EP3488082B1 - Dampfturbine mit strömungsabschirmung - Google Patents

Dampfturbine mit strömungsabschirmung Download PDF

Info

Publication number
EP3488082B1
EP3488082B1 EP17735115.2A EP17735115A EP3488082B1 EP 3488082 B1 EP3488082 B1 EP 3488082B1 EP 17735115 A EP17735115 A EP 17735115A EP 3488082 B1 EP3488082 B1 EP 3488082B1
Authority
EP
European Patent Office
Prior art keywords
flow
steam
turbine
housing
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17735115.2A
Other languages
English (en)
French (fr)
Other versions
EP3488082A1 (de
Inventor
Detlef Haje
Stefan PREIBISCH
Manuela SALOMO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Priority to PL17735115T priority Critical patent/PL3488082T3/pl
Publication of EP3488082A1 publication Critical patent/EP3488082A1/de
Application granted granted Critical
Publication of EP3488082B1 publication Critical patent/EP3488082B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the steam When flowing through the steam turbine, the steam releases part of its internal energy, which is converted into rotational energy of the turbine shaft via the rotor blades.
  • the steam is expanded so that the pressure and temperature of the steam as it flows through the steam turbine are reduced after each turbine stage.
  • the turbine housing is thus exposed to a temperature gradient between a steam inlet and a steam outlet. In particular in the case of compact steam turbines, this leads to a very high load on the turbine housing.
  • turbine housings have a plurality of housing parts which are connected to one another to form the turbine housing with the formation of parting lines.
  • Turbine housings often have a lower housing part and an upper housing part.
  • the turbine housing can also have a plurality of housing segments along the longitudinal axis of the turbine, so that the high-pressure section and the medium-pressure section are arranged, for example, in different housing segments.
  • the connection is often made by screwing flanges of the housing parts or housing segments.
  • a steam turbine in which a parting line between two housing parts is completely covered by a shielding element.
  • the shielding element is sealed off from the housing parts via a sealing device, so that a cavity formed between the shielding element and the turbine housing is sealed off from the flow space.
  • the cavity is connected in a fluid-communicating manner via a pressure line to a region of the flow chamber which follows in the flow direction of the steam turbine and which is arranged behind a guide vane carrier.
  • the pressure line can be shut off via a valve.
  • Such a turbine is very complex and therefore costly to manufacture.
  • the sealing device is exposed to high mechanical stress, in particular thermal stress, but also abrasion by the steam flow, and accordingly exhibits high wear. This causes a high maintenance effort and high maintenance costs due to the shutdown and start-up required for this and the high downtimes of the steam turbine required for maintenance.
  • the object of the present invention is to provide a steam turbine which improves or at least partially improves the above disadvantages.
  • the object of the present invention is to create a steam turbine in a compact design with a multi-part housing, which ensures a reduced temperature gradient on the turbine housing with simple means and inexpensively and thus allows a larger steam mass flow with consistently dimensioned fastening elements for connecting the housing parts and thus also have improved efficiency.
  • a steam turbine which has a turbine housing which has a plurality of turbine housing parts and which surrounds a flow space along a longitudinal axis of the turbine.
  • the turbine housing has a housing wall, a parting line being formed between two adjacent turbine housing parts.
  • On a housing wall side of the housing wall facing the flow space at least one flow shield is arranged, which shields a wall section of the housing wall from a flow of the flow space.
  • An intermediate space is formed between the flow shield and the wall section of the housing wall, the intermediate space having an opening to the flow space in at least one area.
  • a fluid-communicating connection between the space and the flow space is formed via this opening.
  • the opening is designed as a gap between the flow shield and the housing wall.
  • the flow shield extends in the circumferential direction of the housing wall only over a partial circumferential area of the housing wall.
  • the flow shield extends at least over parts of the turbine housing that are exposed to particularly large temperature differences and / or particularly high temperatures compared to other areas of the turbine housing. In this way it can be ensured that the steam turbine has a flow shield only in the areas of the turbine housing which are exposed to a particular thermal load in order to relieve these areas of the turbine housing. It is therefore no longer necessary to relieve these areas by reducing the steam mass flow and / or a steam temperature.
  • the turbine housing preferably has at least two turbine housing parts.
  • the turbine housing preferably has a lower housing part and an upper housing part, each of which is divided into at least two housing segments along a longitudinal axis of the turbine.
  • the turbine housing has a housing wall that is impermeable to steam.
  • a parting line is formed between two adjacent turbine housing parts.
  • the turbine housing parts preferably have at least one flange via which they are connected to one another, in particular screwed. As a result of the screwing, adjacent turbine housing parts are pressed against one another and the parting line is thus sealed.
  • a sealing device such as a sealing ring, is arranged in the parting line.
  • the turbine housing is designed along the turbine longitudinal axis and surrounding it.
  • the turbine housing thus surrounds a flow space.
  • a turbine shaft with rotor blade rings is rotatably mounted in the flow space.
  • the turbine housing preferably has at least one guide vane ring, which is assigned to at least one rotor blade ring of the turbine shaft.
  • the flow space is designed for the passage of steam. The steam is deflected by the guide vanes and thus hits the rotor blades at an optimized angle of attack.
  • At least one flow shield is arranged on a housing wall side of the housing wall facing the flow space.
  • the flow shield shields a wall section of the housing wall from a flow - in particular a steam mass flow - in the flow space.
  • shielding is understood to mean a deflection of the flow so that the steam can hit the shielded wall section with a changed flow direction and / or reduced flow velocity. In the context of the invention, shielding does not mean that the wall section is completely isolated from the steam so that contact with the steam is no longer possible.
  • the flow shield is preferably designed in the form of a plate and is more preferably adapted to a curvature of the turbine housing in order to exert as little influence as possible on the rest of the steam flow flowing through the flow space.
  • the turbine housing is preferably designed in such a way that the turbine wall and flow shield form an optimized flow space which is optimized for the flow to the turbine stages.
  • the turbine housing preferably has a slight increase in cross section in the area of the flow shield in order to compensate for a reduction in the volume of the flow space caused by the flow shield.
  • the flow shield is preferably at least partially spaced from the housing wall.
  • at least one spacer is arranged between the flow shield and the housing wall.
  • the flow shield is preferably screwed to the housing wall, but it can also be welded or riveted to it.
  • a spacer is preferably designed as a hollow cylinder which surrounds a screw of the screw connection.
  • the fastening of the flow shield to the housing wall is preferably designed to be heat-movable in order to avoid tensions between the flow shield and the housing wall due to different thermal expansions.
  • the intermediate space has an opening to the flow space.
  • a fluid-communicating connection between the intermediate space and the flow space is established via the opening.
  • the opening is formed on a side of the space that faces in a flow direction of the steam.
  • the intermediate space is preferably closed against the direction of flow of the steam. This prevents the steam flowing in the direction of flow from flowing directly into the space.
  • the steam has to change its direction of flow and thus reduce its flow velocity.
  • the opening is designed as a gap between the flow shield and the housing wall. The opening ensures that steam can get into the intermediate space from the rest of the flow space.
  • the steam turbine according to the invention has the advantage over conventional steam turbines that a thermal load on the turbine housing in the area of the flow shield is reduced with simple means and inexpensively. A temperature gradient in the housing is thus considerably reduced. In this way, when the steam turbine is in operation, fewer stresses are generated in the turbine housing, which occur as opening forces at the joints. As a result, a maximum load capacity and an efficiency of the steam turbine can be improved while the structural size remains unchanged.
  • the flow shield extends in the circumferential direction by 1.5 times to 6 times the height of the joint flange of a joint flange of the steam turbine.
  • adjacent turbine housing parts each have a parting line flange, via which the turbine housing parts are connected to one another, e.g. screwed.
  • the parting line flange has a parting line flange height in the longitudinal direction of a connecting screw for connecting the parting line flanges.
  • a thermal load on the turbine housing is particularly disadvantageous.
  • an extension of the flow shield by 1.5 to 6 times the joint flange height is particularly advantageous for this.
  • the flow shield is arranged in a flow space area of the flow space in which the flow space has a maximum temperature gradient. In these areas of the flow space there is a load on the turbine housing due to different thermal expansions extraordinary big. The flow shielding relieves these areas through reduced temperature input and the associated lower thermal expansion.
  • the flow shield has a terminating area in the flow direction, the intermediate space having a reduced height in the terminating area. Accordingly, the gap along the flow shield has different heights.
  • the opening is formed in the closing area and consequently has an opening height which corresponds to the height of the space in the closing area.
  • the steam turbine has at least one steam supply, which is designed for direct supply of steam into the intermediate space.
  • the steam supply can be designed, for example, as a channel in the housing wall or as an independent line.
  • the steam supply is preferably arranged in such a way that the steam is guided as close as possible to the parting line before it can be distributed within the interspace.
  • the steam can be introduced into the intermediate space, for example in the direction of the parting line, via a corresponding nozzle.
  • a steam inlet of the steam supply is arranged adjacent to the parting line.
  • the steam supply is preferably designed to supply steam which has a higher temperature than the steam in the flow space on the flow shield.
  • Such a steam supply has the advantage that the temperature gradient on the turbine housing can be further reduced with simple means.
  • the turbine housing is thus less stressed exposed, so that, for example, a less resilient or less expensive turbine housing can be used for the steam turbine.
  • the application of steam to the steam turbine such as steam mass flow and / or steam temperature, can be increased and the efficiency of the steam turbine can thus be improved.
  • the steam supply connects a region of the flow space, which is arranged in the flow direction upstream of the flow shield, with the intermediate space in a fluid-communicating manner.
  • the flow shield has a lower coefficient of thermal conductivity than the turbine housing. This is particularly advantageous in the case of high temperature differences in the turbine stage behind which the flow shield is arranged. Heat exchange with the intermediate space is thus reduced via the flow shield and the housing wall is thermally relieved as a result.
  • Fig. 2 shows a section of a lower part of the steam turbine 1 from Fig. 1 in a sectional view.
  • a flow shield 7 is arranged on a wall section 5a of the housing wall 5, adjacent to a separating joint 6 extending parallel to the longitudinal axis 4 of the turbine.
  • the flow shield 7 extends in the circumferential direction of the steam turbine 1 over a partial circumferential area 10.
  • a flow shield 7 is preferably likewise arranged accordingly on an upper part of the steam turbine 1, not shown in this figure.
  • An intermediate space 8 is formed between the flow shield 7 and the wall section 5a. In the flow direction 13, the intermediate space 8 is connected to the flow space 3 in a fluid-communicating manner via an opening 9.
  • the flow shield 7 is arranged directly behind a guide vane carrier 19 in the flow direction 13.
  • a plurality of steam supply lines 16 for supplying a steam mass flow into the intermediate space 7 are arranged in the guide vane carrier 19.
  • steam from the flow space 3 can be supplied to the intermediate space 8 from an area in front of the guide vane carrier 19.
  • the steam supply lines 16 each have an actuator 17.
  • a plurality of guide elements 18 are arranged between the flow shield 7 and the wall section 5 a in order to deflect the steam mass flow supplied via the steam supply lines 16 or to guide it in the direction of the parting line 6.
  • a vapor exchange between the intermediate space 8 and the flow space 3 can take place via the opening 9.
  • a section of the turbine housing 2 of the steam turbine 1 is shown in a side view and in the direction of flow 13.
  • the flow shield 7 is formed from two shield parts 7a, one shield part 7a each being arranged on a turbine housing part 2a, for example on an upper housing part and a lower housing part.
  • a parting line 6 formed between the turbine housing parts 2a can be clearly seen in this view.
  • the intermediate space 8 has an opening 9 which points downward. In the area of the opening 9, the interspace has a height 15 which is less than in other areas of the interspace 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Dampfturbine mit einem mehrteiligen Turbinengehäuse.
  • Dampfturbinen sind Strömungsmaschinen, die zur Umwandlung der Enthalpie von Dampf in kinetische Energie ausgebildet sind. Herkömmliche Dampfturbinen weisen ein Turbinengehäuse auf, das einen Strömungsraum zum Durchströmen des Dampfes umgibt. Im Strömungsraum ist eine rotatorisch gelagerte Turbinenwelle mit einer Vielzahl von Laufschaufeln angeordnet, die in Form von hintereinander angeordneten Laufschaufelkränzen an der Turbinenwelle gehalten sind. Zur Optimierung der Anströmung der Laufschaufeln mit Dampf weisen Dampfturbinen Leitschaufelkränze auf, die jeweils einem Laufschaufelkranz vorgeschaltet und an dem Turbinengehäuse gehalten sind. Eine Gruppe aus einem Leitschaufelkranz mit zugehörigem Laufschaufelkranz wird auch als Turbinenstufe bezeichnet.
  • Beim Durchströmen der Dampfturbine gibt der Dampf einen Teil seiner inneren Energie ab, der über die Laufschaufeln in Rotationsenergie der Turbinenwelle umgewandelt wird. Hierbei findet eine Entspannung des Dampfes statt, so dass Druck und Temperatur des Dampfes beim Durchströmen der Dampfturbine nach jeder Turbinenstufe verringert werden. Das Turbinengehäuse wird somit zwischen einem Dampfeinlass und einem Dampfauslass einem Temperaturgradienten ausgesetzt. Dies führt insbesondere bei kompakt aufgebauten Dampfturbinen zu einer sehr hohen Belastung des Turbinengehäuses.
  • Dampfturbinen weisen in speziellen Ausführungsformen einen Hochdruckabschnitt und einen Mitteldruckabschnitt und/oder Niederdruckabschnitt auf. Zur Verbesserung des Wirkungsgrads können derartige Dampfturbinen eine Heizvorrichtung zur Zwischenüberhitzung des Dampfes aufweisen, so dass beispielsweise den Hochdruckabschnitt verlassender Dampf von der Heizvorrichtung aufheizbar ist, bevor dieser den nachfolgenden Turbinenabschnitten zugeführt wird. Es kann dabei vorgesehen sein, dass jeweils zwischen zwei Turbinenabschnitten eine derartige Heizvorrichtung angeordnet ist. Insbesondere bei Dampfturbinen mit einer solchen Zwischenüberhitzung des Dampfes treten starke Temperaturschwankungen entlang einer Turbinenlängsachse der Dampfturbine auf. Zunächst fällt die Temperatur in dem Hochdruckabschnitt gradierend ab, steigt dann im Übergangsbereich aufgrund der Zwischenüberhitzung sprunghaft an. Ein Bereich des Turbinengehäuses, der einer Abströmung des Hochdruckabschnitts und einer Anströmung des folgenden Mitteldruckabschnitts oder Niederdruckabschnitts benachbart angeordnet ist, ist insbesondere bei kompakt aufgebauten Dampfturbinen besonders starken Temperaturunterschieden ausgesetzt.
  • Überdies weisen Turbinengehäuse aus Gründen besserer Herstellbarkeit sowie Montierbarkeit mehrere Gehäuseteile auf, die zu dem Turbinengehäuse unter Ausbildung von Trennfugen miteinander verbunden sind. Turbinengehäuse weisen dabei oftmals ein Gehäuseunterteil sowie ein Gehäuseoberteil auf. Auch entlang der Turbinenlängsachse kann das Turbinengehäuse mehrere Gehäusesegmente aufweisen, so dass der Hochdruckabschnitt und der Mitteldruckabschnitt beispielsweise in unterschiedlichen Gehäusesegmenten angeordnet sind. Die Verbindung erfolgt oftmals über ein Verschrauben von Flanschen der Gehäuseteile bzw. Gehäusesegmente.
  • Je größer eine mechanische Belastung der Verbindungen der Gehäuseteile bzw. Gehäusesegmente ist, desto größere Befestigungselemente sind erforderlich, um die Trennfugen öffnende Kräfte zu kompensieren. Insbesondere bei kompakt aufgebauten Dampfturbinen stellt dies ein großes Problem dar, da ein verfügbarer Bauraum der Dampfturbine oftmals stark begrenzt ist. Somit sind Belastungsmöglichkeiten dieser Dampfturbinen stark begrenzt.
  • Aus der DE 10 2008 045 657 A1 ist eine Dampfturbinen bekannt, bei der eine Trennfuge zwischen zwei Gehäuseteilen komplett von einem Abschirmelement abgedeckt ist. Das Abschirmelement ist über eine Dichtungsvorrichtung gegenüber den Gehäuseteilen abgedichtet, so dass ein zwischen dem Abschirmelement und dem Turbinengehäuse ausgebildeter Hohlraum zum Strömungsraum hin abgedichtet ist. Über eine Druckleitung ist der Hohlraum mit einem in Strömungsrichtung der Dampfturbine nachfolgenden Bereich des Strömungsraums, der hinter einem Leitschaufelträger angeordnet ist, fluidkommunizierend verbunden. Die Druckleitung ist über ein Ventil absperrbar. Eine derartige Turbine ist sehr aufwendig und somit kostenintensiv in der Herstellung. Ferner ist die Dichtungsvorrichtung einer hohen mechanischen Belastung, insbesondere thermischen Belastung aber auch Abrasion durch den Dampfstrom, ausgesetzt und weist demnach einen hohen Verschleiß auf. Dies verursacht einen hohen Wartungsaufwand sowie hohe Wartungskosten aufgrund des hierfür erforderlichen Herunterfahrens sowie Hochfahrens und den für die Wartung erforderlichen hohen Stillstandzeiten der Dampfturbine.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, eine Dampfturbine bereitzustellen, die voranstehende Nachteile verbessert bzw. zumindest teilweise verbessert. Es ist insbesondere die Aufgabe der vorliegenden Erfindung, eine Dampfturbine in einer kompakten Bauweise mit einem mehrteiligen Gehäuse zu schaffen, die mit einfachen Mitteln sowie kostengünstig einen reduzierten Temperaturgradienten am Turbinengehäuse gewährleistet und somit bei gleichbleibend dimensionierten Befestigungselementen zum Verbinden der Gehäuseteile einen größeren Dampfmassenstrom zulassen und damit auch einen verbesserten Wirkungsgrad aufweisen.
  • Voranstehende Aufgabe wird durch die Patentansprüche gelöst. Demnach wird die Aufgabe durch eine Dampfturbine mit einem mehrere Turbinengehäuseteile aufweisenden Turbinengehäuse gemäß Anspruch 1 gelöst. Weitere Merkmale und Details der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen.
  • Gemäß einem ersten Aspekt der Erfindung wird die Aufgabe durch eine Dampfturbine gelöst, die ein mehrere Turbinengehäuseteile aufweisendes Turbinengehäuse aufweist, das einen Strömungsraum entlang einer Turbinenlängsachse umgibt. Das Turbinengehäuse weist eine Gehäusewand auf, wobei zwischen zwei benachbarten Turbinengehäuseteilen eine Trennfuge ausgebildet ist. An einer dem Strömungsraum zugewandten Gehäusewandseite der Gehäusewand ist mindestens eine Strömungsabschirmung angeordnet, die einen Wandabschnitt der Gehäusewand von einer Strömung des Strömungsraums abschirmt. Zwischen der Strömungsabschirmung und dem Wandabschnitt der Gehäusewand ist ein Zwischenraum gebildet, wobei in mindestens einem Bereich der Zwischenraum eine Öffnung zum Strömungsraum aufweist. Über diese Öffnung ist eine fluidkommunizierende Verbindung des Zwischenraums mit dem Strömungsraum ausgebildet. Die Öffnung ist dabei als Spalt zwischen der Strömungsabschirmung und der Gehäusewand ausgebildet. Erfindungsgemäß erstreckt sich die Strömungsabschirmung in Umfangsrichtung der Gehäusewand nur über einen Teilumfangsbereich der Gehäusewand.
  • Hierbei ist es bevorzugt, dass sich die Strömungsabschirmung zumindest an Teilen des Turbinengehäuses erstreckt, die besonderes großen Temperaturunterschieden und/oder besonders hohen Temperaturen verglichen mit übrigen Bereichen des Turbinengehäuses ausgesetzt sind. Auf diese Weise kann sichergestellt werden, dass die Dampfturbine nur an den Bereichen des Turbinengehäuses eine Strömungsabschirmung aufweist, die einer besonderen thermischen Belastung ausgesetzt sind, um diese Bereiche des Turbinengehäuses somit zu entlasten. Eine Entlastung dieser Bereiche durch ein Reduzieren des Dampfmassenstroms und/oder einer Dampftemperatur ist somit nicht mehr erforderlich.
  • Das Turbinengehäuse weist vorzugsweise zumindest zwei Turbinengehäuseteile auf. Bevorzugt weist das Turbinengehäuse ein Gehäuseunterteil und ein Gehäuseoberteil auf, die entlang einer Turbinenlängsachse jeweils in mindestens zwei Gehäusesegmente geteilt sind. Das Turbinengehäuse weist eine Gehäusewand auf, die undurchlässig für Dampf ist. Zwischen zwei benachbarten Turbinengehäuseteilen ist jeweils eine Trennfuge ausgebildet. Vorzugsweise weisen die Turbinengehäuseteile mindestens einen Flansch auf, über den diese miteinander verbunden, insbesondere verschraubt, sind. Durch das Verschrauben werden benachbarte Turbinengehäuseteile aneinandergepresst und die Trennfuge somit abgedichtet. Erfindungsgemäß ist es bevorzugt, dass in der Trennfuge eine Dichtvorrichtung, wie z.B. ein Dichtring, angeordnet ist.
  • Das Turbinengehäuse ist entlang der Turbinenlängsachse sowie diese umgebend ausgebildet. Somit umgibt das Turbinengehäuse einen Strömungsraum. Im Strömungsraum ist beispielsweise eine Turbinenwelle mit Laufschaufelkränzen drehbar gelagert angeordnet. Ferner weist das Turbinengehäuse vorzugsweise mindestens einen Leitschaufelkranz auf, der jeweils mindestens einem Laufschaufelkranz der Turbinenwelle zugeordnet ist. Der Strömungsraum ist zum Durchleiten von Dampf ausgebildet. Dabei wird der Dampf von den Leitschaufeln umgelenkt und trifft somit in einem optimierten Anströmwinkel auf die Laufschaufeln.
  • Erfindungsgemäß ist an einer dem Strömungsraum zugewandten Gehäusewandseite der Gehäusewand mindestens eine Strömungsabschirmung angeordnet. Die Strömungsabschirmung schirmt einen Wandabschnitt der Gehäusewand von einer Strömung - insbesondere einem Dampfmassenstrom - im Strömungsraum ab. Dabei wird erfindungsgemäß unter Abschirmen ein Ablenken der Strömung verstanden, so dass der Dampf mit einer veränderten Strömungsrichtung und/oder reduzierten Strömungsgeschwindigkeit auf den abgeschirmten Wandabschnitt treffen kann. Abschirmen bedeutet im Rahmen der Erfindung nicht, dass der Wandabschnitt vom Dampf vollständig isoliert ist, so dass kein Kontakt mit dem Dampf mehr möglich ist.
  • Die Strömungsabschirmung ist vorzugsweise plattenförmig ausgebildet und weiter bevorzugt einer Wölbung des Turbinengehäuses angepasst, um einen möglichst geringen Einfluss auf den übrigen durch den Strömungsraum strömenden Dampfstrom auszuüben. Vorzugsweise ist das Turbinengehäuse derart ausgebildet, dass Turbinenwand und Strömungsabschirmung einen optimierten Strömungsraum bilden, der für die Anströmung der Turbinenstufen optimiert ist. Hierfür weist das Turbinengehäuse im Bereich der Strömungsabschirmung vorzugsweise eine geringfügige Querschnittsvergrößerung auf, um eine durch die Strömungsabschirmung verursachte Reduzierung des Strömungsraumvolumens zu kompensieren.
  • Zwischen der Strömungsabschirmung und der Gehäusewand ist ein Zwischenraum gebildet. Vorzugsweise ist die Strömungsabschirmung hierfür zumindest teilweise von der Gehäusewand beabstandet. Hierfür ist es bevorzugt, dass mindestens ein Abstandhalter zwischen der Strömungsabschirmung und der Gehäusewand angeordnet ist. Vorzugsweise ist die Strömungsabschirmung an der Gehäusewand angeschraubt, kann aber auch mit dieser verschweißt oder angenietet sein. Ein Abstandhalter ist vorzugsweise als Hohlzylinder ausgebildet, der eine Schraube der Verschraubung umgibt. Die Befestigung der Strömungsabschirmung an der Gehäusewand ist vorzugsweise wärmebeweglich ausgebildet, um Spannungen zwischen Strömungsabschirmung und Gehäusewand aufgrund unterschiedlicher Wärmeausdehnungen zu vermeiden.
  • In mindestens einem Bereich weist der Zwischenraum eine Öffnung zum Strömungsraum auf. Über die Öffnung ist eine fluidkommunizierende Verbindung des Zwischenraums mit dem Strömungsraum hergestellt. Es ist bevorzugt, dass die Öffnung auf einer Seite des Zwischenraums ausgebildet ist, die in eine Strömungsrichtung des Dampfes weist. Vorzugsweise ist der Zwischenraum entgegen der Strömungsrichtung des Dampfes geschlossen. Somit wird ein direktes Einströmen des in Strömungsrichtung strömenden Dampfes in den Zwischenraum vermieden. Um in den Strömungsraum zu gelangen, muss der Dampf seine Strömungsrichtung ändern und somit seine Strömungsgeschwindigkeit reduzieren. Die Öffnung ist als Spalt zwischen der Strömungsabschirmung und der Gehäusewand ausgebildet. Durch die Öffnung wird erreicht, dass Dampf aus dem übrigen Strömungsraum in den Zwischenraum gelangen kann. Somit kann sich im Betrieb der Dampfturbine im Zwischenraum dieselbe Temperatur bzw. nahezu dieselbe Temperatur sowie derselbe Druck bzw. nahezu derselbe Druck wie im übrigen Strömungsraum bzw. an der Turbinenstufe, an deren Turbinenlängsachsenabschnitt die Öffnung ausgebildet ist, einstellen.
  • Die erfindungsgemäße Dampfturbine hat gegenüber herkömmlichen Dampfturbinen den Vorteil, dass mit einfachen Mitteln sowie kostengünstig eine thermische Belastung des Turbinengehäuses im Bereich der Strömungsabschirmung reduziert ist. Ein Temperaturgradient des Gehäuses ist somit erheblich reduziert. Auf diese Weise werden im Betrieb der Dampfturbine weniger Spannungen im Turbinengehäuse erzeugt, die als öffnende Kräfte an den Trennfugen auftreten. Hierdurch sind eine maximale Belastbarkeit sowie ein Wirkungsgrad der Dampfturbine bei unveränderter Baugröße verbesserbar.
  • Es ist bevorzugt, dass die Strömungsabschirmung die Trennfuge sowie einen die Trennfuge umgebenden Bereich der Gehäusewand von der Strömung abschirmt. Ein Bereich um die Trennfuge herum ist eine strukturelle Schwachstelle des Turbinengehäuses und ist besonders anfällig für eine thermische Belastung, insbesondere einen hohen Temperaturgradienten, da hierdurch aufgrund unterschiedlicher Wärmeausdehnungen die Trennfuge öffnende Kräfte an der Trennfuge entstehen können. Eine gezielte Abschirmung der Trennfuge bzw. eines Bereichs um die Trennfuge herum hat somit den Vorteil, dass eine thermische sowie mechanische Belastung der Trennfuge bzw. der die Trennfuge zusammenhaltenden Befestigungsmittel hierdurch mit einfachen Mitteln reduzierbar sind.
  • Weiter bevorzugt erstreckt sich die Strömungsabschirmung in Umfangsrichtung um das 1,5-fache bis 6-fache einer Trennfugenflanschhöhe eines Trennfugenflansches der Dampfturbine. An einer Trennfuge weisen benachbarte Turbinengehäuseteile jeweils einen Trennfugenflansch auf, über den die Turbinengehäuseteile miteinander verbunden sind, z.B. verschraubt. Der Trennfugenflansch weist in Längsrichtung einer Verbindungsschraube zum Verbinden der Trennfugenflansche eine Trennfugenflanschhöhe auf. Im Bereich des Trennfugenflansches ist eine thermische Belastung des Turbinengehäuses besonders nachteilig. Um die Herstellungskosten der Dampfturbine zu reduzieren und gleichzeitig eine gute Abschirmung der Trennfugenflansche zu gewährleisten, hat sich gezeigt, dass eine Erstreckung der Strömungsabschirmung um das 1,5-fache bis 6-fache der Trennfugenflanschhöhe hierfür besonders vorteilhaft ist.
  • Vorzugsweise weist die Strömungsabschirmung mindestens zwei Strömungsabschirmungsteile auf, die an benachbarten Turbinengehäuseteilen angeordnet sind. Die Strömungsabschirmungen sind somit jeweils an anderen Turbinengehäuseteilen gehalten und können leicht vor der Montage des Turbinengehäuses an den Turbinengehäuseteilen montiert werden. Somit ist eine Montierbarkeit der Dampfturbine verbessert. Des Weiteren ist bevorzugt, dass die Strömungsabschirmungen derart an den Turbinengehäuseteilen angeordnet sind, dass bei zusammengesetztem Turbinengehäuse mindestens zwei Strömungsabschirmungen eine gemeinsame Strömungsabschirmung bilden.
  • Ferner ist bevorzugt, dass die Strömungsabschirmung in einem Strömungsraumbereich des Strömungsraums angeordnet ist, in dem der Strömungsraum einen maximalen Temperaturgradienten aufweist. In diesen Bereichen des Strömungsraums ist eine Belastung des Turbinengehäuses aufgrund unterschiedlicher Wärmeausdehnungen besonders groß. Durch die Strömungsabschirmung werden diese Bereiche durch eine reduzierte Temperatureinbringung und damit verbundene geringere Wärmeausdehnung entlastet.
  • Es kann erfindungsgemäß vorgesehen sein, dass die Strömungsabschirmung in Strömungsrichtung einen Abschlussbereich aufweist, wobei der Zwischenraum im Abschlussbereich eine verringerte Höhe aufweist. Demnach weist der Zwischenraum entlang der Strömungsabschirmung verschiedene Höhen auf. Die Öffnung ist im Abschlussbereich ausgebildet und weist folglich eine Öffnungshöhe auf, die der Höhe des Zwischenraums im Abschlussbereich entspricht. Eine derartige Strömungsabschirmung ist leicht herstellbar und hat den weiteren Vorteil, dass ein Einwirken des Dampfs von dem übrigen Strömungsraum in den Zwischenraum durch die geringere Höhe des Zwischenraums verringert ist. Somit kann nur ein reduzierter Wärmeaustausch an der Gehäusewand im Bereich der Strömungsabschirmung erfolgen. Die Gehäusewand wird somit besser entlastet.
  • Weiter bevorzugt weist die Dampfturbine mindestens eine Dampfzuführung auf, die zum direkten Zuführen von Dampf in den Zwischenraum ausgebildet ist. Die Dampfzuführung kann beispielsweise als Kanal in der Gehäusewand oder als unabhängige Leitung ausgebildet sein. Vorzugsweise ist die Dampfzuführung derart angeordnet, den Dampf möglichst nah an die Trennfuge heranzuleiten, bevor sich dieser innerhalb des Zwischenraums verteilen kann. Über eine entsprechende Düse ist der Dampf beispielsweise in Richtung Trennfuge in den Zwischenraum einbringbar. Alternativ oder zusätzlich ist ein Dampfeinlass der Dampfzuführung der Trennfuge benachbart angeordnet. Die Dampfzuführung ist vorzugsweise ausgebildet, Dampf zuzuführen, der eine höhere Temperatur als der Dampf im Strömungsraum an der Strömungsabschirmung aufweist. Eine derartige Dampfzuführung hat den Vorteil, dass der Temperaturgradient an dem Turbinengehäuse mit einfachen Mitteln weiter reduzierbar ist. Das Turbinengehäuse ist somit geringeren Belastungen ausgesetzt, so dass beispielsweise ein weniger belastbares bzw. kostengünstigeres Turbinengehäuse für die Dampfturbine verwendet werden kann. Alternativ kann die Beaufschlagung der Dampfturbine mit Dampf, wie z.B. Dampfmassenstrom und/oder Dampftemperatur, erhöht und somit der Wirkungsgrad der Dampfturbine verbessert werden.
  • In einer vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass die Dampfzuführung einen Bereich des Strömungsraums, der in Strömungsrichtung vor der Strömungsabschirmung angeordnet ist, mit dem Zwischenraum fluidkommunizierend verbindet. Hiermit ist erfindungsgemäß insbesondere ein Bereich der Dampfturbine gemeint, der eine Turbinenstufe vor der Strömungsabschirmung angeordnet ist, also ein benachbarter Bereich. Dies hat den Vorteil, dass im Betrieb der Dampfturbine bereits vorhandener Dampf mit optimaler bzw. nahezu optimaler Temperatur sowie optimalem bzw. nahezu optimalem Druck zum Zuführen in den Zwischenraum zuführbar ist. Der Dampf muss also nicht gesondert bereitgestellt oder über längere Distanzen gefördert werden. Hierdurch können Betriebskosten der Dampfturbine weiter gesenkt werden.
  • Es ist bevorzugt, dass die Dampfzuführung mindestens ein Stellorgan zum Einstellen eines Dampfmassenstroms aufweist. Das Stellorgan ist beispielsweise als Ventil ausgebildet. Eine Einstellbarkeit des Dampfmassenstroms hat den Vorteil, dass ein Temperaturübergang an das Turbinengehäuse im Bereich der Strömungsabschirmung steuerbar ist. Wenn z.B. festgestellt wird, insbesondere mittels einer Infrarotkamera, dass das Turbinengehäuse im Bereich der Strömungsabschirmung zu kalt ist, kann das Stellorgan geöffnet und somit der Dampfmassenstrom, der in den Zwischenraum eindringt, erhöht werden. Gleichermaßen kann das Stellorgan zumindest teilweise geschlossen werden, wenn das Turbinengehäuse im Bereich der Strömungsabschirmung eine zu hohe Temperatur aufweist, um den Dampfmassenstrom zu drosseln und somit einen Temperaturaustausch mit der Gehäusewand zu reduzieren. Hierfür kann die Dampfmaschine erfindungsgemäß eine Regelvorrichtung aufweisen. Vorzugsweise ist das Stellorgan ausgebildet, den Dampfmassenstrom komplett zu unterbinden.
  • Vorzugsweise weist eine der Gehäusewand zugewandte Seite der Strömungsabschirmung mindestens ein Führungselement auf, das zum Führen eines Dampfmassenstroms innerhalb des Zwischenraums ausgebildet ist. Das Führungselement kann beispielsweise als Wand ausgebildet sein, die sich vorzugsweise zwischen Gehäusewand und Strömungsabschirmung erstreckt und vorzugsweise sowohl die Gehäusewand als auch die Strömungsabschirmung entlang ihres Verlaufes kontaktiert. Das Führungselement kann beispielsweise als Umleitelement zum einmaligen Umleiten des Dampfmassenstroms ausgebildet sein. Alternativ ist das Führungselement z.B. labyrinthartig ausgebildet. Vorzugsweise ist das Führungselement derart ausgebildet, den Dampfmassenstrom in Richtung der Trennfuge umzuleiten. Ein Führungselement hat den Vorteil, dass eine Strömungsrichtung des Dampfmassenstroms im Zwischenraum definierbar ist, um einen Wärmeaustausch zwischen dem Dampfmassenstrom und der Gehäusewand zu optimieren. Ferner kann mittels des Führungselements der in den Zwischenraum geleitete Dampfmassenstrom in eine Richtung geleitet werden, in der eine Erwärmung durch den Dampfmassenstrom besonders vorteilhaft ist, wie z.B. in einem Bereich um eine Trennfuge.
  • Es ist bevorzugt, dass die Strömungsabschirmung einen geringeren Wärmeleitkoeffizienten als das Turbinengehäuse aufweist. Dies ist insbesondere bei hohen Temperaturdifferenzen der Turbinenstufe, hinter der die Strömungsabschirmung angeordnet ist, von Vorteil. Über die Strömungsabschirmung ist ein Wärmeaustausch mit dem Zwischenraum somit reduziert und die Gehäusewand hierdurch thermisch entlastet.
  • Eine erfindungsgemäße Dampfturbine mit einer Strömungsabschirmung wird nachfolgend anhand von Zeichnungen näher erläutert. Es zeigen jeweils schematisch:
  • Figur 1
    in einer Seitenansicht quer zur Strömungsrichtung eine bevorzugte Ausführungsform einer erfindungsgemäßen Dampfturbine,
    Figur 2
    in einer Seitenansicht quer zur Strömungsrichtung einen Ausschnitt der Dampfturbine aus Figur 1, und
    Figur 3
    in einer Seitenansicht in Strömungsrichtung einen Ausschnitt des Turbinengehäuses einer alternativen Ausführungsform einer erfindungsgemäßen Dampfturbine.
  • In Fig. 1 ist eine bevorzugte Ausführungsform einer erfindungsgemäßen Dampfturbine 1 schematisch in einer Seitenansicht quer zu einer Strömungsrichtung 13 eines Arbeitsfluids bzw. eines Dampfmassenstroms der Dampfturbine 1 dargestellt. Die Dampfturbine 1 weist eine in Strömungsrichtung 13 verlaufende Turbinenlängsachse 4 sowie ein Turbinengehäuse 2 auf, das aus vier Turbinengehäuseteilen 2a zusammengesetzt ist. Die Turbinengehäuseteile 2a weisen jeweils einen sich in Strömungsrichtung 13 erstreckenden sowie einen sich in Umfangsrichtung um die Turbinenlängsachse 4 herum erstreckenden Trennfugenflansch 12 mit einer Trennfugenflanschhöhe 11 auf. Die Turbinengehäuseteile 2a sind über die Trennfugenflansche 12 miteinander verschraubt. Zwischen zwei miteinander verschraubten Trennfugenflanschen 12 ist jeweils eine Trennfuge 6 ausgebildet. Das Turbinengehäuse 2 weist eine Gehäusewand 5 auf, die sich über die Turbinengehäuseteile 2a erstreckt. Das Turbinengehäuse 2 umgibt einen Strömungsraum 3 zum Durchleiten des Arbeitsfluids bzw. Dampfmassenstroms.
  • Fig. 2 zeigt einen Abschnitt eines Unterteils der Dampfturbine 1 aus Fig. 1 in einer Schnittdarstellung. An einem Wandabschnitt 5a der Gehäusewand 5, einer sich parallel zur Turbinenlängsachse 4 erstreckenden Trennfuge 6 benachbart ist eine Strömungsabschirmung 7 angeordnet, die den Wandabschnitt 5a gegenüber dem restlichen Strömungsraum 3. Die Strömungsabschirmung 7 erstreckt sich in Umfangsrichtung der Dampfturbine 1 über einen Teilumfangsbereich 10. Vorzugsweise ist an einem in dieser Abbildung nicht gezeigten Oberteil der Dampfturbine 1 ebenfalls eine Strömungsabschirmung 7 entsprechend angeordnet. Zwischen der Strömungsabschirmung 7 und dem Wandabschnitt 5a ist ein Zwischenraum 8 ausgebildet. In Strömungsrichtung 13 ist der Zwischenraum 8 zum Strömungsraum 3 hin über eine Öffnung 9 fluidkommunizierend verbunden. Die Strömungsabschirmung 7 ist in Strömungsrichtung 13 direkt hinter einem Leitschaufelträger 19 angeordnet. Im Leitschaufelträger 19 sind mehrere Dampfzuführungen 16 zum Zuführen eines Dampfmassenstroms in den Zwischenraum 7 angeordnet. Somit ist Dampf aus dem Strömungsraum 3 aus einem Bereich vor dem Leitschaufelträger 19 dem Zwischenraum 8 zuführbar. Zum Steuern des Dampfmassenstroms weisen die Dampfzuführungen 16 jeweils ein Stellorgan 17 auf. Zwischen der Strömungsabschirmung 7 und dem Wandabschnitt 5a sind mehrere Führungselemente 18 angeordnet, um den über die Dampfzuführungen 16 zugeführten Dampfmassenstrom umzulenken bzw. in Richtung der Trennfuge 6 zu führen. Über die Öffnung 9 kann ein Dampfaustausch zwischen dem Zwischenraum 8 und dem Strömungsraum 3 erfolgen.
  • In Fig. 3 ist ein Ausschnitt des Turbinengehäuses 2 der Dampfturbine 1 in einer Seitenansicht sowie in Strömungsrichtung 13 abgebildet. In dieser Ansicht ist der zwischen der Strömungsabschirmung 7 und dem Wandabschnitt 5a gebildete Zwischenraum 8 gut erkennbar. Die Strömungsabschirmung 7 ist aus zwei Abschirmungsteilen 7a gebildet, wobei jeweils ein Abschirmungsteil 7a an einem Turbinengehäuseteil 2a angeordnet ist, z.B. an einem Gehäuseoberteil und einem Gehäuseunterteil. Eine zwischen den Turbinengehäuseteilen 2a ausgebildete Trennfuge 6 ist in dieser Ansicht gut erkennbar. Der Zwischenraum 8 weist in dieser Ausführungsform eine Öffnung 9 auf, die nach unten weist. Im Bereich der Öffnung 9 weist der Zwischenraum eine Höhe 15 auf, die geringer als in übrigen Bereichen des Zwischenraums 8 ausgebildet ist.

Claims (11)

  1. Dampfturbine (1), aufweisend ein mehrere Turbinengehäuseteile (2a) aufweisendes Turbinengehäuse (2), das einen Strömungsraum (3) entlang einer Turbinenlängsachse (4) umgibt, wobei das Turbinengehäuse (2) eine Gehäusewand (5) aufweist, wobei zwischen zwei benachbarten Turbinengehäuseteilen (2a) eine Trennfuge (6) ausgebildet ist und wobei an einer dem Strömungsraum (3) zugewandten Gehäusewandseite der Gehäusewand (5) mindestens eine Strömungsabschirmung (7) angeordnet ist, die einen Wandabschnitt (5a) der Gehäusewand (5) von einer Strömung des Strömungsraums (3) abschirmt, wobei zwischen der Strömungsabschirmung (7) und dem Wandabschnitt (5a) der Gehäusewand (5) ein Zwischenraum (8) gebildet ist, wobei in mindestens einem Bereich der Zwischenraum (8) eine Öffnung (9) zum Strömungsraum (3) aufweist, wobei über die Öffnung (9) eine fluidkommunizierende Verbindung des Zwischenraums (8) mit dem Strömungsraum (3) ausgebildet ist, wobei die Öffnung als Spalt zwischen der Strömungsabschirmung (7) und der Gehäusewand (5) ausgebildet ist,
    dadurch gekennzeichnet,
    dass sich die Strömungsabschirmung (7) in Umfangsrichtung der Gehäusewand (5) nur über einen Teilumfangsbereich (10) der Gehäusewand (5) erstreckt.
  2. Dampfturbine (1) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Strömungsabschirmung (3) die Trennfuge (6) sowie einen die Trennfuge (6) umgebenden Bereich der Gehäusewand (5) von der Strömung abschirmt.
  3. Dampfturbine (1) nach Anspruch 2,
    dadurch gekennzeichnet,
    dass sich die Strömungsabschirmung (7) in Umfangsrichtung um das 1,0-fache bis 6,0-fache, bevorzugt 2,0-fache bis 4,0-fache, einer Trennfugenflanschhöhe (11) eines Trennfugenflansches (12) der Dampfturbine (1) erstreckt.
  4. Dampfturbine (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Strömungsabschirmung (7) mindestens zwei Strömungsabschirmungsteile (7a) aufweist, die an benachbarten Turbinengehäuseteilen (2a) angeordnet sind.
  5. Dampfturbine (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Strömungsabschirmung (7) in einem Strömungsraumbereich des Strömungsraums (3) angeordnet ist, in dem der Strömungsraum (3) einen maximalen Temperaturgradienten aufweist.
  6. Dampfturbine (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Strömungsabschirmung (7) in Strömungsrichtung (13) einen Abschlussbereich (14) aufweist, wobei der Zwischenraum im Abschlussbereich (14) eine verringerte Höhe (15) aufweist.
  7. Dampfturbine (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Dampfturbine (1) mindestens eine Dampfzuführung (16) aufweist, die zum direkten Zuführen von Dampf in den Zwischenraum (8) ausgebildet ist.
  8. Dampfturbine (1) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Dampfzuführung (16) einen Bereich des Strömungsraums (3), der in Strömungsrichtung (13) vor der Strömungsabschirmung (7) angeordnet ist, mit dem Zwischenraum (8) fluidkommunizierend verbindet.
  9. Dampfturbine (1) nach Anspruch 7 oder 8,
    dadurch gekennzeichnet,
    dass die Dampfzuführung (16) mindestens ein Stellorgan (17) zum Einstellen eines Dampfmassenstroms aufweist.
  10. Dampfturbine (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass eine der Gehäusewand (5) zugewandte Seite der Strömungsabschirmung (7) mindestens ein Führungselement (18) aufweist, das zum Führen eines Dampfmassenstroms innerhalb des Zwischenraums (8) ausgebildet ist.
  11. Dampfturbine (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Strömungsabschirmung (7) einen geringeren Wärmeleitkoeffizienten als das Turbinengehäuse (2) aufweist.
EP17735115.2A 2016-08-23 2017-07-04 Dampfturbine mit strömungsabschirmung Active EP3488082B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17735115T PL3488082T3 (pl) 2016-08-23 2017-07-04 Turbina parowa z osłoną przepływową

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016215795.7A DE102016215795A1 (de) 2016-08-23 2016-08-23 Dampfturbine mit Strömungsabschirmung
PCT/EP2017/066550 WO2018036696A1 (de) 2016-08-23 2017-07-04 Dampfturbine mit strömungsabschirmung

Publications (2)

Publication Number Publication Date
EP3488082A1 EP3488082A1 (de) 2019-05-29
EP3488082B1 true EP3488082B1 (de) 2021-09-29

Family

ID=59276764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17735115.2A Active EP3488082B1 (de) 2016-08-23 2017-07-04 Dampfturbine mit strömungsabschirmung

Country Status (7)

Country Link
US (1) US11274572B2 (de)
EP (1) EP3488082B1 (de)
JP (1) JP6925413B2 (de)
CN (1) CN109642474B (de)
DE (1) DE102016215795A1 (de)
PL (1) PL3488082T3 (de)
WO (1) WO2018036696A1 (de)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL97874C (de)
GB510505A (en) 1938-01-27 1939-08-02 British Thomson Houston Co Ltd Improvements in casings for elastic fluid turbines
JPS5537681Y2 (de) 1976-12-27 1980-09-04
US4219201A (en) 1978-05-24 1980-08-26 Carrier Corporation Sealing assembly
JPS57212307A (en) 1981-06-24 1982-12-27 Hitachi Ltd Damping device for thermal stress on casing
CN1004016B (zh) 1985-04-01 1989-04-26 苏舍兄弟有限公司 涡轮机的筒形外壳
JPH04111501U (ja) 1991-03-13 1992-09-28 三菱重工業株式会社 蒸気タービンのサーマルシールド装置
ES2206962T3 (es) 1997-06-25 2004-05-16 Siemens Aktiengesellschaft Dispositivo para la conexion de secciones de conductos.
JP3593481B2 (ja) 1999-11-17 2004-11-24 株式会社日立製作所 防熱板の取り付け装置
EP1162347A1 (de) 2000-06-09 2001-12-12 Siemens Aktiengesellschaft Dampfturbine mit einem geteilten Gehäuse
US20040191488A1 (en) * 2002-04-10 2004-09-30 Thomas Berndt Component, method for coating a component, and powder
EP1555329A1 (de) * 2004-01-15 2005-07-20 Siemens Aktiengesellschaft Bauteil mit Druckeigenspannungen, Verfahren zur Herstellung und Vorrichtung zur Erzeugung von Druckeigenspannungen
EP2119878A1 (de) 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Dampfturbine mit geteiltem Innengehäuse
DE102008045657B4 (de) 2008-09-03 2014-11-06 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen
EP2915960A1 (de) * 2014-03-07 2015-09-09 Siemens Aktiengesellschaft Dichtungsanordnung zum Abdichten eines Spalts zwischen zwei bei Raumtemperatur spaltseitig flächig aneinander liegender Bauteile
US10012389B2 (en) * 2014-05-08 2018-07-03 United Technologies Corporation Case with integral heat shielding
DE102017211295A1 (de) * 2017-07-03 2019-01-03 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben derselben

Also Published As

Publication number Publication date
JP6925413B2 (ja) 2021-08-25
PL3488082T3 (pl) 2022-01-31
EP3488082A1 (de) 2019-05-29
WO2018036696A1 (de) 2018-03-01
DE102016215795A1 (de) 2018-03-01
US11274572B2 (en) 2022-03-15
CN109642474A (zh) 2019-04-16
JP2019525074A (ja) 2019-09-05
CN109642474B (zh) 2022-05-13
US20210310375A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
EP2960437B1 (de) Leitschaufelvorrichtung für eine gasturbine sowie gasturbine mit einer solchen leitschaufelvorrichtung
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
DE19620828C1 (de) Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
DE3206209A1 (de) "luftsteuervorrichtung fuer ein gasturbinentriebwerk
EP3548705B1 (de) Turbolader
CH702000A2 (de) Wirbelkammern zur Spaltströmungssteuerung.
EP3488082B1 (de) Dampfturbine mit strömungsabschirmung
EP2526263B1 (de) Gehäusesystem für eine axialströmungsmaschine
WO2017144207A1 (de) Gasturbine mit kühlung über die hintere hohlwelle
EP1280980A1 (de) Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine
EP2396517B1 (de) Dreischalige dampfturbine
WO2022128715A1 (de) Drosselkolben zum reduzieren von fluiddruck in einem stellventil
EP3488083B1 (de) Ausströmgehäuse einer dampfturbine
DE2303511C3 (de) Kombinierte Anfahr- und SchnellschluBeinrichtung für Dampf- und Gasturbinen
WO2009112299A1 (de) Dampfturbine mit geteiltem innengehäuse
EP2551463A1 (de) Ventilanbindung an eine Strömungsmaschine
EP2112335A1 (de) Dampfturbine mit Kühlvorrichtung
DE102016203731A1 (de) Dampfturbine
DE10233881B4 (de) Durch thermische Effekte radial veränderbares Ringelement
EP3445948B1 (de) Dampfturbine
WO2016058855A1 (de) Kontrollierte kühlung von turbinenwellen
DE69817161T2 (de) Ventilvorrichtung
DE102012023802B4 (de) Abgasturbolader mit einer Abgasleitvorrichtung
EP3587748A1 (de) Gehäusestruktur für eine strömungsmaschine, strömungsmaschine und verfahren zum kühlen eines gehäuseabschnitts einer gehäusestruktur einer strömungsmaschine
DE102004012599A1 (de) Druckentlastung einer Flanschverbindung in Überströmleitungen zwischen Frischdampfventil und HD-Dampfturbineneintritt

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011607

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011607

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230613

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1434367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230703

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 7

Ref country code: DE

Payment date: 20230726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929