EP2239423A1 - Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels - Google Patents

Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels Download PDF

Info

Publication number
EP2239423A1
EP2239423A1 EP09004782A EP09004782A EP2239423A1 EP 2239423 A1 EP2239423 A1 EP 2239423A1 EP 09004782 A EP09004782 A EP 09004782A EP 09004782 A EP09004782 A EP 09004782A EP 2239423 A1 EP2239423 A1 EP 2239423A1
Authority
EP
European Patent Office
Prior art keywords
wall part
annular wall
axial turbomachine
main flow
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09004782A
Other languages
English (en)
French (fr)
Inventor
Francois Dr. Benkler
Björn Burbach
Christoph Buse
Andreas Dr. Böttcher
Martin Hartmann
Ekkehard Dr. Maldfeld
Torsten Matthias
Oliver Dr. Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09004782A priority Critical patent/EP2239423A1/de
Priority to PCT/EP2010/053999 priority patent/WO2010112421A1/de
Publication of EP2239423A1 publication Critical patent/EP2239423A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/505Shape memory behaviour

Definitions

  • the invention relates to an axial turbomachine with a passive gap control.
  • radial gaps between blades and the housing lead to significant losses in thermal efficiency.
  • the axial turbomachine is, for example, a gas turbine.
  • the gas turbine When starting and stopping the gas turbine, the radial gaps change over time.
  • the radial gaps change when switching from part load operation to full load operation of the gas turbine.
  • the gas turbine is designed so that the radial gap for the operating case in which the radial gaps are the smallest set, are sufficiently large, so that there is virtually no contact between the blades and the housing. This has the consequence that in continuous operation of the gas turbine unnecessarily large radial gaps must be kept for this operating condition, which is associated with a significant loss of efficiency.
  • the temporal change of the radial gaps is the result of different thermal inertia behavior of the individual components of the gas turbine, in particular the rotor, the blades and the housing.
  • the temporal change of the radial gap causes the centrifugal force expansion, in particular of the blades, a transverse contraction of the rotor, a possible play in the thrust bearing of the rotor, in particular in connection with the reversal of axial thrust under appropriate operating conditions of the gas turbine, a possibly occurring ovalization of the housing due to montage charitableer Preload and uneven heating of the housing.
  • the object of the invention is to provide an axial turbomachine with a high thermal efficiency.
  • the axial turbomachine comprises a blade grid, which is formed by blades, each with a radially outer, free-standing and inclined to the axis of the axial turbomachine blade tip, a housing in which the blade grid is installed and defines the inside of the main flow channel of the axial turbomachine, and a ring wall member enveloping the blade lattice and integrated in the inside of the housing with a radially inner ring inner side with which the main flow channel continues on the inside of the housing and the ring member immediately adjacent to the blade tips forming a radial gap between the blade tip envelope and the ring inner side is arranged, wherein the inner ring side is substantially parallel to the blade tip and the annular wall part is slidably mounted in the housing parallel to the axis of the axial turbomachine sow ie has a drive device which is supported on the housing and on the annular wall part and a bimetallic spring and / or a shape memory alloy body which are thermally conductively coupled to the main
  • the annular wall part on the inside of the ring is advantageously tracked radially radially of the blade tip as a function of the temperature prevailing in the main flow channel.
  • the radial gap may be small be, since with a rubbing of the blade tip on the inside of the ring during operation of the axial turbomachine is not expected.
  • the thermal efficiency of the axial turbomachine is high.
  • the drive device preferably has a pretensioning device, which is supported on the housing and acts on the annular wall part counteracting the drive body, so that the annular wall part is always pressed against the drive body by the pretensioning device.
  • the biasing means is a coil spring.
  • the annular wall part of the drive part can always be tracked by the biasing device.
  • the drive part is preferably set up such that in the case of failure of the drive part, the drive part assumes such a position in which the annular wall part is brought into a position in which the radial gap is dimensioned sufficiently large. With the help of the biasing device, the ring wall part can be brought into this position.
  • the ring inner side preferably tapers so that the annular wall part is displaced in the main flow direction by the drive device with an increase in the temperature in the main flow channel and the ring wall part is displaced counter to the main flow direction when the temperature in the main flow channel is lowered.
  • the bimetallic spring and / or the shape memory alloy body and / or piezo actuator acts on the annular wall part upstream.
  • the prestressing device preferably engages downstream of the annular wall part.
  • annular groove is preferably provided, in which the annular wall part is housed.
  • the bimetallic spring and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing means are preferably arranged.
  • the annular wall part is axially guided on the housing with an axial guide.
  • the axial guide is preferably formed by a first axially parallel sliding surface, which faces away from the ring inner side is formed on the annular wall part, and one of the first sliding surface corresponding formed on the housing, the second sliding surface.
  • the annular wall part is preferably formed by a plurality of ring segments.
  • the bimetallic spring and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing device are preferably provided.
  • an axial turbomachine 1 has a housing 2 which has an inner side 3. With the inner side 3, a main flow channel 4 is defined, in which a blade ring is arranged, which is formed by a plurality of circumferentially arranged blades 5. Each blade 5 has upstream of a leading edge 6 and downstream of a trailing edge 7, wherein the blade 5 is radially bounded by a blade tip 8. In the main flow direction, the blade tip 8 is arranged inclined to the axis of the axial turbomachine 1, wherein the main flow channel widens in the region of the blade 5 in the main flow direction.
  • annular groove 9 is provided in the inner side 3 of the housing 2, in which an annular wall part 10 is inserted.
  • the annular wall part 10 has on its radially inner side a ring inner side 11, with which the annular wall part 10, the blades 5 sheathed. Between the envelope of the blade tips 8 and the ring inner side 11, a radial gap 12 is provided.
  • the ring inner side 11 is shaped such that from it the contour of the main flow channel, which is formed by the inside 3 of the housing 2, is continued.
  • the annular wall part 10 is delimited upstream of an upstream side 13 and bounded downstream of a downstream side 14.
  • the upstream side 13 and the downstream side 14 each lie in a plane which is perpendicular to the axis of the axial turbomachine 1.
  • the upstream side 13 and the downstream side 14 are each spaced from the annular groove 9, wherein between the upstream side 13 and the annular groove 9, a bimetallic spring 15 and between the downstream side 14 and the annular groove 9, a coil spring 16 are installed.
  • the bimetallic spring 15 is supported on both the upstream side 13 and the housing 2, and the coil spring 16 is supported on both the downstream side 14 and the housing 2.
  • the bimetallic spring 15 is thermally conductively connected to the main flow channel 4.
  • the annular wall part 10 has, on a radially outer side facing away from the ring inner side 11, a sliding surface running parallel to the axis of the axial turbomachine 1, which bears against a sliding surface formed on the base of the annular groove 9, so that the two sliding surfaces form an axial guide 17 of the Ring wall part 10 form.
  • axially the annular wall portion 10 in the annular groove 9 from a first position the in FIG. 1 is shown in a second position in FIG. 2 is shown and moved back.
  • Characterized in that the bimetallic spring 15 is thermally coupled to the main flow channel 4, the bimetallic spring 15 feels in the main flow channel 4 of the bimetallic spring 15 adjacent prevailing temperature. As the temperature increases, the temperature of the bimetal spring 15 also increases.
  • the bimetallic spring 15 axially expands, whereby the bimetallic spring 15 supported on the annular groove 9 on the upstream side 13 on the annular wall part 10 thrusts in the axial direction Direction of the main flow direction applies.
  • the annular wall part 10 is displaced from the first position to the second position by the bimetal spring 15, as a result of which the radial gap 12 is reduced.
  • the radial gap 12 can be adjusted as a function of the temperature in the main flow channel 4 so that the radial gap 12 during operation of the axial turbomachine 1 is substantially constant over time. Due to the provision of the coil spring 16 on the downstream side, this exerts a bias on the annular wall part 10 counter to the main flow direction, so that the annular wall part 10 is always pressed against the bimetallic spring 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Eine Axialturbomaschine weist ein Laufschaufelgitter, das von Laufschaufeln mit jeweils einer radial außen liegenden, freistehenden und geneigt zur Achse der Axialturbomaschine verlaufenden Schaufelspitze gebildet ist, ein Gehäuse, in dem das Laufschaufelgitter eingebaut ist und das mit seiner Innenseite den Hauptströmungskanal der Axialturbomaschine definiert, und ein das Laufschaufelgitter ummantelndes und in der Innenseite des Gehäuses integriertes Ringwandteil mit einer radial innenliegenden Ringinnenseite auf, mit der an der Innenseite des Gehäuses der Hauptströmungskanal fortgeführt ist und das Ringteil unmittelbar benachbart zu den Schaufelspitzen unter Ausbildung eines Radialspalts zwischen der Einhüllenden der Schaufelspitzen und der Ringinnenseite angeordnet ist, wobei die Ringinnenseite im Wesentlichen parallel zu der Schaufelspitze verläuft und das Ringwandteil in dem Gehäuse parallel zur Achse der Axialturbomaschine verschiebbar gelagert ist sowie eine Antriebseinrichtung aufweist, die an dem Gehäuse und an dem Ringwandteil abgestützt ist und eine Bimetallfeder und/oder einen Formgedächtnislegierungskörper aufweist, die wärmeleitend mit dem Hauptströmungskanal gekoppelt sind, und/oder einen Piezo-Aktor mit einem diesen ansteuernden Thermowandler aufweist, der wärmeleitend mit dem Hauptströmungskanal gekoppelt ist, so dass in Abhängigkeit der Temperatur in dem Hauptströmungskanal die Axialposition des Ringwandteils so eingestellt ist, dass der Radialspalt beim Betrieb der Axialturbomaschine über die Zeit im Wesentlichen konstant ist.

Description

  • Die Erfindung betrifft eine Axialturbomaschine mit einer passiven Spaltkontrolle.
  • In einer Axialturbomaschine führen Radialspalte zwischen Laufschaufeln und dem Gehäuse zu erheblichen Einbußen im thermischen Wirkungsgrad. Um einen möglichst hohen Wirkungsgrad zu erzielen, ist es erstrebenswert die Radialspalte in allen Betriebspunkten der Axialturbomaschine möglichst klein zu halten. Die Axialturbomaschine ist beispielsweise eine Gasturbine. Beim Anfahren und Abfahren der Gasturbine verändern sich die Radialspalte über die Zeit. Außerdem verändern sich die Radialspalte beim Wechsel vom Teillastbetrieb zum Volllastbetrieb der Gasturbine. Herkömmlich ist die Gasturbine derart ausgelegt, dass die Radialspalte für den Betriebsfall, in dem sich die Radialspalte als am kleinsten einstellen, ausreichend groß dimensioniert sind, so dass es so gut wie zu keiner Berührung zwischen den Laufschaufeln und dem Gehäuse kommt. Dies hat zur Folge, dass im Dauerbetrieb der Gasturbine für diesen Betriebszustand unnötig große Radialspalte vorgehalten werden müssen, womit ein erheblicher Wirkungsgradverlust einhergeht.
  • Die zeitliche Veränderung der Radialspalte ist die Folge von unterschiedlichem thermischem Trägheitsverhalten der einzelnen Komponenten der Gasturbine, insbesondere des Rotors, der Laufschaufeln und des Gehäuses. Außerdem verursacht die zeitliche Veränderung der Radialspalte die Fliehkraftdehnung insbesondere der Laufschaufeln, eine Querkontraktion des Rotors, ein eventuelles Spiel im Axiallager des Rotors, insbesondere im Zusammenhang mit der Umkehr von Axialschub bei entsprechenden Betriebsbedingungen der Gasturbine, eine eventuell auftretende Ovalisierung des Gehäuses infolge von montagebedingter Vorspannung und ungleichmäßiger Erwärmung des Gehäuses.
  • Aufgabe der Erfindung ist es eine Axialturbomaschine mit einem hohen thermischen Wirkungsgrad zu schaffen.
  • Die erfindungsgemäße Axialturbomaschine weist ein Laufschaufelgitter, das von Laufschaufeln mit jeweils einer radial außen liegenden, freistehenden und geneigt zur Achse der Axialturbomaschine verlaufenden Schaufelspitze gebildet ist, ein Gehäuse, in dem das Laufschaufelgitter eingebaut ist und das mit seiner Innenseite den Hauptströmungskanal der Axialturbomaschine definiert, und ein das Laufschaufelgitter ummantelndes und in der Innenseite des Gehäuses integriertes Ringwandteil mit einer radial innenliegenden Ringinnenseite auf, mit der an der Innenseite des Gehäuses der Hauptströmungskanal fortgeführt ist und das Ringteil unmittelbar benachbart zu den Schaufelspitzen unter Ausbildung eines Radialspalts zwischen der Einhüllenden der Schaufelspitzen und der Ringinnenseite angeordnet ist, wobei die Ringinnenseite im Wesentlichen parallel zu der Schaufelspitze verläuft und das Ringwandteil in dem Gehäuse parallel zur Achse der Axialturbomaschine verschiebbar gelagert ist sowie eine Antriebseinrichtung aufweist, die an dem Gehäuse und an dem Ringwandteil abgestützt ist und eine Bimetallfeder und/oder einen Formgedächtnislegierungskörper aufweist, die wärmeleitend mit dem Hauptströmungskanal gekoppelt sind, und/oder einen Piezo-Aktor mit einem diesen ansteuernden Thermowandler aufweist, der wärmeleitend mit dem Hauptströmungskanal gekoppelt ist, so dass in Abhängigkeit der Temperatur in dem Hauptströmungskanal die Axialposition des Ringwandteils so eingestellt ist, dass der Radialspalt beim Betrieb der Axialturbomaschine über die Zeit im Wesentlichen konstant ist.
  • Dadurch ist vorteilhaft das Ringwandteil an der Ringinnenseite radial der Schaufelspitze in Abhängigkeit der in dem Hauptströmungskanal vorherrschenden Temperatur nachgeführt. Somit kann vorteilhaft der Radialspalt als klein vorgesehen werden, da mit einem Anstreifen der Schaufelspitze an der Ringinnenseite beim Betrieb der Axialturbomaschine nicht zu rechnen ist. Dadurch ist der thermische Wirkungsgrad der Axialturbomaschine hoch.
  • Die Antriebseinrichtung weist bevorzugt eine Vorspanneinrichtung auf, die an dem Gehäuse abgestützt ist und an dem Ringwandteil dem Antriebskörper entgegenwirkend angreift, so dass durch die Vorspanneinrichtung das Ringwandteil stets an dem Antriebskörper angedrückt ist. Bevorzugt ist die Vorspanneinrichtung eine Schraubenfeder. Somit kann vorteilhaft das Ringwandteil dem Antriebsteil durch die Vorspanneinrichtung stets nachgeführt werden. Das Antriebsteil ist bevorzugt derart eingerichtet, dass im Falle des Versagens des Antriebsteils das Antriebsteil eine derartige Stellung einnimmt, in der das Ringwandteil in eine Position gebracht ist, in der der Radialspalt ausreichend groß dimensioniert ist. Mit Hilfe der Vorspanneinrichtung kann das Ringwandteil in diese Position gebracht werden.
  • Entgegen der Hauptströmungsrichtung verjüngt sich bevorzugt die Ringinnenseite, so dass von der Antriebseinrichtung bei einer Erhöhung der Temperatur im Hauptströmungskanal das Ringwandteil in die Hauptströmungsrichtung und bei einer Erniedrigung der Temperatur im Hauptströmungskanal das Ringwandteil entgegen der Hauptströmungsrichtung verschoben wird. Bevorzugt greift stromaufseitig an dem Ringwandteil die Bimetallfeder und/oder der Formgedächtnislegierungskörper und/oder Piezo-Aktor an. Ferner greift bevorzugt stromabseitig an dem Ringwandteil die Vorspanneinrichtung an.
  • In der Innenseite des Gehäuses ist bevorzugt eine Ringnut vorgesehen, in die das Ringwandteil untergebracht ist. In der Ringnut sind bevorzugt die Bimetallfeder und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder das Vorspannmittel angeordnet.
  • Ferner ist es bevorzugt, dass das Ringwandteil an dem Gehäuse mit einer Axialführung axial geführt ist. Die Axialführung ist bevorzugt von einer ersten achsparallelen Gleitfläche, die der Ringinnenseite abgewandt an dem Ringwandteil ausgebildet ist, und einer der ersten Gleitfläche entsprechenden, am Gehäuse ausgebildeten, zweiten Gleitfläche gebildet.
  • Das Ringwandteil ist bevorzugt von einer Mehrzahl an Ringsegmenten gebildet. Für jedes Ringsegment sind bevorzugt die Bimetallfeder und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder die Vorspanneinrichtung vorgesehen.
  • Im Folgenden wird eine bevorzugte Ausführungsform der erfindungsgemäßen Axialturbomaschine anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigt:
  • FIG 1
    einen Längsschnitt der Axialturbomaschine mit einem Ringwandteil, das in einer ersten Stellung angeordnet ist und
    FIG 2
    einen Längsschnitt der Axialturbomaschine mit dem Ringwandteil, das in einer zweiten Stellung angeordnet ist.
  • Wie es aus FIG 1 und 2 ersichtlich ist, weist eine Axialturbomaschine 1 ein Gehäuse 2 auf, das eine Innenseite 3 aufweist. Mit der Innenseite 3 ist ein Hauptströmungskanal 4 definiert, in dem ein Laufschaufelkranz angeordnet ist, der von einer Mehrzahl an über den Umfang angeordneten Laufschaufeln 5 gebildet ist. Jede Laufschaufel 5 weist stromauf eine Vorderkante 6 und stromab eine Hinterkante 7 auf, wobei die Laufschaufel 5 radial von einer Schaufelspitze 8 begrenzt ist. In Hauptströmungsrichtung ist die Schaufelspitze 8 geneigt zur Achse der Axialturbomaschine 1 angeordnet, wobei der Hauptströmungskanal im Bereich der Laufschaufel 5 in Hauptströmungsrichtung sich aufweitet. Radial außerhalb der Schaufelspitze 8 ist in der Innenseite 3 des Gehäuses 2 eine Ringnut 9 vorgesehen, in die ein Ringwandteil 10 eingesetzt ist. Das Ringwandteil 10 weist an seiner radial innen gelegenen Seite eine Ringinnenseite 11 auf, mit der das Ringwandteil 10 die Laufschaufeln 5 ummantelt. Zwischen der Einhüllenden der Schaufelspitzen 8 und der Ringinnenseite 11 ist ein Radialspalt 12 vorgesehen. Die Ringinnenseite 11 ist derart geformt, dass von ihr die Kontur des Hauptströmungskanals, die von der Innenseite 3 des Gehäuses 2 gebildet ist, fortgeführt ist.
  • Das Ringwandteil 10 ist stromauf von einer Stromaufseite 13 begrenzt und stromab von einer Stromabseite 14 begrenzt. Die Stromaufseite 13 und die Stromabseite 14 liegen jeweils in einer Ebene, die senkrecht zur Achse der Axialturbomaschine 1 verläuft. Die Stromaufseite 13 und die Stromabseite 14 sind jeweils im Abstand zu der Ringnut 9 angeordnet, wobei zwischen der Stromaufseite 13 und der Ringnut 9 eine Bimetallfeder 15 und zwischen der Stromabseite 14 und der Ringnut 9 eine Schraubenfeder 16 eingebaut sind. Die Bimetallfeder 15 ist sowohl an der Stromaufseite 13 als auch an dem Gehäuse 2 abgestützt und die Schraubenfeder 16 ist sowohl an der Stromabseite 14 als auch an dem Gehäuse 2 abgestützt. Die Bimetallfeder 15 ist wärmeleitend mit dem Hauptströmungskanal 4 verbunden.
  • Das Ringwandteil 10 weist an einer der Ringinnenseite 11 abgewandten, radial außen liegenden Seite eine parallel zur Achse der Axialturbomaschine 1 verlaufende Gleitfläche auf, die an einer ihr entsprechenden an dem Grund der Ringnut 9 ausgebildeten Gleitfläche anliegt, so dass die beiden Gleitflächen eine Axialführung 17 des Ringwandteils 10 bilden. Somit ist axial das Ringwandteil 10 in der Ringnut 9 von einer ersten Stellung, die in FIG 1 gezeigt ist, in eine zweite Stellung, die in FIG 2 gezeigt ist, und zurück verschiebbar. Dadurch, dass die Bimetallfeder 15 thermisch mit dem Hauptströmungskanal 4 gekoppelt ist, fühlt die Bimetallfeder 15 die in dem Hauptströmungskanal 4 der Bimetallfeder 15 benachbart herrschende Temperatur. Erhöht sich diese Temperatur, so erhöht sich ebenfalls die Temperatur der Bimetallfeder 15. Dies hat zur Folge, dass die Bimetallfeder 15 axial sich ausdehnt, wodurch die Bimetallfeder 15 an der Ringnut 9 abgestützt an der Stromaufseite 13 auf das Ringwandteil 10 eine Schubkraft in Axialrichtung in Richtung der Hauptströmungsrichtung aufbringt. Dadurch wird von der Bimetallfeder 15 das Ringwandteil 10 von der ersten Stellung in die zweite Stellung verschoben, wodurch der Radialspalt 12 verringert wird. Dadurch kann der Radialspalt 12 in Abhängigkeit der Temperatur im Hauptströmungskanal 4 so eingestellt werden, dass der Radialspalt 12 beim Betrieb der Axialturbomaschine 1 über die Zeit im Wesentlichen konstant ist. Durch das stromabseitige Vorsehen der Schraubenfeder 16 übt diese eine Vorspannung auf das Ringwandteil 10 entgegen der Hauptströmungsrichtung aus, so dass das Ringwandteil 10 stets an die Bimetallfeder 15 gedrückt ist.

Claims (12)

  1. Axialturbomaschine mit einem Laufschaufelgitter, das von Laufschaufeln (5) mit jeweils einer radial außen liegenden, freistehenden und geneigt zur Achse der Axialturbomaschine (1) verlaufenden Schaufelspitze (8) gebildet ist,
    einem Gehäuse (2), in dem das Laufschaufelgitter eingebaut ist und das mit seiner Innenseite (3) den Hauptströmungskanal (4) der Axialturbomaschine (1) definiert, und
    einem das Laufschaufelgitter ummantelnden und in der Innenseite (3) des Gehäuses (2) integrierten Ringwandteil (10) mit einer radial innen liegenden Ringinnenseite (11),
    mit der an der Innenseite (3) des Gehäuses (2) der Hauptströmungskanal (4) fortgeführt ist und das Ringwandteil (10) unmittelbar benachbart zu den Schaufelspitzen (8) unter Ausbildung eines Radialspalts (12) zwischen der Einhüllenden der Schaufelspitzen (8) und der Ringinnenseite (11) angeordnet ist,
    wobei die Ringinnenseite (11) im Wesentlichen parallel zu der Schaufelspitze (8) verläuft und das Ringwandteil (10) in dem Gehäuse (2) parallel zur Achse der Axialturbomaschine (1) verschiebbar gelagert ist sowie eine Antriebseinrichtung aufweist, die an dem Gehäuse (2) und an dem Ringwandteil (10) abgestützt ist und eine Bimetallfeder (15) und/oder einen Formgedächtnislegierungskörper aufweist, die wärmeleitend mit dem Hauptströmungskanal (4) gekoppelt sind, und/oder einen Piezo-Aktor mit einem diesen ansteuernden Thermowandler aufweist, der wärmeleitend mit dem Hauptströmungskanal (4) gekoppelt ist, so dass in Abhängigkeit der Temperatur in dem Hauptströmungskanal (4) die Axialposition des Ringwandteils (10) so eingestellt ist, dass der Radialspalt (12) beim Betrieb der Axialturbomaschine (1) über die Zeit im Wesentlichen konstant ist.
  2. Axialturbomaschine gemäß Anspruch 1,
    wobei die Antriebseinrichtung eine Vorspanneinrichtung (16) aufweist, die an dem Gehäuse (2) abgestützt ist und an dem Ringwandteil (10) dem Antriebskörper (15) entgegenwirkend angreift, so dass durch die Vorspanneinrichtung (16) das Ringwandteil (10) stets an den Antriebskörper (15) angedrückt ist.
  3. Axialturbomaschine gemäß Anspruch 2,
    wobei die Vorspanneinrichtung eine Schraubenfeder (16) ist.
  4. Axialturbomaschine gemäß einem der Ansprüche 1 bis 3,
    wobei entgegen der Hauptströmungsrichtung die Ringinnenseite (11) sich verjüngt, so dass von der Antriebseinrichtung bei einer Erhöhung der Temperatur im Hauptströmungskanal (4) das Ringwandteil (10) in die Hauptströmungsrichtung und bei einer Erniedrigung der Temperatur im Hauptströmungskanal (4) das Ringwandteil (10) entgegen der Hauptströmungsrichtung verschoben wird.
  5. Axialturbomaschine gemäß Anspruch 4,
    wobei stromaufseitig an dem Ringwandteil (10) die Bimetallfeder (15) und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor angreift.
  6. Axialturbomaschine gemäß Anspruch 5,
    wobei stromabseitig an dem Ringwandteil (10) die Vorspanneinrichtung (16) angreift.
  7. Axialturbomaschine gemäß einem der Ansprüche 1 bis 6,
    wobei in der Innenseite (3) des Gehäuses (2) eine Ringnut (9) vorgesehen ist, in die das Ringwandteil (10) untergebracht ist.
  8. Axialturbomaschine gemäß Anspruch 7,
    wobei in der Ringnut (9) die Bimetallfeder (15) und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder das Vorspannmittel (16) angeordnet sind.
  9. Axialturbine gemäß einem der Ansprüche 1 bis 8,
    wobei das Ringwandteil (10) an dem Gehäuse (2) mit einer Axialführung (17) axial geführt ist.
  10. Axialturbomaschine gemäß Anspruch 9,
    wobei die Axialführung (17) von einer ersten achsparallelen Gleitfläche, die der Ringinnenseite (11) abgewandt an dem Ringwandteil (10) ausgebildet ist, und einer der ersten Gleitfläche entsprechenden, am Gehäuse (2) ausgebildeten, zweiten Gleitfläche gebildet ist.
  11. Axialturbomaschine gemäß einem der Ansprüche 1 bis 10,
    wobei das Ringwandteil (10) von einer Mehrzahl an Ringsegmenten gebildet ist.
  12. Axialturbomaschine gemäß Anspruch 11,
    wobei für jedes Ringsegment die Bimetallfeder (15) und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder die Vorspanneinrichtung (16) vorgesehen sind.
EP09004782A 2009-03-31 2009-03-31 Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels Withdrawn EP2239423A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09004782A EP2239423A1 (de) 2009-03-31 2009-03-31 Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels
PCT/EP2010/053999 WO2010112421A1 (de) 2009-03-31 2010-03-26 Axialturbomaschine mit passiver spaltkontrolle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09004782A EP2239423A1 (de) 2009-03-31 2009-03-31 Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels

Publications (1)

Publication Number Publication Date
EP2239423A1 true EP2239423A1 (de) 2010-10-13

Family

ID=40897623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09004782A Withdrawn EP2239423A1 (de) 2009-03-31 2009-03-31 Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels

Country Status (2)

Country Link
EP (1) EP2239423A1 (de)
WO (1) WO2010112421A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549065A1 (de) * 2011-07-18 2013-01-23 General Electric Company System und Verfahren zum Betreiben einer Turbine
EP2466075A3 (de) * 2010-12-16 2013-06-26 Rolls-Royce plc Spielkontrollvorrichtung einer Gasturbine
EP2851515A1 (de) * 2013-09-24 2015-03-25 Siemens Aktiengesellschaft Anordnung zur Befestigung von Turbinenschaufeln

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH704995A1 (de) 2011-05-24 2012-11-30 Alstom Technology Ltd Turbomaschine.
RU2506434C2 (ru) * 2012-04-04 2014-02-10 Николай Борисович Болотин Газотурбинный двигатель
RU2506433C2 (ru) * 2012-04-04 2014-02-10 Николай Борисович Болотин Газотурбинный двигатель
RU2498085C1 (ru) * 2012-04-04 2013-11-10 Николай Борисович Болотин Газотурбинный двигатель
RU2499891C1 (ru) * 2012-04-12 2013-11-27 Николай Борисович Болотин Турбина газотурбинного двигателя
DE102013210876B4 (de) 2013-06-11 2015-02-26 MTU Aero Engines AG Verbundbauteil zur thermischen Spaltsteuerung in einer Strömungsmaschine sowie dieses enthaltende Strömungsmaschine
BE1022471B1 (fr) 2014-10-10 2016-04-15 Techspace Aero S.A. Carter externe de compresseur de turbomachine axiale avec joint d'etancheite
CN108374694B (zh) * 2018-04-26 2023-11-17 贵州智慧能源科技有限公司 一种压气机间隙主动控制装置及方法
RU192393U1 (ru) * 2019-06-20 2019-09-16 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Устройство для регулирования радиального зазора
RU2716648C1 (ru) * 2019-07-16 2020-03-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Охлаждаемая лопатка газовой турбины
CN113446069B (zh) * 2020-03-26 2023-06-20 中国航发商用航空发动机有限责任公司 航空发动机叶尖间隙被动控制装置和航空发动机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146992A (en) * 1962-12-10 1964-09-01 Gen Electric Turbine shroud support structure
US4023919A (en) * 1974-12-19 1977-05-17 General Electric Company Thermal actuated valve for clearance control
DE2728190A1 (de) * 1976-07-05 1978-01-19 Stal Laval Turbin Ab Gasturbine
JPS57195803A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Adjusting device of tip clearance in turbo fluidic machine
JPS58206807A (ja) * 1982-05-28 1983-12-02 Hitachi Ltd 軸流タ−ビンの動翼先端すき間制御装置
JPS5915605A (ja) * 1982-07-15 1984-01-26 Toshiba Corp ガスタ−ビン
JPS60111004A (ja) * 1983-11-21 1985-06-17 Hitachi Ltd 軸流形流体機械のケ−シング
JPS60187302U (ja) * 1984-05-22 1985-12-12 株式会社東芝 蒸気タ−ビン
EP0924388A2 (de) * 1997-12-19 1999-06-23 BMW Rolls-Royce GmbH System zur Konstanthatung des Schaufelspitzenspiels bei einer Gasturbine
EP1686243A2 (de) * 2005-01-26 2006-08-02 General Electric Company Turbinenstator mit Formgedächtnislegierung und Regelung des Schaufelspiels
DE102005048982A1 (de) * 2005-10-13 2007-04-19 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zum axialen Verschieben eines Turbinenrotors
US20080131270A1 (en) * 2006-12-04 2008-06-05 Siemens Power Generation, Inc. Blade clearance system for a turbine engine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146992A (en) * 1962-12-10 1964-09-01 Gen Electric Turbine shroud support structure
US4023919A (en) * 1974-12-19 1977-05-17 General Electric Company Thermal actuated valve for clearance control
DE2728190A1 (de) * 1976-07-05 1978-01-19 Stal Laval Turbin Ab Gasturbine
JPS57195803A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Adjusting device of tip clearance in turbo fluidic machine
JPS58206807A (ja) * 1982-05-28 1983-12-02 Hitachi Ltd 軸流タ−ビンの動翼先端すき間制御装置
JPS5915605A (ja) * 1982-07-15 1984-01-26 Toshiba Corp ガスタ−ビン
JPS60111004A (ja) * 1983-11-21 1985-06-17 Hitachi Ltd 軸流形流体機械のケ−シング
JPS60187302U (ja) * 1984-05-22 1985-12-12 株式会社東芝 蒸気タ−ビン
EP0924388A2 (de) * 1997-12-19 1999-06-23 BMW Rolls-Royce GmbH System zur Konstanthatung des Schaufelspitzenspiels bei einer Gasturbine
EP1686243A2 (de) * 2005-01-26 2006-08-02 General Electric Company Turbinenstator mit Formgedächtnislegierung und Regelung des Schaufelspiels
DE102005048982A1 (de) * 2005-10-13 2007-04-19 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zum axialen Verschieben eines Turbinenrotors
US20080131270A1 (en) * 2006-12-04 2008-06-05 Siemens Power Generation, Inc. Blade clearance system for a turbine engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466075A3 (de) * 2010-12-16 2013-06-26 Rolls-Royce plc Spielkontrollvorrichtung einer Gasturbine
US8894358B2 (en) 2010-12-16 2014-11-25 Rolls-Royce Plc Clearance control arrangement
EP2549065A1 (de) * 2011-07-18 2013-01-23 General Electric Company System und Verfahren zum Betreiben einer Turbine
US8939709B2 (en) 2011-07-18 2015-01-27 General Electric Company Clearance control for a turbine
EP2851515A1 (de) * 2013-09-24 2015-03-25 Siemens Aktiengesellschaft Anordnung zur Befestigung von Turbinenschaufeln

Also Published As

Publication number Publication date
WO2010112421A1 (de) 2010-10-07

Similar Documents

Publication Publication Date Title
EP2239423A1 (de) Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels
DE60318792T2 (de) Zapfluft-Gehäuse für einen Verdichter
EP2414641B1 (de) Axialturbomaschinenrotor mit dichtscheibe
EP1131537B1 (de) Verfahren zum betrieb einer strömungsmaschine
DE2517044C2 (de) Schaufelspitzenabdichtung
DE3941174A1 (de) Spitzenspiel-einstellung an turbomaschinen
EP2411632B1 (de) Axialturbomaschine mit axial verschiebbarem leitschaufelträger
EP3153667B1 (de) Sicherungsvorrichtung zur axialen sicherung einer laufschaufel und rotorvorrichtung mit einer derartigen sicherungsvorrichtung
CH706862A2 (de) Labyrinthdichtungsdesign und aktive Spaltsteuerungsstrategie für Turbomaschinen.
EP1947293A1 (de) Leitschaufel für eine Gasturbine
DE102014219552A1 (de) Leitschaufelverstellvorrichtung einer Gasturbine
WO2000057033A1 (de) Abdeckelement und anordnung mit einem abdeckelement und mit einer tragstruktur
EP0984138B1 (de) Strömungsmaschine mit gekühlter Rotorwelle
EP2527600A1 (de) Turbomaschine
EP2802748B1 (de) Strömungsmaschine mit schraubenkühlung
WO2009109430A1 (de) Dichtungsanordnung und gasturbine
EP2206885A1 (de) Gasturbine
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2358979B1 (de) Axialverdichter für eine gasturbine mit passiver radialspaltkontrolle
EP2206889A1 (de) Verfahren zur Verminderung von Radialspalten mittels Rotorverschiebeeinrichtung und dazugehörige Gasturbine
EP2611992B1 (de) Gehäuseseitige struktur einer turbomaschine
EP1783325A1 (de) Befestigungsanordnung eines Rohres an einer Umfangsfläche
EP2696036A1 (de) Klemmring für eine Strömungsmaschine
DE102009006029A1 (de) Turbomaschine
EP4013950B1 (de) Rotor mit zwischen zwei rotorscheiben angeordnetem rotorbauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110608

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110414