WO2012005173A1 - 原料混合物およびアルカリ金属-遷移金属複合酸化物 - Google Patents

原料混合物およびアルカリ金属-遷移金属複合酸化物 Download PDF

Info

Publication number
WO2012005173A1
WO2012005173A1 PCT/JP2011/065132 JP2011065132W WO2012005173A1 WO 2012005173 A1 WO2012005173 A1 WO 2012005173A1 JP 2011065132 W JP2011065132 W JP 2011065132W WO 2012005173 A1 WO2012005173 A1 WO 2012005173A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
alkali metal
composite oxide
positive electrode
metal composite
Prior art date
Application number
PCT/JP2011/065132
Other languages
English (en)
French (fr)
Inventor
哲 島野
直之 後藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012005173A1 publication Critical patent/WO2012005173A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a raw material mixture for producing an alkali metal-transition metal composite oxide.
  • Alkali metal-transition metal composite oxides are particularly used as electrode active materials in nonaqueous electrolyte secondary batteries.
  • Alkali metal-transition metal composite oxides are used as electrode active materials in nonaqueous electrolyte secondary batteries such as lithium secondary batteries.
  • Lithium secondary batteries have already been put to practical use as small power sources for mobile phones and notebook computers. Furthermore, the application of lithium secondary batteries has also been attempted in large power sources such as automobile applications and power storage applications.
  • an alkali metal-transition metal composite oxide is produced by firing a raw material mixture obtained by mixing an alkali metal compound and a transition metal compound.
  • lithium hydroxide monohydrate or lithium carbonate as an alkali metal compound and nickel-manganese-iron coprecipitate as a transition metal compound
  • a method of firing a raw material mixture obtained by mixing a transition metal composite hydroxide) and potassium chloride as a flux has been proposed (see, for example, Patent Document 1).
  • an alkali metal-transition metal composite oxide is produced by firing a raw material mixture obtained by mixing an alkali metal compound and a transition metal compound.
  • a raw material mixture obtained by mixing an alkali metal compound and a transition metal compound.
  • air or an atmosphere having an oxygen concentration higher than air The raw material mixture is fired under. If the oxygen concentration is insufficient, the oxidation of the raw material mixture does not proceed sufficiently, thereby causing insufficient crystallization of the alkali metal-transition metal composite oxide or inactive as an electrode active material. Oxides composed only of elements and oxygen elements are generated.
  • carbon dioxide or water vapor may be generated as a reaction product.
  • Water vapor is generated when a hydroxide is used as an alkali compound or a transition metal compound.
  • Carbon dioxide is generated when carbonates are used as alkali compounds and transition metal compounds. If carbon dioxide or water vapor is present in the atmosphere during firing of the alkali metal-transition metal composite oxide, crystallization of the alkali metal-transition metal composite oxide may be insufficient, or an inactive transition as an electrode active material Oxides consisting only of metal elements and oxygen elements are produced.
  • the oxygen concentration in the furnace decreases, and the water vapor and carbon dioxide concentration decreases. To rise. Therefore, when large-scale firing is performed at one time, or when firing in a gas furnace is performed, the obtained alkali metal-transition metal composite oxide has insufficient crystallinity or is inactive as an electrode active material. Since an oxide composed only of a transition metal element and an oxygen element is generated, the high output discharge capacity of the obtained lithium secondary battery is not sufficient.
  • the firing reaction is represented by the following reaction formula: M (OH) 2 + 0.5Li 2 CO 3 + 0.25O 2 ⁇ LiMO 2 + 0.5CO 2 + H 2 O (Here, M is a transition metal element, and Li is lithium (alkali metal element).)
  • An object of the present invention is to provide an alkali metal-transition metal composite that provides a non-aqueous electrolyte secondary battery having a high output discharge capacity even when calcined under conditions where the oxygen concentration is lower than that of air and the concentration of water vapor or carbon dioxide is high. It is to provide an oxide and raw material mixture. Means for Solving the Problems The present invention provides the following.
  • the inorganic salt is at least one salt selected from the group consisting of sulfate, nitrate, tungstate, vanadate, molybdate, niobate and borate. blend.
  • the cation constituting the inorganic salt is one or more salts selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • ⁇ 1> or ⁇ 2> Raw material mixture.
  • ⁇ 4> The raw material mixture according to any one of ⁇ 1> to ⁇ 3>, wherein the alkali metal element constituting the alkali metal compound is one or more elements selected from the group consisting of Li and Na.
  • the transition metal element constituting the transition metal compound is one or more elements selected from the group consisting of Mn, Fe, Co, and Ni.
  • ⁇ 6> The raw material mixture according to any one of ⁇ 1> to ⁇ 5>, wherein the transition metal element constituting the transition metal compound is Fe and one or more elements selected from the group consisting of Mn, Co and Ni .
  • a method for producing an alkali metal-transition metal composite oxide comprising firing the raw material mixture of any one of ⁇ 1> to ⁇ 6> at a holding temperature of 200 to 1050 ° C.
  • ⁇ 9> The alkali metal-transition metal composite oxide according to ⁇ 8>, wherein the crystal structure is a layered structure.
  • ⁇ 10> The alkali metal-transition of ⁇ 8> or ⁇ 9>, wherein the average oxidation number of the transition metal element constituting the alkali metal-transition metal composite oxide is larger than the average oxidation number of the transition metal element constituting the transition metal compound Metal complex oxide.
  • ⁇ 11> A positive electrode active material comprising the alkali metal-transition metal composite oxide according to any one of ⁇ 8> to ⁇ 10>.
  • ⁇ 12> A positive electrode having the positive electrode active material of ⁇ 11>.
  • ⁇ 13> A nonaqueous electrolyte secondary battery having the positive electrode of ⁇ 12>.
  • ⁇ 14> The nonaqueous electrolyte secondary battery according to ⁇ 13>, further comprising a separator.
  • FIG. 1 shows a comparison of the oxidation potential required for the production of an alkali metal-transition metal composite oxide and the oxidation potential of various oxidizing agents.
  • FIG. 2 shows a comparison (1) of the oxidation potential required for the production of the alkali metal-transition metal composite oxide and the oxidation potential of various sulfates.
  • FIG. 3 shows a comparison (2) between the oxidation potential required for the formation of the alkali metal-transition metal composite oxide and the oxidation potential of various sulfates.
  • the alkali metal-transition metal composite oxide raw material mixture includes a flux containing an inorganic salt, an alkali metal compound containing a compound different from the flux, and a transition metal compound.
  • the flux has an oxidation potential necessary to produce an alkali metal-transition metal composite oxide at a holding temperature during firing of the raw material mixture.
  • a flux containing an inorganic salt can provide an oxidation potential necessary for producing an alkali metal-transition metal composite oxide at a firing temperature. All or a part of the flux may be an inorganic salt having an oxidation potential necessary for producing an alkali metal-transition metal composite oxide.
  • ⁇ Oxidation potential required for formation of alkali metal-transition metal composite oxide The oxidation potential necessary for producing the alkali metal-transition metal composite oxide in the present invention and the oxidation potential of the flux are determined by the following calculation using the oxygen potential (log [P (O 2 )]). ⁇ LiFeO 2 Oxidation potential required for the production of An example of the oxidation potential necessary for producing the alkali metal-transition metal composite oxide will be described according to the following example.
  • Li as the alkali metal compound 2 CO 3 And Fe (OH) as a transition metal compound 2 LiFeO as an alkali metal-transition metal composite oxide 2 LiFeO as an alkali metal-transition metal composite oxide 2
  • the oxidation potential required for the formation of the alkali metal-transition metal composite oxide is calculated for the reaction that generates.
  • log [K eq (a) ] Represents the oxygen potential unique to the redox system and is the second term on the right side Represents a change in oxygen potential depending on the concentration of a substance involved in the redox system.
  • Oxygen potential (log [P (O 2 )]) Is compared, it is the first term on the right side log [K eq (a) ] Is the second term on the right side The oxygen potential (log [P (O 2 )]). Therefore, the oxygen potential (log [P (O 2 )]) To log [K of the first term on the right side of Equation (2) eq (a) ] Only.
  • thermodynamic calculation software can be calculated with thermodynamic calculation software.
  • MALT2 copyright holder: Japan Society for Thermal Measurement, Publisher: Science and Technology Co., Ltd.
  • Log [K at 900 ° C eq (a) ] Is ⁇ 37. That is, LiFeO at 900 ° C. 2
  • the oxidation potential log [K required to obtain eq (a) ] ⁇ 37.
  • the transition metal compound is Fe (OH) 2 LiFeO as an alkali metal-transition metal composite oxide 2
  • the oxidation potential required to produce s was calculated for each temperature and is shown in FIGS.
  • K 2 SO 4 A calculation example is shown using.
  • K 2 SO 4 In the case of a flux containing K, K represented by the following equilibrium equation: 2 SO 4 / K 2 A redox equilibrium of S occurs.
  • 0.5K 2 SO 4 0.5K 2 S + O 2 ..., Equilibrium (b) Equilibrium constant (b) (K eq (b) )
  • the oxygen potential of S (log [P (O 2 )]) Is given as follows.
  • ⁇ rG T ° (eq (b)) 0.5 ⁇ fG T ° (K 2 S) + ⁇ fG T ° (O 2 ) -0.5 ⁇ fG T ° (K 2 SO 4 ) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • the flux containing LiFeO is an alkali metal-transition metal composite oxide at 300 ° C. or higher. 2 It has the oxidation potential necessary to produce LiFeO as alkali metal-transition metal composite oxide 2
  • the oxidation potential (0) required to produce 2 SO 4 Oxidation potential (a-1) and sodium tungstate (Na 2 WO 4 ) Oxidation potential (a-2) and sodium vanadate (NaVO) 3 ) Oxidation potential (a-3) and sodium molybdate (Na 2 MoO 4 ) Oxidation potential (a-4) and sodium nitrate (NaNO) 3 ) Oxidation potential (a-5) and sodium niobate (NaNbO) 3 ) Oxidation potential (a-6) and sodium borate (NaBO) 2 ) And the oxidation potential (a-7) of FIG.
  • LiFeO as alkali metal-transition metal composite oxide 2 Compared to the oxidation potential (0) required to generate, these oxidation potentials are higher above a certain temperature. That is, sulfate, tungstate, vanadate, molybdate, nitrate, niobate and borate are LiFeO as alkali metal-transition metal complex oxides. 2 It has the oxidation potential necessary to produce The flux containing at least one compound selected from the group consisting of sulfate, tungstate, vanadate, molybdate, nitrate, niobate and borate is alkali metal-transition metal composite oxidation.
  • LiFeO as a product 2 It has the oxidation potential necessary to produce LiFeO as alkali metal-transition metal composite oxide 2
  • the oxidation potential (b-8) was compared with each of FIG. 2 and FIG.
  • LiFeO as alkali metal-transition metal composite oxide 2 Compared to the oxidation potential (0) required to produce, these oxidation potentials are higher above a certain temperature. That is, a sulfate whose cation is Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba is LiFeO as an alkali metal-transition metal composite oxide. 2 It has the oxidation potential necessary to produce A flux containing a sulfate whose cation is composed of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba is LiFeO as an alkali metal-transition metal composite oxide.
  • the oxidation potential necessary to produce A group consisting of sulfate, nitrate, tungstate, vanadate, molybdate, niobate, and borate as an inorganic salt having an oxidation potential necessary to produce an alkali metal-transition metal composite oxide
  • the cation constituting the inorganic salt is one or more salts selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
  • the average of transition metal elements constituting the alkali metal-transition metal composite oxide The oxidation number is preferably higher than the average oxidation number of the transition metal element constituting the transition metal compound.
  • the sulfate salt with Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba as cations, Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , Rb 2 SO 4 , Cs 2 SO 4 , CaSO 4 , MgSO 4 , SrSO 4 And BaSO 4 Can be mentioned.
  • Tungstic acid salts with Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba as cations are Li 2 WO 4 , Na 2 WO 4 , K 2 WO 4 , Rb 2 WO 4 , Cs 2 WO 4 , MgWO 4 , CaWO 4 , SrWO 4 And BaWO 4 Can be mentioned.
  • These melting points are Li 2 MoO 4 (705 ° C), Na 2 MoO 4 (698 ° C), K 2 MoO 4 (919 ° C), Rb 2 MoO 4 (958 ° C), Cs 2 MoO 4 (956 ° C), MGMoO 4 (1060 ° C), CaMoO 4 (1520 ° C), SrMoO 4 (1040 ° C), BaMoO 4 (1460 ° C.).
  • LiNO 3 , NaNO 3 , KNO 3 , RbNO 3 , CsNO 3 , Mg (NO 3 ) 2 , Ca (NO 3 ) 2 , Sr (NO 3 ) 2 And Ba (NO 3 ) 2 can be mentioned.
  • LiBO 2 , NaBO 2 , KBO 2 , RbBO 2 , CsBO 2 , Mg (BO 2 ) 2 , Ca (BO 2 ) 2 , Sr (BO 2 ) 2 And Ba (BO 2 ) 2 can be mentioned.
  • Their melting point is LiBO 2 (845 ° C), NaBO 2 (966 ° C), KBO 2 (950 ° C.), Ca (BO 2 ) 2 (1154 ° C.).
  • the flux in the present invention refers to a material that is partially or wholly melted at the holding temperature during firing.
  • the melting point of the combined fluxes becomes lower than the melting point of each flux. Moreover, the melting point is lowered when the flux coexists with the alkali metal compound. A part of the flux may be the same as the alkali metal compound.
  • ⁇ Other fluxes> In addition to inorganic salts having the oxidation potential necessary to produce alkali metal-transition metal composite oxides, hydroxides, carbonates, phosphates and halides (where halides are fluorides, chlorides, Among the inorganic salts selected from the group consisting of one or more compounds selected from the group consisting of products, bromides, and iodides, other fluxes having no oxidation potential are used.
  • an inorganic salt containing one or more cations selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba as a constituent element is preferable. Two or more of these inorganic salts can be used. Such inorganic salts are exemplified below. , LiOH, NaOH, KOH, RbOH, CsOH, Mg (OH) as hydroxides with Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba as cations 2 , Ca (OH) 2 , Sr (OH) 2 And Ba (OH) 2 Can be mentioned.
  • These melting points are Li 3 PO 4 (857 ° C), K 3 PO 4 (1340 ° C), Mg 3 (PO 4 ) 2 (1184 ° C), Sr 3 (PO 4 ) 2 (1727 ° C), Ba 3 (PO 4 ) 2 (1767 ° C.).
  • the ratio of the flux in the raw material mixture is usually 0.1 to 1000 parts by weight, preferably 0.5 to 200 parts by weight, more preferably 100 parts by weight of the transition metal compound. 1 to 100 parts by weight.
  • the alkali metal compound includes an alkali metal hydroxide, an alkali metal carbonate, an alkali metal nitrate, an alkali metal sulfate, an alkali metal phosphate, and an alkali metal halide (wherein Examples of the halide include one or more compounds selected from the group consisting of fluoride, chloride, bromide, and iodide. These alkali metal compounds may be hydrates.
  • the alkali metal compound includes a compound different from the flux.
  • Examples of the alkali metal hydroxide include LiOH, NaOH, KOH, RbOH, and CsOH.
  • Alkali metal carbonates include Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 And Cs 2 CO 3 Can be mentioned.
  • ⁇ ⁇ ⁇ ⁇ As the alkali metal nitrate LiNO 3 , NaNO 3 , KNO 3 , RbNO 3 And CsNO 3 Can be mentioned.
  • Alkali metal sulfates include Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , Rb 2 SO 4 And Cs 2 SO 4 Can be mentioned.
  • Alkaline metal phosphates include Li 3 PO 4 , Na 3 PO 4 , K 3 PO 4 , Rb 3 PO 4 And Cs 3 PO 4 Can be mentioned.
  • alkali metal halides include chlorides.
  • alkali metal chlorides include LiCl, NaCl, KCl, RbCl, and CsCl.
  • Transition metal compounds include transition metal oxides, hydroxides (including oxyhydroxides, the same shall apply hereinafter), chlorides, carbonates, sulfates, nitrates, oxalates and acetates. be able to. These transition metal compounds may be hydrates. Two or more of these transition metal compounds may be used in combination.
  • the transition metal element constituting the transition metal compound is preferably one or more elements selected from the group consisting of Mn, Fe, Co and Ni.
  • the transition metal element constituting the transition metal compound is one or more selected from the group consisting of Fe, Mn, Co, and Ni. It is preferable that More preferably, the transition metal element constituting the transition metal compound is Fe and Ni or Mn.
  • the transition metal element constituting the transition metal compound contains Fe. As a preferable amount of Fe, the molar fraction of Fe in the transition metal element is 0.01 to 0.5, and more preferably 0.02 to 0.2.
  • M is a transition metal element
  • examples of transition metal oxides include MO and M 2 O 3 And MO 2 Can be mentioned.
  • a transition metal hydroxide for example, M (OH) 2 And M (OH) 3 Can be mentioned.
  • the transition metal hydroxide may be an oxyhydroxide of a transition metal.
  • transition metal oxyhydroxides include MOOH.
  • a transition metal chloride for example, MCl 2 And MCl 3 Can be mentioned.
  • transition metal carbonates include MCO 3 And M 2 (CO 3 ) 3 Can be mentioned.
  • transition metal sulfates include MSO 4 And M 2 (SO 4 ) 3 Can be mentioned.
  • transition metal nitrates include M (NO 3 ) 2 Can be mentioned.
  • transition metal oxalates examples include MC 2 O 4 Can be mentioned.
  • transition metal acetates examples include M (CH 3 COO) 2 Can be mentioned.
  • the transition metal compound is preferably a hydroxide.
  • the transition metal compound is preferably composed of a plurality of transition metal elements.
  • the transition metal compound can be obtained by coprecipitation, and is preferably a hydroxide.
  • ⁇ Manufacture of positive electrode active material> The holding temperature in the firing is an important factor for adjusting the specific surface area of the obtained alkali metal-transition metal composite oxide (positive electrode active material). Usually, the higher the holding temperature, the smaller the specific surface area. The specific surface area tends to increase as the holding temperature decreases.
  • the holding temperature for firing is preferably 200 to 1050 ° C.
  • the setting of the holding temperature depends on the type of the flux, and the melting point and oxidation potential of the flux may be taken into consideration.
  • the holding time at the holding temperature is usually 0.1 to 20 hours, preferably 0.5 to 8 hours.
  • the rate of temperature rise to the holding temperature is usually 50 to 400 ° C./hour, and the rate of temperature drop from the holding temperature to room temperature is usually 10 to 400 ° C./hour.
  • the flux may remain in the alkali metal-transition metal composite oxide or may be removed by washing, decomposition, evaporation, or the like.
  • the obtained alkali metal-transition metal composite oxide may be pulverized using a ball mill, a jet mill or the like. It may be possible to adjust the specific surface area of the alkali metal-transition metal composite oxide by grinding. Moreover, you may repeat baking and grinding
  • the alkali metal-transition metal composite oxide obtained using the raw material mixture of the present invention is useful as a positive electrode active material for non-aqueous electrolyte secondary batteries that require high output characteristics.
  • the alkali metal-transition metal composite oxide obtained using the raw material mixture of the present invention is usually composed of primary particles having a particle size of 0.05 to 1 ⁇ m.
  • the particle size of the primary particles can be measured from an electron micrograph of an alkali metal-transition metal composite oxide.
  • the crystal structure of the alkali metal-transition metal composite oxide obtained using the raw material mixture of the present invention is preferably a layered structure. Furthermore, in order to increase the discharge capacity of the nonaqueous electrolyte secondary battery, it is preferable that the crystal structure belongs to the R-3m or C2 / m space group. The space group R-3m is included in the hexagonal crystal structure.
  • the hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / M, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P-6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / Mcm and P6 3 It belongs to any one space group selected from the group consisting of / mmc
  • the space group C2 / m is included in the monoclinic crystal structure.
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / M, C2 / m, P2 / c, P2 1 It belongs to any one space group selected from the group consisting of / c and C2 / c.
  • the crystal structure of the alkali metal-transition metal composite oxide can be identified from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement.
  • the transition metal element constituting the alkali metal-transition metal composite oxide is one or more transition metal elements selected from the group consisting of Ni, Mn, Co and Fe
  • the present invention A part of the transition metal element may be substituted with another element as long as the above effect is not impaired.
  • B Al, Ga, In, Si, Ge, Sn, Mg, Sc, Y, Zr, Hf, Nb, Ta, Cr, Mo, W, Ru, Rh, Ir, Pd
  • Examples of the element include Cu, Ag, and Zn.
  • a compound different from the oxide may be attached to the surface of the particles of the alkali metal-transition metal composite oxide of the present invention as long as the effects of the present invention are not impaired.
  • the compound is a compound composed of one or more elements selected from the group consisting of B, Al, Ga, In, Si, Ge, Sn, Mg and a transition metal element, preferably B, Al, A compound composed of one or more elements selected from the group consisting of Mg, Ga, In and Sn, more preferably an Al compound.
  • Specific examples of the compound include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and organic acid salts of the above elements, preferably oxides, hydroxides, and oxyhydroxides. It is a thing.
  • the positive electrode active material having an alkali metal-transition metal composite oxide obtained by the method of the present invention is suitable for a non-aqueous electrolyte secondary battery.
  • a method for producing a positive electrode using the positive electrode active material a case of producing a positive electrode for a non-aqueous electrolyte secondary battery will be described as an example.
  • the positive electrode can be produced by supporting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder on a positive electrode current collector.
  • a carbon material can be used as the conductive material, and examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material.
  • the proportion of the conductive material in the positive electrode By increasing the proportion of the conductive material in the positive electrode, the conductivity of the positive electrode is increased, and charge / discharge efficiency and rate characteristics can be improved. If the proportion of the conductive material in the positive electrode is too large, the binding property between the positive electrode mixture and the positive electrode current collector may decrease, and the internal resistance may increase. Usually, the proportion of the conductive material in the positive electrode mixture is 5 to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • the binder include thermoplastic resins, and specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), and tetrafluoroethylene.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Fluorine resin such as hexafluoropropylene / vinylidene fluoride copolymer, hexafluoropropylene / vinylidene fluoride copolymer and tetrafluoroethylene / perfluorovinyl ether copolymer
  • polyolefin such as polyethylene and polypropylene Resin
  • you may mix and use these 2 or more types of thermoplastic resins.
  • a fluorine resin and a polyolefin resin are used as a binder, and the positive electrode mixture has a ratio of 1 to 10% by weight of the fluororesin in 100% by weight of the positive electrode mixture and 0.1 to 2% by weight of the polyolefin resin.
  • the positive electrode current collector a conductor such as Al, Ni, or stainless steel can be used.
  • Al is preferable because it is easy to process into a thin film and is inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a pressure molding method; a method of fixing the positive electrode mixture to the positive electrode current collector using a positive electrode mixture paste.
  • the positive electrode mixture paste contains a positive electrode active material, a conductive material, a binder, and a solvent.
  • the positive electrode mixture paste is applied to the positive electrode current collector, dried, and the obtained sheet is pressed to fix the positive electrode mixture to the positive electrode current collector.
  • As the solvent an aqueous solvent or an organic solvent can be used. You may add a thickener to a solvent as needed. Examples of the thickener include carboxymethyl cellulose, sodium polyacrylate, polyvinyl alcohol and polyvinyl pyrrolidone.
  • organic solvent examples include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; ester solvents such as methyl acetate; dimethylacetamide, N And amide solvents such as methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • ester solvents such as methyl acetate
  • dimethylacetamide, N And amide solvents such as methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • NMP methyl-2-pyrrolidone
  • a positive electrode for a non-aqueous electrolyte secondary battery can be manufactured.
  • Nonaqueous electrolyte secondary battery A non-aqueous electrolyte secondary battery will be described using the positive electrode.
  • an electrode group is produced by laminating or laminating and winding a separator, a negative electrode, and the positive electrode, and the electrode group is accommodated in a battery case, and an electrolytic solution is stored in the battery. It can manufacture by the method of inject
  • Examples of the shape of the electrode group include a circle, an ellipse, a rectangle, and a rectangle with rounded corners when the electrode group is cut in a direction perpendicular to the winding axis.
  • examples of the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.
  • the negative electrode can be doped and dedoped with lithium ions at a lower potential than the positive electrode.
  • Examples of the negative electrode include an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector; an electrode made of a negative electrode active material alone.
  • Examples of the negative electrode active material include carbon materials, chalcogen compounds (oxides, sulfides, and the like), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done. You may mix and use these negative electrode active materials.
  • Examples of the negative electrode active material are given below.
  • Specific examples of the carbon material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds.
  • As an example of the oxide specifically, SiO 2 , SiO etc.
  • SiO x (Wherein x is a positive real number) silicon oxide represented by: TiO 2 TiO, formula TiO x (Where x is a positive real number) titanium oxide; V 2 O 5 , VO 2 Etc.
  • Ti 2 S 3 TiS 2 TiS and other formula TiS x (Where x is a positive real number) titanium sulfide; V 3 S 4 , VS 2, VS and other expressions VS x (Where x is a positive real number) Vanadium sulfide; Fe 3 S 4 , FeS 2 FeS and other formulas x (Where x is a positive real number) iron sulfide; Mo 2 S 3 , MoS 2 Etc. MoS x (Where x is a positive real number) molybdenum sulfide represented by SnS 2, SnS etc.
  • These carbon materials, oxides, sulfides and nitrides may be used in combination of two or more, and these may be either crystalline or amorphous. Further, these carbon materials, oxides, sulfides and nitrides are mainly carried on the negative electrode current collector and used as electrodes.
  • specific examples of the metal include lithium metal, silicon metal, and tin metal.
  • the alloy include lithium alloys such as Li—Al, Li—Ni, and Li—Si; silicon alloys such as Si—Zn; Sn—Mn, Sn—Co, Sn—Ni, Sn—Cu, and Sn.
  • -Tin alloys such as La; Cu 2 Sb, La 3 Ni 2 Sn 7 And alloys thereof.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite are preferably used because of good potential flatness, low average discharge potential, and good cycleability.
  • shape of the carbon material include flakes such as natural graphite, spheres such as mesocarbon microbeads, and fibers such as graphitized carbon fibers.
  • the carbon material may be a fine powder aggregate.
  • the negative electrode mixture may contain a binder as necessary. Examples of the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • Examples of the negative electrode current collector include Cu, Ni, stainless steel and the like, and Cu is preferable because it is difficult to form an alloy with lithium and it can be easily processed into a thin film.
  • the method of supporting the negative electrode mixture on the negative electrode current collector is the same as in the case of the positive electrode, and is a method of pressure molding; a method of fixing the negative electrode mixture to the negative electrode current collector using a negative electrode mixture paste. Can be mentioned.
  • the separator for example, a member made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, a nitrogen-containing aromatic polymer, or the like having a form such as a porous membrane, a nonwoven fabric, or a woven fabric can be used.
  • the separator may be made of two or more kinds of the materials, or may be a laminated separator in which the members are laminated. Examples of the separator include separators described in JP 2000-30686 A, JP 10-324758 A, and the like.
  • the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 5 to 40 ⁇ m, in that the volume energy density of the battery is increased and the internal resistance is reduced.
  • the separator is preferably thin as long as the mechanical strength is maintained.
  • the separator preferably has a porous film containing a thermoplastic resin.
  • the separator is disposed between the positive electrode and the negative electrode.
  • the separator preferably has a function (shutdown function) that blocks an electric current and prevents an excessive current from flowing when an abnormal current flows in the battery due to a short circuit between the positive electrode and the negative electrode.
  • the shutdown is performed by closing the micropores of the porous film in the separator when the normal use temperature is exceeded.
  • a separator examples include a laminated film in which a heat-resistant porous layer and a porous film are laminated with each other.
  • the heat resistant porous layer may be laminated on both surfaces of the porous film.
  • the heat resistant porous layer is a layer having higher heat resistance than the porous film, and the heat resistant porous layer may be formed of an inorganic powder or may contain a heat resistant resin.
  • the heat resistant porous layer contains a heat resistant resin
  • the heat resistant porous layer can be formed by an easy technique such as coating.
  • the heat resistant resin include polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyetherketone, aromatic polyester, polyethersulfone and polyetherimide.
  • polyamide, polyimide, polyamideimide, polyethersulfone and polyetherimide are preferable.
  • polyamide More preferably, it is polyamide, polyimide or polyamideimide. Even more preferred are nitrogen-containing aromatic polymers such as aromatic polyamides (para-oriented aromatic polyamides, meta-oriented aromatic polyamides), aromatic polyimides, and aromatic polyamideimides. Particularly preferred is an aromatic polyamide, and in terms of production, para-oriented aromatic polyamide (hereinafter sometimes referred to as para-aramid) is particularly preferred.
  • the heat resistant resin include poly-4-methylpentene-1 and cyclic olefin polymers.
  • the thermal film breaking temperature of the laminated film depends on the type of heat-resistant resin and is selected and used according to the use scene and purpose of use. More specifically, as the heat-resistant resin, when the nitrogen-containing aromatic polymer is used, the cyclic olefin polymer is about 400 ° C., and when poly-4-methylpentene-1 is used, the temperature is about 250 ° C. When using, the thermal film breaking temperature can be controlled to about 300 ° C., respectively. Further, when the heat resistant porous layer is made of inorganic powder, the thermal film breaking temperature can be controlled to 500 ° C. or higher.
  • the para-aramid is obtained by polycondensation of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, the 4,4 ′ position in biphenylene) , 1 and 5 positions in naphthalene, and 2 and 6 positions in naphthalene).
  • para-aramid examples include poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), A para-oriented type such as poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer or the like Para-aramid having a structure conforming to the para-oriented type may be mentioned.
  • the aromatic polyimide is preferably a wholly aromatic polyimide produced by condensation polymerization of an aromatic dianhydride and a diamine.
  • the dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic Examples include acid dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.
  • diamine examples include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3′-methylenedianiline, 3,3′-diaminobenzophenone, 3,3′-diaminodiphenylsulfone and 1,5. -Naphthalenediamine.
  • a solvent-soluble polyimide can be preferably used. Examples of such a polyimide include a polycondensate polyimide of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine.
  • aromatic polyamideimide examples include those obtained by condensation polymerization of aromatic dicarboxylic acid and aromatic diisocyanate, and those obtained by condensation polymerization of aromatic diacid anhydride and aromatic diisocyanate.
  • aromatic dicarboxylic acid examples include isophthalic acid and terephthalic acid.
  • aromatic dianhydride is trimellitic anhydride.
  • aromatic diisocyanate examples include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, orthotolylane diisocyanate, and m-xylene diisocyanate.
  • the thickness of the heat resistant porous layer is preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m, and particularly preferably 1 to 4 ⁇ m.
  • the heat-resistant porous layer has fine pores, and the pore diameter is usually 3 ⁇ m or less, preferably 1 ⁇ m or less.
  • a heat resistant porous layer can also contain the below-mentioned filler.
  • the porous film has fine pores.
  • the porous film preferably has a shutdown function. In this case, the porous film contains a thermoplastic resin.
  • the size (diameter) of the micropores in the porous film is usually 3 ⁇ m or less, preferably 1 ⁇ m or less.
  • the porosity of the porous film is usually 30 to 80% by volume, preferably 40 to 70% by volume.
  • thermoplastic resin examples include polyolefin resins such as polyethylene and polypropylene, and thermoplastic polyurethane resins, and two or more thermoplastic resins may be mixed and used.
  • the porous film preferably contains polyethylene.
  • the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene, and ultrahigh molecular weight polyethylene having a molecular weight of 1,000,000 or more.
  • the porous film preferably contains ultra high molecular weight polyethylene in order to further increase the piercing strength of the film.
  • the thermoplastic resin may preferably contain a wax composed of a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less.
  • the thickness of the porous film in the laminated film is usually 3 to 30 ⁇ m, preferably 3 to 25 ⁇ m. In the present invention, the thickness of the laminated film is usually 40 ⁇ m or less, preferably 20 ⁇ m or less.
  • the value of A / B is preferably 0.1 or more and 1 or less.
  • the heat resistant porous layer may contain one or more fillers.
  • the filler may be selected from any of organic powder, inorganic powder, or a mixture thereof.
  • the average particle diameter of the particles constituting the filler is preferably 0.01 to 1 ⁇ m.
  • the organic powder include styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, and methyl acrylate, or a copolymer of two or more types; polytetrafluoroethylene, 4 fluorine, and the like.
  • Fluorinated resins such as fluorinated ethylene-6propylene copolymer, tetrafluoroethylene-ethylene copolymer, PVdF; melamine resin; urea resin; polyolefin;
  • the organic powder may be used alone or in combination of two or more.
  • polytetrafluoroethylene powder is preferable from the viewpoint of chemical stability.
  • the inorganic powder include powders made of inorganic substances such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates and sulfates. Among these, powder made of an inorganic material having low conductivity is preferably used.
  • preferred inorganic powders include powders made of alumina, silica, titanium dioxide or calcium carbonate.
  • An inorganic powder may be used independently and can also be used in mixture of 2 or more types.
  • alumina powder is preferable from the viewpoint of chemical stability.
  • the filler is composed only of alumina particles. More preferably, some or all of the alumina particles constituting the filler are substantially spherical.
  • the heat-resistant porous layer is composed of an inorganic powder, the inorganic powder exemplified above may be used, and may be mixed with a binder as necessary.
  • the filler weight ratio is usually 5 to 95 parts by weight with respect to 100 parts by weight of the total heat-resistant porous layer, preferably 20 to The amount is 95 parts by weight, more preferably 30 to 90 parts by weight. These ranges can be appropriately set depending on the specific gravity of the filler material.
  • the shape of the filler there are a substantially spherical shape, a plate shape, a columnar shape, a needle shape, a whisker shape and a fiber shape, and since it is easy to form a uniform hole, a substantially spherical shape is preferable.
  • the substantially spherical particles include particles having a particle aspect ratio (particle major axis / particle minor axis) of 1 to 1.5.
  • the aspect ratio of the particles can be measured from an electron micrograph.
  • the air permeability of the separator by the Gurley method is preferably 50 to 300 seconds / 100 cc, and more preferably 50 to 200 seconds / 100 cc.
  • the porosity of the separator is usually 30 to 80% by volume, preferably 40 to 70% by volume.
  • the separator may be a laminate of separators having different porosity.
  • the electrolytic solution is usually composed of an electrolyte and an organic solvent.
  • electrolytes include perchlorates with alkali metal cations, phosphorus hexafluoride salts, arsenic hexafluoride salts, antimony hexafluoride salts, boron tetrafluoride salts, trifluoromethanesulfonate salts, sulfonamide compounds Trifluoromethanesulfonate, boron compound salt and borate. A mixture of two or more of these may be used.
  • lithium salt LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalate) boreate), lower aliphatic carboxylic acid lithium salt, LiAlCl 4 Etc.
  • fluorine-containing lithium salts selected from the group consisting of:
  • Carbonates such as 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, Ethers such as pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as ril and butyronitrile; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Carbamates such as 3-methyl-2-oxazolidone; Sulfolane, dimethyl sulfoxide and 1,3-propane sultone And sulfur-containing compounds such as Moreover, what introduce
  • a mixed solvent in which two or more of the organic solvents are mixed is used.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate, or a mixed solvent of cyclic carbonate and ethers is more preferable.
  • the mixed solvent of cyclic carbonate and acyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material.
  • a mixed solvent containing EC, DMC and EMC is preferable.
  • LiPF 6 It is preferable to use an electrolytic solution containing a fluorine-containing alkali metal salt such as an organic solvent having a fluorine substituent.
  • a fluorine-containing alkali metal salt such as an organic solvent having a fluorine substituent.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and DMC is excellent in large current discharge characteristics, and more preferable.
  • a solid electrolyte may be used instead of the electrolytic solution.
  • an organic polymer electrolyte such as a polyethylene oxide polymer, a polymer containing at least one of a polyorganosiloxane chain and a polyoxyalkylene chain can be used.
  • maintained electrolyte solution to the polymer can also be used.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the conductive material used was a mixture of acetylene black and graphite in a weight ratio of 1: 9.
  • binder solution an NMP solution in which PVdF (binder) was dissolved was used.
  • the positive electrode mixture paste was applied to an Al foil current collector and then vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode.
  • the obtained positive electrode, electrolytic solution, separator, and negative electrode were combined to produce a nonaqueous electrolyte secondary battery (coin type battery R2032).
  • the battery was assembled in a glove box in an argon atmosphere.
  • a solvent in the electrolytic solution a mixed solvent in which EC, DMC, and EMC were each in a volume ratio of 30:35:35 was used.
  • LiPF as electrolyte 6 was used.
  • An electrolytic solution was produced by dissolving the electrolyte in a mixed solvent. The electrolyte concentration was adjusted to 1 mol / liter.
  • a laminated film separator in which a heat resistant porous layer was laminated on a polyethylene porous film was used as a separator. Moreover, metallic lithium was used as the negative electrode.
  • a charge / discharge test was performed under the conditions shown below while maintaining at 25 ° C. In the charge / discharge test, the discharge capacity was measured by changing the discharge current during discharge.
  • Charging conditions Charging maximum voltage 4.3V, charging time 8 hours, charging current 0.2mA / cm 2
  • Discharge conditions During discharge, the minimum discharge voltage was kept constant at 2.5 V, and the discharge current in each cycle was changed as follows to perform discharge. It shows that a high output characteristic is acquired, so that the discharge capacity in 10C is large.
  • First cycle discharge (0.2 C): discharge current 0.2 mA / cm 2
  • Second cycle discharge (0.2 C): discharge current 0.2 mA / cm 2 3rd cycle discharge
  • (5C): discharge current 5.0 mA / cm 2 6th cycle discharge (10 C): discharge current 10 mA / cm 2 ⁇ Measurement of physical properties of alkali metal-transition metal composite oxide> 2.
  • Powder X-ray diffraction measurement of alkali metal-transition metal complex oxide RINT2500TTR type manufactured by Rigaku Corporation was used for powder X-ray diffraction measurement of alkali metal-transition metal composite oxide.
  • a CuK ⁇ radiation source was used as the X-ray radiation source.
  • Measurement of specific surface area of alkali metal-transition metal composite oxide Alkali metal-transition metal composite oxide 0.5 g was dried in a nitrogen atmosphere at 150 ° C.
  • Example 1 ⁇ Production of transition metal compound> In a polypropylene beaker, potassium hydroxide was added to distilled water at 10% by weight. Furthermore, it stirred and potassium hydroxide was dissolved completely and potassium hydroxide aqueous solution was prepared as alkaline aqueous solution.
  • a coprecipitate was formed in the aqueous solution to obtain a coprecipitate slurry.
  • the coprecipitate slurry was filtered and washed with distilled water, and dried at 120 ° C. to obtain a coprecipitate.
  • ⁇ Preparation of raw material mixture of alkali metal-transition metal composite oxide When the total amount of transition metal elements (nickel, manganese, iron) constituting the transition metal compound is 100 moles, lithium in the alkali metal compound is prepared to be 130 moles. It adjusted so that potassium might be 5 mol and 5 mol, respectively.
  • a coprecipitate as the transition metal compound, lithium carbonate as the alkali metal compound, potassium sulfate as the flux, and potassium carbonate as the other flux were dry-mixed using an agate mortar to obtain the raw material mixture.
  • 10 g of the raw material mixture was placed in an alumina firing container and placed in an electric furnace.
  • a gas adjusted to have an oxygen concentration of 10% by volume and a carbon dioxide concentration of 10% by volume was circulated in the electric furnace at 5 L / min to adjust the atmosphere in the electric furnace.
  • the furnace temperature was heated to 900 ° C., and the raw material mixture was fired by holding at that temperature for 6 hours, and then cooled to room temperature to obtain a fired product.
  • the fired product is pulverized, washed with distilled water by decantation, filtered, and dried at 300 ° C. for 6 hours to obtain an alkali metal-transition metal composite oxide as A 1 Got.
  • a 1 Specific surface area, crystal structure, and A 1 Table 1 shows the discharge capacity measured in a charge / discharge test using a coin-type battery using as a positive electrode active material.
  • Comparative Example 1 Comparative Example 1, when the total amount of transition metal elements (nickel, manganese, iron) constituting the transition metal compound is 100 moles, lithium in the alkali metal compound is prepared to be 130 moles in the flux. Of potassium carbonate was adjusted to 10 mol. A coprecipitate prepared in the same manner as in Example 1 as a transition metal compound, lithium carbonate as an alkali metal compound stable in the air, and potassium carbonate as a flux, were dry mixed using an agate mortar, A raw material mixture was obtained.
  • transition metal elements nickel, manganese, iron
  • B is obtained as an alkali metal-transition metal composite oxide through the processes of firing, pulverization, washing, and drying under the same conditions as in Example 1.
  • 1 Got. B 1 Specific surface area, crystal structure, and B 1 Table 1 shows the discharge capacity measured in a charge / discharge test using a coin-type battery using as a positive electrode active material.
  • Example 2 and Comparative Example 2 In Example 2 and Comparative Example 2, the atmosphere in firing was adjusted so that the oxygen concentration was 10% by volume and the carbon dioxide concentration was 5% by volume. In Example 2, the conditions other than the atmosphere in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 2 Got.
  • Comparative Example 2 the conditions other than the atmosphere in the firing were the same as in Comparative Example 2 and B as an alkali metal-transition metal composite oxide. 2 Got. A 2 And B 2 Specific surface area, crystal structure, and A 2 And B 2 Table 1 shows the discharge capacities measured in the charge / discharge test using a coin-type battery in which the positive electrode active material is a positive electrode active material. Comparing the discharge capacity at 10 C, B in Comparative Example 2 2 The value of A in Example 2 is more than the value of a coin-type battery using as a positive electrode active material. 2 The value of the coin-type battery using a positive electrode active material was larger.
  • Example 3 and Comparative Example 3 In Example 3 and Comparative Example 3, the atmosphere in firing was adjusted so that the oxygen concentration was 10% by volume and the carbon dioxide concentration was 0% by volume.
  • the conditions other than the atmosphere in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 3 Got.
  • the conditions other than the atmosphere in the firing were the same as in Comparative Example 1 and B as an alkali metal-transition metal composite oxide.
  • a 3 And B 3 Specific surface area, crystal structure, and A 3 And B 3 Table 1 shows the discharge capacities measured in the charge / discharge test using a coin-type battery in which the positive electrode active material is a positive electrode active material.
  • Example 4 Comparing the discharge capacity at 10 C, B in Comparative Example 3 3
  • the value of A in Example 3 is greater than the value of the coin-type battery using the positive electrode active material. 3
  • the value of the coin-type battery using a positive electrode active material was larger.
  • Example 4, Example 5 and Comparative Example 4 In Example 4, Example 5, and Comparative Example 4, the holding temperature in firing was 900 ° C., and the atmosphere was adjusted so that the oxygen concentration was 20% by volume and the carbon dioxide concentration was 10% by volume. In Example 4, the conditions other than the atmosphere in firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 4 Got.
  • Example 5 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, the lithium in the alkali metal compound was adjusted to 140 mol, It prepared so that potassium carbonate and potassium sulfate might be 5 mol and 5 mol, respectively.
  • Conditions other than the ratio of the atmosphere and the raw material mixture in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 5 Got.
  • Comparative Example 4 the conditions other than the atmosphere in the firing were the same as in Comparative Example 1 and B as an alkali metal-transition metal composite oxide. 4 Got.
  • a 4 And A 5 And B 4 Specific surface area, crystal structure, and A 4 And A 5 And B 4 Table 2 shows the discharge capacities measured in a charge / discharge test using a coin-type battery each of which is a positive electrode active material. Comparing the discharge capacity at 10 C, B in Comparative Example 4 4 The value of A in Example 4 is greater than the value of the coin-type battery using the positive electrode active material. 4 Of a coin-type battery using a positive electrode active material and A in Example 5 5 The value of the coin-type battery using a positive electrode active material was larger.
  • Example 6 Example 7, Example 8, Example 9, and Comparative Example 5
  • the holding temperature in firing was set to 850 ° C., and the atmosphere was 20% by volume of oxygen and 10% by volume of carbon dioxide. It was adjusted.
  • the lithium in the alkali metal compound was adjusted to 130 mol, It prepared so that potassium carbonate and potassium sulfate might be 1 mol and 1 mol, respectively.
  • the firing atmosphere and other conditions were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 6 Got.
  • Example 7 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, the lithium in the alkali metal compound was adjusted to 140 mol, It prepared so that potassium carbonate and potassium sulfate might be 1 mol and 1 mol, respectively.
  • Conditions other than the ratio of the atmosphere and the raw material mixture in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 7 Got.
  • Example 8 the conditions other than the atmosphere in the firing were the same as in Example 1 and the alkali metal-transition metal composite oxide was A. 8 Got.
  • Example 9 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, the lithium in the alkali metal compound was adjusted to 140 mol, It prepared so that potassium carbonate and potassium sulfate might be 5 mol and 5 mol, respectively.
  • Conditions other than the ratio of the atmosphere and the raw material mixture in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 9 Got.
  • Comparative Example 5 the conditions other than the atmosphere in firing were the same as in Comparative Example 1, and B as an alkali metal-transition metal composite oxide. 5 Got.
  • Table 3 shows the discharge capacities measured in the charge / discharge test using a coin-type battery each of which is a positive electrode active material. Comparing the discharge capacity at 10 C, B in Comparative Example 5 5 The value of A in Example 6 is greater than the value of the coin-type battery in which A is a positive electrode active material.
  • Example 6 The value of a coin-type battery using as a positive electrode active material or A in Example 7 7
  • the value of a coin-type battery using as a positive electrode active material or A in Example 9 9 The value of the coin-type battery using a positive electrode active material was larger.
  • Example 10, Example 11, Example 12, Example 13, and Comparative Example 6 In Example 10, Example 11, Example 12, Example 13 and Comparative Example 6, the holding temperature in firing was 950 ° C., and the atmosphere was 20% by volume oxygen concentration and 10% by volume carbon dioxide concentration. It was adjusted.
  • Example 10 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, the lithium in the alkali metal compound was adjusted to 130 mol, It prepared so that potassium carbonate and potassium sulfate might be 1 mol and 1 mol, respectively. Conditions other than the ratio of the atmosphere and the raw material mixture in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 10 Got.
  • Example 11 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, the lithium in the alkali metal compound was adjusted to 140 mol, It prepared so that potassium carbonate and potassium sulfate might be 1 mol and 1 mol, respectively.
  • Example 12 Conditions other than the ratio of the atmosphere and the raw material mixture in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 11 Got. In Example 12, the conditions other than the atmosphere in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 12 Got. In Example 13, when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, the lithium in the alkali metal compound was adjusted to 140 mol, It prepared so that potassium carbonate and potassium sulfate might be 5 mol and 5 mol, respectively. Conditions other than the ratio of the atmosphere and the raw material mixture in the firing were the same as in Example 1, and the alkali metal-transition metal composite oxide was A. 13 Got.
  • transition metal elements nickel, manganese, iron
  • Comparative Example 6 the conditions other than the atmosphere in the firing were the same as in Comparative Example 1, but B as an alkali metal-transition metal composite oxide. 6 Got. A 10 And A 11 And A 12 And A 13 And B 6 Specific surface area, crystal structure, and A 10 And A 11 And A 12 And A 13 And B 6 Table 4 shows the discharge capacities measured in the charge / discharge test using a coin-type battery in which the positive electrode active material is a positive electrode active material. Comparing the discharge capacity at 10 C, B in Comparative Example 6 6 6 The value of A in Example 10 is greater than the value of the coin-type battery using as the positive electrode active material.
  • Example 10 The value of a coin-type battery in which A is a positive electrode active material, or A in Example 11 11
  • the value of the coin-type battery using a positive electrode active material was larger.
  • Example 14 ⁇ Production of alkali metal-transition metal composite oxide>
  • potassium hydroxide was added to distilled water at 15% by weight. Furthermore, it stirred and potassium hydroxide was dissolved completely and potassium hydroxide aqueous solution was prepared as alkaline aqueous solution.
  • the molar ratio of nickel, manganese, and iron in the nickel-manganese-iron mixed aqueous solution in Example 14 was the same as that of the nickel-manganese-iron mixed aqueous solution in Example 1.
  • Example 14 While stirring the potassium hydroxide aqueous solution, the nickel-manganese-iron mixed aqueous solution was added dropwise thereto. A coprecipitate was formed in the aqueous solution to obtain a coprecipitate slurry. Next, the coprecipitate slurry was filtered and washed with distilled water, and dried at 120 ° C. to obtain a coprecipitate.
  • a rocking mill (manufactured by Aichi Electric Co., Ltd., the same shall apply hereinafter) using a coprecipitate as the transition metal compound, lithium carbonate as the alkali metal compound, potassium sulfate as the flux, and potassium carbonate as the other flux. Dry mixing was performed to obtain a raw material mixture.
  • 1.8 kg of the mixture was put in a porous ceramic baking container having a square side of 300 mm on one side.
  • the layer thickness of the mixture at this time was 30 mm.
  • the raw material mixture was calcined using a shuttle kiln calcining furnace using propane gas as fuel and heating the inside of the furnace with the combustion heat.
  • the furnace temperature was raised at 100 ° C./h, held at 860 ° C. for 6 hours, and then cooled to room temperature.
  • the oxygen concentration in the furnace was 21% by volume immediately before firing. As the temperature increased due to gas combustion, the oxygen concentration decreased and became the lowest immediately after reaching the holding temperature of 860 ° C., which was 11% by volume.
  • the carbon dioxide concentration in the furnace was 0% by volume immediately before firing. As the temperature increased due to gas combustion, the carbon dioxide concentration increased and became the highest immediately after reaching the holding temperature of 860 ° C., which was 8% by volume.
  • the fired product is taken out from the shuttle kiln firing furnace, pulverized, washed by decantation with distilled water, filtered, and dried at 300 ° C.
  • a 14 Purs. ⁇ Physical Properties of Alkali Metal-Transition Metal Composite Oxide and Charge / Discharge Test Using the Oxide as Positive Electrode Active Material> A 14 Specific surface area, crystal structure, and A 14 Table 5 shows the discharge capacity measured in a charge / discharge test using a coin-type battery using as a positive electrode active material. Comparing the discharge capacity at 10C, B in Comparative Example 7 described later 7 The value of A in Example 14 is greater than the value of the coin-type battery using as the positive electrode active material. 14 The value of the coin-type battery using a positive electrode active material was larger.
  • Comparative Example 7 A coprecipitate obtained as in Example 14 as a transition metal compound, lithium carbonate as an alkali metal compound, and potassium carbonate as a flux were mixed to obtain a raw material mixture. At this time, when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound is 100 moles, lithium in the alkali metal compound is prepared to be 130 moles, It prepared so that it might become 10 mol. Subsequently, B is obtained as an alkali metal-transition metal composite oxide through the processes of firing, pulverization, washing, and drying under the same conditions as in Example 14. 7 Got.
  • transition metal elements nickel, manganese, iron
  • B 7 Specific surface area, crystal structure, and B 7 Table 5 shows the discharge capacity measured in a charge / discharge test using a coin-type battery using as a positive electrode active material.
  • Example 15, Example 16 and Example 17 ⁇ Production of alkali metal-transition metal composite oxide>
  • potassium hydroxide was added to distilled water at 15% by weight. Furthermore, it stirred and potassium hydroxide was dissolved completely and potassium hydroxide aqueous solution was prepared as alkaline aqueous solution.
  • nickel (II) sulfate hexahydrate is 24 wt%
  • Manganese (II) sulfate monohydrate was added to 16% by weight
  • iron (II) chloride heptahydrate was further added to 3% by weight. Further, the transition metal salt was completely dissolved by stirring to obtain a nickel-manganese-iron mixed aqueous solution.
  • Example 15 The molar ratio of nickel, manganese, and iron in the nickel-manganese-iron mixed aqueous solution in Example 15, Example 16, and Example 17 was the same as that of the nickel-manganese-iron mixed aqueous solution in Example 1. While stirring the potassium hydroxide aqueous solution, the nickel-manganese-iron mixed aqueous solution was added dropwise thereto. A coprecipitate was formed in the aqueous solution to obtain a coprecipitate slurry. Next, the coprecipitate slurry was filtered and washed with distilled water, and dried at 120 ° C. to obtain a coprecipitate.
  • Example 15 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, lithium in the alkali metal compound was adjusted to 130 mol, and sulfuric acid was used as a flux. The potassium was adjusted to 10 mol.
  • Example 16 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, lithium in the alkali metal compound was adjusted to 130 mol, and sulfuric acid was used as a flux. The potassium was adjusted to 5 mol.
  • Example 17 when the total amount of transition metal elements (nickel, manganese, iron) in the transition metal compound was 100 mol, lithium in the alkali metal compound was adjusted to 130 mol, and sulfuric acid was used as a flux. The potassium was adjusted to 2 mol.
  • a coprecipitate as a transition metal compound, lithium carbonate as an alkali metal compound, and potassium sulfate as a flux composed of an inorganic salt were dry-mixed using a rocking mill to obtain a raw material mixture.
  • 1.8 kg of the mixture was put in a porous ceramic baking container having a square side of 300 mm on one side. The layer thickness of the mixture at this time was 30 mm.
  • the raw material mixture was calcined using a shuttle kiln calcining furnace using propane gas as fuel and heating the inside of the furnace with the combustion heat.
  • the temperature in the furnace was raised at 100 ° C./h, held at 880 ° C. for 6 hours, and then cooled to room temperature.
  • the oxygen concentration in the furnace was 21% by volume immediately before firing. As the temperature increased due to gas combustion, the oxygen concentration decreased and became the lowest immediately after reaching the holding temperature of 880 ° C., which was 11% by volume.
  • the carbon dioxide concentration in the furnace was 0% by volume immediately before firing. As the temperature increased due to gas combustion, the carbon dioxide concentration increased and became the highest immediately after reaching the holding temperature of 880 ° C., which was 8% by volume.
  • the fired product was taken out from the shuttle kiln firing furnace, pulverized, washed by decantation with distilled water, filtered, and dried at 300 ° C. for 6 hours to obtain an alkali metal-transition metal composite oxide.
  • the alkali metal-transition metal composite oxides obtained in Example 15, Example 16, and Example 17 were respectively A 15 , A 16 , A 17 It was.
  • Example 15 The value of a coin-type battery using as a positive electrode active material or A in Example 16
  • the value of a coin-type battery using as a positive electrode active material or A in Example 17 17 The value of the coin-type battery using a positive electrode active material was larger.
  • Production Example 1 (Production of laminated film) (1) Production of coating slurry After dissolving 272.7 g of calcium chloride in 4200 g of NMP, 132.9 g of paraphenylenediamine was added thereto and completely dissolved. To the obtained solution, 243.3 g of terephthalic acid dichloride was gradually added for polymerization to obtain para-aramid, and further diluted with NMP to obtain a para-aramid solution (A) having a concentration of 2.0% by weight.
  • alumina powder (a) manufactured by Nippon Aerosil Co., Ltd., alumina C, average particle size 0.02 ⁇ m
  • alumina powder (b) Sumiko Random, AA03, average particles 4 g in total as a filler was added and mixed, treated three times with a nanomizer, filtered through a 1000 mesh wire net, and degassed under reduced pressure to produce a coating slurry (B).
  • the weight of alumina powder (filler) in the total weight of para-aramid and alumina powder is 67% by weight.
  • porous film a polyethylene porous film (film thickness 12 ⁇ m, air permeability 140 sec / 100 cc, average pore diameter 0.1 ⁇ m, porosity 50%) was used.
  • the polyethylene porous film was fixed on a PET film having a thickness of 100 ⁇ m, and the coating slurry (B) was applied onto the porous film with a bar coater manufactured by Tester Sangyo Co., Ltd.
  • the PET film and the coated porous film are integrated into one piece and immersed in water to precipitate a para-aramid porous film (heat resistant porous layer), and then the solvent is dried, and the PET film is peeled off.
  • a laminated film 1 in which the heat-resistant porous layer and the porous film were laminated was obtained.
  • the thickness of the laminated film 1 was 16 ⁇ m, and the thickness of the para-aramid porous film (heat resistant porous layer) was 4 ⁇ m.
  • the air permeability of the laminated film 1 was 180 seconds / 100 cc, and the porosity was 50%.
  • SEM scanning electron microscope
  • a nonaqueous electrolyte secondary battery having high discharge capacity and high output characteristics can be provided.
  • the secondary battery is particularly useful for non-aqueous electrolyte secondary batteries for applications that require high output characteristics, such as automobile applications and power tool applications.

Abstract

無機塩を含む融剤と、前記融剤とは異なる化合物を含むアルカリ金属化合物と、遷移金属化合物とを含み、焼成の際の保持温度下で、前記融剤がアルカリ金属-遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有するアルカリ金属-遷移金属複合酸化物用原料混合物。

Description

原料混合物およびアルカリ金属−遷移金属複合酸化物
 本発明は、アルカリ金属−遷移金属複合酸化物の製造用の原料混合物に関する。アルカリ金属−遷移金属複合酸化物は、特に、非水電解質二次電池における電極活物質として用いられる。
 アルカリ金属−遷移金属複合酸化物は、リチウム二次電池などの非水電解質二次電池における電極活物質として用いられている。リチウム二次電池は、既に携帯電話用途、ノートパソコン用途などの小型電源として実用化されている。さらに自動車用途や電力貯蔵用途などの大型電源においても、リチウム二次電池の適用が試みられている。
 従来、アルカリ金属−遷移金属複合酸化物は、アルカリ金属化合物と遷移金属化合物とを混合して得られる原料混合物を焼成して製造される。より結晶性の高いアルカリ金属−遷移金属複合酸化物を製造する方法として、アルカリ金属化合物である水酸化リチウム一水和物または炭酸リチウムと、遷移金属化合物であるニッケル−マンガン−鉄共沈物(遷移金属複合水酸化物)と、融剤としての塩化カリウムとを混合して得られる原料混合物を焼成する方法が提案されている(例えば、特許文献1参照)。
特開2010−21134号公報
 従来、アルカリ金属−遷移金属複合酸化物は、アルカリ金属化合物と遷移金属化合物とを混合して得られる原料混合物を焼成することにより製造される。特に、アルカリ金属−遷移金属複合酸化物を構成する遷移金属元素の平均酸化数が遷移金属化合物を構成する遷移金属元素の平均酸化数よりも大きい場合には、空気もしくは空気より高い酸素濃度の雰囲気下で原料混合物を焼成する。酸素濃度が不十分であると、原料混合物の酸化が十分に進行せず、これによりアルカリ金属−遷移金属複合酸化物の結晶化が不十分であったり、電極活物質として不活性である遷移金属元素および酸素元素のみからなる酸化物が生成したりする。
 アルカリ金属−遷移金属複合酸化物の焼成では、反応生成物として二酸化炭素や水蒸気が発生する場合がある。アルカリ化合物や遷移金属化合物として水酸化物を使用するときに、水蒸気が発生する。アルカリ化合物や遷移金属化合物として炭酸塩を使用するときに、二酸化炭素が発生する。アルカリ金属−遷移金属複合酸化物の焼成のときに二酸化炭素や水蒸気が雰囲気中に存在すると、アルカリ金属−遷移金属複合酸化物の結晶化が不十分であったり、電極活物質として不活性な遷移金属元素および酸素元素のみからなる酸化物が生成したりする。
 アルカリ金属−遷移金属複合酸化物の工業的な生産を考慮した場合、量産化、省エネルギー化、低コスト化のために、一定体積の炉内空間において、大量の原料混合物を焼成できることが望ましい。しかしながら、焼成では炉内の酸素が消費されるため炉内の酸素濃度が低下する。また焼成中に水蒸気または二酸化炭素が生成する場合があり、これにより炉内の水蒸気または二酸化炭素の濃度が上昇する場合がある。さらに省エネルギー化や低コスト化のためには、焼成炉としてメタンやプロパンなどの炭化水素燃料の燃焼熱を熱源とするガス炉を使用することが望ましい。ガス炉の使用に際しては、熱源を得るための燃料の燃焼時に、酸素が消費され、水蒸気および二酸化炭素が発生し、結果的に、炉内の酸素濃度が低下し、水蒸気および二酸化炭素の濃度が上昇する。よって、一度で大量焼成が行われる場合、またはガス炉による焼成が行われる場合には、得られるアルカリ金属−遷移金属複合酸化物の結晶性が不十分であったり、電極活物質として不活性な遷移金属元素および酸素元素のみからなる酸化物が生成したりするため、得られるリチウム二次電池の高出力の放電容量は十分ではない。
 例えば、焼成反応は次の反応式で表される:
 M(OH)+0.5LiCO+0.25O
                     LiMO+0.5CO+H
(ここで、Mは遷移金属元素であり、Liはリチウム(アルカリ金属元素)である。)
 本発明の目的は、空気よりも酸素濃度が低く、水蒸気や二酸化炭素の濃度が高い条件で焼成しても、高出力の放電容量を有する非水電解質二次電池を与えるアルカリ金属−遷移金属複合酸化物および原料混合物を提供することにある。
課題を解決するための手段
 本発明は、下記を提供する。
<1> 無機塩を含む融剤と、前記融剤とは異なる化合物を含むアルカリ金属化合物と、遷移金属化合物とを含み、焼成の際の保持温度下で、前記融剤がアルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有するアルカリ金属−遷移金属複合酸化物用原料混合物。
<2> 前記無機塩が、硫酸塩、硝酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、ニオブ酸塩およびホウ酸塩からなる群より選ばれる1種以上の塩である<1>の原料混合物。
<3> 前記無機塩を構成するカチオンが、Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選ばれる1種以上の塩である<1>または<2>の原料混合物。
<4> 前記アルカリ金属化合物を構成するアルカリ金属元素が、LiおよびNaからなる群より選ばれる1種以上の元素である<1>~<3>のいずれかの原料混合物。
<5> 前記遷移金属化合物を構成する遷移金属元素が、Mn、Fe、CoおよびNiからなる群より選ばれる1種以上の元素である<1>~<4>のいずれかの原料混合物。
<6> 前記遷移金属化合物を構成する遷移金属元素が、Feと、Mn、CoおよびNiからなる群より選ばれる1種以上の元素とである<1>~<5>のいずれかの原料混合物。
<7> <1>~<6>のいずれかの原料混合物を200~1050℃の保持温度で焼成するアルカリ金属−遷移金属複合酸化物の製造方法。
<8> <7>の方法で製造されるアルカリ金属−遷移金属複合酸化物。
<9> 結晶構造が層状構造である<8>のアルカリ金属−遷移金属複合酸化物。
<10> アルカリ金属−遷移金属複合酸化物を構成する遷移金属元素の平均酸化数が遷移金属化合物を構成する遷移金属元素の平均酸化数よりも大きい<8>または<9>のアルカリ金属−遷移金属複合酸化物。
<11> <8>~<10>のいずれかのアルカリ金属−遷移金属複合酸化物を有する正極活物質。
<12> <11>の正極活物質を有する正極。
<13> <12>の正極を有する非水電解質二次電池。
<14> さらにセパレータを有する<13>の非水電解質二次電池。
 図1は、アルカリ金属−遷移金属複合酸化物の生成に必要な酸化ポテンシャルと各種酸化剤の酸化ポテンシャルの比較を示す。
 図2は、アルカリ金属−遷移金属複合酸化物の生成に必要な酸化ポテンシャルと各種硫酸塩の酸化ポテンシャルの比較(1)を示す。
 図3は、アルカリ金属−遷移金属複合酸化物の生成に必要な酸化ポテンシャルと各種硫酸塩の酸化ポテンシャルの比較(2)を示す。
<アルカリ金属−遷移金属複合酸化物用原料混合物>
 アルカリ金属−遷移金属複合酸化物用原料混合物は、無機塩を含む融剤と、前記融剤とは異なる化合物を含むアルカリ金属化合物と、遷移金属化合物とを含む。前記原料混合物の焼成の際の保持温度下で、前記融剤がアルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有する。
<無機塩を含む融剤>
 本発明において、無機塩を含む融剤は、焼成温度において、アルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを与えることができる。融剤の全部もしくは一部が、アルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有する無機塩であればよい。
<アルカリ金属−遷移金属複合酸化物の生成に必要な酸化ポテンシャル>
 本発明におけるアルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルおよび融剤の有する酸化ポテンシャルは、下記の計算により、酸素ポテンシャル(log[P(O)])を用いて決定できる。
<LiFeOの生成に必要な酸化ポテンシャル>
 アルカリ金属−遷移金属複合酸化物の生成に必要な酸化ポテンシャルの一例を下記の例に従って説明する。ここで、一例として、アルカリ金属化合物としてLiCOを用い、遷移金属化合物としてFe(OH)を用いて、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成する反応について、アルカリ金属−遷移金属複合酸化物の生成に必要な酸化ポテンシャルを計算する。アルカリ金属化合物としてLiCOを用い、遷移金属化合物としてFe(OH)を用いて、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成する平衡は次のように与えられる。
4LiFeO+2CO+4HO=2LiCO+4Fe(OH)+O
                             ・・・平衡(a)
 平衡(a)の平衡定数(Keq(a))には下記の関係がある。
Figure JPOXMLDOC01-appb-I000001
 平衡(a)の酸素ポテンシャル(log[P(O)])は、次のように与えられる。
Figure JPOXMLDOC01-appb-I000002
 ここで、式(2)の右辺第1項である
log[Keq(a)
は、酸化還元系に特有の酸素ポテンシャルを表し、右辺第2項である
Figure JPOXMLDOC01-appb-I000003
は、その酸化還元系に関与する物質の濃度による酸素ポテンシャルの変化を表す。各種の酸化還元系の酸素ポテンシャル(log[P(O)])を比較する上では、右辺第1項である
log[Keq(a)
は、右辺第2項である
Figure JPOXMLDOC01-appb-I000004
よりも大きく変化するため、酸素ポテンシャル(log[P(O)])の変化に与える影響が大きい。そこで、平衡(a)の酸素ポテンシャル(log[P(O)])を式(2)の右辺第1項のlog[Keq(a)]のみで表す。すなわち平衡(a)の酸素ポテンシャル(log[P(O)])は、式(3)で与えられる。
log[P(O)]=log[Keq(a)]        ・・・式(3)
 ここでlog[Keq(a)]は、所定の温度T[℃]における反応の自由エネルギー変化ΔrG°[J/mol]により計算される。
Figure JPOXMLDOC01-appb-I000005
 ここで、Rは気体定数(8.314[J/(K/mol)])である。
 自由エネルギー変化ΔrG°[J/mol]は、反応に関与する物質の所定の温度における生成自由エネルギーΔfG°により計算され、平衡(a)においては、次のように計算される。
ΔrG°(eq(a))
=2ΔfG°(LiCO)+4ΔfG°(Fe(OH)
 +ΔfG°(O)−4ΔfG°(LiFeO
 −2ΔfG°(CO)−4ΔfG°(HO)
                             ・・・式(5)
 式(5)における、各物質の生成自由エネルギーΔfG°は熱力学データベースより調べることができる。また、ΔfG°は熱力学計算ソフトで計算できる。熱力学データベースおよび熱力学計算ソフトとしては、例えばMALT2(著作権者:日本熱測定学会、発売元:株式会社科学技術社)を使用できる。900℃におけるlog[Keq(a)]を計算すると−37である。すなわち、900℃におけるLiFeOを得るために必要な酸化ポテンシャルlog[Keq(a)]=−37である。アルカリ金属化合物をLiCOとし、遷移金属化合物をFe(OH)として、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャルを各温度について計算し、図1から図3に示した。
<無機塩の酸化ポテンシャルの計算>
 酸化ポテンシャルを有する融剤の例として、KSOを用いて計算例を示す。KSOを含有する融剤では、下記の平衡式で表されるKSO/KSの酸化還元平衡が生ずる。
0.5KSO=0.5KS+O           ・・・平衡(b)
 平衡(b)の平衡定数(Keq(b))には下記の関係がある。
Figure JPOXMLDOC01-appb-I000006
 KSO/KSの酸素ポテンシャル(log[P(O)])は、次のように与えられる。
Figure JPOXMLDOC01-appb-I000007
 ここで、式(7)の右辺第1項である
log[Keq(b)
は、酸化還元系に特有の酸素ポテンシャル(log[P(O)])を表し、右辺第2項である
Figure JPOXMLDOC01-appb-I000008
は、その酸化還元系に関与する物質の濃度による酸素ポテンシャル(log[P(O)])の変化を表す。各種の酸化還元系に酸素ポテンシャル(log[P(O)])を比較する上では、右辺第1項である
log[Keq(b)
は、右辺第2項である
Figure JPOXMLDOC01-appb-I000009
よりも大きく変化するため、酸素ポテンシャル(log[P(O)])の変化に与える影響が大きい。そこで、KSO/KSの酸化還元平衡の有する酸素ポテンシャル(log[P(O)])を式(6)の右辺第1項log[Keq(b)]のみで表す。すなわち、KSO/KSの酸素ポテンシャル(log[P(O)])は式(8)で与えられる。
log[P(O)]=log[K(KSO/KS)]  ・・・式(8)
 ここでlog[K(KSO/KS)]は、所定の温度T[℃]における反応の自由エネルギー変化ΔrG°[J/mol]により計算される。
Figure JPOXMLDOC01-appb-I000010
ここで、Rは気体定数(8.314[J/(K/mol)])である。
ΔrG°(eq(b))
=0.5ΔfG°(KS)+ΔfG°(O
 −0.5ΔfG°(KSO
                            ・・・式(10)
 ここでlog[Keq(b)]は例えば熱力学データベースソフトMALT2を使用して計算される。900℃におけるlog[Keq(b)]は−15である。すなわち、KSO融剤の900℃における酸化ポテンシャルlog[Keq(b)(KSO/KS)]=−15である。KSOを含有する融剤で生ずるKSO/KSの酸化還元平衡の酸化ポテンシャルを各温度について計算し、図2の(b−3)に示した。
 図2では、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャル(0)とKSOを含有する融剤の酸化ポテンシャル(b−3)を比較できる。KSOを含有する融剤の酸化ポテンシャル(b−3)は、300℃以上で、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャル(0)よりも高くなる。すなわちKSOを含有する融剤は300℃以上でアルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャルを有する。
 アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャル(0)を、硫酸ナトリウム(NaSO)の酸化ポテンシャル(a−1)と、タングステン酸ナトリウム(NaWO)の酸化ポテンシャル(a−2)と、バナジウム酸ナトリウム(NaVO)の酸化ポテンシャル(a−3)と、モリブデン酸ナトリウム(NaMoO)の酸化ポテンシャル(a−4)と、硝酸ナトリウム(NaNO)の酸化ポテンシャル(a−5)と、ニオブ酸ナトリウム(NaNbO)の酸化ポテンシャル(a−6)と、ホウ酸ナトリウム(NaBO)の酸化ポテンシャル(a−7)とそれぞれ比較し、図1に示した。アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャル(0)に比較して、これらの酸化ポテンシャルはある温度以上において、高くなる。すなわち硫酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、硝酸塩、ニオブ酸塩およびホウ酸塩は、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャルを有する。そして硫酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、硝酸塩、ニオブ酸塩、ホウ酸塩からなる群より選ばれる1種以上の化合物を含有する融剤は、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャルを有する。
 アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャル(0)を、LiSOの酸化ポテンシャル(b−1)、NaSOの酸化ポテンシャル(b−2)、KSOの酸化ポテンシャル(b−3)、RbSOの酸化ポテンシャル(b−4)、MgSOの酸化ポテンシャル(b−5)、CaSOの酸化ポテンシャル(b−6)、CsSOの酸化ポテンシャル(b−7)、BaSOの酸化ポテンシャル(b−8)のそれぞれと図2および図3で比較した。アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャル(0)に比較して、これらの酸化ポテンシャルはある温度以上において高くなる。すなわちカチオンが、Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる硫酸塩は、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャルを有する。そしてカチオンが、Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる硫酸塩を含有する融剤は、アルカリ金属−遷移金属複合酸化物としてLiFeOを生成するために必要な酸化ポテンシャルを有する。
 アルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有する無機塩として、硫酸塩、硝酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、ニオブ酸塩およびホウ酸塩からなる群より選ばれる1種以上の塩を用いることができる。
 より好ましくは、前記無機塩を構成するカチオンがLi、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選ばれる1種以上の塩である。
 アルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有する無機塩を含む融剤を用いた原料混合物を焼成すると、アルカリ金属−遷移金属複合酸化物を構成する遷移金属元素の平均酸化数が遷移金属化合物を構成する遷移金属元素の平均酸化数よりも高いことが好ましい。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとする硫酸塩としては、LiSO、NaSO、KSO、RbSO、CsSO、CaSO、MgSO、SrSOおよびBaSOを挙げることができる。これらの融点は、LiSO(859℃)、NaSO(884℃)、KSO(1069℃)、RbSO(1066℃)、CsSO(1005℃)、MgSO(1137℃)、CaSO(1460℃)、SrSO(1605℃)、BaSO(1580℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとするタングステン酸塩としては、LiWO、NaWO、KWO、RbWO、CsWO、MgWO、CaWO、SrWOおよびBaWOを挙げることができる。これらの融点は、LiWO(742℃)、NaWO(687℃)、KWO(926℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとするバナジウム酸塩としては、LiVO、NaVO、KVO、RbVO、CsVO、Mg(VO、Ca(VO、Sr(VOおよびBa(VOを挙げることができる。これらの融点は、NaVO(630℃)、Ba(VO(Baとして863℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとするモリブデン酸塩としては、LiMoO、NaMoO、KMoO、RbMoO、CsMoO、MgMoO、CaMoO、SrMoOおよびBaMoOを挙げることができる。これらの融点は、LiMoO(705℃)、NaMoO(698℃)、KMoO(919℃)、RbMoO(958℃)、CsMoO(956℃)、MGMoO(1060℃)、CaMoO(1520℃)、SrMoO(1040℃)、BaMoO(1460℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとする硝酸塩としては、LiNO、NaNO、KNO、RbNO、CsNO、Mg(NO、Ca(NO、Sr(NOおよびBa(NOを挙げることができる。これらの融点は、LiNO(254℃)、NaNO(310℃)、KNO(337℃)、RbNO(316℃)、CsNO(417℃)、Ca(NO(561℃)、Sr(NO(645℃)、Ba(NO(596℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとするニオブ酸塩としては、LiNbO、NaNbO、KNbO、RbNbO、CsNbO、Mg(NbO、Ca(NbO、Sr(NbOおよびBa(NbOを挙げることができる。これらの融点は、LiNbO(1255℃)、NaNbO(1250℃)、KNbO(1050℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとするホウ酸塩としては、LiBO、NaBO、KBO、RbBO、CsBO、Mg(BO、Ca(BO、Sr(BOおよびBa(BOを挙げることができる。これらの融点は、LiBO(845℃)、NaBO(966℃)、KBO(950℃)、Ca(BO(1154℃)である。
 本発明における融剤とは、焼成時の保持温度で、その一部もしくは全体が融解するものを示す。2種以上の融剤を組み合わせることで、各融剤の単体の融点よりも、組み合わせた融剤の融点は低くなる。また融剤はアルカリ金属化合物と共存することで、融点が下がる。融剤の一部がアルカリ金属化合物と同じであってもよい。
<その他の融剤>
 アルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有する無機塩に加えて、水酸化物、炭酸塩、リン酸塩およびハロゲン化物(ここで、ハロゲン化物は、フッ化物、塩化物、臭素化物およびヨウ素化物からなる群より選ばれる1種以上の化合物である)からなる群より選ばれる1種以上の無機塩のうち、前記の酸化ポテンシャルを有さないその他の融剤を用いることができる。これらの中でも、好ましくは、Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選ばれる1種以上のカチオンを構成元素とする無機塩である。また、これらの無機塩を2種以上用いることができる。このような無機塩を、以下に例示する。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとする水酸化物としては、LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)、Ca(OH)、Sr(OH)およびBa(OH)を挙げることができる。これらの融点は、LiOH(462℃)、NaOH(318℃)、KOH(360℃)、RbOH(301℃)、CsOH(272℃)、Mg(OH)(350℃)、Ca(OH)(408℃)、Sr(OH)(375℃)、Ba(OH)(853℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとする炭酸塩としては,LiCO、NaCO、KCO、RbCO、CsCO、MgCO、CaCO、SrCOおよびBaCOを挙げることができる。これらの融点は、LiCO(735℃)、NaCO(854℃)、KCO(899℃)、RbCO(837℃)、CsCO(793℃)、MgCO(990℃)、CaCO(825℃)、SrCO(1497℃)、BaCO(1380℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとするリン酸塩としては、LiPO、NaPO、KPO、RbPO、CsPO、Mg(PO、Ca(PO、Sr(POおよびBa(POを挙げることができる。これらの融点は、LiPO(857℃)、KPO(1340℃)、Mg(PO(1184℃)、Sr(PO(1727℃)、Ba(PO(1767℃)である。
 Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaをカチオンとする塩化物としては、LiCl、NaCl、KCl、RbCl、CsCl、MgCl、CaCl、SrClおよびBaClを挙げることができる。これらの融点は、LiCl(605℃)、NaCl(801℃)、KCl(770℃)、RbCl、(718℃)、CsCl(645℃)、MgCl(714℃)、CaCl(782℃)、SrCl(857℃)、BaCl(963℃)である。
 本発明において、原料混合物中の融剤の割合は、通常、遷移金属化合物100重量部に対して、0.1~1000重量部であり、好ましくは、0.5~200重量部、より好ましくは1~100重量部である。
<アルカリ金属化合物>
 本発明においてアルカリ金属化合物としては、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の硝酸塩、アルカリ金属の硫酸塩、アルカリ金属のリン酸塩、およびアルカリ金属のハロゲン化物(ここで、ハロゲン化物は、フッ化物、塩化物、臭素化物およびヨウ素化物からなる群より選ばれる1種以上の化合物を表す)を挙げることができる。これらのアルカリ金属化合物は水和物でもよい。これらのアルカリ金属化合物は2種以上併用してもよい。アルカリ金属化合物は、前記融剤とは異なる化合物を含む。
 アルカリ金属の水酸化物としては、LiOH、NaOH、KOH、RbOHおよびCsOHを挙げることができる。
 アルカリ金属の炭酸塩としては,LiCO、NaCO、KCO、RbCOおよびCsCOを挙げることができる。
 アルカリ金属の硝酸塩としては、LiNO、NaNO、KNO、RbNOおよびCsNOを挙げることができる。
 アルカリ金属の硫酸塩としては、LiSO、NaSO、KSO、RbSOおよびCsSOを挙げることができる。
 アルカリ金属のリン酸塩としては、LiPO、NaPO、KPO、RbPOおよびCsPOを挙げることができる。
 アルカリ金属のハロゲン化物としては、例えば塩化物が挙げられる。アルカリ金属の塩化物としては、LiCl、NaCl、KCl、RbClおよびCsClを挙げることができる。
<遷移金属化合物>
 本発明において、遷移金属化合物は、遷移金属の酸化物、水酸化物(オキシ水酸化物も含む。以下同じ。)、塩化物、炭酸塩、硫酸塩、硝酸塩、シュウ酸塩および酢酸塩を挙げることができる。これらの遷移金属化合物は水和物でもよい。これらの遷移金属化合物を2種以上併用してもよい。
 前記遷移金属化合物を構成する遷移金属元素が、Mn、Fe、CoおよびNiからなる群より選ばれる1種以上の元素であることが好ましい。
 また、得られる非水電解質二次電池のレート特性をさらにより高めるためには、前記遷移金属化合物を構成する遷移金属元素が、Feと、Mn、CoおよびNiからなる群より選ばれる1種以上の元素とであることが好ましい。より好ましくは前記遷移金属化合物を構成する遷移金属元素が、Feと、NiまたはMnとである。
 好ましくは、前記遷移金属化合物を構成する遷移金属元素はFeを含む。Feの好ましい量としては、遷移金属元素の中のFeのモル分率が0.01~0.5であり、より好ましくは0.02~0.2である。
 Mを遷移金属元素とすると、遷移金属の酸化物としては、例えば、MO、MおよびMOを挙げることができる。
 遷移金属の水酸化物としては、例えば、M(OH)およびM(OH)を挙げることができる。遷移金属の水酸化物としては、遷移金属のオキシ水酸化物でもよい。遷移金属のオキシ水酸化物としては、例えば、MOOHを挙げることができる。
 遷移金属の塩化物としては、例えば、MClおよびMClを挙げることができる。
 遷移金属の炭酸塩としては、例えば、MCOおよびM(COを挙げることができる。
 遷移金属の硫酸塩としては、例えば、MSOおよびM(SOを挙げることができる。
 遷移金属の硝酸塩としては、例えば、M(NOを挙げることができる。
 遷移金属のシュウ酸塩としては、例えば、MCを挙げることができる。
 遷移金属の酢酸塩としては、例えば、M(CHCOO)を挙げることができる。
 遷移金属化合物は、水酸化物が好ましく用いられる。
 遷移金属化合物は、複数の遷移金属元素で構成されることが好ましい。該遷移金属化合物は、共沈により得ることができ、水酸化物であることが好ましい。
<正極活物質の製造>
 前記焼成における保持温度は、得られるアルカリ金属−遷移金属複合酸化物(正極活物質)の比表面積を調整するために重要な因子である。通常、保持温度が高いほど、比表面積は小さくなる傾向にある。保持温度が低いほど、比表面積は大きくなる傾向にある。焼成の保持温度として好ましくは200~1050℃である。さらに好ましくは300~1050℃であり、特に好ましくは600~1050℃である。保持温度の設定は、融剤の種類にも依存し、前記の融剤の融点および酸化ポテンシャルを考慮すればよい。保持温度で保持する時間は、通常0.1~20時間であり、好ましくは0.5~8時間である。保持温度までの昇温速度は、通常50~400℃/時間であり、保持温度から室温までの降温速度は、通常10~400℃/時間である。また融剤は、アルカリ金属−遷移金属複合酸化物に残留していてもよいし、洗浄、分解、蒸発などにより除去されていてもよい。
 また、焼成後において、得られるアルカリ金属−遷移金属複合酸化物を、ボールミルやジェットミルなどを用いて粉砕してもよい。粉砕によって、アルカリ金属−遷移金属複合酸化物の比表面積を調整することが可能な場合がある。また、焼成と粉砕とを2回以上繰り返してもよい。また、アルカリ金属−遷移金属複合酸化物は必要に応じて洗浄または分級できる。
 本発明の原料混合物を用いて得られるアルカリ金属−遷移金属複合酸化物は、高い出力特性を要する非水電解質二次電池の正極活物質として有用となる。
 本発明の原料混合物を用いて得られるアルカリ金属−遷移金属複合酸化物は、通常0.05~1μmの粒径の一次粒子からなる。一次粒子の粒径は、アルカリ金属−遷移金属複合酸化物の電子顕微鏡写真から測定できる。
 本発明の原料混合物を用いて得られるアルカリ金属−遷移金属複合酸化物の結晶構造は、層状構造であることが好ましい。さらに非水電解質二次電池の放電容量を大きくするために、結晶構造はR−3mまたはC2/mの空間群に帰属することが好ましい。空間群R−3mは、六方晶型の結晶構造に含まれる。前記六方晶型の結晶構造は、P3、P3、P3、R3、P−3、R−3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P−31m、P−31c、P−3m1、P−3c1、R−3m、R−3c、P6、P6、P6、P6、P6、P6、P−6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P−6m2、P−6c2、P−62m、P−62c、P6/mmm、P6/mcc、P6/mcmおよびP6/mmcからなる群より選ばれるいずれか一つの空間群に帰属する。また、空間群C2/mは、単斜晶型の結晶構造に含まれる。前記単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/cおよびC2/cからなる群より選ばれるいずれか一つの空間群に帰属する。なお、アルカリ金属−遷移金属複合酸化物の結晶構造は粉末X線回折測定により得られる粉末X線回折図形から同定することができる。粉末X線回折測定におけるX線の線源としてはCuKα線、CoKα線、MoKα線およびWKα線を用いることができる。
 また、本発明において、アルカリ金属−遷移金属複合酸化物を構成する遷移金属元素が、Ni、Mn、CoおよびFeからなる群より選ばれる1種以上の遷移金属元素である場合には、本発明の効果を損なわない範囲で、該遷移金属元素の一部を、他元素で置換してもよい。ここで、他元素としては、B、Al、Ga、In、Si、Ge、Sn、Mg、Sc、Y、Zr、Hf、Nb、Ta、Cr、Mo、W、Ru、Rh、Ir、Pd、Cu、Ag、Znなどの元素を挙げることができる。
 また、本発明の効果を損なわない範囲で、本発明のアルカリ金属−遷移金属複合酸化物の粒子の表面に、該酸化物とは異なる化合物を付着させてもよい。該化合物としては、B、Al、Ga、In、Si、Ge、Sn、Mgおよび遷移金属元素からからなる群より選ばれる1種以上の元素から構成される化合物であり、好ましくはB、Al、Mg、Ga、InおよびSnからなる群より選ばれる1種以上の元素から構成される化合物、より好ましくはAlの化合物を挙げることができる。前記化合物として具体的には、前記元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩および有機酸塩を挙げることができ、好ましくは、酸化物、水酸化物およびオキシ水酸化物である。また、これらの化合物を混合して用いてもよい。これら化合物の中でも、特に好ましい化合物はアルミナである。また、付着後に加熱を行ってもよい。
 本発明の方法によって得られるアルカリ金属−遷移金属複合酸化物を有する正極活物質は、非水電解質二次電池に好適である。
<正極の製造>
 前記正極活物質を用いて、正極を製造する方法として、非水電解質二次電池用の正極を製造する場合を例に挙げて、次に説明する。
 正極は、正極活物質、導電材およびバインダーを含む正極合剤が正極集電体に担持されることにより製造できる。
 前記導電材としては炭素材料を用いることができ、炭素材料として黒鉛粉末、カーボンブラック(例えば、アセチレンブラック)および繊維状炭素材料を挙げることができる。正極中の導電材の割合を高めることにより、正極の導電性が高くなり、充放電効率およびレート特性を向上できる。正極中の導電材の割合が大きすぎると、正極合剤と正極集電体との結着性が低下し、内部抵抗が増大することがある。通常、正極合剤中の導電材の割合は、正極活物質100重量部に対して5~20重量部である。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。またカーボンブラックは、少量を正極合剤中に添加することで、正極内部の導電性を高め、得られる電池の充放電効率およびレート特性を向上できる。
 前記バインダーとしては、熱可塑性樹脂が挙げられ、具体的には、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体および四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;が挙げられる。また、これらの二種以上の熱可塑性樹脂を混合して用いてもよい。また、バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤100重量%中の該フッ素樹脂の割合が1~10重量%、該ポリオレフィン樹脂の割合が0.1~2重量%となるように正極合剤がこれらを含有することによって、正極集電体との結着性に優れた正極合剤を得ることができる。
 前記正極集電体としては、Al、Ni、ステンレスなどの導電体を用いることができる。さらに、薄膜に加工しやすく、安価であるという点でAlが好ましい。
 正極集電体に正極合剤を担持させる方法としては、加圧成型する方法;正極合剤ペーストを用いて、正極合剤を正極集電体に固着する方法が挙げられる。
 正極合剤ペーストは、正極活物質と導電材とバインダーと溶媒とを含有する。該正極合剤ペーストを正極集電体に塗工し、乾燥して、得られたシートをプレスして、正極合剤を正極集電体に固着する。
 該溶媒としては、水系溶媒または有機溶媒を用いることができる。溶媒には必要に応じて増粘剤を添加してもよい。該増粘剤の例としては、カルボキシメチルセルロース、ポリアクリル酸ナトリウム、ポリビニルアルコールおよびポリビニルピロリドンが挙げられる。
 該有機溶媒の例としては、N,N−ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N−メチル−2−ピロリドン(以下、NMPということがある)などのアミド系溶媒;が挙げられる。
 正極合剤ペーストを正極集電体へ塗工する方法の例としては、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。
 以上により、非水電解質二次電池用正極を製造することができる。
<非水電解質二次電池>
 前記の正極を用いて、非水電解質二次電池を説明する。例えば、リチウム二次電池は、セパレータ、負極および前記の正極を、積層する、または積層かつ巻回することにより電極群を作製して、該電極群を電池ケース内に収納し、電解液を電池ケース内に注入する方法により、製造できる。
 前記電極群の形状としては、例えば、該電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長方形、角がとれたような長方形などの形状を挙げることができる。また、電池の形状としては、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。
 前記負極は、正極よりも低い電位でリチウムイオンでドープかつ脱ドープされることができる。負極としては、負極活物質を含む負極合剤が負極集電体に担持された電極;負極活物質単独からなる電極を挙げることができる。負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属または合金のうち、正極よりも低い電位でリチウムイオンでドープかつ脱ドープされることができる材料が挙げられる。これらの負極活物質を混合して用いてもよい。
<負極>
 前記負極活物質につき、以下に例示する。
 前記炭素材料の例として、具体的には、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体などを挙げることができる。
 前記酸化物の例として、具体的には、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタンおよび/またはバナジウムとを含有する複合金属酸化物;を挙げることができる。
 前記硫化物の例として、具体的には、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 前記窒化物の例として、具体的には、LiN、Li3−xN(ここで、AはNiおよび/またはCoであり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、2種以上組み合わせて用いてもよく、これらは結晶質または非晶質のいずれでもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、主に、負極集電体に担持して、電極として用いられる。
 また、前記金属の例として、具体的には、リチウム金属、シリコン金属およびスズ金属が挙げられる。
 また、前記合金の例としては、Li−Al、Li−Ni、Li−Siなどのリチウム合金;Si−Znなどのシリコン合金;Sn−Mn、Sn−Co、Sn−Ni、Sn−Cu、Sn−Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることができる。
 前記負極活物質の中で、電位平坦性が良好である、平均放電電位が低い、サイクル性が良いために、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状が挙げられる。炭素材料は微粉末の凝集体でもよい。
 前記負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレンを挙げることができる。
 前記負極集電体としては、Cu、Ni、ステンレスなどの導電体を挙げることができ、リチウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuが好ましい。
 負極集電体に負極合剤を担持させる方法としては、正極の場合と同様であり、加圧成型する方法;負極合剤ペーストを用いて、負極合剤を負極集電体に固着する方法が挙げられる。
<セパレータ>
 前記セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材料からなる、多孔質膜、不織布、織布などの形態を有する部材を用いることができ、セパレータは、2種以上の前記材料からなってもよいし、前記部材が積層された積層セパレータであってもよい。セパレータとしては、例えば特開2000−30686号公報、特開平10−324758号公報などに記載のセパレータを挙げることができる。セパレータの厚みは電池の体積エネルギー密度が上がり、かつ内部抵抗が小さくなるという点で、通常5~200μm程度、好ましくは5~40μm程度である。セパレータは機械的強度が保たれる限り薄いことが好ましい。
 セパレータは、好ましくは、熱可塑性樹脂を含有する多孔質フィルムを有する。非水電解質二次電池において、セパレータは正極と負極の間に配置される。セパレータは、正極−負極間の短絡などが原因で電池内に異常電流が流れた際に、電流を遮断して、過大電流が流れることを阻止する機能(シャットダウン機能)を有することが好ましい。ここで、シャットダウンは、通常の使用温度を越えた場合に、セパレータにおける多孔質フィルムの微細孔を閉塞することによりなされる。そしてシャットダウンした後、ある程度の高温まで電池内の温度が上昇しても、その温度により破膜することなく、シャットダウンした状態を維持することが好ましい。かかるセパレータとしては、耐熱多孔層と多孔質フィルムとが互いに積層された積層フィルムが挙げられ、該フィルムをセパレータとして用いることにより、二次電池の耐熱性がより高められる。耐熱多孔層は、多孔質フィルムの両面に積層されていてもよい。
<積層フィルム>
 以下、前記耐熱多孔層と多孔質フィルムとが互いに積層された積層フィルムについて説明する。
 前記積層フィルムにおいて、耐熱多孔層は、多孔質フィルムよりも耐熱性の高い層であり、該耐熱多孔層は、無機粉末から形成されていてもよいし、耐熱樹脂を含有していてもよい。耐熱多孔層が、耐熱樹脂を含有することにより、塗工などの容易な手法で、耐熱多孔層を形成することができる。
 耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホンおよびポリエーテルイミドを挙げることができる。耐熱性をより高めるためには、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホンおよびポリエーテルイミドが好ましい。より好ましくは、ポリアミド、ポリイミドまたはポリアミドイミドである。さらにより好ましくは、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミドなどの含窒素芳香族重合体である。とりわけ好ましくは芳香族ポリアミドであり、製造面で、特に好ましいのは、パラ配向芳香族ポリアミド(以下、パラアラミドということがある。)である。
 また、耐熱樹脂として、ポリ−4−メチルペンテン−1、環状オレフィン系重合体を挙げることもできる。これらの耐熱樹脂を用いることにより、積層フィルムの耐熱性、すなわち、積層フィルムの熱破膜温度をより高めることができる。
 前記積層フィルムの熱破膜温度は、耐熱樹脂の種類に依存し、使用場面、使用目的に応じ、選択使用される。より具体的には、耐熱樹脂として、前記含窒素芳香族重合体を用いる場合には400℃程度に、ポリ−4−メチルペンテン−1を用いる場合には250℃程度に、環状オレフィン系重合体を用いる場合には300℃程度に、夫々、熱破膜温度をコントロールすることができる。また、耐熱多孔層が、無機粉末からなる場合には、熱破膜温度を500℃以上にコントロールすることも可能である。
 前記パラアラミドは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドとの縮重合により得られ、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、ビフェニレンにおける4,4’位、ナフタレンにおける1,5位、ナフタレンにおける2,6位)で結合される繰り返し単位から実質的になるものである。
 パラアラミドの具体例としては、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体などのパラ配向型またはパラ配向型に準じた構造を有するパラアラミドが挙げられる。
 前記芳香族ポリイミドとしては、芳香族の二酸無水物とジアミンの縮重合により製造される全芳香族ポリイミドが好ましい。
 該二酸無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパンおよび3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が挙げられる。
 該ジアミンの具体例としては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’−メチレンジアニリン、3,3’−ジアミノベンソフェノン、3,3’−ジアミノジフェニルスルフォンおよび1,5−ナフタレンジアミンが挙げられる。
 また、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と芳香族ジアミンとの重縮合物のポリイミドが挙げられる。
 前記芳香族ポリアミドイミドとしては、芳香族ジカルボン酸および芳香族ジイソシアネートの縮重合により得られるもの、ならびに、芳香族二酸無水物および芳香族ジイソシアネートの縮重合により得られるものが挙げられる。
芳香族ジカルボン酸の具体例としてはイソフタル酸およびテレフタル酸が挙げられる。また芳香族二酸無水物の具体例としては無水トリメリット酸が挙げられる。芳香族ジイソシアネートの具体例としては、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、オルソトリランジイソシアネートおよびm−キシレンジイソシアネートが挙げられる。
 また、イオン透過性をより高めるために、耐熱多孔層の厚みは、好ましくは1~10μm、さらに好ましくは1~5μm、特に好ましくは1~4μmである。また、耐熱多孔層は微細孔を有し、その孔径は、通常3μm以下であり、好ましくは1μm以下である。また、耐熱多孔層が、耐熱樹脂を含有する場合には、耐熱多孔層は後述のフィラーを含有することもできる。
 前記積層フィルムにおいて、多孔質フィルムは、微細孔を有する。多孔質フィルムは、シャットダウン機能を有することが好ましい。この場合、多孔質フィルムは、熱可塑性樹脂を含有する。多孔質フィルムにおける微細孔のサイズ(直径)は通常3μm以下であり、好ましくは1μm以下である。多孔質フィルムの空孔率は、通常30~80体積%、好ましくは40~70体積%である。
 熱可塑性樹脂を含有する多孔質フィルムをセパレータとして用いた非水電解質二次電池が通常の使用温度を越えると、熱可塑性樹脂が軟化することにより、多孔質フィルムの微細孔を閉塞する。
 前記熱可塑性樹脂には、非水電解質二次電池における電解液に溶解しないものが選択される。このような熱可塑性樹脂として、具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂および熱可塑性ポリウレタン樹脂を挙げることができ、2種以上の熱可塑性樹脂を混合して用いてもよい。より低温で軟化してシャットダウンさせるためには、多孔質フィルムはポリエチレンを含有することが好ましい。前記ポリエチレンの具体例としては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレンおよび分子量が100万以上の超高分子量ポリエチレンを挙げることができる。前記多孔質フィルムは、該フィルムの突刺し強度をより高めるために、超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムを容易に製造するために、熱可塑性樹脂は、重量平均分子量1万以下の低分子量のポリオレフィンからなるワックスを含有することが好ましい場合もある。
 また、積層フィルムにおける多孔質フィルムの厚みは、通常、3~30μmであり、好ましくは3~25μmである。また、本発明において、積層フィルムの厚みは、通常40μm以下、好ましくは20μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1以下であることが好ましい。
 また、耐熱多孔層に耐熱樹脂を含有する場合には、耐熱多孔層には1種以上のフィラーを含有してもよい。フィラーは、有機粉末、無機粉末またはこれらの混合物のいずれから選ばれてもよい。フィラーを構成する粒子の平均粒子径は0.01~1μmであることが好ましい。
 前記有機粉末としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチルなどの単独または2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、PVdFなどのフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン;ポリメタクリレート;が挙げられる。該有機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの有機粉末の中でも、化学的安定性の点で、ポリテトラフルオロエチレン粉末が好ましい。
 前記無機粉末としては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩などの無機物からなる粉末が挙げられる。これらの中でも、導電性の低い無機物からなる粉末が好ましく用いられる。好ましい無機粉末の具体例としては、アルミナ、シリカ、二酸化チタンまたは炭酸カルシウムからなる粉末が挙げられる。無機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの無機粉末の中でも、化学的安定性の点で、アルミナ粉末が好ましい。より好ましくは、フィラーがアルミナ粒子のみで構成されることである。さらに好ましくは、フィラーを構成するアルミナ粒子の一部または全部が略球状であることである。
 耐熱多孔層が無機粉末から構成される場合には、前記例示の無機粉末を用いればよく、必要に応じてバインダーと混ぜて用いればよい。
 フィラーを構成する粒子のすべてがアルミナ粒子である場合には、フィラーの重量の比は、耐熱多孔層の総重量100重量部に対して、通常5~95重量部であり、好ましくは、20~95重量部であり、より好ましくは30~90重量部である。これらの範囲は、フィラーの材質の比重により、適宜設定できる。
 フィラーの形状については、略球状、板状、柱状、針状、ウィスカー状および繊維状が挙げられ、均一な孔を形成しやすいことから、略球状であることが好ましい。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1~1.5である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真から測定することができる。
 二次電池におけるイオン透過性を高めるために、前記セパレータのガーレー法による透気度は、50~300秒/100ccであることが好ましく、さらに好ましくは、50~200秒/100ccである。また、セパレータの空孔率は、通常30~80体積%であり、好ましくは40~70体積%である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
<電解液および固体電解質>
 二次電池において、電解液は、通常、電解質および有機溶媒から構成される。電解質の例としては、アルカリ金属をカチオンとする過塩素酸塩、六フッ化リン塩、六フッ化ヒ素塩、六フッ化アンチモン塩、四フッ化ホウ素塩、トリフルオロメタンスルホナート塩、スルホンアミド化合物のトリフルオロメタンスルホン酸塩、ホウ素化合物塩およびホウ酸塩が挙げられる。これらの2種以上の混合物を使用してもよい。
 リチウム塩の例としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalate)borateのことである。)、低級脂肪族カルボン酸リチウム塩、LiAlClなどが挙げられる。通常、これらの中でもLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる1種以上のフッ素含有リチウム塩が用いられる。
 また前記電解液において、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート(以下、ECということがある)、ジメチルカーボネート(以下、DMCということがある)、ジエチルカーボネート、エチルメチルカーボネート(以下、EMCということがある)、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物;が挙げられる。また、前記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。
 通常は前記有機溶媒のうちの二種以上の有機溶媒が混合された混合溶媒を用いる。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒、または環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、動作温度範囲が広く、負荷特性に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという点で、EC、DMCおよびEMCを含む混合溶媒が好ましい。
 また、特に、安全性をより向上する効果があることから、LiPFなどのフッ素含有アルカリ金属塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とDMCとを含む混合溶媒は、大電流放電特性にも優れており、さらに好ましい。
 前記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子、ポリオルガノシロキサン鎖およびポリオキシアルキレン鎖の少なくとも1種を含む高分子などの有機系高分子電解質を用いることができる。また、高分子に電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。また、LiS−SiS、LiS−GeS、LiS−P、LiS−B、LiS−SiS−LiPO、LiS−SiS−LiSOなどの硫化物を含む無機系固体電解質を用いてもよい。これら固体電解質を用いて、安全性をより高めることができることがある。また、本発明の非水電解質二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 次に、本発明を実施例によりさらに詳細に説明する。アルカリ金属−遷移金属複合酸化物の物性の測定、アルカリ金属−遷移金属複合酸化物を正極活物質として用いた電池による充放電試験は、次のようにして行った。
<アルカリ金属−遷移金属複合酸化物を正極活物質として用いた電池による充放電試験>
1.充放電試験
 正極活物質と導電材とバインダー溶液とを調整した。正極活物質:導電材:バインダーの重量比をそれぞれ87:10:3とした。これらをメノウ乳鉢を用いて混練して、正極合剤ペーストを作製した。ここで導電材にはアセチレンブラックと黒鉛とを重量割合で1:9として混合したものを使用した。バインダー溶液としては、PVdF(バインダー)を溶解したNMP溶液を使用した。該正極合剤ペーストをAl箔集電体に塗工した後、150℃で8時間真空乾燥して、正極を得た。
 得られた正極と、電解液と、セパレータと、負極とを組み合わせて、非水電解質二次電池(コイン型電池R2032)を作製した。なお、電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。電解液における溶媒として、ECとDMCとEMCとをそれぞれ体積比で30:35:35とした混合溶媒を用いた。電解質としてLiPFを用いた。混合溶媒に電解質を溶解することにより電解液を製造した。電解質濃度を1モル/リットルに調整した。セパレータとしてポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層した積層フィルムセパレータを使用した。また、負極として金属リチウムを使用した。
 前記のコイン型電池を用いて、25℃保持下、以下に示す条件で充放電試験を実施した。充放電試験は、放電時の放電電流を変えて放電容量を測定した。
充電条件:
充電最大電圧4.3V、充電時間8時間、充電電流0.2mA/cm
放電条件:
放電時は放電最小電圧を2.5Vで一定とし、各サイクルにおける放電電流を下記のように変えて放電を行った。
10Cにおける放電容量が大きいほど、高い出力特性が得られることを示す。
1サイクル目の放電(0.2C):放電電流0.2mA/cm
2サイクル目の放電(0.2C):放電電流0.2mA/cm
3サイクル目の放電(1C)  :放電電流1.0mA/cm
4サイクル目の放電(2C)  :放電電流2.0mA/cm
5サイクル目の放電(5C)  :放電電流5.0mA/cm
6サイクル目の放電(10C) :放電電流10mA/cm
<アルカリ金属−遷移金属複合酸化物の物性測定>
2.アルカリ金属−遷移金属複合酸化物の粉末X線回折測定
 アルカリ金属−遷移金属複合酸化物の粉末X線回折測定には株式会社リガク製RINT2500TTR型を用いた。X線の線源にはCuKα線源を用いた。アルカリ金属−遷移金属複合酸化物を専用のホルダーに充填し、回折角2θ=10~90°の範囲にて行い、粉末X線回折図形を得た。
3.アルカリ金属−遷移金属複合酸化物の比表面積の測定
 アルカリ金属−遷移金属複合酸化物0.5gを窒素雰囲気中150℃、15分間乾燥した後、マイクロメリティックス製フローソーブII2300を用いてBET比表面積を測定した。前記方法で測定された比表面積をアルカリ金属−遷移金属複合酸化物の比表面積とした。
実施例1
<遷移金属化合物の製造>
 ポリプロピレン製ビーカー内で、蒸留水に、水酸化カリウムを10重量%となるように添加した。さらに攪拌して水酸化カリウムを完全に溶解させて、アルカリ水溶液として水酸化カリウム水溶液を調製した。ガラス製ビーカー内で、蒸留水200mlに、目的とするニッケル−マンガン−鉄混合水溶液を基準として、塩化ニッケル(II)六水和物を9重量%となるように、塩化マンガン(II)四水和物を8重量%となるように、さらに塩化鉄(II)四水和物を1重量%となるように添加した。さらに攪拌して遷移金属塩を完全に溶解させて、ニッケル−マンガン−鉄混合水溶液を得た。前記水酸化カリウム水溶液を攪拌しながら、これに前記ニッケル−マンガン−鉄混合水溶液を滴下した。水溶液中に共沈物が生成し、共沈物スラリーを得た。次いで、共沈物スラリーについて、濾過・蒸留水洗浄を行い、120℃で乾燥させて共沈物を得た。
<アルカリ金属−遷移金属複合酸化物の原料混合物の調整>
 遷移金属化合物を構成する遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤である硫酸カリウムと炭酸カリウムがそれぞれ5モルと5モルなるように調整した。遷移金属化合物として共沈物と、アルカリ金属化合物として炭酸リチウムと、融剤として硫酸カリウムと、その他の融剤として炭酸カリウムとを、メノウ乳鉢を用いて乾式混合して、前記原料混合物を得た。
<焼成によるアルカリ金属−遷移金属複合酸化物の作製>
 アルミナ製焼成容器に前記原料混合物を10g入れ、電気炉に設置した。
酸素濃度が10体積%、二酸化炭素濃度が10体積%となるように調整したガスを毎分5Lで電気炉内に流通して、電気炉内の雰囲気を調整した。雰囲気を調整した該電気炉で、炉内温度を900℃まで加熱し、その温度で6時間保持して原料混合物の焼成を行ない、その後、室温まで冷却し、焼成品を得た。該焼成品を粉砕し、蒸留水でデカンテーションによる洗浄を行い、濾過し、300℃で6時間乾燥して、アルカリ金属−遷移金属複合酸化物としてAを得た。
<アルカリ金属−遷移金属複合酸化物の物性と該酸化物を正極活物質とした充放電試験>
 Aの比表面積と、結晶構造と、Aを正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表1に示す。10Cにおける放電容量を比較すると、後述の比較例1におけるBを正極活物質としたコイン型電池の値よりも、Aを正極活物質としたコイン型電池の値の方が大きかった。
比較例1
 比較例1では、遷移金属化合物を構成する遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤中の炭酸カリウムが10モルとなるように調製した。遷移金属化合物として実施例1と同様にして作製された共沈物と、空気中で安定なアルカリ金属化合物として炭酸リチウムと、融剤として炭酸カリウムとを、メノウ乳鉢を用いて乾式混合して、原料混合物を得た。次いで、実施例1と同様の条件で焼成、粉砕、洗浄、乾燥の過程を経てアルカリ金属−遷移金属複合酸化物としてBを得た。Bの比表面積と、結晶構造と、Bを正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表1に示す。
実施例2および比較例2
 実施例2および比較例2では、焼成における雰囲気を酸素濃度が10体積%、二酸化炭素濃度が5体積%となるように調整した。
 実施例2では、焼成における雰囲気以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 比較例2では、焼成における雰囲気以外の条件は、比較例2と同様にして、アルカリ金属−遷移金属複合酸化物としてBを得た。
 AとBの比表面積と、結晶構造と、AとBとをそれぞれ正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表1に示す。10Cにおける放電容量を比較すると、比較例2におけるBを正極活物質としたコイン型電池の値よりも、実施例2におけるAを正極活物質としたコイン型電池の値の方が大きかった。
実施例3および比較例3
 実施例3および比較例3では、焼成における雰囲気を酸素濃度が10体積%、二酸化炭素濃度が0体積%となるように調整した。
 実施例3では、焼成における雰囲気以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 比較例3では、焼成における雰囲気以外の条件は、比較例1と同様にして、アルカリ金属−遷移金属複合酸化物としてBを得た。
 AとBの比表面積と、結晶構造と、AとBとをそれぞれ正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表1に示す。10Cにおける放電容量を比較すると、比較例3におけるBを正極活物質としたコイン型電池の値よりも、実施例3におけるAを正極活物質としたコイン型電池の値の方が大きかった。
実施例4、実施例5および比較例4
 実施例4、実施例5および比較例4では、焼成における保持温度を900℃として、雰囲気を酸素濃度が20体積%、二酸化炭素濃度が10体積%となるように調整した。
 実施例4では、焼成における雰囲気以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 実施例5では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが140モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ5モルと5モルとなるように調製した。焼成における雰囲気と原料混合物の比率以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 比較例4では、焼成における雰囲気以外の条件は、比較例1と同様にして、アルカリ金属−遷移金属複合酸化物としてBを得た。
 AとAとBとの、比表面積と、結晶構造と、AとAとBとをそれぞれ正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表2に示す。10Cにおける放電容量を比較すると、比較例4におけるBを正極活物質としたコイン型電池の値よりも、実施例4におけるAを正極活物質としたコイン型電池の値および実施例5におけるAを正極活物質としたコイン型電池の値の方が大きかった。
実施例6、実施例7、実施例8、実施例9および比較例5
 実施例6、実施例7、実施例8、実施例9および比較例5では、焼成における保持温度を850℃として、雰囲気を酸素濃度が20体積%、二酸化炭素濃度が10体積%となるように調整した。
 実施例6では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ1モルと1モルとなるように調製した。焼成雰囲気その他の条件は実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 実施例7では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが140モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ1モルと1モルとなるように調製した。焼成における雰囲気と原料混合物の比率以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 実施例8では、焼成における雰囲気以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 実施例9では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが140モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ5モルと5モルとなるように調製した。焼成における雰囲気と原料混合物の比率以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてAを得た。
 比較例5では、焼成における雰囲気以外の条件は、比較例1と同様にして、アルカリ金属−遷移金属複合酸化物としてBを得た。AとAとAとAとBとの、比表面積と、結晶構造と、AとAとAとAとBとをそれぞれ正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表3に示す。10Cにおける放電容量を比較すると、比較例5におけるBを正極活物質としたコイン型電池の値よりも、実施例6におけるAを正極活物質としたコイン型電池の値や、実施例7におけるAを正極活物質としたコイン型電池の値や実施例8におけるAを正極活物質としたコイン型電池の値や、実施例9におけるAを正極活物質としたコイン型電池の値の方が大きかった。
実施例10、実施例11、実施例12、実施例13および比較例6
 実施例10、実施例11、実施例12、実施例13および比較例6では、焼成における保持温度を950℃として、雰囲気を酸素濃度が20体積%、二酸化炭素濃度が10体積%となるように調整した。
 実施例10では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ1モルと1モルとなるように調製した。焼成における雰囲気と原料混合物の比率以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてA10を得た。
 実施例11では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが140モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ1モルと1モルとなるように調製した。焼成における雰囲気と原料混合物の比率以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてA11を得た。
 実施例12では、焼成における雰囲気以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてA12を得た。
 実施例13では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが140モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ5モルと5モルとなるように調製した。焼成における雰囲気と原料混合物の比率以外の条件は、実施例1と同様にして、アルカリ金属−遷移金属複合酸化物としてA13を得た。
 比較例6では、焼成における雰囲気以外の条件は、比較例1と同様にして、アルカリ金属−遷移金属複合酸化物としてBを得た。
 A10とA11とA12とA13とBとの、比表面積と、結晶構造と、A10とA11とA12とA13とBとをそれぞれ正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表4に示す。10Cにおける放電容量を比較すると、比較例6におけるBを正極活物質としたコイン型電池の値よりも、実施例10におけるA10を正極活物質としたコイン型電池の値や、実施例11におけるA11を正極活物質としたコイン型電池の値や、実施例12におけるA12を正極活物質としたコイン型電池の値や、実施例13におけるA13を正極活物質としたコイン型電池の値の方が大きかった。
実施例14
<アルカリ金属−遷移金属複合酸化物の製造>
 ポリエチレン製の反応容器内で、蒸留水に、水酸化カリウムを15重量%となるように添加した。さらに攪拌して水酸化カリウムを完全に溶解させて、アルカリ水溶液として水酸化カリウム水溶液を調製した。ガラスコーティングされた鉄鋼製の反応容器内で、蒸留水に、目的とするニッケル−マンガン−鉄混合水溶液を基準として、塩化ニッケル(II)六水和物を22重量%となるように、塩化マンガン(II)四水和物を18重量%となるように、さらに塩化鉄(II)四水和物を2重量%となるように添加した。さらに攪拌して遷移金属塩を完全に溶解させて、ニッケル−マンガン−鉄混合水溶液を得た。実施例14におけるニッケル−マンガン−鉄混合水溶液中のニッケルとマンガンと鉄のモル比は、実施例1のニッケル−マンガン−鉄混合水溶液と同じとした。前記水酸化カリウム水溶液を攪拌しながら、これに前記ニッケル−マンガン−鉄混合水溶液を滴下した。水溶液中に共沈物が生成し、共沈物スラリーを得た。次いで、共沈物スラリーについて、濾過・蒸留水洗浄を行い、120℃で乾燥させて共沈物を得た。
<原料混合物の調整>
 実施例14では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤中の炭酸カリウムと硫酸カリウムとがそれぞれ5モルと5モルとになるように調製した。遷移金属化合物として共沈物と、アルカリ金属化合物として炭酸リチウムと、融剤として硫酸カリウムと、その他の融剤として炭酸カリウムとを、ロッキングミル(愛知電機株式会社製。以下同じ。)を用いて乾式混合して、原料混合物を得た。
<焼成によるアルカリ金属−遷移金属複合酸化物の作製>
 次いで、該混合物を底面の一辺が300mmである正方形である多孔質セラミックス製焼成容器に1.8kg入れた。このときの混合物の層厚は30mmであった。プロパンガスを燃料として、その燃焼熱により炉内を加熱するシャトルキルン焼成炉を用いて原料混合物を焼成した。炉内温度を100℃/hで昇温して、860℃において6時間保持し、その後、常温に冷却した。炉内の酸素濃度は、焼成直前において21体積%であった。ガス燃焼により温度が上昇するとともに酸素濃度は低下し、860℃の保持温度に達した直後に最も低くなり、11体積%であった。炉内の二酸化炭素濃度は、焼成直前において0体積%であった。ガス燃焼により温度が上昇するとともに二酸化炭素濃度は上昇し、860℃の保持温度に達した直後に最も高くなり、8体積%であった。シャトルキルン焼成炉から焼成品を取り出して、これを粉砕し、蒸留水でデカンテーションによる洗浄を行い、濾過し、300℃で6時間乾燥して、アルカリ金属−遷移金属複合酸化物としてA14を得た。
<アルカリ金属−遷移金属複合酸化物の物性と該酸化物を正極活物質とした充放電試験>
 A14の比表面積と、結晶構造と、A14を正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表5に示す。10Cにおける放電容量を比較すると、後述の比較例7におけるBを正極活物質としたコイン型電池の値よりも、実施例14におけるA14を正極活物質としたコイン型電池の値の方が大きかった。
比較例7
 遷移金属化合物として実施例14と同様して得られた共沈物と、アルカリ金属化合物として炭酸リチウムと、融剤として炭酸カリウムとを、混合して、原料混合物を得た。このとき、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤の炭酸カリウムが10モルとなるように調製した。次いで、実施例14と同様の条件で焼成、粉砕、洗浄、乾燥の過程を経てアルカリ金属−遷移金属複合酸化物としてBを得た。Bの比表面積と、結晶構造と、Bを正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表5に示す。
実施例15、実施例16および実施例17
<アルカリ金属−遷移金属複合酸化物の製造>
 ポリエチレン製の反応容器内で、蒸留水に、水酸化カリウムを15重量%となるように添加した。さらに攪拌して水酸化カリウムを完全に溶解させて、アルカリ水溶液として水酸化カリウム水溶液を調製した。また、ガラスコーティングされた鋼鉄製の反応容器内で、蒸留水に、目的とするニッケル−マンガン−鉄混合水溶液を基準として、硫酸ニッケル(II)六水和物を24重量%となるように、硫酸マンガン(II)一水和物を16重量%となるように、さらに塩化鉄(II)七水和物を3重量%となるように添加した。さらに攪拌して遷移金属塩を完全に溶解させて、ニッケル−マンガン−鉄混合水溶液を得た。実施例15、実施例16、実施例17におけるニッケル−マンガン−鉄混合水溶液中のニッケルとマンガンと鉄のモル比は、実施例1のニッケル−マンガン−鉄混合水溶液と同じとした。前記水酸化カリウム水溶液を攪拌しながら、これに前記ニッケル−マンガン−鉄混合水溶液を滴下した。水溶液中に共沈物が生成し、共沈物スラリーを得た。次いで、共沈物スラリーについて、濾過・蒸留水洗浄を行い、120℃で乾燥させて共沈物を得た。
<原料混合物の調整>
 実施例15では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤として硫酸カリウムが10モルとになるように調製した。
 実施例16では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤として硫酸カリウムが5モルとになるように調製した。
 実施例17では、遷移金属化合物中の遷移金属元素(ニッケル、マンガン、鉄)の合計を100モルとしたときに、アルカリ金属化合物中のリチウムが130モルとなるように調製し、融剤として硫酸カリウムが2モルとになるように調製した。
 遷移金属化合物として共沈物と、アルカリ金属化合物として炭酸リチウムと、無機塩からなる融剤として硫酸カリウムとをロッキングミルを用いて乾式混合して、原料混合物を得た。
<焼成によるアルカリ金属−遷移金属複合酸化物の作製>
 次いで、該混合物を底面の一辺が300mmである正方形である多孔質セラミックス製焼成容器に1.8kg入れた。このときの混合物の層厚は30mmであった。プロパンガスを燃料として、その燃焼熱により炉内を加熱するシャトルキルン焼成炉を用いて原料混合物を焼成した。炉内温度を100℃/hで昇温して、880℃において6時間保持し、その後、常温に冷却した。炉内の酸素濃度は、焼成直前において21体積%であった。ガス燃焼により温度が上昇するとともに酸素濃度は低下し、880℃の保持温度に達した直後に最も低くなり、11体積%であった。炉内の二酸化炭素濃度は、焼成直前において0体積%であった。ガス燃焼により温度が上昇するとともに二酸化炭素濃度は上昇し、880℃の保持温度に達した直後に最も高くなり、8体積%であった。シャトルキルン焼成炉から焼成品を取り出して、これを粉砕し、蒸留水でデカンテーションによる洗浄を行い、濾過し、300℃で6時間乾燥して、アルカリ金属−遷移金属複合酸化物を得た。実施例15、実施例16、実施例17で得られたアルカリ金属−遷移金属複合酸化物をそれぞれA15、A16、A17とした。
<アルカリ金属−遷移金属複合酸化物の物性と該酸化物を正極活物質とした充放電試験>
 A15とA16とA17との比表面積と、結晶構造と、A15とA16とA17とをそれぞれ正極活物質としたコイン型電池による充放電試験で測定された放電容量とを表5に示す。
10Cにおける放電容量を比較すると、前述の比較例7におけるBを正極活物質としたコイン型電池の値よりも、実施例15におけるA15を正極活物質としたコイン型電池の値や、実施例16におけるA16を正極活物質としたコイン型電池の値や、実施例17におけるA17を正極活物質としたコイン型電池の値の方が大きかった。
製造例1(積層フィルムの製造)
(1)塗工スラリーの製造
 NMP4200gに塩化カルシウム272.7gを溶解した後、これにパラフェニレンジアミン132.9gを添加して完全に溶解させた。得られた溶液に、テレフタル酸ジクロライド243.3gを徐々に添加して重合し、パラアラミドを得て、さらにNMPで希釈して、濃度2.0重量%のパラアラミド溶液(A)を得た。得られたパラアラミド溶液100gに、アルミナ粉末(a)2g(日本アエロジル社製、アルミナC、平均粒子径0.02μm)とアルミナ粉末(b)2g(住友化学株式会社製スミコランダム、AA03、平均粒子径0.3μm)とをフィラーとして計4g添加して混合し、ナノマイザーで3回処理し、さらに1000メッシュの金網で濾過、減圧下で脱泡して、塗工スラリー(B)を製造した。パラアラミドおよびアルミナ粉末の合計重量中のアルミナ粉末(フィラー)の重量は、67重量%となる。
(2)積層フィルムの製造および評価
 多孔質フィルムとしては、ポリエチレン製多孔質フィルム(膜厚12μm、透気度140秒/100cc、平均孔径0.1μm、空孔率50%)を用いた。厚み100μmのPETフィルムの上に上記ポリエチレン製多孔質フィルムを固定し、テスター産業株式会社製バーコーターにより、該多孔質フィルム上に塗工スラリー(B)を塗工した。PETフィルムと塗工された該多孔質フィルムとを一体にしたまま、水中に浸漬させ、パラアラミド多孔質膜(耐熱多孔層)を析出させた後、溶媒を乾燥させて、PETフィルムを剥がして、耐熱多孔層と多孔質フィルムとが積層された積層フィルム1を得た。積層フィルム1の厚みは16μmであり、パラアラミド多孔質膜(耐熱多孔層)の厚みは4μmであった。積層フィルム1の透気度は180秒/100cc、空孔率は50%であった。積層フィルム1における耐熱多孔層の断面を走査型電子顕微鏡(SEM)により観察をしたところ、0.03~0.06μm程度の比較的小さな微細孔と0.1~1μm程度の比較的大きな微細孔とを有することがわかった。尚、積層フィルムの評価は以下の方法で行った。
<積層フィルムの評価>
(i)厚み測定
 積層フィルムの厚み、多孔質フィルムの厚みは、JIS規格(K7130−1992)に従い、測定した。また、耐熱多孔層の厚みとしては、積層フィルムの厚みから多孔質フィルムの厚みを差し引いた値を用いた。
(ii)ガーレー法による透気度の測定
 積層フィルムの透気度は、JIS P8117に基づいて、株式会社安田精機製作所製のデジタルタイマー式ガーレー式デンソメータで測定した。
(iii)空孔率
 得られた積層フィルムのサンプルを一辺の長さ10cmの正方形に切り取り、重量W(g)と厚みD(cm)を測定した。サンプル中のそれぞれの層の重量(Wi(g);iは1からnの整数)を求め、Wiとそれぞれの層の材質の真比重(真比重i(g/cm))とから、それぞれの層の体積を求めて、次式より空孔率(体積%)を求めた。
空孔率(体積%)=100×{1−(W1/真比重1+W2/真比重2+・・+Wn/真比重n)/(10×10×D)}
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 本発明のアルカリ金属−遷移金属複合酸化物を用いれば、高い放電容量と高い出力特性を有する非水電解質二次電池を与えることができる。該二次電池は、特に、高い出力特性を要求される用途、例えば自動車用途や電動工具用途などの非水電解質二次電池に極めて有用となる。

Claims (14)

  1.  無機塩を含む融剤と、前記融剤とは異なる化合物を含むアルカリ金属化合物と、遷移金属化合物とを含み、焼成の際の保持温度下で、前記融剤がアルカリ金属−遷移金属複合酸化物を生成するために必要な酸化ポテンシャルを有するアルカリ金属−遷移金属複合酸化物用原料混合物。
  2.  前記無機塩が、硫酸塩、硝酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、ニオブ酸塩およびホウ酸塩からなる群より選ばれる1種以上の塩である請求項1に記載の原料混合物。
  3.  前記無機塩を構成するカチオンが、Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選ばれる1種以上の塩である請求項1または2に記載の原料混合物。
  4.  前記アルカリ金属化合物を構成するアルカリ金属元素が、LiおよびNaからなる群より選ばれる1種以上の元素である請求項1~3のいずれかに記載の原料混合物。
  5.  前記遷移金属化合物を構成する遷移金属元素が、Mn、Fe、CoおよびNiからなる群より選ばれる1種以上の元素である請求項1~4のいずれかに記載の原料混合物。
  6.  前記遷移金属化合物を構成する遷移金属元素が、Feと、Mn、CoおよびNiからなる群より選ばれる1種以上の元素とである請求項1~5のいずれかに記載の原料混合物。
  7.  請求項1~6のいずれかに記載の原料混合物を200~1050℃の保持温度で焼成するアルカリ金属−遷移金属複合酸化物の製造方法。
  8.  請求項7に記載の方法で製造されるアルカリ金属−遷移金属複合酸化物。
  9.  結晶構造が層状構造である請求項8に記載のアルカリ金属−遷移金属複合酸化物。
  10.  アルカリ金属−遷移金属複合酸化物を構成する遷移金属元素の平均酸化数が遷移金属化合物を構成する遷移金属元素の平均酸化数よりも大きい請求項8または9に記載のアルカリ金属−遷移金属複合酸化物。
  11.  請求項8~10のいずれかに記載のアルカリ金属−遷移金属複合酸化物を有する正極活物質。
  12.  請求項11に記載の正極活物質を有する正極。
  13.  請求項12に記載の正極を有する非水電解質二次電池。
  14.  さらにセパレータを有する請求項13に記載の非水電解質二次電池。
PCT/JP2011/065132 2010-07-05 2011-06-24 原料混合物およびアルカリ金属-遷移金属複合酸化物 WO2012005173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010152778A JP2012012272A (ja) 2010-07-05 2010-07-05 アルカリ金属複合金属酸化物の原料混合物
JP2010-152778 2010-07-05

Publications (1)

Publication Number Publication Date
WO2012005173A1 true WO2012005173A1 (ja) 2012-01-12

Family

ID=45441152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065132 WO2012005173A1 (ja) 2010-07-05 2011-06-24 原料混合物およびアルカリ金属-遷移金属複合酸化物

Country Status (2)

Country Link
JP (1) JP2012012272A (ja)
WO (1) WO2012005173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108571A1 (ja) * 2012-01-17 2013-07-25 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20112051A1 (it) * 2011-11-11 2013-05-12 Getters Spa Composizione organico-inorganica per il rilascio in fase vapore di metalli alcalini ed alcalino-terrosi
CN106025257B (zh) * 2012-07-06 2020-09-15 住友化学株式会社 锂复合金属氧化物、正极活性物质、正极及非水电解质二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110431A (ja) * 1995-10-16 1997-04-28 Agency Of Ind Science & Technol LiMnO2を主成分とするリチウムマンガン酸化物の製造方法
JPH10324521A (ja) * 1997-05-23 1998-12-08 Ube Ind Ltd リチウムマンガン複合酸化物およびその製造法ならびにその用途
JP2003346809A (ja) * 1997-03-07 2003-12-05 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2004006229A (ja) * 2001-12-07 2004-01-08 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2009026640A (ja) * 2007-07-20 2009-02-05 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110431A (ja) * 1995-10-16 1997-04-28 Agency Of Ind Science & Technol LiMnO2を主成分とするリチウムマンガン酸化物の製造方法
JP2003346809A (ja) * 1997-03-07 2003-12-05 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JPH10324521A (ja) * 1997-05-23 1998-12-08 Ube Ind Ltd リチウムマンガン複合酸化物およびその製造法ならびにその用途
JP2004006229A (ja) * 2001-12-07 2004-01-08 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2009026640A (ja) * 2007-07-20 2009-02-05 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108571A1 (ja) * 2012-01-17 2013-07-25 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池
JPWO2013108571A1 (ja) * 2012-01-17 2015-05-11 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池

Also Published As

Publication number Publication date
JP2012012272A (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5640311B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
US20110086257A1 (en) Method for producing lithium complex metal oxide
KR101753440B1 (ko) 리튬 복합 금속 산화물의 제조 방법
JP5699436B2 (ja) 層状構造リチウム複合金属酸化物の製造方法
JP5842478B2 (ja) リチウム複合金属酸化物およびその製造方法
JP5504800B2 (ja) リチウム複合金属酸化物および正極活物質
WO2011037201A1 (ja) 正極合剤、正極および非水電解質二次電池
JP5777977B2 (ja) リチウム複合金属酸化物の製造方法
JP5487821B2 (ja) リチウム複合金属酸化物および正極活物質
JP2012003948A (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
WO2011016574A1 (ja) 粉末材料および正極合剤
WO2012005176A1 (ja) 原料混合物およびアルカリ金属-遷移金属複合酸化物
WO2011040379A1 (ja) リチウム複合金属酸化物および非水電解質二次電池
US9287554B2 (en) Positive electrode active material
JP5780059B2 (ja) 正極活物質、正極および非水電解質二次電池
JP2010277756A (ja) 電極合剤、電極および非水電解質二次電池
JP5742192B2 (ja) リチウム複合金属酸化物の製造方法
WO2012005173A1 (ja) 原料混合物およびアルカリ金属-遷移金属複合酸化物
WO2012029673A1 (ja) 正極活物質
JP2013107791A (ja) 複合金属酸化物の製造方法、複合金属酸化物、正極活物質、正極及び非水電解質二次電池
JP5742193B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP6103419B2 (ja) 正極活物質
JP2011153067A (ja) 複合金属水酸化物およびリチウム複合金属酸化物の製造方法ならびに非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803507

Country of ref document: EP

Kind code of ref document: A1