EP1630360A1 - Dampfzu- oder abführung zur kühlung der aussengehäuse in einer dampfturbine - Google Patents

Dampfzu- oder abführung zur kühlung der aussengehäuse in einer dampfturbine Download PDF

Info

Publication number
EP1630360A1
EP1630360A1 EP04019960A EP04019960A EP1630360A1 EP 1630360 A1 EP1630360 A1 EP 1630360A1 EP 04019960 A EP04019960 A EP 04019960A EP 04019960 A EP04019960 A EP 04019960A EP 1630360 A1 EP1630360 A1 EP 1630360A1
Authority
EP
European Patent Office
Prior art keywords
steam
piston
steam turbine
pressure
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04019960A
Other languages
English (en)
French (fr)
Other versions
EP1630360B1 (de
Inventor
Norbert Pieper
Mark-Andre Dr. Schwarz
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20040019960 priority Critical patent/EP1630360B1/de
Priority to DE200450010299 priority patent/DE502004010299D1/de
Publication of EP1630360A1 publication Critical patent/EP1630360A1/de
Application granted granted Critical
Publication of EP1630360B1 publication Critical patent/EP1630360B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings

Definitions

  • the invention relates to a steam turbine in bivalve design with an inner housing which adjoins a thrust piston and is surrounded by an outer housing, which is provided for receiving a passing between the thrust piston and the inner housing piston leakage steam. Furthermore, the invention relates to an outer casing of such a steam turbine.
  • fans have been used in more recent concepts for steam turbines, which are intended to dissipate the piston leakage steam accumulating in the front area of the steam turbine between the inner housing and the outer housing into a rear steam space of the steam turbine. With such a redirecting of the hot piston leakage steam, however, no real cooling of the hot outer casing locations in the front turbine region is achieved.
  • the invention has for its object to improve a steam turbine mentioned above such that the outer casing is protected in a cost effective manner from overtemperature.
  • the object is achieved according to the invention with a generic steam turbine or an outer casing, wherein at the Outer housing at the receiving area of the piston leakage steam is provided a connection for supplying and / or removing steam.
  • the solution according to the invention is in contrast to the previous ventilation concepts, because according to the invention, the superheated steam is not circulated and forced into a rear region of the steam turbine, but it is targeted in the receiving area of the piston leakage steam (cooler) supplied steam or directly the (hot) piston leakage through the outer housing discharged through.
  • a possible damage to the outer housing by exceeding the allowable temperature values in the front turbine area is counteracted particularly effective in this way according to the invention.
  • the mechanical reliability of the turbine according to the invention is thereby increased for all operating conditions and the life of the steam turbine sustainably extended.
  • Another advantage of the solution according to the invention is that it can be dispensed with the use of a fan, as was required in previous ventilation concepts.
  • the supply and / or removal of steam according to the invention at the receiving area of the piston leakage steam between inner housing and outer housing thus leads to a significantly improved cooling of the front turbine housing.
  • a conduit means for selectively connecting the terminal to the outer housing with at least a partial flow of a low-pressure steam supply line is provided to this a conduit means for selectively connecting the terminal to the outer housing with at least a partial flow of a low-pressure steam supply line.
  • a conduit means for selectively connecting the terminal to the outer housing with at least a partial flow of a low-pressure steam supply line is particularly useful when the steam turbine according to the invention runs as a gas and steam turbine in the so-called combined cycle operation.
  • a part of the low-pressure Zudampfes with cooling effect can be introduced into the front turbine housing with almost no additional cost.
  • the said conduit means should be designed with a branching off from a main low-pressure steam supply line.
  • the main low-pressure steam supply line can then continue at the steam turbine according to the invention at the transition region between a medium-pressure section and a low-pressure section, as is the case with known steam turbines.
  • connection arranged on the outer housing at the receiving region of the piston leakage steam should be coupled to a conduit device for selective connection to at least one partial flow of a steam discharge.
  • the said conduit means is designed with a branching branch from a main steam outlet.
  • the main steam discharge can remain unchanged and e.g. Aspirate a further portion of the vapor of a tap directly from the medium pressure Abdampf Switzerland.
  • FIG 1 and 2 each show a part of a steam turbine 10 which has a turbine shaft 12, which is partially surrounded by an inner housing 14 and an outer housing 16.
  • the outer housing 16 each adjoins the turbine shaft 12 in the left-hand end region, which is related to the figures, and is there with the aid of two sealing channels formed in the outer housing 16 in relation to that in operation Steam turbine 10 rotating turbine shaft 12 sealed.
  • a piston 20 is formed on the turbine shaft 12, which is sealed by means of a piston seal 22 with respect to the adjacent to the piston 20 inner housing 14.
  • the piston 20 is followed axially by an inflow bladder 24, which is surrounded by the inner housing 14 and can escape from the exhaust steam introduced in a substantially axially extending medium-pressure blading channel 26.
  • the medium-pressure blading channel 26 is also surrounded by the inner housing 14.
  • Axially adjacent to the medium-pressure blading channel 26 is a low-pressure precursor 28, which is then followed by the actual low-pressure turbine section 30, which is located on the extreme right in relation to FIGS. 1 and 2.
  • a vane support 32 is suspended on the outer housing 16, which surrounds the inner housing 14 in total. Between the inner housing 14 and the outer housing 16 is in this way in the front (ie, with respect to the figures left) located between the turbine space 34 is formed.
  • a connection 36 is provided on the outer housing 16 in the region of the intermediate space 34 both in the embodiment according to FIG. 1 and in that of FIG.
  • this connection 36 is connected to a low-pressure Zudampf branch line 38, which is branched off from a low-pressure Zudampf main line 40.
  • a low-pressure steam main 40 In low-pressure operation of the steam turbine 10 according to FIG. 1, low-pressure spent steam is introduced into a region between the blasting channel 26 and the low-pressure preliminary stage 28.
  • a partial flow of the low-pressure Zudampfes is passed through the low-pressure branch line 38 and the port 36 into the intermediate space 34, where the low-pressure Zudampf cold in comparison to the piston leakage steam leads in particular to a cooling of the outer housing 16.
  • connection 36 is connected to a branch steam discharge line 42, which leads into a main steam discharge line 44.
  • the main steam outlet 44 is connected to a tapping, not shown, for example, a so-called A4 tap, with the steam during operation of the steam turbine 10 of FIG. 2 from the region between the medium-pressure blading channel 26 and the low-pressure precursor 28th is dissipated.
  • A4 tap a so-called A4 tap

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Eine Dampfturbine (10) in zweischaliger Bauweise mit einem Innengehäuse (14), das an einen Kolben (20) grenzt und von einem Außengehäuse (16) umgeben ist, welches zum Aufnehmen von einem zwischen dem Kolben (20) und dem Innengehäuse (14) durchtretenden Kolbenleckdampf vorgesehen ist, ist erfindungsgemäß dadurch gekennzeichnet, dass an dem Außengehäuse (16) am Aufnahmebereich (34) des Kolbenleckdampfs ein Anschluss (36) zum Zu- und/oder Abführen von Dampf vorgesehen ist.

Description

  • Die Erfindung betrifft eine Dampfturbine in zweischaliger Bauweise mit einem Innengehäuse, das an einen Schubkolben grenzt und von einem Außengehäuse umgeben ist, welches zum Aufnehmen von einem zwischen dem Schubkolben und dem Innengehäuse durchtretenden Kolbenleckdampf vorgesehen ist. Ferner betrifft die Erfindung ein Außengehäuse einer derartigen Dampfturbine.
  • Im Betrieb von Dampfturbinen zweischaliger Bauweise hat sich gezeigt, dass es an bestimmten Bereichen der Dampfturbine zu einem Aufheizen des Außengehäuses auf Temperaturwerte oberhalb von beispielsweise 400° Celsius kommen kann. Eine derart hohe Temperatur kann für Außengehäuse von Dampfturbinen, welche insbesondere oftmals aus Grauguss GGG40.3 hergestellt sind, derzeit nicht zugelassen werden.
  • Damit die zulässigen Temperaturwerte am Außengehäuse nicht überschritten werden, wurden bei neueren Konzepten für Dampfturbinen Ventilatoren eingesetzt, welche den im vorderen Bereich der Dampfturbine zwischen dem Innengehäuse und dem Außengehäuse sich ansammelnden Kolbenleckdampf in einen hinteren Dampfraum der Dampfturbine abführen sollen. Mit einem solchen Umleiten des heißen Kolbenleckdampfs wird jedoch keine wirkliche Kühlung der heißen Außengehäusestellen im vorderen Turbinenbereich erreicht.
  • Der Erfindung liegt die Aufgabe zugrunde eine eingangs genannte Dampfturbine derart zu verbessern, dass deren Außengehäuse auf kostengünstige Art und Weise vor Übertemperatur geschützt ist.
  • Die Aufgabe ist erfindungsgemäß mit einer gattungsgemäßen Dampfturbine bzw. einem Außengehäuse gelöst, bei dem an dem Außengehäuse am Aufnahmebereich des Kolbenleckdampfs ein Anschluss zum Zu- und/oder Abführen von Dampf vorgesehen ist.
  • Die erfindungsgemäße Lösung steht im Gegensatz zu den bisherigen Ventilationskonzepten, denn erfindungsgemäß wird nicht der Heißdampf umgewälzt und in einen hinteren Bereich der Dampfturbine gedrängt, sondern es wird gezielt im Aufnahmebereich des Kolbenleckdampfs (kühler) Dampf zugeführt oder direkt der (heiße) Kolbenleckdampf durch das Außengehäuse hindurch abgeführt.
  • Einer möglichen Schädigung des Außengehäuses durch Überschreiten der zulässigen Temperaturwerte im vorderen Turbinenbereich wird auf diese Weise erfindungsgemäß besonders effektiv entgegengewirkt. Die mechanische Betriebssicherheit der erfindungsgemäßen Turbine ist dadurch für alle Betriebszustände erhöht und die Lebensdauer der Dampfturbine nachhaltig verlängert.
  • Ein weiterer Vorteil der erfindungsgemäßen Lösung liegt darin, dass auf den Einsatz eines Ventilators, wie er bei bisherigen Ventilationskonzepten erforderlich war, verzichtet werden kann. Die erfindungsgemäße Zu- und/oder Abfuhr von Dampf am Aufnahmebereich des Kolbenleckdampfs zwischen Innengehäuse und Außengehäuse führt damit zu einer signifikant verbesserten Kühlung des vorderen Turbinengehäuses.
  • Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Dampfturbine ist an diese eine Leitungseinrichtung zum wahlweisen Verbinden des Anschlusses am Außengehäuse mit zumindest einem Teilstrom einer Niederdruck-Dampfzuleitung vorgesehen. Eine solche Gestaltung ist besonders dann zweckmäßig, wenn die erfindungsgemäße Dampfturbine als Gas- und Dampfturbine im so genannten GuD-Betrieb läuft. Beim GuD-Betrieb wird bei einem Zwei- bzw. Dreidruck-Prozess mit einer Niederdruck-Zudampfeinleitung an der Dampfturbine gearbeitet, so dass mit der erfindungsgemäßen Lösung nahezu ohne zusätzlichen Kostenaufwand ein Teil des Niederdruck-Zudampfes mit kühlender Wirkung in das vordere Turbinengehäuse eingeleitet werden kann. Der durch den Anschluss am Außengehäuse eingeleitete Niederdruck-Zudampf vermischt sich mit dem heißen Kolbenleckdampf und kühlt dadurch temperaturkritische Stellen des Außengehäuses im vorderen Turbinenbereich.
  • Damit diese Zuleitung eines Teilstroms des Niederdruck-Zudampfes kostengünstig ermöglicht werden kann, sollte die genannte Leitungseinrichtung mit einer von einer Haupt-Niederdruck-Dampfzuleitung abzweigenden Leitung gestaltet sein. Die Haupt-Niederdruck-Dampfzuleitung kann dann an der erfindungsgemäßen Dampfturbine weiterhin am Übergangsbereich zwischen einem Mitteldruck-Abschnitt und einem Niederdruck-Abschnitt erfolgen, wie es auch bei bekannten Dampfturbinen der Fall ist.
  • Bei Dampfturbinen, die im Rahmen eines Dampfkraftwerks im so genannten DKW-Betrieb laufen, wird generell kein Niederdruck-Zudampf eingeleitet. Damit bei derartigen Dampfturbinen dennoch die erfindungsgemäße Kühlung erzielt werden kann, sollte der an dem Außengehäuse am Aufnahmebereich des Kolbenleckdampfs angeordnete Anschluss mit einer Leitungseinrichtung zum wahlweisen Verbindung mit zumindest einem Teilstrom einer Dampfableitung gekoppelt sein. Durch eine solche Dampfableitung kann dann für eine Anzapfung des Dampfkraftwerks gezielt aus dem Zwischenraum zwischen Innengehäuse und Außengehäuse der heiße Kolbenleckdampf abgesaugt und auf diese Weise die Temperaturbelastung am Außengehäuse erheblich gesenkt werden. Mit dieser Weiterbildung der erfindungsgemäßen Lösung wird durch die Leitungseinrichtung ein wesentlicher Teil des Dampfes einer Anzapfung aus dem vorderen Turbinengehäuse abgesaugt und weiterer (kalter) Dampf aus dem Mitteldruck-Abdampfbereich mit kühlender Wirkung in den vorderen Turbinenbereich nachgesaugt. Dieser (kalte) Dampf trägt nochmals zur Kühlung des Außengehäuses bei.
  • Damit die am Außengehäuse gewünschte Kühlleistung erzielt wird, reicht es in der Regel aus, wenn die genannte Leitungseinrichtung mit einer von einer Haupt-Dampfableitung abzweigenden Leitung gestaltet ist. Die Haupt-Dampfableitung kann im Übrigen unverändert bleiben und z.B. einen weiteren Großteil des Dampfes einer Anzapfung direkt aus dem Mitteldruck-Abdampfbereich absaugen.
  • Mit der oben genannten erfindungsgemäßen Lösung und deren Weiterbildungen wird also sowohl für die Anwendung im GuD-Betrieb als auch im DKW-Betrieb eine unter allen Betriebsumständen stets ausreichende Beströmung und Kühlung des vorderen Turbinenbereichs sichergestellt.
  • Nachfolgend werden Ausführungsbeispiele der erfindungsgemäßen Dampfturbine anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
    • Fig. 1 einen teilweisen Längsschnitt eines Ausführungsbeispiels einer erfindungsgemäßen Dampfturbine, die für den GuD-Betrieb eingerichtet ist, und
    • Fig. 2 einen teilweisen Längsschnitt eines Ausführungsbeispiels einer erfindungsgemäßen Dampfturbine, die für den DKW-Betrieb eingerichtet ist.
  • In den Fig. 1 und 2 ist jeweils ein Teil einer Dampfturbine 10 dargestellt, die eine Turbinenwelle 12 aufweist, welche teilweise von einem Innengehäuse 14 und einem Außengehäuse 16 umgeben ist.
  • Das Außengehäuse 16 grenzt jeweils im auf die Figuren bezogenen linken Endbereich an die Turbinenwelle 12 und ist dort mit Hilfe von zwei im Außengehäuse 16 ausgebildeten Dichtungskanälen gegenüber der sich im Betrieb der Dampfturbine 10 drehenden Turbinenwelle 12 abgedichtet. Axial neben den Dichtungskanälen 18 ist an der Turbinenwelle 12 ein Kolben 20 ausgebildet, der mit Hilfe einer Kolbendichtung 22 gegenüber dem an dem Kolben 20 angrenzenden Innengehäuse 14 abgedichtet ist. Auf den Kolben 20 folgt axial eine Einströmblase 24, die vom Innengehäuse 14 umgeben ist und aus der heraus eingeleiteter Zudampf in einem sich im Wesentlichen axial erstreckenden Mitteldruck-Beschaufelungskanal 26 austreten kann. Der Mitteldruck-Beschaufelungskanal 26 ist ebenfalls vom Innengehäuse 14 umgeben. An den Mitteldruck-Beschaufelungskanal 26 grenzt axial eine Niederdruck-Vorstufe 28 an, auf die dann der eigentliche Niederdruck-Turbinenbereich 30 folgt, welcher sich im Bezug auf die Figuren 1 und 2 äußerst rechts befindet. An der Niederdruck-Vorstufe 28 ist ein Leitschaufelträger 32 am Außengehäuse 16 aufgehängt, welches insgesamt das Innengehäuse 14 umgibt. Zwischen dem Innengehäuse 14 und dem Außengehäuse 16 ist auf diese Weise ein sich im vorderen (d.h. im Bezug auf die Figuren linken) Turbinenbereich befindlicher Zwischenraum 34 ausgebildet.
  • Wegen des in der Einströmblase bzw. Eindüsblase 24 vorherrschenden hohen Drucks und der dortigen hohen Temperatur von beispielsweise zirka 565° Celsius, ist es unvermeidlich, dass ein gewisser Leckmassenstrom durch die Kolbendichtung 22 hindurch tritt und sich als Kolbenleckdampf im Zwischenraum 34 ansammelt. Damit dieser (heiße) Kolbenleckdampf nicht zu einer überhöhten Temperaturbelastung des aus Grauguss hergestellten Außengehäuses führt, ist am Außengehäuse 16 im Bereich des Zwischenraums 34 sowohl bei dem Ausführungsbeispiel gemäß Fig. 1 als auch bei jenem der Fig. 2 ein Anschluss 36 vorgesehen.
  • Dieser Anschluss 36 ist bei dem Ausführungsbeispiel gemäß Fig. 1 mit einer Niederdruck-Zudampf-Zweigleitung 38 verbunden, die von einer Niederdruck-Zudampf-Hauptleitung 40 abgezweigt ist. Mit der Niederdruck-Zudampf-Hauptleitung 40 wird im GuD-Betrieb der Dampfturbine 10 gemäß Fig. 1 Niederdruck-Zudampf in einen Bereich zwischen dem Beschaufelungskanal 26 und der Niederdruck-Vorstufe 28 eingeleitet. Dabei wird zugleich ein Teilstrom des Niederdruck-Zudampfes durch die Niederdruck-Zweigleitung 38 und den Anschluss 36 hindurch in den Zwischenraum 34 geleitet, wo der im Vergleich zum Kolbenleckdampf kalte Niederdruck-Zudampf insbesondere zu einer Kühlung des Außengehäuses 16 führt.
  • Bei dem in Fig. 2 dargestellten Ausführungsbeispiel einer Dampfturbine 10, die im DKW-Betrieb läuft ist der Anschluss 36 mit einer Zweig-Dampfableitung 42 verbunden, die in eine Haupt-Dampfableitung 44 hineinführt. Die Haupt-Dampfableitung 44 ist mit einer nicht dargestellten Anzapfung, beispielsweise einer so genannten A4-Anzapfung, verbunden, mit der während des Betriebs der Dampfturbine 10 gemäß Fig. 2 Dampf aus dem Bereich zwischen dem Mitteldruck-Beschaufelungskanal 26 und der Niederdruck-Vorstufe 28 abgeführt wird. Durch den in der Haupt-Dampfableitung 44 herrschenden Unterdruck wird zugleich der vergleichsweise heiße Kolbenleckdampf aus dem Zwischenraum 34 abgesaugt, so dass dieser das Außengehäuse nicht aufheizt und es nicht zu einer erhöhten Temperaturbelastung an diesem Außengehäuse 16 kommt.

Claims (6)

  1. Dampfturbine (10) in zweischaliger Bauweise mit einem Innengehäuse (14), das an einen Kolben (20) grenzt und von einem Außengehäuse (16) umgeben ist, welches zum Aufnehmen von einem zwischen dem Kolben (20) und dem Innengehäuse (14) durchtretenden Kolbenleckdampf vorgesehen ist,
    dadurch gekennzeichnet, dass
    an dem Außengehäuse (16) am Aufnahmebereich (34) des Kolbenleckdampfs ein Anschluss (36) zum Zu- und/oder Abführen von Dampf vorgesehen ist.
  2. Dampfturbine nach Anspruch 1,
    dadurch gekennzeichnet, dass
    eine Leitungseinrichtung (38, 40) zum wahlweise Verbinden des Anschlusses (36) mit zumindest einem Teilstrom einer Niederdruck-Dampfzuleitung vorgesehen ist.
  3. Dampfturbine nach Anspruch 2,
    dadurch gekennzeichnet, dass
    die Leitungseinrichtung mit einer von einer Haupt-Niederdruck-Dampfzuleitung (40) abzweigenden Leitung (38) gestaltet ist.
  4. Dampfturbine nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    eine Leitungseinrichtung (42, 44) zum wahlweisen Verbinden des Anschlusses (36) mit zumindest einem Teilstrom einer Dampfableitung vorgesehen ist.
  5. Dampfturbine nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die Leitungseinrichtung mit einer von einer Haupt-Dampfableitung (44) abzweigenden Leitung (42) gestaltet ist.
  6. Außengehäuse (16) einer zweischaligen Dampfturbine (10), welches zum Anordnen über einem Innengehäuse (14) und zum Aufnehmen von einem zwischen dem Innengehäuse (14) und einem Kolben (20) durchtretenden
    Kolbenleckdampf vorgesehen ist,
    dadurch gekennzeichnet, dass
    an dem Außengehäuse (16) am Aufnahmebereich (34) des Kolbenleckdampf ein Anschluss (36) zum Zu- und/oder Abführen von Dampf vorgesehen ist.
EP20040019960 2004-08-23 2004-08-23 Dampfabführung zur kühlung der aussengehäuse in einer dampfturbine Expired - Lifetime EP1630360B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20040019960 EP1630360B1 (de) 2004-08-23 2004-08-23 Dampfabführung zur kühlung der aussengehäuse in einer dampfturbine
DE200450010299 DE502004010299D1 (de) 2004-08-23 2004-08-23 Dampfabführung zur kühlung der aussengehäuse in einer dampfturbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20040019960 EP1630360B1 (de) 2004-08-23 2004-08-23 Dampfabführung zur kühlung der aussengehäuse in einer dampfturbine

Publications (2)

Publication Number Publication Date
EP1630360A1 true EP1630360A1 (de) 2006-03-01
EP1630360B1 EP1630360B1 (de) 2009-10-28

Family

ID=34926265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040019960 Expired - Lifetime EP1630360B1 (de) 2004-08-23 2004-08-23 Dampfabführung zur kühlung der aussengehäuse in einer dampfturbine

Country Status (2)

Country Link
EP (1) EP1630360B1 (de)
DE (1) DE502004010299D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525042A1 (de) * 2011-05-18 2012-11-21 Siemens Aktiengesellschaft Sperrschaltung bei Dampfturbinen zur Nassdampfabsperrung
EP2565401A1 (de) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft Verfahren zur Temperaturausgleichung in einer Dampfturbine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013217334A1 (de) 2013-08-30 2015-03-05 Siemens Aktiengesellschaft Gehäuseanordnung für eine Dampfturbine
CN106194284B (zh) * 2016-07-22 2017-07-28 东方电气集团东方汽轮机有限公司 一种汽轮机夹层蒸汽参数调整及运行的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2003954A1 (de) * 1969-01-29 1970-07-30 Elin Union Ag UEber Rohrleitungen und Ventile gespeiste Gasturbine
DE6809708U (de) * 1968-12-03 1973-03-08 Siemens Ag Mehrschalige axiale, drosselgeregelte dampfturbine fuer hohe druecke und temperaturen.
US4615657A (en) * 1984-06-30 1986-10-07 Bbc Brown, Boveri & Company, Limited Air storage gas turbine
JPH0518205A (ja) 1991-07-15 1993-01-26 Fuji Electric Co Ltd 蒸気タービン
JPH09125909A (ja) 1995-10-30 1997-05-13 Mitsubishi Heavy Ind Ltd 複合サイクル用蒸気タービン
EP1035301A1 (de) 1999-03-08 2000-09-13 Asea Brown Boveri AG Ausgleichskolben für den axialen Schubausgleich einer Welle von einer Turbine
US6695575B1 (en) * 1999-08-27 2004-02-24 Siemens Aktiengesellschaft Turbine method for discharging leakage fluid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6809708U (de) * 1968-12-03 1973-03-08 Siemens Ag Mehrschalige axiale, drosselgeregelte dampfturbine fuer hohe druecke und temperaturen.
DE2003954A1 (de) * 1969-01-29 1970-07-30 Elin Union Ag UEber Rohrleitungen und Ventile gespeiste Gasturbine
US4615657A (en) * 1984-06-30 1986-10-07 Bbc Brown, Boveri & Company, Limited Air storage gas turbine
JPH0518205A (ja) 1991-07-15 1993-01-26 Fuji Electric Co Ltd 蒸気タービン
JPH09125909A (ja) 1995-10-30 1997-05-13 Mitsubishi Heavy Ind Ltd 複合サイクル用蒸気タービン
EP1035301A1 (de) 1999-03-08 2000-09-13 Asea Brown Boveri AG Ausgleichskolben für den axialen Schubausgleich einer Welle von einer Turbine
US6695575B1 (en) * 1999-08-27 2004-02-24 Siemens Aktiengesellschaft Turbine method for discharging leakage fluid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 294 (M - 1424) 7 June 1993 (1993-06-07) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 09 30 September 1997 (1997-09-30) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525042A1 (de) * 2011-05-18 2012-11-21 Siemens Aktiengesellschaft Sperrschaltung bei Dampfturbinen zur Nassdampfabsperrung
WO2012156387A1 (de) * 2011-05-18 2012-11-22 Siemens Aktiengesellschaft Sperrschaltung bei dampfturbinen zur nassdampfabsperrung
CN103534441A (zh) * 2011-05-18 2014-01-22 西门子公司 蒸汽轮机中的用于阻断湿蒸汽的阻断线路
CN103534441B (zh) * 2011-05-18 2015-08-05 西门子公司 蒸汽轮机中的用于阻断湿蒸汽的阻断线路
EP2565401A1 (de) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft Verfahren zur Temperaturausgleichung in einer Dampfturbine
WO2013034377A1 (de) * 2011-09-05 2013-03-14 Siemens Aktiengesellschaft Verfahren zur temperaturausgleichung in einer dampfturbine
CN103764956A (zh) * 2011-09-05 2014-04-30 西门子公司 用于在蒸汽轮机中进行温度补偿的方法
JP2014525538A (ja) * 2011-09-05 2014-09-29 シーメンス アクティエンゲゼルシャフト 蒸気タービンの温度補償のための方法
JP2015148232A (ja) * 2011-09-05 2015-08-20 シーメンス アクティエンゲゼルシャフト 蒸気タービンの温度補償のための方法
CN103764956B (zh) * 2011-09-05 2015-11-25 西门子公司 用于在蒸汽轮机中进行温度补偿的方法
US9416684B2 (en) 2011-09-05 2016-08-16 Siemens Aktiengesellschaft Method for a temperature compensation in a steam turbine

Also Published As

Publication number Publication date
DE502004010299D1 (de) 2009-12-10
EP1630360B1 (de) 2009-10-28

Similar Documents

Publication Publication Date Title
EP2430315B1 (de) Strömungsvorrichtung mit kavitätenkühlung
EP1173664B1 (de) Kühlluftsystem
DE602004000527T2 (de) Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk
DE60118848T2 (de) Tandemkühlung für eine Turbinenschaufel
EP1162355B1 (de) Verfahren zum Kühlen einer Gasturbinenanlage und entsprechende Gasturbinenanlage
DE60031744T2 (de) Turbinenbrennkammeranordnung
DE4330380A1 (de) Abgasturbolader mit mehrteiligem Lagergehäuse
EP1148221A2 (de) Verfahren und Vorrichtung zum Kühlen der Gehäuse von Turbinen von Strahltriebwerken
DE112015002403T5 (de) Kühlvorrichtung, Gasturbineninstallation mit selbiger und Verfahren zum Betreiben der Kühlvorrichtung
EP1954922A1 (de) Dampfturbine mit lagerstreben
EP2639411B1 (de) Gehäuse einer Stömungsmaschine mit einem Fluidleitsystem
EP2084368B1 (de) Turbinenschaufel
EP1904717B1 (de) HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE
EP3129606A1 (de) Gasturbinengeneratorkühlung
DE102012221298A1 (de) Ladeeinrichtung eines Antriebsaggregats
EP2450531A1 (de) Axialverdichterkühlung
WO2014033220A1 (de) Kühlverfahren zum betreiben einer gasturbine
WO2005019621A1 (de) Diffusor zwischen verdichter und brennkammer einer gasturbine angeordnet
EP1806476A1 (de) Turbine für ein thermisches Kraftwerk
EP0928364A1 (de) Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage
EP1630360B1 (de) Dampfabführung zur kühlung der aussengehäuse in einer dampfturbine
EP1249578A1 (de) Kühlung einer Gasturbine
EP0838595A2 (de) Schaufelträger für einen Verdichter
EP1167721B1 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
DE102012208263A1 (de) Verdichtervorrichtung für eine Turbomaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060322

17Q First examination report despatched

Effective date: 20060620

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: SUPPLYING STEAM FOR COOLING THE OUTER CASING OF A STEAM TURBINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502004010299

Country of ref document: DE

Date of ref document: 20091210

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160811

Year of fee payment: 13

Ref country code: IT

Payment date: 20160830

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 13

Ref country code: CH

Payment date: 20161109

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010299

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170823

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170823