JPS60111004A - Casing of axial flow fluid machine - Google Patents

Casing of axial flow fluid machine

Info

Publication number
JPS60111004A
JPS60111004A JP21773583A JP21773583A JPS60111004A JP S60111004 A JPS60111004 A JP S60111004A JP 21773583 A JP21773583 A JP 21773583A JP 21773583 A JP21773583 A JP 21773583A JP S60111004 A JPS60111004 A JP S60111004A
Authority
JP
Japan
Prior art keywords
casing
axial flow
shape
memory alloy
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21773583A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kato
泰弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21773583A priority Critical patent/JPS60111004A/en
Publication of JPS60111004A publication Critical patent/JPS60111004A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/505Shape memory behaviour

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To enable a clearance in the end of a moving blade to be adjusted, by providing a soft metallic material in the internal surface, oppositely faced to the end of the moving blade, of a casing through a shape-memory alloy of coil spring shape. CONSTITUTION:A casing 1 provides in its recessed groove 1a, opposed to the end of a moving blade 3, a soft metallic material 2 through a shape-memory alloy 5 of coil spring shape. A clearance in the end of the moving blade 3 can be adjusted in accordance with an operating condition because the shape-memory alloy 5 is extended and contracted by the temperature of fluid.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、軸流圧縮機、軸流タービン等の軸流形流体機
械のケーシングに係るもので、軸流形流体機械の起動時
と定常運転時における動翼とケーシングの間隙を変える
ようにしたものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a casing for an axial flow fluid machine such as an axial flow compressor or an axial flow turbine. The gap between the rotor blade and the casing is changed at different times.

〔発明の背景〕[Background of the invention]

近年省エネルギ、省資源の観点から軸流形流体機械の高
効率化が望まれている。高効率化達成のためには、効率
低下の原因となる損失を可能な限する損失の一つに、第
1図に示すような動翼3の先端とケーシング1の内面間
の間隙δ。からの流体漏れ損失がある。一般に、この間
隙δ。が小さいほど流体の漏れ損失が減少するため、軸
流形流体機械の効率が向上することが知られている。こ
のため、実際の軸流圧縮機等においては1間隙δQを小
さくするために、ケーシング1の内面に軟質金属材料2
を埋設し、ロータ軸振動や動翼振動等のために万が一動
翼3がケーシング1に接触した場合でも、動翼3が損傷
しないようにしている。この方法での設定間隙量δ。は
、動翼3の遠心力による伸び、およびケrシング1の温
度上昇による伸びの範囲内で変化すあのみである。従っ
て、設定間隙量δ。はロータ軸振動や動翼振動の大きい
起動時や非設計真に合せて決定されることが多い。その
ため、軸振動や翼振動の小さい定常運転時(設計点)に
おいては7間隙量δ。は過大な状態で運転されるため、
効率を低下させるという欠点がある。
In recent years, higher efficiency of axial flow type fluid machines has been desired from the viewpoint of energy saving and resource saving. In order to achieve high efficiency, one of the losses that cause efficiency reduction is to be minimized by the gap δ between the tip of the rotor blade 3 and the inner surface of the casing 1 as shown in FIG. There is fluid leakage loss from. Generally, this gap δ. It is known that the smaller the , the smaller the fluid leakage loss, which improves the efficiency of the axial flow type fluid machine. For this reason, in actual axial flow compressors, etc., in order to reduce the gap δQ, a soft metal material is placed on the inner surface of the casing 1.
is buried so that even if the rotor blade 3 comes into contact with the casing 1 due to rotor shaft vibration, rotor blade vibration, etc., the rotor blade 3 will not be damaged. The set gap amount δ in this method. is the only value that changes within the range of the elongation of the rotor blade 3 due to centrifugal force and the elongation of the kercing 1 due to temperature rise. Therefore, the set gap amount δ. is often determined during startup when rotor shaft vibration or rotor blade vibration is large, or in accordance with non-design truths. Therefore, during steady operation (design point) with small shaft vibrations and blade vibrations, the clearance amount δ is 7. is operated under excessive conditions,
It has the disadvantage of reducing efficiency.

本発明は上述の実状にかんがみ成されたもので、起動時
や非設計点においては動翼先端とケーシングとの隙間量
δ。が最大であり、定常運転時には前記隙間量δ。が最
小となるように変化させることにより、信頼性が高く、
しかも効率の良い軸流形流体機械のケーシングを得るこ
とを目的とするものである。
The present invention was created in consideration of the above-mentioned actual situation, and the clearance amount δ between the tip of the rotor blade and the casing at startup or at a non-design point. is the maximum, and the clearance amount δ during steady operation. By changing it so that it is minimum, reliability is high,
Moreover, the object is to obtain a casing for an efficient axial flow type fluid machine.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、動翼先端とケーシングと
の隙間量δ。を変化させるために、形状記憶金属の形状
変化による復元力を利点した点にある。Niと1゛iの
合金やCu、AQ、Znの合金では、形状記憶の性質が
あることが知られている。これらの金属では、外力を加
えて変形させても、ある特定の温度(フルテンサイ1〜
変態温度)以上に加熱すると変形前の形状に戻る性質が
ある。
The feature of the present invention is the clearance amount δ between the rotor blade tip and the casing. The advantage is that the restoring force due to the shape change of the shape memory metal is used to change the shape of the metal. It is known that alloys of Ni and 1'i and alloys of Cu, AQ, and Zn have shape memory properties. Even if these metals are deformed by applying an external force, they will only reach a certain temperature (1 to 1 full tensile strength).
When heated above the transformation temperature, it has the property of returning to its pre-deformed shape.

本発明は上記形状記憶合金を変態点温度より高温の状態
でコイル状に成形し、この形状記憶合金製コイルバネを
介して、軟質金属材をを動翼先端に対向するケーシング
内面に設けである。前記形状記憶合金製コイルバネを軸
流圧縮機内の流体温度上昇を利用することにより形状を
復元させれば、動翼先端とケーシングとの間隙量δ。を
変化させることができる。
In the present invention, the above shape memory alloy is formed into a coil shape at a temperature higher than the transformation temperature, and a soft metal material is provided on the inner surface of the casing facing the tip of the rotor blade via the shape memory alloy coil spring. If the shape memory alloy coil spring is restored to its shape by utilizing the temperature rise of the fluid in the axial flow compressor, the gap amount δ between the tip of the rotor blade and the casing. can be changed.

(発明の実施例〕 以下、本発明の一実施例を第2図〜第6図により説明す
る。各図において、第1図と同一符号を付した部品は同
一部品である。第2図は、軸流圧縮機の起動時における
各部品の相対位置関係を示す図、第3図及び第4図には
、定常運転時における各部品の相対位置関係を示す図で
ある。第5図及び第6図は、それぞれ起動時及び定常時
の軟質金属材料の合せ面の状態を示す図である。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be explained with reference to Figs. 2 to 6. In each figure, parts given the same reference numerals as in Fig. 1 are the same parts. , FIGS. 3 and 4 are diagrams showing the relative positional relationship of each part during startup of the axial flow compressor, and FIGS. 3 and 4 are diagrams showing the relative positional relationship of each part during steady operation. FIGS. FIG. 6 is a diagram showing the state of the mating surfaces of the soft metal materials at startup and steady state, respectively.

各回において、3はロータ4に取付けられた動翼で、前
記動翼3の先端に対向するケーシング内面には凹溝1a
が設けられていて、この凹溝1aに複数個設けられたコ
イルバネ状の形状記憶合金5を介して軟質金属材料2が
設けられである。前記形状記憶合金5は、予め設計流体
温度状態で伸びたコイルバネ状に成形されている。従っ
て、前記コイルバネ状形状記憶合金は、設計流体温度以
下の状態では外力により伸縮可能となり、設計流体温度
状態では、予め成形した伸びた状態となる。
In each cycle, reference numeral 3 denotes a rotor blade attached to the rotor 4, and the inner surface of the casing facing the tip of the rotor blade 3 has a concave groove 1a.
is provided, and a soft metal material 2 is provided through a plurality of coil spring-like shape memory alloys 5 provided in this groove 1a. The shape memory alloy 5 is previously formed into a coiled spring shape that is expanded at a designed fluid temperature state. Therefore, the coil spring-like shape memory alloy can be expanded and contracted by an external force when the temperature is below the design fluid temperature, and is in a preformed and stretched state when the fluid temperature is the design fluid temperature.

軟質金属材料2は第4図に示すように2分割に構成され
ており、その合せ面には通常の金属で成形されたコイル
バネ6が設置しである。前記コイルバネ6は2分割され
た軟質金属材料2の上半分と下半分を互いに反発させる
ように作用している。
The soft metal material 2 is divided into two parts as shown in FIG. 4, and a coil spring 6 made of ordinary metal is installed on the mating surfaces thereof. The coil spring 6 acts to repel the upper and lower halves of the soft metal material 2, which are divided into two, from each other.

次に上記実施例の作用を説明する。軸流圧縮機の起動時
においては、流体温度は設計流体温度以下であるため、
コイル状形状記憶合金5は通常金属から成るコイルバネ
の性質を持つ。したがって、前記コイルバネ6の反発力
により、コイル状形状記憶合金は第2図に示すように縮
んだ状態となり、間隙量δ、は動翼3と軟質金属材料2
との接触の危険がない大きな初期設定状態を保つ。
Next, the operation of the above embodiment will be explained. At the time of starting the axial flow compressor, the fluid temperature is below the design fluid temperature, so
The coiled shape memory alloy 5 usually has the properties of a coiled spring made of metal. Therefore, due to the repulsive force of the coil spring 6, the coiled shape memory alloy is brought into a contracted state as shown in FIG.
Keep large initial settings without risk of contact with.

次に、軸流圧縮機が定常運転になると、流体温度は設計
値となる。前記した如く、コイルバネ状形状記憶合金5
は設計流体温度で伸びた状態になの時、通常金属から成
るコイルバネ6は第6図に示すように、形状記憶合金の
復元力により縮んだ状態に変形する。したがって、軟質
金属材料2は動翼3に近づき、間隙量δ2を最小に変化
させることができる。
Next, when the axial flow compressor enters steady operation, the fluid temperature becomes the design value. As mentioned above, the coil spring shape memory alloy 5
When the coil spring 6 is in an extended state at the design fluid temperature, the coil spring 6, which is usually made of metal, is deformed into a contracted state due to the restoring force of the shape memory alloy, as shown in FIG. Therefore, the soft metal material 2 approaches the rotor blade 3, and the gap amount δ2 can be changed to a minimum.

本実施例によれば、比較的ロータ軸振動、動翼振動の大
きい起動時や、非設計点では動翼3の先端とケーシング
1との間の間隙量を大きく保ち、比較的軸振動の小さい
定常運転時(設計点)においては、前記間隙量を小さく
することができる。
According to this embodiment, the amount of gap between the tip of the rotor blade 3 and the casing 1 is kept large during startup, where the rotor shaft vibration and rotor blade vibration are relatively large, and at non-design points, and the shaft vibration is relatively small. During steady operation (design point), the gap amount can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の軸流形流体機械のケーシングは以上説明したよ
うに、動翼先端に対向するケーシング内面にコイルバネ
状の形状記憶合金を介して、軟質金属材料を設けるよう
に構成されているため、動翼先端とケーシングとの間隙
量を、起動時には大きく、定常運転時には最小にするこ
とができ、従って信頼性が高く、しかも効率の良い軸流
流体機械のケーシングを提供することができるという効
IIt礒て東ス
As explained above, the casing of the axial flow fluid machine of the present invention is configured so that a soft metal material is provided on the inner surface of the casing facing the tips of the rotor blades via a coil spring-like shape memory alloy. The advantage is that the gap between the blade tip and the casing can be made large at startup and minimized during steady operation, thereby providing a highly reliable and efficient casing for an axial flow fluid machine. East East

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の軸流形流体機械のケーシングを示ず要部
の縦断面図、第2図〜第6図は本発明の実施例を示す図
で、第2図および第3図はその要部を示す縦断面図(第
2図は起動時、第3図は定常運転時の状態を示す)、第
4図は第3図の■−IV線矢視図、第5図および第6図
は第4図におけるA部を拡大して示す図で、A部の動作
の説明図である。 1・・・ケーシング、2・・軟質金属材料、3・・動翼
、5・・コイルバネ状形状記憶合金。 第 1 図 第 2 口 第 3 口 第 4 図
Fig. 1 is a vertical sectional view of the main parts of a conventional axial flow type fluid machine without showing the casing, Figs. 2 to 6 are views showing embodiments of the present invention, and Figs. A vertical sectional view showing the main parts (Figure 2 shows the state at startup, Figure 3 shows the state during steady operation), Figure 4 is a view taken along the ■-IV line in Figure 3, Figures 5 and 6 The figure is an enlarged view of section A in FIG. 4, and is an explanatory diagram of the operation of section A. 1... Casing, 2... Soft metal material, 3... Moving blade, 5... Coil spring-like shape memory alloy. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 】、ケーシングにより構成される環状流路内に動翼を配
置して回転するロータから成る軸流形流体機械において
、前記動翼先端に対向するケーシング内面に、コイルバ
ネ状に形成した形状記憶合金を介して、軟質金属材料を
設けたことを特徴とする軸流形流体機械のケーシング。
] In an axial flow fluid machine consisting of a rotating rotor with rotor blades arranged in an annular flow path formed by a casing, a shape memory alloy formed in the shape of a coil spring is placed on the inner surface of the casing facing the tip of the rotor blade. A casing for an axial flow type fluid machine, characterized in that a soft metal material is provided through the casing.
JP21773583A 1983-11-21 1983-11-21 Casing of axial flow fluid machine Pending JPS60111004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21773583A JPS60111004A (en) 1983-11-21 1983-11-21 Casing of axial flow fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21773583A JPS60111004A (en) 1983-11-21 1983-11-21 Casing of axial flow fluid machine

Publications (1)

Publication Number Publication Date
JPS60111004A true JPS60111004A (en) 1985-06-17

Family

ID=16708925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21773583A Pending JPS60111004A (en) 1983-11-21 1983-11-21 Casing of axial flow fluid machine

Country Status (1)

Country Link
JP (1) JPS60111004A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171805A (en) * 1985-01-24 1986-08-02 ソシエテ ウーロペンヌ ド プロピユルシオン Abrasive turbine ring
WO1999045240A1 (en) * 1998-03-02 1999-09-10 Mitsubishi Heavy Industries, Ltd. Seal ring for steam turbine
US6572114B1 (en) 1997-09-22 2003-06-03 Mitsubishi Heavy Industries, Ltd. Seal ring for steam turbine
EP1876327A2 (en) * 2006-07-06 2008-01-09 United Technologies Corporation Seal for turbine engine
WO2010112421A1 (en) * 2009-03-31 2010-10-07 Siemens Aktiengesellschaft Axial turbomachine with passive gap control
EP1686243A3 (en) * 2005-01-26 2012-05-16 General Electric Company Turbine engine stator including shape memory alloy and blade clearance control
EP2492449A1 (en) * 2011-02-28 2012-08-29 Alstom Technology Ltd Sealing arrangement for a thermal machine
EP2527600A1 (en) * 2011-05-24 2012-11-28 Alstom Technology Ltd Turbo machine
EP2549065A1 (en) * 2011-07-18 2013-01-23 General Electric Company System and method for operating a turbine
RU2490474C1 (en) * 2012-04-16 2013-08-20 Николай Борисович Болотин Turbine of gas-turbine engine
RU2498085C1 (en) * 2012-04-04 2013-11-10 Николай Борисович Болотин Gas-turbine engine
RU2499891C1 (en) * 2012-04-12 2013-11-27 Николай Борисович Болотин Gas turbine engine turbine
RU2499892C1 (en) * 2012-04-24 2013-11-27 Николай Борисович Болотин Gas turbine engine turbine
RU2506434C2 (en) * 2012-04-04 2014-02-10 Николай Борисович Болотин Gas turbine engine
RU2506433C2 (en) * 2012-04-04 2014-02-10 Николай Борисович Болотин Gas turbine engine
CN104314621A (en) * 2014-10-08 2015-01-28 南京航空航天大学 Fast responding control device of turbine leaf apex gap control system based on shape memory alloy
RU2649167C1 (en) * 2017-02-17 2018-03-30 Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") Radial clearance regulation system
EP3348795A1 (en) * 2017-01-13 2018-07-18 United Technologies Corporation Actuation control systems, and corresponding turbine section
EP3348794A1 (en) * 2017-01-13 2018-07-18 United Technologies Corporation Actuation control systems, and corresponding turbine section
CN109737078A (en) * 2018-12-29 2019-05-10 联想(北京)有限公司 Fan and electronic equipment

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171805A (en) * 1985-01-24 1986-08-02 ソシエテ ウーロペンヌ ド プロピユルシオン Abrasive turbine ring
US6572114B1 (en) 1997-09-22 2003-06-03 Mitsubishi Heavy Industries, Ltd. Seal ring for steam turbine
WO1999045240A1 (en) * 1998-03-02 1999-09-10 Mitsubishi Heavy Industries, Ltd. Seal ring for steam turbine
CN1116500C (en) * 1998-03-02 2003-07-30 三菱重工业株式会社 Seal ring for steam turbine
EP1686243A3 (en) * 2005-01-26 2012-05-16 General Electric Company Turbine engine stator including shape memory alloy and blade clearance control
EP1876327A2 (en) * 2006-07-06 2008-01-09 United Technologies Corporation Seal for turbine engine
EP1876327A3 (en) * 2006-07-06 2011-03-09 United Technologies Corporation Seal for turbine engine
WO2010112421A1 (en) * 2009-03-31 2010-10-07 Siemens Aktiengesellschaft Axial turbomachine with passive gap control
EP2239423A1 (en) * 2009-03-31 2010-10-13 Siemens Aktiengesellschaft Axial turbomachine with passive blade tip gap control
US9255488B2 (en) 2011-02-28 2016-02-09 Alstom Technology Ltd. Sealing arrangement for a thermal machine
CH704526A1 (en) * 2011-02-28 2012-08-31 Alstom Technology Ltd Seal assembly for a thermal machine.
EP2492449A1 (en) * 2011-02-28 2012-08-29 Alstom Technology Ltd Sealing arrangement for a thermal machine
US9169741B2 (en) 2011-05-24 2015-10-27 Alstom Technology Ltd Turbomachine clearance control configuration using a shape memory alloy or a bimetal
EP2527600A1 (en) * 2011-05-24 2012-11-28 Alstom Technology Ltd Turbo machine
CH704995A1 (en) * 2011-05-24 2012-11-30 Alstom Technology Ltd Turbomachinery.
JP2012246923A (en) * 2011-05-24 2012-12-13 Alstom Technology Ltd Turbomachine
EP2549065A1 (en) * 2011-07-18 2013-01-23 General Electric Company System and method for operating a turbine
US8939709B2 (en) 2011-07-18 2015-01-27 General Electric Company Clearance control for a turbine
RU2498085C1 (en) * 2012-04-04 2013-11-10 Николай Борисович Болотин Gas-turbine engine
RU2506434C2 (en) * 2012-04-04 2014-02-10 Николай Борисович Болотин Gas turbine engine
RU2506433C2 (en) * 2012-04-04 2014-02-10 Николай Борисович Болотин Gas turbine engine
RU2499891C1 (en) * 2012-04-12 2013-11-27 Николай Борисович Болотин Gas turbine engine turbine
RU2490474C1 (en) * 2012-04-16 2013-08-20 Николай Борисович Болотин Turbine of gas-turbine engine
RU2499892C1 (en) * 2012-04-24 2013-11-27 Николай Борисович Болотин Gas turbine engine turbine
CN104314621A (en) * 2014-10-08 2015-01-28 南京航空航天大学 Fast responding control device of turbine leaf apex gap control system based on shape memory alloy
CN104314621B (en) * 2014-10-08 2016-04-27 南京航空航天大学 A kind of fast-response control device of the turbine blade-tip gap control system based on memory alloy
EP3348795A1 (en) * 2017-01-13 2018-07-18 United Technologies Corporation Actuation control systems, and corresponding turbine section
EP3348794A1 (en) * 2017-01-13 2018-07-18 United Technologies Corporation Actuation control systems, and corresponding turbine section
US10415418B2 (en) 2017-01-13 2019-09-17 United Technologies Corporation System for modulating turbine blade tip clearance
US10415419B2 (en) 2017-01-13 2019-09-17 United Technologies Corporation System for modulating turbine blade tip clearance
RU2649167C1 (en) * 2017-02-17 2018-03-30 Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") Radial clearance regulation system
CN109737078A (en) * 2018-12-29 2019-05-10 联想(北京)有限公司 Fan and electronic equipment

Similar Documents

Publication Publication Date Title
JPS60111004A (en) Casing of axial flow fluid machine
US7946808B2 (en) Seal between rotor blade platforms and stator vane platforms, a rotor blade and a stator vane
US7367776B2 (en) Turbine engine stator including shape memory alloy and clearance control method
US6139261A (en) Bushing assembly with removable wear sleeve
JP3987899B2 (en) Turbine blade with pre-segmented squealer tip
JP5314851B2 (en) Rotor blade for the second phase of the compressor
US7614847B2 (en) Pattern for the surface of a turbine shroud
JP5738215B2 (en) Sealing equipment used in thermal machines
JP6124787B2 (en) Lightweight shroud for rotor blades
JP2007255420A (en) Impeller for rotary machine and method of manufacturing impeller
JP2004132372A (en) Vane cluster
US8763248B2 (en) Method for manufacturing aircraft engine cases with bosses
US20080050233A1 (en) Turbo Machine
JP2008223660A (en) Shaft sealing device and turbomachinery
US11591932B2 (en) Shape memory alloy reinforced casing
JPS58206807A (en) Control device for clearance at extremity end of rotary vane of axial flow turbine
US6632069B1 (en) Step of pressure of the steam and gas turbine with universal belt
US5823743A (en) Rotor assembly for use in a turbomachine
JP2013534298A (en) Low flexure bimetal rotor sealant
JP2008075510A (en) Shaft sealing device
JP2003254006A (en) Seal device and steam turbine
CN111386384B (en) Moving blade of turbine and manufacturing method thereof
US6678953B2 (en) Method for making damped combustion cowl structure
JPS61212601A (en) Vane wheel installation structure for rotary machine
JPH07139306A (en) Labyrinth seal