EP0984138B1 - Strömungsmaschine mit gekühlter Rotorwelle - Google Patents
Strömungsmaschine mit gekühlter Rotorwelle Download PDFInfo
- Publication number
- EP0984138B1 EP0984138B1 EP99810710A EP99810710A EP0984138B1 EP 0984138 B1 EP0984138 B1 EP 0984138B1 EP 99810710 A EP99810710 A EP 99810710A EP 99810710 A EP99810710 A EP 99810710A EP 0984138 B1 EP0984138 B1 EP 0984138B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- vanes
- turbomachine according
- rotor shaft
- cooling air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/16—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/10—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
Definitions
- the invention relates to a turbomachine, in particular a compressor of a Gas turbine, according to the preamble of claim 1.
- a first approach is to provide so-called heat shields, the prevent direct contact of the heated flow medium with the rotor shaft and thus their warming within the limits considered admissible to hold.
- the disadvantage here is the increase in manufacturing costs and Complexity of the turbomachine due to the additional components.
- EP 0 790 390 discloses a cooling device with which the rotor shaft at most indirectly and could be cooled effectively.
- the invention seeks to avoid the disadvantages described. She is the one
- the object of the invention is to specify a turbomachine of the type mentioned at the outset, which allows to cool the rotor shaft locally with high efficiency, so that the life expectancy of the rotor shaft even at extremely high thermal Burden is not appreciably affected.
- cooling vanes are formed as cooling vanes, which from a cooling air supply are fed.
- the cooling vanes are configured to be in substantially Radial direction of air ducts are interspersed and in the area the blade tips have blower openings aligned with the rotor shaft are.
- One of the main advantages of the invention is the fact that by the direct Actuation of the rotor shaft with cooling air optimizes the achievable cooling effect can be. Even a comparatively small amount of cooling air is sufficient to keep the rotor shaft locally at a low temperature level. The latter effect can be used in various ways.
- the life of the blading increases due to the cooling air caused lower temperature levels. This does not just affect the Cooling blades, which are flowed through by cooling air, but also the downstream, not cooled blade rings.
- the exiting at the blade tips cooling air causes an improvement the fluidic properties.
- the boundary layer Kinetic energy is supplied locally by the cooling air flow and influences it positive by that.
- the exiting cooling air flow at appropriate Design or arrangement of the exhaust openings a flow around the vanes in the gap between the blade tips and the rotor shaft. Leakage losses in this area are thus almost completely avoided.
- the air ducts can be the vibration behavior the blades vary within wide limits. This makes it possible to tune the natural frequency and flutter characteristics within limits so that critical vibration states no longer occur.
- the air ducts can therefore usually be performed as simple holes that the each guide vane radially fully enforce or as in the axial direction tilted inclined from a central air duct.
- the cooling device has the additional advantage that it can be controlled very easily and precisely.
- the cooling air can be immediate upstream or downstream compressor stages are removed needs however, still a conditioning to the effect that they with higher pressure and lower temperature is fed than the local state variables the main flow corresponds.
- a cooling air flow from a higher Compressor is removed, it must be cooled. If, on the contrary a cooling air flow is taken from a lower compressor stage, this must first be further compressed externally and then cooled.
- the cooling concept according to the invention can also be used to particular advantage with guide wheels be applied with a shroud.
- the shroud allows a even more even education of the cooling film in the circumferential direction, since the exiting cooling air partial flows are not detected directly from the main flow and be carried away.
- cooling blades are in radial Directed displaced and are against the action of return springs moved out of its initial position by the pressure of the cooling air. This makes it possible to control the compressor efficiency and in particular the Considerably increase the pumping limit. This effect is in modern high pressure compressor stages clearly pronounced, because here for safety reasons because of sluggish response large slit widths must be provided to to reliably prevent a run-in of the blade tips in the rotor shaft.
- the return springs are a safety measure in the event that the Cooling air supply should be interrupted.
- the cooling blades return immediately back to their original position and thus increase the gap between the blade tips and the rotor, so this in the case of a then thermally induced strong radial expansion not in contact with the Shovel tips can come.
- the blade root of the cooling blades is provided with a piston-shaped section, in a correspondingly shaped cylindrical housing section is performed sealed to form a working space.
- the workroom is standing in connection with the cooling air supply, so that when exposed to Cooling air in the manner of a pneumatic cylinder, the cooling blades are pushed out can.
- the air ducts of the cooling air blades are in communicating Connection with the respective working space, whereby the air flow is particularly simply designed.
- the air flow fed by the cooling air supply first enters the working space and causes the radial displacement the shovel. From the working space of the cooling air flow now occurs directly in the air ducts and leaves the blade in the blade tip through the bubble openings.
- the tuning of the geometry of the air-conveying Channel sections and the pressure conditions in the compressed air supply is such that the air jets emerging from the blow-out openings is at high speed own and at high speed on the opposite impinge arranged rotor shaft.
- the resulting impact cooling ensures an optimal heat transfer and thus an optimal cooling effect for the rotor shaft.
- two adjacent cooling blades are fixed to each other connected and positively coupled slidably mounted. Simplified further the structural design of the storage, without the cooling effect disadvantageous to influence.
- the air ducts are preferred as bores, in particular as radial Through holes performed, resulting in minimal production costs to let hold.
- the cooling blades each have a plurality, in particular parallel to each other extending air ducts on, so that at each of the cooling blades can form several partial cooling air jets. This allows the cooling of a Axial section of the rotor shaft corresponding to the axial width of the respective Stator.
- rotor cooling on which the invention is based results in particular from Figs. 1 and 2. It is a typical compressor stage of a high pressure compressor with a rotor and a stator, symbolized by a bucket 11 and vane 12 shown. The blades 11 are in itself known manner to a rotor shaft 18 which rotates in the direction of rotation D. is drivable.
- the blades 11, the vanes 12 are connected downstream, which in known Way on a housing portion 17 - and thus fixed - attached are.
- the vanes 12 are formed as cooling vanes. They point to this Purpose air ducts 13, which are continuous in the radial direction within extend the cooling blade 12 and in the region of the blade tip 15 as Outlet openings 14 open.
- the blow-out openings 14 are on the rotor shaft 18 aligned.
- the air ducts 13 are in a manner not shown with a Cooling air supply connected, which supplies cooling air.
- the pressure is like this chosen that cooling air jets K at high speed from the exhaust openings 14 emerge and impinge on the immediately adjacent rotor shaft 18.
- the cooling effect achieved by this is enormous, since the heat transfer coefficient - And thus the transferable cooling energy - is very high.
- the cooling air ducts 13 do not have to inevitably have a circular cross-section. So, for example the cross-sectional shape optimally to the profile cross-sectional shape of the guide vane 12th be adapted so that realize a high and optimally distributed air flow leaves.
- further advantages result from the fact that the guide vane 12 or the surface around which it flows, is cooled from the inside. With it reduced also the thermal stress of the vane 12 with the so associated benefits of prolonged life or the ability to already allow a higher process temperature at the time of design.
- FIGS. 3 to 5 show different application variants in the concrete implementation the cooling concept of the invention.
- a rotor shaft 38 has a circumferential groove in the axial section to be cooled 39, in which a cooling blade 32 projects radially with its blade tip 35. Again, blow-out openings 34 are provided by the cooling air jets K escape.
- This configuration may have u. a. the advantage that the exiting cooling air K is not immediate is detected by the main flow H and entrained. This is the result local cooling effect more pronounced than, for example, in the above-described Configuration.
- FIG. 4 The embodiment shown in Fig. 4 has cooling blades 42, which with a Shroud 46 in the region of the blade tips 45 are interconnected. Again, blower openings 44 are arranged in the area of the blade tips 45, exit through the cooling air jets K. These meet directly opposite each other on a rotor shaft 48 and cool them locally. Between the Shroud 46 and the rotor 48 is a circumferentially continuous annular gap 49 exists, so that in this case, a certain retention effect for the exiting cooling air jets K is given.
- cooling vanes 52 are present, which Blade tips 55 which extend radially in the direction of a rotor shaft 58 in a funnel shape.
- Blow-out openings 54 are provided, ejected by the cooling air jets K. become.
- the funnel shape of the blade tips 55 allows the admission the rotor shaft 58 along a larger peripheral portion than at radial straight ended blades would be possible.
- FIG. 6 to 8 is a further increase in Pumping limit and a further increase in the compressor efficiency thereby possible that the radial gap of the stator set during operation, d. H. can be downsized.
- cooling vanes have 62 a blade root 67 in the manner of a piston-shaped radial section on, in a correspondingly shaped cylindrical housing portion 78 is slidably mounted. It creates a working space 77, in a supply channel 76 opens. Through the supply channel 76 is off the cooling air supply cooling air, not shown here, the working space 77th fed.
- the blade root 67 is provided with sealing rings 73, so that in this way the working space 77 sealed relative to the cylindrical housing portion 78 is.
- a displacement takes place the cooling blade 62 on the rotor shaft 68 back.
- cooling air occurs from the working space 77 in air ducts 63 and exits through Blow-out openings 64.
- the displacement movement of the cooling blade 62 takes place against the effect of return springs 74, the between the blade root 67 and the housing portion 78 act in the region of the working space 77.
- the return springs 74 on the one hand have the effect that they the cooling blade 62 when turned off Pull back cooling air supply and in this way a gap 70 between the blade tips 65 and the rotor shaft 68 is set so broad is dimensioned that a running-in of the blade tip 65 in the rotor shaft 68 safely is prevented.
- the cooling air supply is switched on Gap 70 reduced so far, so that by the ejected cooling air flows K a Air cushion is formed in the gap 70, which not only cools the rotor shaft 68, but also a flow around the cooling blade 62 in the region of the gap 70 reliably prevented.
- the compressor efficiency and the surge limit can be thereby optimally increase.
- the width of the gap 70 can, with appropriate control of the cooling air supply be made variably adjustable. A particularly simple constructive But solution can also be achieved in that one is not closer illustrated stop is provided, the displacement of the cooling blade 62 limited and thus dictates the minimum width of the gap 70.
- each of the vanes 62 of a vane ring is individually slidable is stored.
- This configuration includes an additional safety aspect in that in the case of a local disturbance with a single cooling blade 62 - for example, with obstruction of the air duct 63 - the affected Cooling blade 62 returns to its original position.
- One in consequence of the missing internal cooling of the cooling pad 62 caused thermal expansion in radial Direction does not lead to a run-in of the blade tip 65 in the rotor shaft 68th
- FIG. 8 shows a tandem arrangement of two cooling blades 82 on a common blade carrier 87.
- a shroud 86 is provided in the range of blade tips 85.
- cooling air jets K ejected from the cooling vanes 82 via discharge openings 84 and bounce on a rotor shaft 88.
- Cooling vanes 82 configured jointly radially displaceable.
- a return spring 94 acts directly on the blade carrier 87 a.
- the cooling air K each of the two cooling blades 82 is supplied separately, wherein as a length compensation a respective bellows 95 between a supply channel 96 and the blade carrier 87 is arranged.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
- Fig. 1
- Verdichterstufe im Teillängsschnitt;
- Fig. 2
- Schnitt A-A gem. Fig. 1 in vergrößerter Darstellung;
- Fig. 3
- erste Ausführungsvariante, Teillängsschnitt;
- Fig. 4
- zweite Ausführungsvariante, Teilansicht im Axialschnitt;
- Fig. 5
- dritte Ausführungsvariante, Teilansicht im Axialschnitt;
- Fig. 6
- vierte Ausführungsvariante im Teillängsschnitt mit einstellbarer Spaltbreite;
- Fig. 7
- Ansicht von links gem. Fig. 6;
- Fig. 8
- weitere Ausführungsvariante mit einstellbarer Spaltbreite, Teilansicht im Axialschnitt.
- 11
- Laufschaufel
- 12
- Kühlschaufel, Leitschaufel
- 13
- Luftführungskanal
- 14
- Ausblaseöffnung
- 15
- Schaufelspitze
- 17
- Gehäuseabschnitt
- 18
- Rotorwelle
- 32
- Kühlschaufel
- 34
- Ausblaseöffnung
- 35
- Schaufelspitze
- 38
- Rotorwelle
- 39
- Nut
- 42
- Kühlschaufel
- 44
- Ausblaseöffnung
- 45
- Schaufelspitze
- 46
- Deckband
- 48
- Rotorwelle
- 49
- Ringspalt
- 52
- Kühlschaufel
- 54
- Ausblaseöffnung
- 55
- Schaufelspitze
- 58
- Rotorwelle
- 62
- Kühlschaufel
- 63
- Luftführungskanal
- 64
- Ausblaseöffnung
- 65
- Schaufelspitze
- 67
- Schaufelfuß
- 68
- Rotorwelle
- 70
- Spalt
- 73
- Dichtungsring
- 74
- Rückstellfeder
- 76
- Versorgungskanal
- 77
- Arbeitsraum
- 78
- Gehäuseabschnitt
- 82
- Kühlschaufel
- 84
- Ausblaseöffnung
- 85
- Schaufelspitze
- 86
- Deckband
- 87
- Schaufelträger
- 88
- Rotorwelle
- 94
- Rückstellfeder
- 95
- Balg
- 96
- Versorgungskanal
- 98
- Gehäuseabschnitt
- H
- Hauptströmung
- K
- Kühlluft
- D
- Drehrichtung
Claims (10)
- Strömungsmaschine, insbesondere Verdichter einer Gasturbine mit Laufschaufeln und Leitschaufeln, die zu wenigstens einem Laufrad und einem Leitrad angeordnet sind, und mit wenigstens einer Rotorwelle, die mittels einer Kühleinrichtung gekühlt ist, wobei einzelne oder sämtliche Leitschaufeln (12, 32, 42, 52, 62, 82) als von einer Kühlluftversorgung gespeiste Kühlschaufeln derart ausgebildet sind, dass sie von Luftführungskanälen (13, 63) durchsetzt sind, dadurch gekennzeichnet, dass sie im Bereich der Schaufelspitzen (15, 35, 45, 55, 65, 85) Ausblaseöffnungen (14, 34, 44, 54, 64, 84) aufweisen, die auf die Rotorwelle (18, 38, 48, 68, 88) ausgerichtet sind, so daß die Rotorwelle mit Kühlluft direkt beaufschlagt wird.
- Strömungsmaschine nach Anspruch 1, dadurch gekennzeichnet, dass einzelne oder sämtliche Leitschaufeln eines Leitrades als Kühlschaufeln (12, 32, 42, 52, 62, 82) ausgebildet sind.
- Strömungsmaschine nach Anspruch 2, dadurch gekennzeichnet, dass das Leitrad ein Deckband (46, 86) aufweist.
- Strömungsmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die Kühlschaufeln (12, 32, 42, 52, 62, 82) durch den Druck der Kühlluft (K) aus einer Ausgangsposition heraus gegen die Wirkung von Rückstellfedern (74, 94) verschiebbar gelagert sind.
- Strömungsmaschine nach Anspruch 4, dadurch gekennzeichnet, dass der Schaufeifuß (67) der Kühlschaufeln (62) einen kolbenförmigen Abschnitt aufweist, der in einem korrespondierenden zylinderförmigen Gehäuseabschnitt (78) unter Bildung eines Arbeitsraumes (77) abgedichtet geführt ist, wobei der Arbeitsraum (77) in kommunizierender Fluidverbindung mit der Kühlluftversorgung steht.
- Strömungsmaschine nach Anspruch 5, dadurch gekennzeichnet, dass der Luftführungskanal (63) in kommunizierender Fluidverbindung mit dem jeweiligen Arbeitsraum (77) steht.
- Strömungsmaschine nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass jeweils zwei benachbarte Kühlschaufeln (82) miteinander fest verbunden und zwangsgekoppelt verschiebbar sind.
- Strömungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Luftführungskanäle (13, 63) als Bohrungen, bzw. als Durchgangsbohrungen ausgeführt sind.
- Strömungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlschaufeln (12, 32, 52, 62, 82) jeweils mehrere, bzw. parallel zueinander verlaufende Luftführungskanäle (13) aufweisen.
- Strömungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlschaufeln (12, 32, 42, 52, 62, 82) jeweils mehrere, bzw. an der Schaufelspitze (15, 35, 45, 55, 65, 85) mündende Ausblaseöffnungen (14, 34, 44, 54, 64, 84) aufweisen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19839592A DE19839592A1 (de) | 1998-08-31 | 1998-08-31 | Strömungsmaschine mit gekühlter Rotorwelle |
DE19839592 | 1998-08-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0984138A2 EP0984138A2 (de) | 2000-03-08 |
EP0984138A3 EP0984138A3 (de) | 2002-01-23 |
EP0984138B1 true EP0984138B1 (de) | 2005-10-26 |
Family
ID=7879284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99810710A Expired - Lifetime EP0984138B1 (de) | 1998-08-31 | 1999-08-09 | Strömungsmaschine mit gekühlter Rotorwelle |
Country Status (3)
Country | Link |
---|---|
US (1) | US6224328B1 (de) |
EP (1) | EP0984138B1 (de) |
DE (2) | DE19839592A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013024248A (ja) * | 2011-07-25 | 2013-02-04 | Alstom Technology Ltd | 液体をノズル供給するための噴射装置を備えた軸流圧縮機 |
US8517676B2 (en) | 2009-11-04 | 2013-08-27 | Alstom Technology Ltd | Welded rotor of a gas turbine engine compressor |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002309903A (ja) * | 2001-04-10 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | ガスタービンの蒸気配管構造 |
US6974306B2 (en) * | 2003-07-28 | 2005-12-13 | Pratt & Whitney Canada Corp. | Blade inlet cooling flow deflector apparatus and method |
EP1691054A1 (de) * | 2005-02-12 | 2006-08-16 | Hubert Antoine | Gasturbine |
RU2425982C2 (ru) * | 2005-04-14 | 2011-08-10 | Альстом Текнолоджи Лтд | Лопатка газовой турбины |
DE502006007968D1 (de) * | 2006-08-25 | 2010-11-11 | Siemens Ag | Drallgekühlte Rotor-Schweissnaht |
EP1923574B1 (de) * | 2006-11-20 | 2014-10-29 | Siemens Aktiengesellschaft | Verdichter, Turbinenanlage und Verfahren zum Zuführen von Heissluft |
EP2161411A1 (de) * | 2008-09-05 | 2010-03-10 | Siemens Aktiengesellschaft | Turbinenschaufel mit angepasster Eigenfrequenz mittels eines Einsatzes |
KR101906949B1 (ko) * | 2012-02-29 | 2018-10-11 | 한화에어로스페이스 주식회사 | 터빈 시일 조립체 및 이를 구비한 터빈 장치 |
US9085982B2 (en) * | 2012-03-19 | 2015-07-21 | Mitsubishi Hitachi Power Systems, Ltd. | Gas turbine |
EP3205817A1 (de) | 2016-02-09 | 2017-08-16 | Ansaldo Energia Switzerland AG | Flüssigkeitsgekühlter rotor für eine gasturbine |
US11022037B2 (en) | 2018-01-04 | 2021-06-01 | General Electric Company | Gas turbine engine thermal management system |
US10941706B2 (en) | 2018-02-13 | 2021-03-09 | General Electric Company | Closed cycle heat engine for a gas turbine engine |
US11143104B2 (en) | 2018-02-20 | 2021-10-12 | General Electric Company | Thermal management system |
US11015534B2 (en) | 2018-11-28 | 2021-05-25 | General Electric Company | Thermal management system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635586A (en) * | 1970-04-06 | 1972-01-18 | Rolls Royce | Method and apparatus for turbine blade cooling |
US3703808A (en) * | 1970-12-18 | 1972-11-28 | Gen Electric | Turbine blade tip cooling air expander |
US4213296A (en) * | 1977-12-21 | 1980-07-22 | United Technologies Corporation | Seal clearance control system for a gas turbine |
JPS5848702A (ja) * | 1981-09-18 | 1983-03-22 | Hitachi Ltd | ガスタ−ビン空冷翼 |
US4668162A (en) * | 1985-09-16 | 1987-05-26 | Solar Turbines Incorporated | Changeable cooling control system for a turbine shroud and rotor |
GB2210935B (en) * | 1987-10-10 | 1992-05-27 | Rolls Royce Plc | Variable stator vane assembly |
JP3260437B2 (ja) * | 1992-09-03 | 2002-02-25 | 株式会社日立製作所 | ガスタービン及びガスタービンの段落装置 |
DE4411616C2 (de) | 1994-04-02 | 2003-04-17 | Alstom | Verfahren zum Betreiben einer Strömungsmaschine |
GB2310255B (en) * | 1996-02-13 | 1999-06-16 | Rolls Royce Plc | A turbomachine |
-
1998
- 1998-08-31 DE DE19839592A patent/DE19839592A1/de not_active Withdrawn
-
1999
- 1999-08-09 DE DE59912702T patent/DE59912702D1/de not_active Expired - Lifetime
- 1999-08-09 EP EP99810710A patent/EP0984138B1/de not_active Expired - Lifetime
- 1999-08-11 US US09/371,904 patent/US6224328B1/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8517676B2 (en) | 2009-11-04 | 2013-08-27 | Alstom Technology Ltd | Welded rotor of a gas turbine engine compressor |
JP2013024248A (ja) * | 2011-07-25 | 2013-02-04 | Alstom Technology Ltd | 液体をノズル供給するための噴射装置を備えた軸流圧縮機 |
Also Published As
Publication number | Publication date |
---|---|
DE19839592A1 (de) | 2000-03-02 |
DE59912702D1 (de) | 2005-12-01 |
EP0984138A3 (de) | 2002-01-23 |
US6224328B1 (en) | 2001-05-01 |
EP0984138A2 (de) | 2000-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0984138B1 (de) | Strömungsmaschine mit gekühlter Rotorwelle | |
DE69718673T2 (de) | Kühlbare schaufelstruktur für eine gasturbine | |
EP1945911B1 (de) | Dampfturbine | |
DE60203959T2 (de) | Luftgekühltes Abgasgehäuse für eine Gasturbine | |
EP2492449B1 (de) | Dichtungsanordnung für eine thermische Maschine | |
EP1004748B1 (de) | Laufrad für eine Strömungsmaschine | |
DE3941174A1 (de) | Spitzenspiel-einstellung an turbomaschinen | |
EP2179143B1 (de) | Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage | |
EP0235641A2 (de) | Schaufel- und Dichtspaltoptimierungseinrichtung für Verdichter von Gasturbinentriebwerken | |
DE2943464A1 (de) | Dichtungsvorrichtung fuer ein gasturbinentriebwerk | |
DE3226052A1 (de) | Deckbandaufbau fuer ein gasturbinentriebwerk | |
DE102010037862A1 (de) | Wirbelkammern zur Spaltströmungssteuerung | |
EP1249577A1 (de) | Gasturbine mit axial verschiebbaren Gehäuseteilen | |
EP1446557A1 (de) | Turbomaschine | |
DE2907748A1 (de) | Einrichtung zur minimierung und konstanthaltung der bei axialturbinen vorhandenen schaufelspitzenspiele, insbesondere fuer gasturbinentriebwerke | |
DE3446385C2 (de) | Axialgasturbine | |
EP2434164A1 (de) | Verstellbares Casing Treatment | |
CH707459A2 (de) | Innenkühlungsaufbau einer Turbinenlaufschaufel. | |
EP2410128A1 (de) | Interne Kühlung für eine Strömungsmaschine | |
DE3700213A1 (de) | Mantelring fuer die spaltspielsteuerung einer turbinenrotorschaufel | |
DE102010036071A1 (de) | Gehäuseseitige Struktur einer Turbomaschine | |
EP1746256A1 (de) | Reduzierung von Spaltverlust in Strömungsmaschinen | |
EP2347100B1 (de) | Gasturbine mit kühleinsatz | |
WO2008055474A1 (de) | Turbomaschine | |
EP1908926A1 (de) | Turbomaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A2 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WETTSTEIN, HANS, DR. Inventor name: KAPPIS, WOLFGANG Inventor name: FITZSIMONS, CONOR, DR. Inventor name: WEIGAND, BERNHARD, DR. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020711 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
17Q | First examination report despatched |
Effective date: 20021111 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WETTSTEIN, HANS, DR. Inventor name: KAPPIS, WOLFGANG Inventor name: FITZSIMONS, CONOR, DR. Inventor name: WEIGAND, BERNHARD, DR. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59912702 Country of ref document: DE Date of ref document: 20051201 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051212 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060727 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59912702 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59912702 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59912702 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59912702 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59912702 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170822 Year of fee payment: 19 Ref country code: GB Payment date: 20170822 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59912702 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180809 |