Critical patent/EP2194234A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50211Expansivity similar

Definitions

  • the invention relates to a heat-insulating ring for passive gap control in a gas turbine, a gas turbine blade unit for the gas turbine with the heat insulating ring and an axial compressor with at least one Verêtrnachach #2, which is designed as the Leitschaufelkranzech.
  • a gas turbine has a turbocompressor, for example, in axial construction.
  • the turbocompressor has a housing with attached stators and a rotor which is surrounded by the housing.
  • the rotor has a shaft on which the rotor is driven in rotation.
  • a shaft cover Surrounding the shaft, a shaft cover is provided whose outer contour, together with the inner contour of the housing, forms a flow channel through the turbocompressor.
  • the flow channel has a cross section which widens in the flow direction, so that the flow channel is designed as a diffuser.
  • the rotor has a plurality of rotor stages, each formed by a row of rotor blades. Further, the stator has a plurality of rows of vanes, which are arranged in the axial direction alternately arranged to the rotor blade rows. Conventionally, seen in compressors in the flow direction after the last row of rotor blades still a row of vanes and then a Nachleitschaufelsch arranged.
  • the rows of vanes have a plurality of vanes, which are fixed with their outer end respectively to the housing and point with its inner end in the direction of the shaft.
  • a blade tip is formed facing and facing the shaft cover.
  • the distance between the blade tips and the shaft cover is formed as a radial gap which is dimensioned such that on the one hand the blade tips do not abut the shaft cover during operation of the gas turbine and on the other hand the leakage flow through the radial gap that occurs during operation of the gas turbine is as low as possible. Therefore, this gap should be interpreted as low as possible, so that a high efficiency achieved and exhausted both the full blading potential of the compressor and the highest possible pressure gain in the downstream diffuser can be achieved.
  • the casing of the turbo-compressor is massively designed to withstand the pressure and temperature stresses in the operation of the gas turbine.
  • the housing is rigid, so that the load application to the housing during operation of the gas turbine has only a small deformation of the housing result.
  • the shaft cover is exposed to lower mechanical stresses during operation of the gas turbine, whereby the shaft cover is made thinner and less massive than the housing.
  • the shaft cover is formed with smaller wall thicknesses compared to the housing and typically has different material properties than the housing, the shaft cover heats up faster than the housing with the guide blade rows attached thereto. This has the consequence that when starting and stopping the gas turbine, the shaft cover and the housing have a different thermal expansion rate, so that when starting and stopping the gas turbine, the size of the radial gap changes, the radial gap when starting is temporarily smaller and larger when starting.
  • the radial gap is such dimensioned minimum height provided that in each operating state of the gas turbine - stationary and unsteady - the blade tips the wave cover almost never touch. This has the consequence that at the blade tips a correspondingly sized radial gap is maintained, which leads to a reduction of the efficiency of the gas turbine.
  • the blockage caused by the radial gap leads to a reduction of the main flow component, whereby the pressure recovery in the diffuser is reduced and disadvantageous detachment phenomena may occur.
  • the object of the invention is to provide a heat insulation ring for passive gap control in a gas turbine, a gas turbine engine blade guide unit and an axial compressor with at least one compressor follower row, which is designed as the Leitschaufelkranziki, wherein the gas turbine has a high efficiency.
  • the heat insulation ring according to the invention for passive gap control in a gas turbine which can be attached between a blade tip and a blade tip arranged opposite wall portion and on this is tuned in its heat insulating effect on the wall portion such that the radial position of the blade tip on the heat insulating ring during operation of the gas turbine via the time is essentially constant.
  • the gas turbine fan blade ring unit comprises a plurality of stator vanes mounted on the housing side and having a blade tip on the hub side, a hub side wall portion adjacent to and forming a radial gap with the blade tips, and a heat insulating ring interposed between the blade tip and the blade tip Wall section and is mounted on this, wherein the heat insulating ring is tuned in its heat insulating effect on the wall portion such that the passive Gap control of the radial gap during operation of the gas turbine over time is substantially constant.
  • the axial compressor according to the invention has at least one row of guide vanes, which is designed as the Leitschaufelkranzech.
  • the housing with the guide vane ring attached thereto and the wall section are in contact with a hot gas stream.
  • the heat insulating ring when mounted on the wall portion, causes the wall portion to be thermally insulated from the hot gas flow.
  • the heat input from the hot gas flow into the wall section is reduced with the heat insulation ring.
  • the heat input into the wall section can be determined such that both the housing with its vane ring and the wall section have a similar thermal expansion behavior.
  • the radial gap is approximately constant in its height over time, as a result of which, when the gas turbine starts up, for example, the wall section moves synchronously at a constant distance from the blade tip.
  • the radial gap can be provided with a lower height, without the blade tip abuts the heat insulation ring during operation of the gas turbine. As a result, a high reliability of the gas turbine is achieved, which has a high efficiency.
  • the heat insulation ring may be segmented by the provision of circumferential segments.
  • the heat insulating ring may have sealing elements which are provided between the peripheral segments.
  • the heat insulation ring between the peripheral segments is advantageously sealed, so that the leakage rate through the radial gap is low.
  • the heat insulating ring is attachable to the wall portion.
  • the heat insulation ring can be fastened to the wall section by means of a hooking means and / or a screwing means.
  • the Wäremeisolationsring is stably fixed to the wall portion, so that the heat insulating ring during operation of the gas turbine can not change its position relative to the wall portion.
  • a shaft cover has the wall portion. It is also preferred that with the guide vanes at least two adjacent vane rings are formed, whose radial gaps are controlled by the heat insulation ring.
  • an axial compressor 1 has a housing 2 which has a housing contour 3 on its inside. Further, the axial compressor 1 has a shaft (not shown) covered by a shaft cover 4 radially outward. Both the shaft cover 4 and the housing contour 3 form a flow channel, which is formed as a diffuser 5. In addition, the axial compressor 1 has a rotor with a rotor blading 6, wherein the rotor is rotationally rigidly connected to the shaft.
  • a stator blading 7 is provided, which is located upstream of the rotor blading 6. Downstream of the rotor blading 6, a guide grid 8 and downstream of a Nachleitgitter 9 is arranged, wherein the guide grid 8 and the Nachleitgitter 9 form the outflow region of the axial compressor 1. Both the guide grid 8 and the guide grid 9 are formed by a plurality of stator blades, which extend radially in the axial compressor 1. The stator blades have a radially outer end and a radially inner end, wherein the stator blades are attached to the housing 2 at its radially outer end.
  • a blade tip 14 is formed, which points to the center of the shaft.
  • the blade tips 14 is a non-rotatably arranged shaft cover 4 opposite, so that between the blade tips 14 and the shaft cover 4, a radial gap 10 is formed.
  • a heat insulating ring 11 is mounted on the shaft cover 4, for example, by screwing.
  • the heat insulating ring 11 extends in the axial direction of the axial compressor 1 both via the guide grid 8 as on the Nachleitgitter 9 away.
  • FIG. 2 the cut A is off Fig. 1 shown, wherein the shaft cover 4 and the heat insulating ring 11 are shown.
  • the heat insulating ring 11 is mounted on the shaft cover 4 and includes circumferentially distributed peripheral segments 12 so that the heat insulating ring 11 has a segmented structure. Between the peripheral segments 12 intermediate spaces are formed, in each of which a sealing element 13 is inserted. The sealing elements 13 are introduced braced between the peripheral segments 12.
  • the heat insulating ring 11 is made of a material and dimensioned geometrically such that in the region of the guide grid 8 and the Nachleitgitters 9, the shaft cover 4 is thermally insulated from the diffuser 9, so that the thermal expansion behavior of the shaft cover 4 approximately corresponds to the housing 2.
  • the radial gap 10 which is formed by the distance between the peripheral edge of the heat insulating ring 11, which faces the diffuser 5, and the blade tips 14, is formed to be approximately constant over time.
  • the mass flow of the leakage flow through the radial gap 10 can be reduced, so that both the efficiency of the axial compressor 1 and the pressure gain in the diffuser 5 are further improved.
  • the heat insulating ring 11 has the circumferential segments 12, so that a thermal radial expansion of the heat insulating ring 11 is prevented.
  • the vote regarding the choice of material and the geometric dimensioning of the heat insulating ring 11 with respect to the shaft cover 4 is simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Ein Wärmeisolationsring (11) zur passiven Spaltkontrolle in einer Gasturbine, der zwischen einer Schaufelspitze (14) und einem der Schaufelspitze gegenüberliegend abgeordneten Wandabschnitt (4) sowie auf diesem anbringbar ist, ist in seiner Wärmeisolationswirkung auf den Wandabschnitt derart abgestimmt, dass die Radialposition der Schaufelspitze bezogen auf den Wärmeisolationsring beim Betrieb der Gasturbine über die Zeit im Wesentlichen konstant ist.

Description

  • Die Erfindung betrifft einen Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine, eine Leitschaufelkranzeinheit für die Gasturbine mit dem Wärmeisolationsring und einen Axialverdichter mit mindestens einer Verdichternachleitreihe, die als die Leitschaufelkranzeinheit ausgebildet ist.
  • Eine Gasturbine weist einen Turboverdichter beispielsweise in Axialbauweise auf. Der Turboverdichter weist ein Gehäuse mit daran angebrachten Statoren und einen Rotor auf, der von dem Gehäuse umgeben ist. Der Rotor weist eine Welle auf, an der der Rotor drehantreibbar ist. Die Welle umgebend ist eine Wellenabdeckung vorgesehen, deren Außenkontur zusammen mit der Innenkontur des Gehäuses einen Strömungskanal durch den Turboverdichter bildet. Der Strömungskanal hat einen in Strömungsrichtung sich aufweitenden Querschnitt, so dass der Strömungskanal als ein Diffusor ausgebildet ist.
  • Der Rotor weist eine Mehrzahl von Rotorstufen auf, die jeweils von einer Rotorschaufelreihe gebildet sind. Ferner weist der Stator eine Mehrzahl von Leitschaufelreihen auf, die in Axialrichtung gesehen abwechselnd zu den Rotorschaufelreihen angeordnet sind. Herkömmlich ist bei Verdichtern in Strömungsrichtung gesehen nach der letzten Rotorschaufelreihe noch eine Leitschaufelreihe und danach eine Nachleitschaufelreihe angeordnet.
  • Die Leitschaufelreihen weisen eine Mehrzahl an Schaufeln auf, die mit ihrem äußeren Ende jeweils an dem Gehäuse befestigt sind und mit ihrem inneren Ende in Richtung zu der Welle zeigen. An dem inneren Ende der Leitschaufel ist eine Schaufelspitze ausgebildet, die der Wellenabdeckung zugewandt und gegenüber liegt. Der Abstand zwischen den Schaufelspitzen und der Wellenabdeckung ist als ein Radialspalt ausgebildet, der derart dimensioniert ist, dass einerseits die Schaufelspitzen beim Betrieb der Gasturbine an die Wellenabdeckung nicht anstoßen und andererseits die beim Betrieb der Gasturbine sich einstellende Leckageströmung durch den Radialspalt möglichst gering ist. Dieser Spalt ist deshalb so gering wie möglich auszulegen, damit ein hoher Wirkungsgrad erzielt und sowohl das volle Beschaufelungspotential des Verdichters ausgeschöpft als auch ein möglichst hoher Druckgewinn im nachgeschalteten Diffusor erzielt werden kann.
  • Das Gehäuse des Turboverdichters ist massiv konstruiert, um den Druck- und Temperaturbeanspruchungen beim Betrieb der Gasturbine standhalten zu können. Ferner ist das Gehäuse steif ausgeführt, damit der Lasteintrag auf das Gehäuse beim Betrieb der Gasturbine eine nur kleine Verformung des Gehäuses zur Folge hat. Im Gegensatz dazu ist die Wellenabdeckung beim Betrieb der Gasturbine geringeren mechanischen Beanspruchungen ausgesetzt, wodurch die Wellenabdeckung dünner und weniger massiv als das Gehäuse ausgeführt ist.
  • Dadurch, dass die Wellenabdeckung mit kleineren Wandstärken im Vergleich zum Gehäuse ausgebildet ist und in der Regel andere Materialeigenschaften als das Gehäuse hat, erwärmt sich die Wellenabdeckung schneller als das Gehäuse mit den daran befestigten Leitschaufelreihen. Dies hat zur Folge, dass beim Anfahren und Abfahren der Gasturbine die Wellenabdeckung und das Gehäuse eine unterschiedliche Wärmeausdehnungsgeschwindigkeit haben, so dass sich beim Anfahren und Abfahren der Gasturbine die Größe des Radialspalts ändert, wobei der Radialspalt beim Anfahren temporär kleiner und beim Abfahren größer ist.
  • Damit beim Betrieb des Turboverdichters die Schaufelspitzen der Leitschaufelreihe nicht an die Wellenabdeckung anstoßen und diese beschädigen, ist der Radialspalt mit einer derart dimensionierten Minimalhöhe versehen, dass in jedem Betriebszustand der Gasturbine - stationär wie instationär - die Schaufelspitzen die Wellenabdeckung so gut wie nie berühren. Dies hat zur Folge, dass an den Schaufelspitzen ein entsprechend dimensionierter Radialspalt vorgehalten ist, der zu einer Reduktion des Wirkungsgrades der Gasturbine führt.
  • Ferner führt die von dem Radialspalt verursachte Blockage zu einer Reduktion der Hauptströmungskomponente, wodurch der Druckrückgewinn im Diffusor reduziert wird und nachteilige Ablösephänomene auftreten können.
  • Aufgabe der Erfindung ist es, einen Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine, eine Leitschaufelkranzeinheit für die Gasturbine und einen Axialverdichter mit mindestens einer Verdichternachleitreihe, die als die Leitschaufelkranzeinheit ausgebildet ist, zu schaffen, wobei die Gasturbine einen hohen Wirkungsgrad hat.
  • Der erfindungsgemäße Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine, der zwischen einer Schaufelspitze und einem der Schaufelspitze gegenüberliegend angeordneten Wandabschnitt sowie auf diesem anbringbar ist, ist in seiner Wärmeisolationswirkung auf den Wandabschnitt derart abgestimmt, dass die Radialposition der Schaufelspitze auf den Wärmeisolationsring beim Betrieb der Gasturbine über die Zeit im Wesentlichen konstant ist.
  • Die erfindungsgemäße Leitschaufelkranzeinheit für eine Gasturbine weist eine Mehrzahl von Leitschaufeln, die gehäuseseitig befestigt sind und nabenseitig eine Schaufelspitze aufweisen, einen nabenseitigen Wandabschnitt, der den Schaufelspitzen benachbart angeordnet ist und mit diesen einen Radialspalt ausbildet, und einen Wärmeisolationsring auf, der zwischen der Schaufelspitze und dem Wandabschnitt sowie auf diesem angebracht ist, wobei der Wärmeisolationsring in seiner Wärmeisolationswirkung auf den Wandabschnitt derart abgestimmt ist, dass zur passiven Spaltkontrolle der Radialspalt beim Betrieb der Gasturbine über die Zeit im Wesentlichen konstant ist.
  • Der erfindungsgemäße Axialverdichter weist mindestens eine Leitschaufelreihe auf, die als die Leitschaufelkranzeinheit ausgebildet ist.
  • Beim Betrieb der Gasturbine stehen das Gehäuse mit dem daran befestigten Leitschaufelkranz und der Wandabschnitt mit einem heißen Gasstrom in Kontakt. Der Wärmeisolationsring bewirkt, wenn er auf dem Wandabschnitt angebracht ist, dass der Wandabschnitt von dem heißen Gasstrom thermisch isoliert ist. Dadurch ist mit dem Wärmeisolationsring der Wärmeeintrag von dem heißen Gasstrom in den Wandabschnitt vermindert. Somit kann mittels des Wärmeisolationsrings der Wärmeeintrag in den Wandabschnitt derart festgelegt sein, dass sowohl das Gehäuse mit seinem Leitschaufelkranz als auch der Wandabschnitt ein ähnliches Wärmeausdehnungsverhalten haben. Als Folge davon ist der Radialspalt in seiner Höhe über die Zeit in etwa konstant, wodurch sich etwa beim Anfahren der Gasturbine der Wandabschnitt in konstantem Abstand zur Schaufelspitze synchron bewegt.
  • Somit kann der Radialspalt mit einer geringeren Höhe vorgesehen werden, ohne dass die Schaufelspitze beim Betrieb der Gasturbine an den Wärmeisolationsring anstößt. Dadurch ist eine hohe Betriebssicherheit der Gasturbine erreicht, die einen hohen Wirkungsgrad hat.
  • Bevorzugtermaßen kann der Wärmeisolationsring durch das Vorsehen von Umfangssegmenten segmentiert ausgeführt sein.
  • Dadurch ist die thermisch bedingte radiale Ausdehnung des Wärmeisolationsrings verringert, so dass bei der Radialbewegung des Wärmeisolationsrings in erster Linie die radiale thermische Ausdehnung des Wandabschnitts zum Tragen kommt.
  • Gemäß einer weiteren, vorteilhaften Ausgestaltung kann der Wärmeisolationsring Dichtungselemente aufweisen, die zwischen den Umfangssegmenten vorgesehen sind.
  • Dadurch ist vorteilhaft der Wärmeisolationsring zwischen den Umfangssegmenten abgedichtet, so dass die Leckagerate durch den Radialspalt gering ist.
  • Vorteilhafterweise ist der Wärmeisolationsring an dem Wandabschnitt befestigbar. Dabei ist es ferner bevorzugt, dass der Wärmeisolationsring an dem Wandabschnitt mittels einem Verhakungsmittel und/oder einem Verschraubungsmittel befestigbar ist.
  • Dadurch ist der Wäremeisolationsring stabil an dem Wandabschnitt befestigbar, so dass der Wärmeisolationsring beim Betrieb der Gasturbine seine Lage bezüglich des Wandabschnitts nicht verändern kann.
  • Ferner ist es bevorzugt, dass eine Wellenabdeckung den Wandabschnitt aufweist. Bevorzugt ist ebenso, dass mit den Leitschaufeln mindestens zwei nebeneinander liegende Leitschaufelkränze gebildet sind, deren Radialspalte von dem Wärmeisolationsring kontrolliert sind.
  • Dadurch, dass an der stromabliegenden letzten Verdichterleitreihe und der Nachleitreihe der Wärmeisolationsring zur passiven Spaltkontrolle vorgesehen ist, ist die Druckrückgewinnung in dem Diffusor des Axialverdichters hoch.
  • Im Folgenden wird ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Axialverdichters und eines erfindungsgemäßen Wärmeisolationsrings anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:
    • Fig. 1 einen Längsschnitt durch den Austrittsbereich eines Axialverdichters und
    • Fig. 2 den Schnitt A aus Fig. 1.
  • Wie es aus Fig. 1 ersichtlich ist, weist ein Axialverdichter 1 ein Gehäuse 2 auf, das an seiner Innenseite eine Gehäusekontur 3 hat. Ferner weist der Axialverdichter 1 eine Welle (nicht gezeigt) auf, die von einer Wellenabdeckung 4 radial nach außen abgedeckt ist. Sowohl die Wellenabdeckung 4 als auch die Gehäusekontur 3 bilden einen Strömungskanal, der als ein Diffusor 5 ausgebildet ist. Außerdem weist der Axialverdichter 1 einen Rotor mit einer Rotorbeschaufelung 6 auf, wobei der Rotor mit der Welle drehstarr verbunden ist.
  • An dem Gehäuse 2 befestigt ist eine Statorbeschaufelung 7 vorgesehen, die stromauf der Rotorbeschaufelung 6 angesiedelt ist. Stromab der Rotorbeschaufelung 6 ist ein Leitgitter 8 und stromab davon ein Nachleitgitter 9 angeordnet, wobei das Leitgitter 8 und das Nachleitgitter 9 den Abströmbereich des Axialverdichters 1 bilden. Sowohl das Leitgitter 8 als auch das Nachleitgitter 9 sind von einer Mehrzahl von Statorschaufeln gebildet, die sich radial in dem Axialverdichter 1 erstrecken. Die Statorschaufeln weisen ein radial außen liegendes Ende und ein radial innen liegendes Ende auf, wobei die Statorschaufeln an ihrem radial außen liegenden Ende an dem Gehäuse 2 befestigt sind. An dem radial innen liegenden Ende ist jeweils eine Schaufelspitze 14 ausgebildet, die zur Mitte der Welle zeigt. Den Schaufelspitzen 14 liegt eine drehfest angeordnete Wellenabdeckung 4 gegenüber, so dass zwischen den Schaufelspitzen 14 und der Wellenabdeckung 4 ein Radialspalt 10 ausgebildet ist.
  • Auf der Wellenabdeckung 4 ist unmittelbar benachbart zu den Schaufelspitzen 14 ein Wärmeisolationsring 11 auf der Wellenabdeckung 4 beispielsweise durch Verschrauben angebracht. Der Wärmeisolationsring 11 erstreckt sich in Axialrichtung des Axialverdichters 1 sowohl über das Leitgitter 8 als über das Nachleitgitter 9 hinweg.
  • In Fig. 2 ist der Schnitt A aus Fig. 1 gezeigt, wobei die Wellenabdeckung 4 und der Wärmeisolationsring 11 abgebildet sind. Der Wärmeisolationsring 11 ist auf der Wellenabdeckung 4 angebracht und umfasst über den Umfang verteilte Umfangssegmente 12, so dass der Wärmeisolationsring 11 einen segmentierten Aufbau aufweist. Zwischen den Umfangssegmenten 12 sind Zwischenräume ausgebildet, in die jeweils ein Dichtungselement 13 eingesetzt ist. Die Dichtungselemente 13 sind zwischen den Umfangssegmenten 12 verspannt eingebracht.
  • Der Wärmeisolationsring 11 ist aus einem Material hergestellt und derart geometrisch dimensioniert, dass im Bereich des Leitgitters 8 und des Nachleitgitters 9 die Wellenabdeckung 4 von dem Diffusor 9 thermisch isoliert ist, so dass das thermische Ausdehnungsverhalten der Wellenabdeckung 4 in etwa dem Gehäuse 2 entspricht.
  • Beim Anfahren des Axialverdichters 9 strömt heißes Gas durch den Diffusor 5 und steht in direktem Kontakt sowohl mit dem Gehäuse 2, dem Leitgitter 8 und dem Nachleitgitter 9 als auch mit der Wellenabdeckung 4. Im Bereich des Leitgitters 8 und des Nachleitgitters 9 steht die Wellenabdeckung 4 mit dem heißen Gas im Diffusor 5 auf Grund der Anbringung des Wärmeisolationsrings 11 nicht in direktem Kontakt, so dass der Wärmeeintrag in diesem Bereich in die Wellenabdeckung 4 vermindert ist. Dadurch ist die thermische Ausdehnungsgeschwindigkeit, insbesondere beim Anfahren des Axialverdichters 1, von dem Gehäuse 2 mit dem Leitgitter 8 sowie dem Nachleitgitter 9 und der Wellenabdeckung 4 mit dem Wärmeisolationsring 11 in etwa gleich.
  • Dadurch bildet sich beim Betrieb des Axialverdichters 1 der Radialspalt 10, der von dem Abstand zwischen dem Umfangsrand des Wärmeisolationsrings 11, der dem Diffusor 5 zugewandt ist, und den Schaufelspitzen 14 ausgebildet ist, als über die Zeit in etwa konstant aus. Als Folge davon ist vorteilhaft erreicht, dass beim Anfahren des Axialverdichter 1 der Radialspalt 10 kleiner vorgesehen werden kann, als es notwendig wäre, wenn der Wärmeisolationsring 11 auf der Wellenabdeckung 4 nicht vorgesehen worden wäre und ein Anstoßen der Schaufelspitzen 14 an der Wellenabdeckung 4 unterbunden sein soll. Somit kann der Massenstrom der Leckageströmung durch den Radialspalt 10 verringert werden, so dass sowohl der Wirkungsgrad des Axialverdichters 1 als auch der Druckgewinn im Diffusor 5 weiter verbessert sind.
  • Ferner weist der Wärmeisolationsring 11 die Umfangssegmente 12 auf, so dass eine thermische Radialausdehnung des Wärmeisolationsrings 11 unterbunden ist. Dadurch ist die Abstimmung hinsichtlich der Materialwahl und der geometrischen Dimensionierung des Wärmeisolationsrings 11 bezüglich der Wellenabdeckung 4 einfach.

Claims (9)

  1. Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine, der zwischen einer Schaufelspitze (14) und einem der Schaufelspitze (14) gegenüberliegend abgeordneten Wandabschnitt (4) sowie auf diesem anbringbar ist, wobei der Wärmeisolationsring (11) in seiner Wärmeisolationswirkung auf den Wandabschnitt (4) derart abgestimmt ist, dass die Radialposition der Schaufelspitze (14) bezogen auf den Wärmeisolationsring (11) beim Betrieb der Gasturbine über die Zeit im Wesentlichen konstant ist.
  2. Wärmeisolationsring gemäß Anspruch 1,
    wobei der Wärmeisolationsring (11) segmentiert durch das Vorsehen von Umfangsegmenten (12) ausgeführt ist.
  3. Wärmeisolationsring gemäß Anspruch 2,
    wobei der Wärmeisolationsring (11) Dichtungselemente (13) aufweist, die zwischen den Umfangssegmenten (12) vorgesehen sind.
  4. Wärmeisolationsring gemäß einem der Ansprüche 1 bis 3,
    wobei der Wärmeisolationsring (11) an dem Wandabschnitt (4) befestigbar ist.
  5. Wärmeisolationsring gemäß Anspruch 4,
    wobei der Wärmeisolationsring (11) an dem Wandabschnitt (4) befestigbar ist mittels einem Verhakungsmittel und/oder einem Verschraubungsmittel.
  6. Leitschaufelkranzeinheit für eine Gasturbine, mit einer Mehrzahl von Leitschaufeln (8, 9), die gehäuseseitig befestigt sind und nabenseitig eine Schaufelspitze (14) aufweisen, mit einem nabenseitigen Wandabschnitt (4), der den Schaufelspitzen (14) gegenüberliegend angeordnet ist und mit diesen einen Radialspalt (10) ausbildet, und mit einem Wärmeisolationsring (11), der zwischen der Schaufelspitze (14) und dem Wandabschnitt (4) auf diesem angebracht ist,
    wobei der Wärmeisolationsring (11) in seiner Wärmeisolationswirkung auf den Wandabschnitt (4) derart abgestimmt ist, dass zur passiven Spaltkontrolle der Radialspalt (10) beim Betrieb der Gasturbine über die Zeit im Wesentlichen konstant ist.
  7. Leitschaufelkranzeinheit gemäß Anspruch 6,
    wobei der Wandabschnitt eine Wellenabdeckung (4) aufweist.
  8. Leitschaufelkranzeinheit gemäß Anspruch 6 oder 7,
    wobei mit den Leitschaufeln mindestens zwei nebeneinander liegende Leitschaufelkränze (8, 9) gebildet sind, deren Radialspalte (10) von dem Wärmeisolationsring (11) kontrolliert sind.
  9. Axialverdichter mit mindestens einer Leitschaufelreihe, die als eine Leitschaufelkranzeinheit gemäß einem er Ansprüche 6 bis 8 ausgebildet ist.
EP20080020995 2008-12-03 2008-12-03 Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine Withdrawn EP2194234A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20080020995 EP2194234A1 (de) 2008-12-03 2008-12-03 Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine
EP09759708.2A EP2358979B1 (de) 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle
US13/132,126 US20110236184A1 (en) 2008-12-03 2009-11-18 Axial Compressor for a Gas Turbine Having Passive Radial Gap Control
PCT/EP2009/065359 WO2010063575A1 (de) 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20080020995 EP2194234A1 (de) 2008-12-03 2008-12-03 Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine

Publications (1)

Publication Number Publication Date
EP2194234A1 true EP2194234A1 (de) 2010-06-09

Family

ID=40802146

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20080020995 Withdrawn EP2194234A1 (de) 2008-12-03 2008-12-03 Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine
EP09759708.2A Not-in-force EP2358979B1 (de) 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09759708.2A Not-in-force EP2358979B1 (de) 2008-12-03 2009-11-18 Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle

Country Status (3)

Country Link
US (1) US20110236184A1 (de)
EP (2) EP2194234A1 (de)
WO (1) WO2010063575A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474744A1 (de) 2011-01-11 2012-07-11 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für einen Axialverdichter
EP2703604A1 (de) * 2012-08-30 2014-03-05 Rolls-Royce Deutschland Ltd & Co KG Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
DE102012215413A1 (de) * 2012-08-30 2014-03-27 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH704212A1 (de) * 2010-12-15 2012-06-15 Alstom Technology Ltd Axialkompressor.
US11225907B2 (en) 2016-02-11 2022-01-18 General Electric Company Gas turbine engine pipe cover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056579A (en) * 1959-04-13 1962-10-02 Gen Electric Rotor construction
US3146992A (en) * 1962-12-10 1964-09-01 Gen Electric Turbine shroud support structure
US4411594A (en) * 1979-06-30 1983-10-25 Rolls-Royce Limited Support member and a component supported thereby
US20060292001A1 (en) * 2005-06-23 2006-12-28 Siemens Westinghouse Power Corporation Ring seal attachment system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB902645A (en) * 1957-11-26 1962-08-09 Bristol Siddeley Engines Ltd Improvements in turbines, rotary compressors and the like
NO123552B (de) * 1968-12-17 1971-12-06 Kongsberg Vapenfab As
US4920742A (en) * 1988-05-31 1990-05-01 General Electric Company Heat shield for gas turbine engine frame
US5180281A (en) * 1990-09-12 1993-01-19 United Technologies Corporation Case tying means for gas turbine engine
DE19938443A1 (de) * 1999-08-13 2001-02-15 Abb Alstom Power Ch Ag Befestigungs- und Fixierungsvorrichtung
DE19945581B4 (de) * 1999-09-23 2014-04-03 Alstom Technology Ltd. Turbomaschine
US6514041B1 (en) * 2001-09-12 2003-02-04 Alstom (Switzerland) Ltd Carrier for guide vane and heat shield segment
JP2004036443A (ja) * 2002-07-02 2004-02-05 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンシュラウド構造
DE102005015146A1 (de) * 2005-03-31 2006-10-05 Alstom Technology Ltd. Schleifbeschichtung an einem Rotor
US7445426B1 (en) * 2005-06-15 2008-11-04 Florida Turbine Technologies, Inc. Guide vane outer shroud bias arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056579A (en) * 1959-04-13 1962-10-02 Gen Electric Rotor construction
US3146992A (en) * 1962-12-10 1964-09-01 Gen Electric Turbine shroud support structure
US4411594A (en) * 1979-06-30 1983-10-25 Rolls-Royce Limited Support member and a component supported thereby
US20060292001A1 (en) * 2005-06-23 2006-12-28 Siemens Westinghouse Power Corporation Ring seal attachment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474744A1 (de) 2011-01-11 2012-07-11 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für einen Axialverdichter
WO2012095220A1 (de) 2011-01-11 2012-07-19 Siemens Aktiengesellschaft Ringförmiger strömungskanal für einen axialverdichter
EP2703604A1 (de) * 2012-08-30 2014-03-05 Rolls-Royce Deutschland Ltd & Co KG Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
DE102012215412A1 (de) * 2012-08-30 2014-03-06 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
DE102012215413A1 (de) * 2012-08-30 2014-03-27 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine
US9366148B2 (en) 2012-08-30 2016-06-14 Rolls-Royce Deutschland Ltd & Co Kg Assembly of an axial turbomachine and method for manufacturing an assembly of this type
DE102012215413B4 (de) * 2012-08-30 2020-04-02 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine

Also Published As

Publication number Publication date
WO2010063575A1 (de) 2010-06-10
US20110236184A1 (en) 2011-09-29
EP2358979B1 (de) 2015-10-28
EP2358979A1 (de) 2011-08-24

Similar Documents

Publication Publication Date Title
DE60318508T2 (de) Halterung für ein Dichtband bei einem Gasturbinenleitapparat
EP3056813B1 (de) Abdichtung eines randspalts zwischen effusionsschindeln einer gasturbinenbrennkammer
DE60113796T2 (de) Statorschaufel-Struktur einer Gasturbine
EP1664489B1 (de) Gasturbine mit einem ringförmigen dichtungsmittel
DE2943464A1 (de) Dichtungsvorrichtung fuer ein gasturbinentriebwerk
DE60211061T2 (de) Axialturbine mit einer Stufe in einem Abströmkanal
EP2148977B1 (de) Gasturbine
DE3941174A1 (de) Spitzenspiel-einstellung an turbomaschinen
DE2554563A1 (de) Dichtungsanordnung fuer gasturbinentriebwerke
DE102014219552A1 (de) Leitschaufelverstellvorrichtung einer Gasturbine
DE3428892A1 (de) Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken
EP2647795A1 (de) Dichtungssystem für eine Strömungsmaschine
DE102005025244A1 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
EP2194234A1 (de) Wärmeisolationsring zur passiven Spaltkontrolle in einer Gasturbine
EP2239423A1 (de) Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels
DE112015004533T5 (de) Variable Düseneinheit und Turbolader mit variabler Kapazität
DE102005030426A1 (de) Rotorspalt Steuervorrichtung für einen Verdichter
DE102007050916A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Gasturbinen-Triebwerken
EP3336313A1 (de) Turbinen-laufschaufelanordnung für eine gasturbine und verfahren zum bereitstellen von dichtluft in einer turbinen-laufschaufelanordnung
DE102015102396A1 (de) Turbinenschaufel und Verfahren zum Auswuchten eines Spitzendeckbandes einer Turbinenschaufel und Gasturbine
EP3287611B1 (de) Gasturbine
EP2218918A1 (de) Axialturboverdichter für eine Gasturbine mit geringen Spaltverlusten und Diffusorverlusten
EP2611992B1 (de) Gehäuseseitige struktur einer turbomaschine
DE2361835A1 (de) Dichtung zwischen zwei sich relativ zueinander drehenden teilen von stroemungsmaschinen
EP2218876A1 (de) Dichtungsring zum Abdichten eines Radialspalts in einer Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101210