EP0984138B1 - Turbomachine avec arbre refroidie - Google Patents

Turbomachine avec arbre refroidie Download PDF

Info

Publication number
EP0984138B1
EP0984138B1 EP99810710A EP99810710A EP0984138B1 EP 0984138 B1 EP0984138 B1 EP 0984138B1 EP 99810710 A EP99810710 A EP 99810710A EP 99810710 A EP99810710 A EP 99810710A EP 0984138 B1 EP0984138 B1 EP 0984138B1
Authority
EP
European Patent Office
Prior art keywords
cooling
vanes
turbomachine according
rotor shaft
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99810710A
Other languages
German (de)
English (en)
Other versions
EP0984138A2 (fr
EP0984138A3 (fr
Inventor
Bernhard Dr. Weigand
Conor Dr. Fitzsimons
Wolfgang Kappis
Hans Dr. Wettstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP0984138A2 publication Critical patent/EP0984138A2/fr
Publication of EP0984138A3 publication Critical patent/EP0984138A3/fr
Application granted granted Critical
Publication of EP0984138B1 publication Critical patent/EP0984138B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention relates to a turbomachine, in particular a compressor of a Gas turbine, according to the preamble of claim 1.
  • a first approach is to provide so-called heat shields, the prevent direct contact of the heated flow medium with the rotor shaft and thus their warming within the limits considered admissible to hold.
  • the disadvantage here is the increase in manufacturing costs and Complexity of the turbomachine due to the additional components.
  • EP 0 790 390 discloses a cooling device with which the rotor shaft at most indirectly and could be cooled effectively.
  • the invention seeks to avoid the disadvantages described. She is the one
  • the object of the invention is to specify a turbomachine of the type mentioned at the outset, which allows to cool the rotor shaft locally with high efficiency, so that the life expectancy of the rotor shaft even at extremely high thermal Burden is not appreciably affected.
  • cooling vanes are formed as cooling vanes, which from a cooling air supply are fed.
  • the cooling vanes are configured to be in substantially Radial direction of air ducts are interspersed and in the area the blade tips have blower openings aligned with the rotor shaft are.
  • One of the main advantages of the invention is the fact that by the direct Actuation of the rotor shaft with cooling air optimizes the achievable cooling effect can be. Even a comparatively small amount of cooling air is sufficient to keep the rotor shaft locally at a low temperature level. The latter effect can be used in various ways.
  • the life of the blading increases due to the cooling air caused lower temperature levels. This does not just affect the Cooling blades, which are flowed through by cooling air, but also the downstream, not cooled blade rings.
  • the exiting at the blade tips cooling air causes an improvement the fluidic properties.
  • the boundary layer Kinetic energy is supplied locally by the cooling air flow and influences it positive by that.
  • the exiting cooling air flow at appropriate Design or arrangement of the exhaust openings a flow around the vanes in the gap between the blade tips and the rotor shaft. Leakage losses in this area are thus almost completely avoided.
  • the air ducts can be the vibration behavior the blades vary within wide limits. This makes it possible to tune the natural frequency and flutter characteristics within limits so that critical vibration states no longer occur.
  • the air ducts can therefore usually be performed as simple holes that the each guide vane radially fully enforce or as in the axial direction tilted inclined from a central air duct.
  • the cooling device has the additional advantage that it can be controlled very easily and precisely.
  • the cooling air can be immediate upstream or downstream compressor stages are removed needs however, still a conditioning to the effect that they with higher pressure and lower temperature is fed than the local state variables the main flow corresponds.
  • a cooling air flow from a higher Compressor is removed, it must be cooled. If, on the contrary a cooling air flow is taken from a lower compressor stage, this must first be further compressed externally and then cooled.
  • the cooling concept according to the invention can also be used to particular advantage with guide wheels be applied with a shroud.
  • the shroud allows a even more even education of the cooling film in the circumferential direction, since the exiting cooling air partial flows are not detected directly from the main flow and be carried away.
  • cooling blades are in radial Directed displaced and are against the action of return springs moved out of its initial position by the pressure of the cooling air. This makes it possible to control the compressor efficiency and in particular the Considerably increase the pumping limit. This effect is in modern high pressure compressor stages clearly pronounced, because here for safety reasons because of sluggish response large slit widths must be provided to to reliably prevent a run-in of the blade tips in the rotor shaft.
  • the return springs are a safety measure in the event that the Cooling air supply should be interrupted.
  • the cooling blades return immediately back to their original position and thus increase the gap between the blade tips and the rotor, so this in the case of a then thermally induced strong radial expansion not in contact with the Shovel tips can come.
  • the blade root of the cooling blades is provided with a piston-shaped section, in a correspondingly shaped cylindrical housing section is performed sealed to form a working space.
  • the workroom is standing in connection with the cooling air supply, so that when exposed to Cooling air in the manner of a pneumatic cylinder, the cooling blades are pushed out can.
  • the air ducts of the cooling air blades are in communicating Connection with the respective working space, whereby the air flow is particularly simply designed.
  • the air flow fed by the cooling air supply first enters the working space and causes the radial displacement the shovel. From the working space of the cooling air flow now occurs directly in the air ducts and leaves the blade in the blade tip through the bubble openings.
  • the tuning of the geometry of the air-conveying Channel sections and the pressure conditions in the compressed air supply is such that the air jets emerging from the blow-out openings is at high speed own and at high speed on the opposite impinge arranged rotor shaft.
  • the resulting impact cooling ensures an optimal heat transfer and thus an optimal cooling effect for the rotor shaft.
  • two adjacent cooling blades are fixed to each other connected and positively coupled slidably mounted. Simplified further the structural design of the storage, without the cooling effect disadvantageous to influence.
  • the air ducts are preferred as bores, in particular as radial Through holes performed, resulting in minimal production costs to let hold.
  • the cooling blades each have a plurality, in particular parallel to each other extending air ducts on, so that at each of the cooling blades can form several partial cooling air jets. This allows the cooling of a Axial section of the rotor shaft corresponding to the axial width of the respective Stator.
  • rotor cooling on which the invention is based results in particular from Figs. 1 and 2. It is a typical compressor stage of a high pressure compressor with a rotor and a stator, symbolized by a bucket 11 and vane 12 shown. The blades 11 are in itself known manner to a rotor shaft 18 which rotates in the direction of rotation D. is drivable.
  • the blades 11, the vanes 12 are connected downstream, which in known Way on a housing portion 17 - and thus fixed - attached are.
  • the vanes 12 are formed as cooling vanes. They point to this Purpose air ducts 13, which are continuous in the radial direction within extend the cooling blade 12 and in the region of the blade tip 15 as Outlet openings 14 open.
  • the blow-out openings 14 are on the rotor shaft 18 aligned.
  • the air ducts 13 are in a manner not shown with a Cooling air supply connected, which supplies cooling air.
  • the pressure is like this chosen that cooling air jets K at high speed from the exhaust openings 14 emerge and impinge on the immediately adjacent rotor shaft 18.
  • the cooling effect achieved by this is enormous, since the heat transfer coefficient - And thus the transferable cooling energy - is very high.
  • the cooling air ducts 13 do not have to inevitably have a circular cross-section. So, for example the cross-sectional shape optimally to the profile cross-sectional shape of the guide vane 12th be adapted so that realize a high and optimally distributed air flow leaves.
  • further advantages result from the fact that the guide vane 12 or the surface around which it flows, is cooled from the inside. With it reduced also the thermal stress of the vane 12 with the so associated benefits of prolonged life or the ability to already allow a higher process temperature at the time of design.
  • FIGS. 3 to 5 show different application variants in the concrete implementation the cooling concept of the invention.
  • a rotor shaft 38 has a circumferential groove in the axial section to be cooled 39, in which a cooling blade 32 projects radially with its blade tip 35. Again, blow-out openings 34 are provided by the cooling air jets K escape.
  • This configuration may have u. a. the advantage that the exiting cooling air K is not immediate is detected by the main flow H and entrained. This is the result local cooling effect more pronounced than, for example, in the above-described Configuration.
  • FIG. 4 The embodiment shown in Fig. 4 has cooling blades 42, which with a Shroud 46 in the region of the blade tips 45 are interconnected. Again, blower openings 44 are arranged in the area of the blade tips 45, exit through the cooling air jets K. These meet directly opposite each other on a rotor shaft 48 and cool them locally. Between the Shroud 46 and the rotor 48 is a circumferentially continuous annular gap 49 exists, so that in this case, a certain retention effect for the exiting cooling air jets K is given.
  • cooling vanes 52 are present, which Blade tips 55 which extend radially in the direction of a rotor shaft 58 in a funnel shape.
  • Blow-out openings 54 are provided, ejected by the cooling air jets K. become.
  • the funnel shape of the blade tips 55 allows the admission the rotor shaft 58 along a larger peripheral portion than at radial straight ended blades would be possible.
  • FIG. 6 to 8 is a further increase in Pumping limit and a further increase in the compressor efficiency thereby possible that the radial gap of the stator set during operation, d. H. can be downsized.
  • cooling vanes have 62 a blade root 67 in the manner of a piston-shaped radial section on, in a correspondingly shaped cylindrical housing portion 78 is slidably mounted. It creates a working space 77, in a supply channel 76 opens. Through the supply channel 76 is off the cooling air supply cooling air, not shown here, the working space 77th fed.
  • the blade root 67 is provided with sealing rings 73, so that in this way the working space 77 sealed relative to the cylindrical housing portion 78 is.
  • a displacement takes place the cooling blade 62 on the rotor shaft 68 back.
  • cooling air occurs from the working space 77 in air ducts 63 and exits through Blow-out openings 64.
  • the displacement movement of the cooling blade 62 takes place against the effect of return springs 74, the between the blade root 67 and the housing portion 78 act in the region of the working space 77.
  • the return springs 74 on the one hand have the effect that they the cooling blade 62 when turned off Pull back cooling air supply and in this way a gap 70 between the blade tips 65 and the rotor shaft 68 is set so broad is dimensioned that a running-in of the blade tip 65 in the rotor shaft 68 safely is prevented.
  • the cooling air supply is switched on Gap 70 reduced so far, so that by the ejected cooling air flows K a Air cushion is formed in the gap 70, which not only cools the rotor shaft 68, but also a flow around the cooling blade 62 in the region of the gap 70 reliably prevented.
  • the compressor efficiency and the surge limit can be thereby optimally increase.
  • the width of the gap 70 can, with appropriate control of the cooling air supply be made variably adjustable. A particularly simple constructive But solution can also be achieved in that one is not closer illustrated stop is provided, the displacement of the cooling blade 62 limited and thus dictates the minimum width of the gap 70.
  • each of the vanes 62 of a vane ring is individually slidable is stored.
  • This configuration includes an additional safety aspect in that in the case of a local disturbance with a single cooling blade 62 - for example, with obstruction of the air duct 63 - the affected Cooling blade 62 returns to its original position.
  • One in consequence of the missing internal cooling of the cooling pad 62 caused thermal expansion in radial Direction does not lead to a run-in of the blade tip 65 in the rotor shaft 68th
  • FIG. 8 shows a tandem arrangement of two cooling blades 82 on a common blade carrier 87.
  • a shroud 86 is provided in the range of blade tips 85.
  • cooling air jets K ejected from the cooling vanes 82 via discharge openings 84 and bounce on a rotor shaft 88.
  • Cooling vanes 82 configured jointly radially displaceable.
  • a return spring 94 acts directly on the blade carrier 87 a.
  • the cooling air K each of the two cooling blades 82 is supplied separately, wherein as a length compensation a respective bellows 95 between a supply channel 96 and the blade carrier 87 is arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (10)

  1. Turbomachine, en particulier compresseur d'une turbine à gaz avec des aubes mobiles et des aubes directrices, qui sont disposées sur au moins un rotor et un stator, et avec au moins un arbre de rotor qui est refroidi au moyen d'un dispositif de refroidissement, des aubes directrices individuelles ou toutes les aubes directrices (12, 32, 42, 52, 62, 82) étant réalisées sous forme d'aubes de refroidissement alimentées par une alimentation en air de refroidissement, de telle sorte qu'elles soient traversées par des canaux de guidage d'air (13, 63), caractérisée en ce qu'elles présentent dans la région des pointes des aubes (15, 35, 45, 55, 65, 85) des ouvertures de soufflage (14, 34, 44, 54, 64, 84) qui sont orientées vers l'arbre de rotor (18, 38, 48, 68, 88) de telle sorte que l'arbre de rotor soit sollicité directement par de l'air de refroidissement.
  2. Turbomachine selon la revendication 1, caractérisée en ce que des aubes directrices individuelles ou toutes les aubes directrices d'un stator sont réalisées sous forme d'aubes de refroidissement (12, 32, 42, 52, 62, 82).
  3. Turbomachine selon la revendication 2, caractérisée en ce que le stator présente une bande de recouvrement (46, 86).
  4. Turbomachine selon la revendication 2, caractérisée en ce que les aubes de refroidissement (12, 32, 42, 52, 62, 82) sont montées de manière déplaçable par la pression de l'air de refroidissement (K) depuis une position de départ à l'encontre de l'effet de ressorts de rappel (74, 94).
  5. Turbomachine selon la revendication 4, caractérisée en ce que la base d'aube (67) des aubes de refroidissement (62) présente une portion en forme de piston qui est guidée hermétiquement dans une portion de boítier en forme de cylindre correspondante (78) en formant une chambre de travail (77), la chambre de travail (77) étant en liaison fluidique communiquante avec l'alimentation en air de refroidissement.
  6. Turbomachine selon la revendication 5, caractérisée en ce que le canal de guidage d'air (63) est en liaison fluidique communiquante avec la chambre de travail respective (77).
  7. Turbomachine selon l'une quelconque des revendications 4 à 6, caractérisée en ce que deux aubes de refroidissement voisines (82) sont à chaque fois connectées fixement l'une à l'autre et peuvent être déplacées par accouplement forcé.
  8. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que les canaux de guidage d'air (13, 63) sont réalisés sous forme d'alésages ou sous forme d'alésages traversants.
  9. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que les aubes de refroidissement (12, 32, 42, 52, 62, 82) présentent à chaque fois plusieurs canaux de guidage d'air (13) s'étendant respectivement parallèlement les uns aux autres.
  10. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que les aubes de refroidissement (12, 32, 42, 52, 62, 82) présentent à chaque fois plusieurs ouvertures de soufflage (14, 34, 44, 54, 64, 84) débouchant respectivement au niveau de la pointe des aubes (15, 35, 45, 55, 65, 85).
EP99810710A 1998-08-31 1999-08-09 Turbomachine avec arbre refroidie Expired - Lifetime EP0984138B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19839592 1998-08-31
DE19839592A DE19839592A1 (de) 1998-08-31 1998-08-31 Strömungsmaschine mit gekühlter Rotorwelle

Publications (3)

Publication Number Publication Date
EP0984138A2 EP0984138A2 (fr) 2000-03-08
EP0984138A3 EP0984138A3 (fr) 2002-01-23
EP0984138B1 true EP0984138B1 (fr) 2005-10-26

Family

ID=7879284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99810710A Expired - Lifetime EP0984138B1 (fr) 1998-08-31 1999-08-09 Turbomachine avec arbre refroidie

Country Status (3)

Country Link
US (1) US6224328B1 (fr)
EP (1) EP0984138B1 (fr)
DE (2) DE19839592A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024248A (ja) * 2011-07-25 2013-02-04 Alstom Technology Ltd 液体をノズル供給するための噴射装置を備えた軸流圧縮機
US8517676B2 (en) 2009-11-04 2013-08-27 Alstom Technology Ltd Welded rotor of a gas turbine engine compressor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309903A (ja) * 2001-04-10 2002-10-23 Mitsubishi Heavy Ind Ltd ガスタービンの蒸気配管構造
US6974306B2 (en) * 2003-07-28 2005-12-13 Pratt & Whitney Canada Corp. Blade inlet cooling flow deflector apparatus and method
EP1691054A1 (fr) * 2005-02-12 2006-08-16 Hubert Antoine Turbine à gaz
RU2425982C2 (ru) * 2005-04-14 2011-08-10 Альстом Текнолоджи Лтд Лопатка газовой турбины
ATE483096T1 (de) * 2006-08-25 2010-10-15 Siemens Ag Drallgekühlte rotor-schweissnaht
EP1923574B1 (fr) * 2006-11-20 2014-10-29 Siemens Aktiengesellschaft Compresseur, turbine et méthode d'alimentation de gaz chaud
EP2161411A1 (fr) * 2008-09-05 2010-03-10 Siemens Aktiengesellschaft Aube de turbine dotée d'une fréquence propre adaptée à l'aide d'un élément d'insertion
KR101906949B1 (ko) * 2012-02-29 2018-10-11 한화에어로스페이스 주식회사 터빈 시일 조립체 및 이를 구비한 터빈 장치
US9085982B2 (en) * 2012-03-19 2015-07-21 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine
EP3205817A1 (fr) 2016-02-09 2017-08-16 Ansaldo Energia Switzerland AG Rotor refroidi par fluide pour une turbine à gaz
US11022037B2 (en) 2018-01-04 2021-06-01 General Electric Company Gas turbine engine thermal management system
US10941706B2 (en) 2018-02-13 2021-03-09 General Electric Company Closed cycle heat engine for a gas turbine engine
US11143104B2 (en) 2018-02-20 2021-10-12 General Electric Company Thermal management system
US11015534B2 (en) 2018-11-28 2021-05-25 General Electric Company Thermal management system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635586A (en) * 1970-04-06 1972-01-18 Rolls Royce Method and apparatus for turbine blade cooling
US3703808A (en) * 1970-12-18 1972-11-28 Gen Electric Turbine blade tip cooling air expander
US4213296A (en) * 1977-12-21 1980-07-22 United Technologies Corporation Seal clearance control system for a gas turbine
JPS5848702A (ja) * 1981-09-18 1983-03-22 Hitachi Ltd ガスタ−ビン空冷翼
US4668162A (en) * 1985-09-16 1987-05-26 Solar Turbines Incorporated Changeable cooling control system for a turbine shroud and rotor
GB2210935B (en) * 1987-10-10 1992-05-27 Rolls Royce Plc Variable stator vane assembly
JP3260437B2 (ja) * 1992-09-03 2002-02-25 株式会社日立製作所 ガスタービン及びガスタービンの段落装置
DE4411616C2 (de) 1994-04-02 2003-04-17 Alstom Verfahren zum Betreiben einer Strömungsmaschine
GB2310255B (en) * 1996-02-13 1999-06-16 Rolls Royce Plc A turbomachine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517676B2 (en) 2009-11-04 2013-08-27 Alstom Technology Ltd Welded rotor of a gas turbine engine compressor
JP2013024248A (ja) * 2011-07-25 2013-02-04 Alstom Technology Ltd 液体をノズル供給するための噴射装置を備えた軸流圧縮機

Also Published As

Publication number Publication date
DE19839592A1 (de) 2000-03-02
US6224328B1 (en) 2001-05-01
DE59912702D1 (de) 2005-12-01
EP0984138A2 (fr) 2000-03-08
EP0984138A3 (fr) 2002-01-23

Similar Documents

Publication Publication Date Title
EP0984138B1 (fr) Turbomachine avec arbre refroidie
EP1945911B1 (fr) Turbine à gaz
DE60203959T2 (de) Luftgekühltes Abgasgehäuse für eine Gasturbine
EP2492449B1 (fr) Agencement de joint d'étanchéité pour une machine thermique
EP1004748B1 (fr) Roue mobile pour une turbomachine
DE3941174A1 (de) Spitzenspiel-einstellung an turbomaschinen
EP2179143B1 (fr) Refroidissement de fente entre une paroi de chambre de combustion et une paroi de turbine d'une installation de turbine à gaz
EP0235641A2 (fr) Système d'optimalisation du jeu dans un compresseur d'une turbine à gaz
DE2943464A1 (de) Dichtungsvorrichtung fuer ein gasturbinentriebwerk
DE3226052A1 (de) Deckbandaufbau fuer ein gasturbinentriebwerk
DE2553193A1 (de) Bohrungsschaufeleinrichtung fuer turbinenschaufeln mit bohrungseintrittskuehlung
DE102010037862A1 (de) Wirbelkammern zur Spaltströmungssteuerung
EP1249577A1 (fr) Turbine à gaz avec des éléments de virole axialement mobile
EP1446557A1 (fr) Turbomachine
DE2907748A1 (de) Einrichtung zur minimierung und konstanthaltung der bei axialturbinen vorhandenen schaufelspitzenspiele, insbesondere fuer gasturbinentriebwerke
DE3446385C2 (de) Axialgasturbine
CH707459A2 (de) Innenkühlungsaufbau einer Turbinenlaufschaufel.
EP2410128A1 (fr) Refroidissement interne pour un turbomachine
EP2434164A1 (fr) Traitement de carter variable
EP1746256A1 (fr) Diminution des pertes dues au jeu en bout d'aubes dans les turbomachines
EP2347100B1 (fr) Turbine à gaz avec insert de refroidissement
EP1908926A1 (fr) Turbomachine
EP2206889A1 (fr) Procédé de réduction de jeu des extrémités des aubes par un rotor déplaçable et turbine à gaz associée
DE102010036071A1 (de) Gehäuseseitige Struktur einer Turbomaschine
WO2008055474A1 (fr) Turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WETTSTEIN, HANS, DR.

Inventor name: KAPPIS, WOLFGANG

Inventor name: FITZSIMONS, CONOR, DR.

Inventor name: WEIGAND, BERNHARD, DR.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020711

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17Q First examination report despatched

Effective date: 20021111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WETTSTEIN, HANS, DR.

Inventor name: KAPPIS, WOLFGANG

Inventor name: FITZSIMONS, CONOR, DR.

Inventor name: WEIGAND, BERNHARD, DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59912702

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59912702

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912702

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912702

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59912702

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912702

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170822

Year of fee payment: 19

Ref country code: GB

Payment date: 20170822

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59912702

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180809