EP2239423A1 - Axial turbomachine with passive blade tip gap control - Google Patents
Axial turbomachine with passive blade tip gap control Download PDFInfo
- Publication number
- EP2239423A1 EP2239423A1 EP09004782A EP09004782A EP2239423A1 EP 2239423 A1 EP2239423 A1 EP 2239423A1 EP 09004782 A EP09004782 A EP 09004782A EP 09004782 A EP09004782 A EP 09004782A EP 2239423 A1 EP2239423 A1 EP 2239423A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall part
- annular wall
- axial turbomachine
- main flow
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/16—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
- F01D11/18—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/16—Sealings between pressure and suction sides
- F04D29/161—Sealings between pressure and suction sides especially adapted for elastic fluid pumps
- F04D29/164—Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
- F04D29/526—Details of the casing section radially opposing blade tips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/505—Shape memory behaviour
Definitions
- the invention relates to an axial turbomachine with a passive gap control.
- radial gaps between blades and the housing lead to significant losses in thermal efficiency.
- the axial turbomachine is, for example, a gas turbine.
- the gas turbine When starting and stopping the gas turbine, the radial gaps change over time.
- the radial gaps change when switching from part load operation to full load operation of the gas turbine.
- the gas turbine is designed so that the radial gap for the operating case in which the radial gaps are the smallest set, are sufficiently large, so that there is virtually no contact between the blades and the housing. This has the consequence that in continuous operation of the gas turbine unnecessarily large radial gaps must be kept for this operating condition, which is associated with a significant loss of efficiency.
- the temporal change of the radial gaps is the result of different thermal inertia behavior of the individual components of the gas turbine, in particular the rotor, the blades and the housing.
- the temporal change of the radial gap causes the centrifugal force expansion, in particular of the blades, a transverse contraction of the rotor, a possible play in the thrust bearing of the rotor, in particular in connection with the reversal of axial thrust under appropriate operating conditions of the gas turbine, a possibly occurring ovalization of the housing due to montage charitableer Preload and uneven heating of the housing.
- the object of the invention is to provide an axial turbomachine with a high thermal efficiency.
- the axial turbomachine comprises a blade grid, which is formed by blades, each with a radially outer, free-standing and inclined to the axis of the axial turbomachine blade tip, a housing in which the blade grid is installed and defines the inside of the main flow channel of the axial turbomachine, and a ring wall member enveloping the blade lattice and integrated in the inside of the housing with a radially inner ring inner side with which the main flow channel continues on the inside of the housing and the ring member immediately adjacent to the blade tips forming a radial gap between the blade tip envelope and the ring inner side is arranged, wherein the inner ring side is substantially parallel to the blade tip and the annular wall part is slidably mounted in the housing parallel to the axis of the axial turbomachine sow ie has a drive device which is supported on the housing and on the annular wall part and a bimetallic spring and / or a shape memory alloy body which are thermally conductively coupled to the main
- the annular wall part on the inside of the ring is advantageously tracked radially radially of the blade tip as a function of the temperature prevailing in the main flow channel.
- the radial gap may be small be, since with a rubbing of the blade tip on the inside of the ring during operation of the axial turbomachine is not expected.
- the thermal efficiency of the axial turbomachine is high.
- the drive device preferably has a pretensioning device, which is supported on the housing and acts on the annular wall part counteracting the drive body, so that the annular wall part is always pressed against the drive body by the pretensioning device.
- the biasing means is a coil spring.
- the annular wall part of the drive part can always be tracked by the biasing device.
- the drive part is preferably set up such that in the case of failure of the drive part, the drive part assumes such a position in which the annular wall part is brought into a position in which the radial gap is dimensioned sufficiently large. With the help of the biasing device, the ring wall part can be brought into this position.
- the ring inner side preferably tapers so that the annular wall part is displaced in the main flow direction by the drive device with an increase in the temperature in the main flow channel and the ring wall part is displaced counter to the main flow direction when the temperature in the main flow channel is lowered.
- the bimetallic spring and / or the shape memory alloy body and / or piezo actuator acts on the annular wall part upstream.
- the prestressing device preferably engages downstream of the annular wall part.
- annular groove is preferably provided, in which the annular wall part is housed.
- the bimetallic spring and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing means are preferably arranged.
- the annular wall part is axially guided on the housing with an axial guide.
- the axial guide is preferably formed by a first axially parallel sliding surface, which faces away from the ring inner side is formed on the annular wall part, and one of the first sliding surface corresponding formed on the housing, the second sliding surface.
- the annular wall part is preferably formed by a plurality of ring segments.
- the bimetallic spring and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing device are preferably provided.
- an axial turbomachine 1 has a housing 2 which has an inner side 3. With the inner side 3, a main flow channel 4 is defined, in which a blade ring is arranged, which is formed by a plurality of circumferentially arranged blades 5. Each blade 5 has upstream of a leading edge 6 and downstream of a trailing edge 7, wherein the blade 5 is radially bounded by a blade tip 8. In the main flow direction, the blade tip 8 is arranged inclined to the axis of the axial turbomachine 1, wherein the main flow channel widens in the region of the blade 5 in the main flow direction.
- annular groove 9 is provided in the inner side 3 of the housing 2, in which an annular wall part 10 is inserted.
- the annular wall part 10 has on its radially inner side a ring inner side 11, with which the annular wall part 10, the blades 5 sheathed. Between the envelope of the blade tips 8 and the ring inner side 11, a radial gap 12 is provided.
- the ring inner side 11 is shaped such that from it the contour of the main flow channel, which is formed by the inside 3 of the housing 2, is continued.
- the annular wall part 10 is delimited upstream of an upstream side 13 and bounded downstream of a downstream side 14.
- the upstream side 13 and the downstream side 14 each lie in a plane which is perpendicular to the axis of the axial turbomachine 1.
- the upstream side 13 and the downstream side 14 are each spaced from the annular groove 9, wherein between the upstream side 13 and the annular groove 9, a bimetallic spring 15 and between the downstream side 14 and the annular groove 9, a coil spring 16 are installed.
- the bimetallic spring 15 is supported on both the upstream side 13 and the housing 2, and the coil spring 16 is supported on both the downstream side 14 and the housing 2.
- the bimetallic spring 15 is thermally conductively connected to the main flow channel 4.
- the annular wall part 10 has, on a radially outer side facing away from the ring inner side 11, a sliding surface running parallel to the axis of the axial turbomachine 1, which bears against a sliding surface formed on the base of the annular groove 9, so that the two sliding surfaces form an axial guide 17 of the Ring wall part 10 form.
- axially the annular wall portion 10 in the annular groove 9 from a first position the in FIG. 1 is shown in a second position in FIG. 2 is shown and moved back.
- Characterized in that the bimetallic spring 15 is thermally coupled to the main flow channel 4, the bimetallic spring 15 feels in the main flow channel 4 of the bimetallic spring 15 adjacent prevailing temperature. As the temperature increases, the temperature of the bimetal spring 15 also increases.
- the bimetallic spring 15 axially expands, whereby the bimetallic spring 15 supported on the annular groove 9 on the upstream side 13 on the annular wall part 10 thrusts in the axial direction Direction of the main flow direction applies.
- the annular wall part 10 is displaced from the first position to the second position by the bimetal spring 15, as a result of which the radial gap 12 is reduced.
- the radial gap 12 can be adjusted as a function of the temperature in the main flow channel 4 so that the radial gap 12 during operation of the axial turbomachine 1 is substantially constant over time. Due to the provision of the coil spring 16 on the downstream side, this exerts a bias on the annular wall part 10 counter to the main flow direction, so that the annular wall part 10 is always pressed against the bimetallic spring 15.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft eine Axialturbomaschine mit einer passiven Spaltkontrolle.The invention relates to an axial turbomachine with a passive gap control.
In einer Axialturbomaschine führen Radialspalte zwischen Laufschaufeln und dem Gehäuse zu erheblichen Einbußen im thermischen Wirkungsgrad. Um einen möglichst hohen Wirkungsgrad zu erzielen, ist es erstrebenswert die Radialspalte in allen Betriebspunkten der Axialturbomaschine möglichst klein zu halten. Die Axialturbomaschine ist beispielsweise eine Gasturbine. Beim Anfahren und Abfahren der Gasturbine verändern sich die Radialspalte über die Zeit. Außerdem verändern sich die Radialspalte beim Wechsel vom Teillastbetrieb zum Volllastbetrieb der Gasturbine. Herkömmlich ist die Gasturbine derart ausgelegt, dass die Radialspalte für den Betriebsfall, in dem sich die Radialspalte als am kleinsten einstellen, ausreichend groß dimensioniert sind, so dass es so gut wie zu keiner Berührung zwischen den Laufschaufeln und dem Gehäuse kommt. Dies hat zur Folge, dass im Dauerbetrieb der Gasturbine für diesen Betriebszustand unnötig große Radialspalte vorgehalten werden müssen, womit ein erheblicher Wirkungsgradverlust einhergeht.In an axial turbomachine radial gaps between blades and the housing lead to significant losses in thermal efficiency. In order to achieve the highest possible efficiency, it is desirable to keep the radial gaps as small as possible in all operating points of the axial turbomachine. The axial turbomachine is, for example, a gas turbine. When starting and stopping the gas turbine, the radial gaps change over time. In addition, the radial gaps change when switching from part load operation to full load operation of the gas turbine. Conventionally, the gas turbine is designed so that the radial gap for the operating case in which the radial gaps are the smallest set, are sufficiently large, so that there is virtually no contact between the blades and the housing. This has the consequence that in continuous operation of the gas turbine unnecessarily large radial gaps must be kept for this operating condition, which is associated with a significant loss of efficiency.
Die zeitliche Veränderung der Radialspalte ist die Folge von unterschiedlichem thermischem Trägheitsverhalten der einzelnen Komponenten der Gasturbine, insbesondere des Rotors, der Laufschaufeln und des Gehäuses. Außerdem verursacht die zeitliche Veränderung der Radialspalte die Fliehkraftdehnung insbesondere der Laufschaufeln, eine Querkontraktion des Rotors, ein eventuelles Spiel im Axiallager des Rotors, insbesondere im Zusammenhang mit der Umkehr von Axialschub bei entsprechenden Betriebsbedingungen der Gasturbine, eine eventuell auftretende Ovalisierung des Gehäuses infolge von montagebedingter Vorspannung und ungleichmäßiger Erwärmung des Gehäuses.The temporal change of the radial gaps is the result of different thermal inertia behavior of the individual components of the gas turbine, in particular the rotor, the blades and the housing. In addition, the temporal change of the radial gap causes the centrifugal force expansion, in particular of the blades, a transverse contraction of the rotor, a possible play in the thrust bearing of the rotor, in particular in connection with the reversal of axial thrust under appropriate operating conditions of the gas turbine, a possibly occurring ovalization of the housing due to montagebedingter Preload and uneven heating of the housing.
Aufgabe der Erfindung ist es eine Axialturbomaschine mit einem hohen thermischen Wirkungsgrad zu schaffen.The object of the invention is to provide an axial turbomachine with a high thermal efficiency.
Die erfindungsgemäße Axialturbomaschine weist ein Laufschaufelgitter, das von Laufschaufeln mit jeweils einer radial außen liegenden, freistehenden und geneigt zur Achse der Axialturbomaschine verlaufenden Schaufelspitze gebildet ist, ein Gehäuse, in dem das Laufschaufelgitter eingebaut ist und das mit seiner Innenseite den Hauptströmungskanal der Axialturbomaschine definiert, und ein das Laufschaufelgitter ummantelndes und in der Innenseite des Gehäuses integriertes Ringwandteil mit einer radial innenliegenden Ringinnenseite auf, mit der an der Innenseite des Gehäuses der Hauptströmungskanal fortgeführt ist und das Ringteil unmittelbar benachbart zu den Schaufelspitzen unter Ausbildung eines Radialspalts zwischen der Einhüllenden der Schaufelspitzen und der Ringinnenseite angeordnet ist, wobei die Ringinnenseite im Wesentlichen parallel zu der Schaufelspitze verläuft und das Ringwandteil in dem Gehäuse parallel zur Achse der Axialturbomaschine verschiebbar gelagert ist sowie eine Antriebseinrichtung aufweist, die an dem Gehäuse und an dem Ringwandteil abgestützt ist und eine Bimetallfeder und/oder einen Formgedächtnislegierungskörper aufweist, die wärmeleitend mit dem Hauptströmungskanal gekoppelt sind, und/oder einen Piezo-Aktor mit einem diesen ansteuernden Thermowandler aufweist, der wärmeleitend mit dem Hauptströmungskanal gekoppelt ist, so dass in Abhängigkeit der Temperatur in dem Hauptströmungskanal die Axialposition des Ringwandteils so eingestellt ist, dass der Radialspalt beim Betrieb der Axialturbomaschine über die Zeit im Wesentlichen konstant ist.The axial turbomachine according to the invention comprises a blade grid, which is formed by blades, each with a radially outer, free-standing and inclined to the axis of the axial turbomachine blade tip, a housing in which the blade grid is installed and defines the inside of the main flow channel of the axial turbomachine, and a ring wall member enveloping the blade lattice and integrated in the inside of the housing with a radially inner ring inner side with which the main flow channel continues on the inside of the housing and the ring member immediately adjacent to the blade tips forming a radial gap between the blade tip envelope and the ring inner side is arranged, wherein the inner ring side is substantially parallel to the blade tip and the annular wall part is slidably mounted in the housing parallel to the axis of the axial turbomachine sow ie has a drive device which is supported on the housing and on the annular wall part and a bimetallic spring and / or a shape memory alloy body which are thermally conductively coupled to the main flow channel, and / or having a piezo actuator with a thermo-controlling these, which conducts heat coupled to the main flow channel, so that, depending on the temperature in the main flow channel, the axial position of the annular wall part is set so that the radial gap during operation of the axial turbomachine over time is substantially constant.
Dadurch ist vorteilhaft das Ringwandteil an der Ringinnenseite radial der Schaufelspitze in Abhängigkeit der in dem Hauptströmungskanal vorherrschenden Temperatur nachgeführt. Somit kann vorteilhaft der Radialspalt als klein vorgesehen werden, da mit einem Anstreifen der Schaufelspitze an der Ringinnenseite beim Betrieb der Axialturbomaschine nicht zu rechnen ist. Dadurch ist der thermische Wirkungsgrad der Axialturbomaschine hoch.As a result, the annular wall part on the inside of the ring is advantageously tracked radially radially of the blade tip as a function of the temperature prevailing in the main flow channel. Thus, advantageously, the radial gap may be small be, since with a rubbing of the blade tip on the inside of the ring during operation of the axial turbomachine is not expected. As a result, the thermal efficiency of the axial turbomachine is high.
Die Antriebseinrichtung weist bevorzugt eine Vorspanneinrichtung auf, die an dem Gehäuse abgestützt ist und an dem Ringwandteil dem Antriebskörper entgegenwirkend angreift, so dass durch die Vorspanneinrichtung das Ringwandteil stets an dem Antriebskörper angedrückt ist. Bevorzugt ist die Vorspanneinrichtung eine Schraubenfeder. Somit kann vorteilhaft das Ringwandteil dem Antriebsteil durch die Vorspanneinrichtung stets nachgeführt werden. Das Antriebsteil ist bevorzugt derart eingerichtet, dass im Falle des Versagens des Antriebsteils das Antriebsteil eine derartige Stellung einnimmt, in der das Ringwandteil in eine Position gebracht ist, in der der Radialspalt ausreichend groß dimensioniert ist. Mit Hilfe der Vorspanneinrichtung kann das Ringwandteil in diese Position gebracht werden.The drive device preferably has a pretensioning device, which is supported on the housing and acts on the annular wall part counteracting the drive body, so that the annular wall part is always pressed against the drive body by the pretensioning device. Preferably, the biasing means is a coil spring. Thus, advantageously, the annular wall part of the drive part can always be tracked by the biasing device. The drive part is preferably set up such that in the case of failure of the drive part, the drive part assumes such a position in which the annular wall part is brought into a position in which the radial gap is dimensioned sufficiently large. With the help of the biasing device, the ring wall part can be brought into this position.
Entgegen der Hauptströmungsrichtung verjüngt sich bevorzugt die Ringinnenseite, so dass von der Antriebseinrichtung bei einer Erhöhung der Temperatur im Hauptströmungskanal das Ringwandteil in die Hauptströmungsrichtung und bei einer Erniedrigung der Temperatur im Hauptströmungskanal das Ringwandteil entgegen der Hauptströmungsrichtung verschoben wird. Bevorzugt greift stromaufseitig an dem Ringwandteil die Bimetallfeder und/oder der Formgedächtnislegierungskörper und/oder Piezo-Aktor an. Ferner greift bevorzugt stromabseitig an dem Ringwandteil die Vorspanneinrichtung an.Contrary to the main flow direction, the ring inner side preferably tapers so that the annular wall part is displaced in the main flow direction by the drive device with an increase in the temperature in the main flow channel and the ring wall part is displaced counter to the main flow direction when the temperature in the main flow channel is lowered. Preferably, the bimetallic spring and / or the shape memory alloy body and / or piezo actuator acts on the annular wall part upstream. Furthermore, the prestressing device preferably engages downstream of the annular wall part.
In der Innenseite des Gehäuses ist bevorzugt eine Ringnut vorgesehen, in die das Ringwandteil untergebracht ist. In der Ringnut sind bevorzugt die Bimetallfeder und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder das Vorspannmittel angeordnet.In the inside of the housing, an annular groove is preferably provided, in which the annular wall part is housed. In the annular groove, the bimetallic spring and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing means are preferably arranged.
Ferner ist es bevorzugt, dass das Ringwandteil an dem Gehäuse mit einer Axialführung axial geführt ist. Die Axialführung ist bevorzugt von einer ersten achsparallelen Gleitfläche, die der Ringinnenseite abgewandt an dem Ringwandteil ausgebildet ist, und einer der ersten Gleitfläche entsprechenden, am Gehäuse ausgebildeten, zweiten Gleitfläche gebildet.Furthermore, it is preferred that the annular wall part is axially guided on the housing with an axial guide. The axial guide is preferably formed by a first axially parallel sliding surface, which faces away from the ring inner side is formed on the annular wall part, and one of the first sliding surface corresponding formed on the housing, the second sliding surface.
Das Ringwandteil ist bevorzugt von einer Mehrzahl an Ringsegmenten gebildet. Für jedes Ringsegment sind bevorzugt die Bimetallfeder und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder die Vorspanneinrichtung vorgesehen.The annular wall part is preferably formed by a plurality of ring segments. For each ring segment, the bimetallic spring and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing device are preferably provided.
Im Folgenden wird eine bevorzugte Ausführungsform der erfindungsgemäßen Axialturbomaschine anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigt:
- FIG 1
- einen Längsschnitt der Axialturbomaschine mit einem Ringwandteil, das in einer ersten Stellung angeordnet ist und
- FIG 2
- einen Längsschnitt der Axialturbomaschine mit dem Ringwandteil, das in einer zweiten Stellung angeordnet ist.
- FIG. 1
- a longitudinal section of the axial turbomachine with an annular wall part, which is arranged in a first position and
- FIG. 2
- a longitudinal section of the axial turbomachine with the annular wall part, which is arranged in a second position.
Wie es aus
Das Ringwandteil 10 ist stromauf von einer Stromaufseite 13 begrenzt und stromab von einer Stromabseite 14 begrenzt. Die Stromaufseite 13 und die Stromabseite 14 liegen jeweils in einer Ebene, die senkrecht zur Achse der Axialturbomaschine 1 verläuft. Die Stromaufseite 13 und die Stromabseite 14 sind jeweils im Abstand zu der Ringnut 9 angeordnet, wobei zwischen der Stromaufseite 13 und der Ringnut 9 eine Bimetallfeder 15 und zwischen der Stromabseite 14 und der Ringnut 9 eine Schraubenfeder 16 eingebaut sind. Die Bimetallfeder 15 ist sowohl an der Stromaufseite 13 als auch an dem Gehäuse 2 abgestützt und die Schraubenfeder 16 ist sowohl an der Stromabseite 14 als auch an dem Gehäuse 2 abgestützt. Die Bimetallfeder 15 ist wärmeleitend mit dem Hauptströmungskanal 4 verbunden.The annular wall part 10 is delimited upstream of an upstream side 13 and bounded downstream of a downstream side 14. The upstream side 13 and the downstream side 14 each lie in a plane which is perpendicular to the axis of the axial turbomachine 1. The upstream side 13 and the downstream side 14 are each spaced from the
Das Ringwandteil 10 weist an einer der Ringinnenseite 11 abgewandten, radial außen liegenden Seite eine parallel zur Achse der Axialturbomaschine 1 verlaufende Gleitfläche auf, die an einer ihr entsprechenden an dem Grund der Ringnut 9 ausgebildeten Gleitfläche anliegt, so dass die beiden Gleitflächen eine Axialführung 17 des Ringwandteils 10 bilden. Somit ist axial das Ringwandteil 10 in der Ringnut 9 von einer ersten Stellung, die in
Claims (12)
einem Gehäuse (2), in dem das Laufschaufelgitter eingebaut ist und das mit seiner Innenseite (3) den Hauptströmungskanal (4) der Axialturbomaschine (1) definiert, und
einem das Laufschaufelgitter ummantelnden und in der Innenseite (3) des Gehäuses (2) integrierten Ringwandteil (10) mit einer radial innen liegenden Ringinnenseite (11),
mit der an der Innenseite (3) des Gehäuses (2) der Hauptströmungskanal (4) fortgeführt ist und das Ringwandteil (10) unmittelbar benachbart zu den Schaufelspitzen (8) unter Ausbildung eines Radialspalts (12) zwischen der Einhüllenden der Schaufelspitzen (8) und der Ringinnenseite (11) angeordnet ist,
wobei die Ringinnenseite (11) im Wesentlichen parallel zu der Schaufelspitze (8) verläuft und das Ringwandteil (10) in dem Gehäuse (2) parallel zur Achse der Axialturbomaschine (1) verschiebbar gelagert ist sowie eine Antriebseinrichtung aufweist, die an dem Gehäuse (2) und an dem Ringwandteil (10) abgestützt ist und eine Bimetallfeder (15) und/oder einen Formgedächtnislegierungskörper aufweist, die wärmeleitend mit dem Hauptströmungskanal (4) gekoppelt sind, und/oder einen Piezo-Aktor mit einem diesen ansteuernden Thermowandler aufweist, der wärmeleitend mit dem Hauptströmungskanal (4) gekoppelt ist, so dass in Abhängigkeit der Temperatur in dem Hauptströmungskanal (4) die Axialposition des Ringwandteils (10) so eingestellt ist, dass der Radialspalt (12) beim Betrieb der Axialturbomaschine (1) über die Zeit im Wesentlichen konstant ist.Axial turbomachine with a blade lattice, which is formed by rotor blades (5) each having a radially outer, free-standing blade tip (8) running inclined to the axis of the axial turbomachine (1),
a housing (2) in which the blade grid is installed and which defines with its inner side (3) the main flow channel (4) of the axial turbomachine (1), and
a ring wall part (10) which surrounds the blade lattice and is integrated in the inside (3) of the housing (2), with a ring inner side (11) lying radially inwards,
with the on the inside (3) of the housing (2) of the main flow channel (4) is continued and the annular wall part (10) immediately adjacent to the blade tips (8) to form a radial gap (12) between the envelope of the blade tips (8) and the ring inside (11) is arranged,
wherein the inner ring side (11) runs substantially parallel to the blade tip (8) and the annular wall part (10) is displaceably mounted in the housing (2) parallel to the axis of the axial turbomachine (1) and has a drive device which is attached to the housing (2 ) and is supported on the annular wall part (10) and has a bimetallic spring (15) and / or a shape memory alloy body, which are heat-conductively coupled to the main flow channel (4), and / or has a piezo actuator with a thermo-transducer driving the latter, which conducts heat is coupled to the main flow channel (4), so that, depending on the temperature in the main flow channel (4) the axial position of the annular wall part (10) is set so that the radial gap (12) during operation of the axial turbomachine (1) over time substantially is constant.
wobei die Antriebseinrichtung eine Vorspanneinrichtung (16) aufweist, die an dem Gehäuse (2) abgestützt ist und an dem Ringwandteil (10) dem Antriebskörper (15) entgegenwirkend angreift, so dass durch die Vorspanneinrichtung (16) das Ringwandteil (10) stets an den Antriebskörper (15) angedrückt ist.Axial turbomachine according to claim 1,
wherein the drive means comprises a biasing means (16) supported on the housing (2) and acting against the drive body (15) against the annular wall part (10), so that the annular wall part (10) always abuts against the annular wall part (10) by the biasing means (16) Drive body (15) is pressed.
wobei die Vorspanneinrichtung eine Schraubenfeder (16) ist.Axial turbomachine according to claim 2,
wherein the biasing means is a coil spring (16).
wobei entgegen der Hauptströmungsrichtung die Ringinnenseite (11) sich verjüngt, so dass von der Antriebseinrichtung bei einer Erhöhung der Temperatur im Hauptströmungskanal (4) das Ringwandteil (10) in die Hauptströmungsrichtung und bei einer Erniedrigung der Temperatur im Hauptströmungskanal (4) das Ringwandteil (10) entgegen der Hauptströmungsrichtung verschoben wird.Axial turbomachine according to one of claims 1 to 3,
wherein opposite to the main flow direction, the ring inner side (11) tapers, so that the ring wall part (10) in the main flow direction and at a decrease of the temperature in the main flow channel (4) of the drive means with an increase in temperature in the main flow channel (4) the annular wall part (10 ) is shifted against the main flow direction.
wobei stromaufseitig an dem Ringwandteil (10) die Bimetallfeder (15) und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor angreift.Axial turbomachine according to claim 4,
wherein upstream of the annular wall part (10) the bimetallic spring (15) and / or the shape memory alloy body and / or the piezoactuator engages.
wobei stromabseitig an dem Ringwandteil (10) die Vorspanneinrichtung (16) angreift.Axial turbomachine according to claim 5,
wherein downstream of the annular wall part (10), the biasing means (16) engages.
wobei in der Innenseite (3) des Gehäuses (2) eine Ringnut (9) vorgesehen ist, in die das Ringwandteil (10) untergebracht ist.Axial turbomachine according to one of claims 1 to 6,
wherein in the inside (3) of the housing (2) an annular groove (9) is provided, in which the annular wall part (10) is housed.
wobei in der Ringnut (9) die Bimetallfeder (15) und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder das Vorspannmittel (16) angeordnet sind.Axial turbomachine according to claim 7,
wherein in the annular groove (9), the bimetallic spring (15) and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing means (16) are arranged.
wobei das Ringwandteil (10) an dem Gehäuse (2) mit einer Axialführung (17) axial geführt ist.Axial turbine according to one of claims 1 to 8,
wherein the annular wall part (10) on the housing (2) with an axial guide (17) is guided axially.
wobei die Axialführung (17) von einer ersten achsparallelen Gleitfläche, die der Ringinnenseite (11) abgewandt an dem Ringwandteil (10) ausgebildet ist, und einer der ersten Gleitfläche entsprechenden, am Gehäuse (2) ausgebildeten, zweiten Gleitfläche gebildet ist.Axial turbomachine according to claim 9,
wherein the axial guide (17) of a first axially parallel sliding surface, the ring inner side (11) facing away from the annular wall part (10) is formed, and one of the first sliding surface corresponding, on the housing (2) formed, second sliding surface is formed.
wobei das Ringwandteil (10) von einer Mehrzahl an Ringsegmenten gebildet ist.Axial turbomachine according to one of claims 1 to 10,
wherein the annular wall part (10) is formed by a plurality of ring segments.
wobei für jedes Ringsegment die Bimetallfeder (15) und/oder der Formgedächtnislegierungskörper und/oder der Piezo-Aktor und/oder die Vorspanneinrichtung (16) vorgesehen sind.Axial turbomachine according to claim 11,
wherein for each ring segment, the bimetallic spring (15) and / or the shape memory alloy body and / or the piezoelectric actuator and / or the biasing means (16) are provided.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09004782A EP2239423A1 (en) | 2009-03-31 | 2009-03-31 | Axial turbomachine with passive blade tip gap control |
PCT/EP2010/053999 WO2010112421A1 (en) | 2009-03-31 | 2010-03-26 | Axial turbomachine with passive gap control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09004782A EP2239423A1 (en) | 2009-03-31 | 2009-03-31 | Axial turbomachine with passive blade tip gap control |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2239423A1 true EP2239423A1 (en) | 2010-10-13 |
Family
ID=40897623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09004782A Withdrawn EP2239423A1 (en) | 2009-03-31 | 2009-03-31 | Axial turbomachine with passive blade tip gap control |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2239423A1 (en) |
WO (1) | WO2010112421A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2549065A1 (en) * | 2011-07-18 | 2013-01-23 | General Electric Company | System and method for operating a turbine |
EP2466075A3 (en) * | 2010-12-16 | 2013-06-26 | Rolls-Royce plc | Clearance control arrangement for a gas turbine engine |
EP2851515A1 (en) * | 2013-09-24 | 2015-03-25 | Siemens Aktiengesellschaft | Assembly for attaching a turbine blade |
US12049828B2 (en) | 2022-07-12 | 2024-07-30 | General Electric Company | Active clearance control of fan blade tip closure using a variable sleeve system |
US12116896B1 (en) | 2023-03-24 | 2024-10-15 | General Electric Company | Seal support assembly for a turbine engine |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH704995A1 (en) | 2011-05-24 | 2012-11-30 | Alstom Technology Ltd | Turbomachinery. |
RU2506434C2 (en) * | 2012-04-04 | 2014-02-10 | Николай Борисович Болотин | Gas turbine engine |
RU2506433C2 (en) * | 2012-04-04 | 2014-02-10 | Николай Борисович Болотин | Gas turbine engine |
RU2498085C1 (en) * | 2012-04-04 | 2013-11-10 | Николай Борисович Болотин | Gas-turbine engine |
RU2499891C1 (en) * | 2012-04-12 | 2013-11-27 | Николай Борисович Болотин | Gas turbine engine turbine |
DE102013210876B4 (en) | 2013-06-11 | 2015-02-26 | MTU Aero Engines AG | Composite component for thermal clearance control in a turbomachine and this turbomachine containing |
BE1022471B1 (en) * | 2014-10-10 | 2016-04-15 | Techspace Aero S.A. | EXTERNAL AXIAL TURBOMACHINE COMPRESSOR HOUSING WITH SEAL |
CN108374694B (en) * | 2018-04-26 | 2023-11-17 | 贵州智慧能源科技有限公司 | Active control device and method for gap of air compressor |
RU192393U1 (en) * | 2019-06-20 | 2019-09-16 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" | Device for adjusting radial clearance |
RU2716648C1 (en) * | 2019-07-16 | 2020-03-13 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" | Cooled blade of gas turbine |
CN113446069B (en) * | 2020-03-26 | 2023-06-20 | 中国航发商用航空发动机有限责任公司 | Aeroengine blade tip clearance passive control device and aeroengine |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3146992A (en) * | 1962-12-10 | 1964-09-01 | Gen Electric | Turbine shroud support structure |
US4023919A (en) * | 1974-12-19 | 1977-05-17 | General Electric Company | Thermal actuated valve for clearance control |
DE2728190A1 (en) * | 1976-07-05 | 1978-01-19 | Stal Laval Turbin Ab | GAS TURBINE |
JPS57195803A (en) * | 1981-05-27 | 1982-12-01 | Hitachi Ltd | Adjusting device of tip clearance in turbo fluidic machine |
JPS58206807A (en) * | 1982-05-28 | 1983-12-02 | Hitachi Ltd | Control device for clearance at extremity end of rotary vane of axial flow turbine |
JPS5915605A (en) * | 1982-07-15 | 1984-01-26 | Toshiba Corp | Gas turbine |
JPS60111004A (en) * | 1983-11-21 | 1985-06-17 | Hitachi Ltd | Casing of axial flow fluid machine |
JPS60187302U (en) * | 1984-05-22 | 1985-12-12 | 株式会社東芝 | steam turbine |
EP0924388A2 (en) * | 1997-12-19 | 1999-06-23 | BMW Rolls-Royce GmbH | System to keep the blade tip clearance in a gas turbine constant |
EP1686243A2 (en) * | 2005-01-26 | 2006-08-02 | General Electric Company | Turbine engine stator including shape memory alloy and blade clearance control |
DE102005048982A1 (en) * | 2005-10-13 | 2007-04-19 | Mtu Aero Engines Gmbh | Apparatus and method for axially displacing a turbine rotor |
US20080131270A1 (en) * | 2006-12-04 | 2008-06-05 | Siemens Power Generation, Inc. | Blade clearance system for a turbine engine |
-
2009
- 2009-03-31 EP EP09004782A patent/EP2239423A1/en not_active Withdrawn
-
2010
- 2010-03-26 WO PCT/EP2010/053999 patent/WO2010112421A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3146992A (en) * | 1962-12-10 | 1964-09-01 | Gen Electric | Turbine shroud support structure |
US4023919A (en) * | 1974-12-19 | 1977-05-17 | General Electric Company | Thermal actuated valve for clearance control |
DE2728190A1 (en) * | 1976-07-05 | 1978-01-19 | Stal Laval Turbin Ab | GAS TURBINE |
JPS57195803A (en) * | 1981-05-27 | 1982-12-01 | Hitachi Ltd | Adjusting device of tip clearance in turbo fluidic machine |
JPS58206807A (en) * | 1982-05-28 | 1983-12-02 | Hitachi Ltd | Control device for clearance at extremity end of rotary vane of axial flow turbine |
JPS5915605A (en) * | 1982-07-15 | 1984-01-26 | Toshiba Corp | Gas turbine |
JPS60111004A (en) * | 1983-11-21 | 1985-06-17 | Hitachi Ltd | Casing of axial flow fluid machine |
JPS60187302U (en) * | 1984-05-22 | 1985-12-12 | 株式会社東芝 | steam turbine |
EP0924388A2 (en) * | 1997-12-19 | 1999-06-23 | BMW Rolls-Royce GmbH | System to keep the blade tip clearance in a gas turbine constant |
EP1686243A2 (en) * | 2005-01-26 | 2006-08-02 | General Electric Company | Turbine engine stator including shape memory alloy and blade clearance control |
DE102005048982A1 (en) * | 2005-10-13 | 2007-04-19 | Mtu Aero Engines Gmbh | Apparatus and method for axially displacing a turbine rotor |
US20080131270A1 (en) * | 2006-12-04 | 2008-06-05 | Siemens Power Generation, Inc. | Blade clearance system for a turbine engine |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2466075A3 (en) * | 2010-12-16 | 2013-06-26 | Rolls-Royce plc | Clearance control arrangement for a gas turbine engine |
US8894358B2 (en) | 2010-12-16 | 2014-11-25 | Rolls-Royce Plc | Clearance control arrangement |
EP2549065A1 (en) * | 2011-07-18 | 2013-01-23 | General Electric Company | System and method for operating a turbine |
US8939709B2 (en) | 2011-07-18 | 2015-01-27 | General Electric Company | Clearance control for a turbine |
EP2851515A1 (en) * | 2013-09-24 | 2015-03-25 | Siemens Aktiengesellschaft | Assembly for attaching a turbine blade |
US12049828B2 (en) | 2022-07-12 | 2024-07-30 | General Electric Company | Active clearance control of fan blade tip closure using a variable sleeve system |
US12116896B1 (en) | 2023-03-24 | 2024-10-15 | General Electric Company | Seal support assembly for a turbine engine |
Also Published As
Publication number | Publication date |
---|---|
WO2010112421A1 (en) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2239423A1 (en) | Axial turbomachine with passive blade tip gap control | |
DE60318792T2 (en) | Bleed air housing for a compressor | |
EP2414641B1 (en) | Axial turbo engine rotor with sealing disc | |
EP1131537B1 (en) | method for operating a turbo-machine | |
DE2517044C2 (en) | Blade tip seal | |
EP1177367B1 (en) | Seal for sealing a gap, in particular in a turbine, and a turbine | |
DE3941174A1 (en) | TOP GAME SETTING ON TURBO MACHINES | |
EP2411632B1 (en) | Axial turbomachine with axially displaceable vane carrier | |
EP3153667B1 (en) | Securing device for axial securing of a moving blade and rotor device with such a securing device | |
EP2492449A1 (en) | Sealing arrangement for a thermal machine | |
EP2527600A1 (en) | Turbo machine | |
DE102014219552A1 (en) | Guide vane adjusting a gas turbine | |
EP1947293A1 (en) | Guide vane for a gas turbine | |
WO2000057033A1 (en) | Covering element and arrangement with a covering element and a support structure | |
DE19839592A1 (en) | Fluid machine with cooled rotor shaft | |
EP2802748B1 (en) | Turbomachine with bolt cooling | |
EP2611992B1 (en) | Housing structure of a turbomachine | |
WO2009109430A1 (en) | Sealing arrangement and gas turbine | |
EP2206885A1 (en) | Gas turbine | |
EP2347101B1 (en) | Gas turbine and corresponding gas or steam turbine plant | |
EP2358979B1 (en) | Axial compressor for a gas turbine having passive radial gap control | |
EP2206889A1 (en) | Method of reducing tip clearance using a rotor displacement device and related gas turbine | |
EP1731715A1 (en) | Transition between a combustion chamber and a turbine | |
EP1783325B1 (en) | Fastening arrangement of a pipe on a peripheral surface | |
EP2218882A1 (en) | Stator vane carrier system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
AKY | No designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20110608 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110414 |