WO2012005143A1 - 磁性粉体の脱磁方法 - Google Patents

磁性粉体の脱磁方法 Download PDF

Info

Publication number
WO2012005143A1
WO2012005143A1 PCT/JP2011/064790 JP2011064790W WO2012005143A1 WO 2012005143 A1 WO2012005143 A1 WO 2012005143A1 JP 2011064790 W JP2011064790 W JP 2011064790W WO 2012005143 A1 WO2012005143 A1 WO 2012005143A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
liquid
demagnetization
demagnetizing
container
Prior art date
Application number
PCT/JP2011/064790
Other languages
English (en)
French (fr)
Inventor
坂本 淳
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to CN201180033243.XA priority Critical patent/CN102959650B/zh
Priority to KR1020137000235A priority patent/KR101412856B1/ko
Publication of WO2012005143A1 publication Critical patent/WO2012005143A1/ja
Priority to HK13105519.6A priority patent/HK1177652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising

Definitions

  • the present invention relates to a method for demagnetizing magnetic powder.
  • An anisotropic conductive film is manufactured by dispersing conductive particles in an insulating adhesive and molding the obtained dispersion into a film.
  • the conductive particles those having a smaller particle size are used according to the fine pitch of the wiring, and also show conductivity and deformability suitable for anisotropic conductive connection, Moreover, it is desired to use resin particles (hereinafter referred to as nickel-coated resin particles) coated with a nickel plating film that is relatively inexpensive to obtain.
  • the semiconductor chip is anisotropically conductively connected to the wiring board with an anisotropic conductive film using nickel-coated resin particles as conductive particles
  • the insulating adhesive component is melted and flowed during the anisotropic conductive connection.
  • the conductive particles also move easily, and as a result, there is a problem that the conductive particles having magnetism aggregate. The occurrence of such agglomeration of conductive particles leads to localization of the conductive particles, and increases the risk of causing poor conduction or short circuit.
  • the demagnetization method of Patent Document 1 has a relatively large particle diameter such as a steel grain shot and a high-density metal magnetic powder
  • the demagnetization method is used for an anisotropic conductive film.
  • magnetic powder that is relatively low-density and easy to move such as fine nickel-coated resin particles
  • the magnetic powder moves when passing through a cylindrical container in a magnetic field, and the intended level
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and a method that can efficiently demagnetize magnetic powder, specifically, such that the magnetic powder rotates and moves in response to a change in magnetic field. It is to provide a method capable of efficiently demagnetizing magnetic powder such as nickel-coated resin particles.
  • the present inventors In order to demagnetize the magnetic powder in a state in which the relative positional relationship between the magnetic powders does not substantially change, the present inventors have achieved the following (A) or The method (b) was found and the present invention was completed.
  • A The magnetic powder is put into a container having an opening, and then a pressing means is inserted into the container from the mouth of the container, and the magnetic powder is pressed by the pressing means to be temporarily fixed in the container and removed.
  • Magnetic treatment method A method in which magnetic powder is put into a liquid, then the liquid is solidified, and the magnetic powder is temporarily fixed in the solidified product to demagnetize it.
  • the present invention provides a magnetic powder demagnetization method as a first mode of the demagnetization method corresponding to the above (a), in which the magnetic powder is put into a container having an opening, and then the container A demagnetizing method is provided, wherein a depressing means is inserted into a container through a mouth, magnetic powder is pressed by the depressing means, temporarily fixed in the container, and demagnetized.
  • the present invention provides a magnetic powder demagnetization method as a second mode of the demagnetization method corresponding to (b) above, in which the magnetic powder is put into a liquid and then the liquid is solidified.
  • a demagnetization method characterized in that a magnetic powder is temporarily fixed in a solidified product and demagnetized.
  • the magnetic powder can be demagnetized in a state in which the relative positional relationship between the magnetic powders does not substantially change.
  • Magnetic powder such as nickel-coated resin particles that move can be efficiently demagnetized.
  • FIG. 1 is an explanatory diagram of a first mode of the demagnetizing method of the present invention.
  • FIG. 2 is an explanatory diagram of the second mode of the demagnetizing method of the present invention.
  • the demagnetization method of the present invention is a demagnetization process in a state where the relative positional relationship between the magnetic powders does not substantially vary.
  • the state in which the relative positional relationship between the magnetic powders does not substantially change means that the magnetic powder is substantially different from other magnetic powders by the magnetic field applied during the demagnetization process. This means a state in which no positional displacement occurs and rotation itself does not substantially occur.
  • the term “substantially” is used because the effect of the invention may not be impaired even if the relative positional relationship between the magnetic powders is slightly changed. This is not intended to be excluded from the scope.
  • the magnetic powder is put into a container having an opening so that the relative positional relationship between the magnetic powders does not substantially change, and then a pressing means is inserted into the container from the mouth of the container. The magnetic powder is pressed by the pressing means, temporarily fixed in the container, and demagnetized.
  • the magnetic powder 1 is put into a container 2 having an opening 2 a and then inserted into the container 2 from the opening 2 a of the container 2.
  • the magnetic powder 1 is pressed and temporarily fixed in the container 2 by the pressing means 3, and the container 2 is moved in the direction of the arrow while the magnetic field strength is attenuated in the magnetic field for demagnetization formed by the demagnetizing coil 10.
  • This is a mode in which the magnetic powder is demagnetized in a powder state by being moved to the position.
  • the container 2 may be reciprocated.
  • the container used in the first mode demagnetization method and the container that can be used in the second mode demagnetization method described later are made of a non-magnetic material, such as a glass container, alumina.
  • a container, a porcelain container, etc. can be mentioned.
  • the shape of the container is preferably a cylindrical shape, particularly a cylindrical shape, but may be a polygonal cylindrical shape.
  • the bottom is preferably round. Moreover, the bottom part may be openable and closable.
  • the pressing means 3 is not particularly limited, and may be, for example, a structure in which a hard or elastic flat plate 3a is pressed with a pusher 3b.
  • the level of pressing is a level that does not damage the magnetic powder to be demagnetized and can suppress the movement of the magnetic powder during the demagnetization process.
  • the type, size, shape, and demagnetization of the magnetic powder It can be determined according to the magnetic conditions.
  • the magnetic powder is put into a liquid so that the relative positional relationship between the magnetic powders does not fluctuate, and then the liquid is solidified to temporarily fix the magnetic powder in the solidified product and remove it.
  • the magnetic powder 21 is put into a liquid 22 placed in a container 23, and then the liquid 22 is solidified to be magnetic in the solidified product.
  • the powder 21 is temporarily fixed, and the container 23 is moved in the direction of the arrow in the demagnetizing magnetic field formed by the demagnetizing coil 10 while attenuating the magnetic field strength.
  • the demagnetization process is performed.
  • the container 23 may be reciprocated. After the demagnetization treatment, the solidified material is melted, and the magnetic powder 21 that has been demagnetized by filtration or the like can be obtained.
  • the liquid is usually solidified in the container 23, but the container 23 can be removed in the demagnetization process after the solidification.
  • the liquid after the defoaming treatment after the magnetic powder is put into the liquid it is preferable to solidify the liquid after the defoaming treatment after the magnetic powder is put into the liquid. This is because if the liquid is not defoamed, bubbles are taken into the coagulated product when the liquid is coagulated, and the magnetic powder in the vicinity of the bubbles can easily move.
  • the liquid As a specific method for solidifying the liquid, there is a method of solidifying the liquid by cooling it below its freezing point.
  • the liquid water, alcohols such as ethanol, alkanes such as hexane and cyclohexane, aryls such as toluene and naphthalene, and the like can be used.
  • solidification when water is used as the liquid, it can be solidified by cooling to 0 ° C. or lower.
  • cyclohexane melting point: 7 ° C.
  • cooling to 7 ° C. or lower preferably ⁇ 10 ° C.
  • the demagnetized magnetic powder may be separated from the liquid by a conventional method.
  • a coagulant capable of coagulating the liquid is further added to the liquid, and after the magnetic powder is charged, the liquid is coagulated with the coagulant.
  • a method of using a liquid gelling agent as a coagulant Specifically, when the liquid is water, gelatin is used as a coagulant, the gelatin is heated and dissolved in water, magnetic powder is added to it, defoamed as necessary, and then cooled. Gelation is mentioned. In this case, the gelatin-derived gel is reversible that disappears by heating. Therefore, after the demagnetization treatment, the solidified material is heated to a temperature at which the gel disappears, and the demagnetized magnetic conductive particles are liquidized by a conventional method. Can be separated from
  • Magnetic powder to be subjected to the demagnetization method of the present invention Specific examples of the magnetic powder to which the present invention can be applied include powders of magnetic metals or magnetic alloys such as nickel, iron, iron oxide, chromium oxide, ferrite, cobalt, sendust, solder particles, guanamine resin particles, etc. Powders in which a thin film of a magnetic material such as nickel is formed on the surface of the conductive particles or insulating resin particles, those in which a gold-plated thin film is further formed on those surfaces, or those coated with an insulating resin layer be able to.
  • the magnetic powder for use as conductive particles for anisotropic conductive connection considering the production cost, deformation due to heating and pressurization at the time of connection, nickel-coated resin particles, nickel metal particles are used.
  • nickel-coated resin particles nickel metal particles are used.
  • the resin that becomes the core is not particularly limited, but inorganic or organic materials having heat resistance and chemical resistance can be preferably used.
  • phosphorus element is preferably contained in an amount of 1% by mass or more, more preferably 4% by mass or more in order to prevent the minimum aggregation during production. Moreover, since connection will become high resistance if there is too much phosphorus element in nickel, Preferably it is 10 mass% or less, More preferably, it is desired to set it as 8 mass% or less.
  • the phosphorus element in nickel is usually derived from a phosphoric acid compound, a phosphorous acid compound, or the like used for adjusting the pH of the nickel plating bath, but is not limited thereto.
  • the magnetic powder applied to the demagnetization method of the present invention described above is not particularly limited, but the smaller the average particle diameter, the easier it is to move during demagnetization.
  • the effect of the present invention can be achieved at a higher level.
  • the average particle size of the magnetic powder is preferably 0.01 to 10,000 ⁇ m, more preferably 0.1 to 1000 ⁇ m.
  • the average particle diameter of the nickel-coated resin particles is preferably 1 to 30 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the demagnetization method of the present invention if the magnetic field strength is too low, the effect of demagnetization cannot be obtained, and the conductive particles aggregate, and if it is too high, the conductive particles may be magnetized. Therefore, it can be appropriately used in the range of 100 to 2000G, preferably 200 to 2000G, more preferably 200 to 400G.
  • the demagnetization process in the demagnetization method of the present invention in the case of the configuration shown in FIGS. 1 and 2, if it is too slow, the production efficiency is lowered. Since it tends to be difficult to obtain, it is preferably 0.1 to 100 mm / s, more preferably 1 to 100 mm / s, and still more preferably 1 to 50 mm / s.
  • the magnetic powder demagnetized in the powder state by the demagnetization method of the present invention described above is preferably used as conductive particles for dispersing in an insulating adhesive composition to make an anisotropic conductive paste or film.
  • it can apply preferably as an electrically conductive particle which should be mix
  • the magnetic powder that has been demagnetized in the paste state is subjected to anisotropic conductive treatment. Can be used as a paste.
  • the magnetic powder treated in the film state uses the magnetic powder-containing film after the demagnetization treatment as an anisotropic conductive film. can do.
  • connection structure In the manufacture of the connection structure described above, the electrical element, its bump, wiring board, its electrode, the structure of anisotropic conductive paste or film other than magnetic powder (conductive particles), thermocompression bonding conditions, etc.
  • anisotropic conductive paste or film other than magnetic powder (conductive particles), thermocompression bonding conditions, etc. When a connection structure is manufactured by anisotropic conductive connection using the anisotropic conductive film, the same configuration can be adopted.
  • the electric element a known electric element such as a light emitting element, a semiconductor chip, or a semiconductor module can be applied.
  • the wiring board include known wiring boards such as a glass wiring board, a flexible wiring board, and a glass epoxy wiring board.
  • the wiring and electrodes are not particularly limited, and those formed from known materials such as copper, gold, aluminum, and ITO can be applied.
  • the insulating adhesive composition constituting the anisotropic conductive film can be appropriately selected from thermosetting binder resin compositions used in conventional anisotropic conductive adhesives.
  • thermosetting binder resin compositions used in conventional anisotropic conductive adhesives.
  • an insulating adhesive composition in which a curing agent such as an imidazole curing agent or an amine curing agent is blended with a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like. can be mentioned.
  • an insulating adhesive composition using a thermosetting epoxy resin as a binder resin can be preferably used.
  • thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
  • a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.
  • Such an insulating adhesive composition can contain a filler such as silica and mica, a pigment, an antistatic agent, and the like, if necessary. Coloring agents, preservatives, polyisocyanate crosslinking agents, silane coupling agents, solvents and the like can also be blended.
  • Example 1 (Demagnetization treatment by the second mode of the demagnetization method) (Demagnetization treatment of conductive particles) 100 g of nickel-coated resin particles with an average particle diameter of 3 to 4 ⁇ m, prepared as described later, are charged into a glass solvent-resistant cylindrical container having an inner diameter of 10 cm and a depth of 20 cm and having a capacity of 900 ml. 500 g was added and dispersed and confused.
  • the cyclohexane mixture was cooled to ⁇ 40 ° C. and solidified.
  • the glass container containing the solidified cyclohexane mixture was attached to a penetration type demagnetizer (manufactured by Sony Chemical & Information Device Co., Ltd.), and demagnetized under the conditions shown in Tables 1 and 2. After demagnetization, the temperature was returned to room temperature, and the nickel-coated resin particles were collected from cyclohexane, washed with hexane, and dried to obtain demagnetized conductive particles.
  • a penetration type demagnetizer manufactured by Sony Chemical & Information Device Co., Ltd.
  • a palladium catalyst was supported on 3 ⁇ m divinylbenzene resin particles (5 g) by an immersion method.
  • an electroless nickel plating solution pH 12, plating solution temperature 50 ° C.
  • nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate is applied to the resin particles.
  • Electroless nickel plating was used, and nickel-coated resin particles having nickel plating layers (metal layers) having various phosphorus contents formed on the surface were obtained as conductive particles.
  • the average particle diameter of the obtained conductive particles was in the range of 3 to 4 ⁇ m.
  • Nisotropic conductive film 35 parts by mass of nickel-coated resin particles demagnetized as conductive particles, 30 parts by mass of bisphenol A type phenoxy resin (YP50, Nippon Kasei Epoxy Co., Ltd.) as a film-forming component, and bisphenol A epoxy compound ( EP828, 30 parts by mass of Mitsubishi Chemical Corporation, 39 parts by mass of amine-based curing agent (PHX3941HP, Asahi Kasei Corporation), and epoxysilane coupling agent (A-187, Momentive Performance Materials Japan GK)
  • An anisotropic conductive adhesive was prepared by diluting 1 part by mass with toluene so that the solid content was 50% by mass and mixing.
  • An anisotropic conductive film was prepared by applying the adhesive to a polyethylene terephthalate film subjected to a release treatment with a bar coater so as to have a dry thickness of 25 ⁇ m, and drying in an oven at 80 ° C. for 5 minutes.
  • this anisotropic conductive film is disposed between a glass wiring board electrode having an ITO electrode and a bump of a 13 mm ⁇ 1.5 mm square IC chip on which a gold bump having a height of 15 ⁇ m is formed.
  • a connection structure was obtained by heating and pressing at 180 ° C. and 40 MPa for 15 seconds with a chip bonder.
  • Example 1 (Creation of anisotropic conductive film) An anisotropic conductive adhesive was prepared in the same manner as in Example 1 except that nickel-coated resin particles that were not demagnetized were used instead of the nickel-coated resin particles that were demagnetized. A film was made and in addition a connection structure was obtained.
  • Connection resistance value is less than 10 ⁇
  • B Connection resistance value is 10 ⁇ or more and less than 50 ⁇
  • C Connection resistance value is 50 ⁇ or more
  • Example 1 ⁇ Comprehensive evaluation of Example 1 and Comparative Example 1> As a result of Comparative Example 1 using conductive particles that were not demagnetized, the insulation was evaluated as “B” or “C” under a variable phosphorus content. On the other hand, the results of Example 1 using the demagnetized conductive particles showed that the insulation was partially evaluated as “C” under extreme conditions both under variable demagnetization speed and under variable phosphorus content. Although it was, it was basically “A” or “B” evaluation. From these results, the anisotropic conductive adhesive and the connection structure of the present invention were able to efficiently demagnetize the conductive particles, which are the magnetic powders used, and therefore have good connection reliability and insulation reliability. You can see that. In addition, the knowledge about the tendency of demagnetizing conditions is shown below.
  • connection resistance value is low, and when the demagnetization process is performed, it is desirable that the connection resistance value does not increase more than that.
  • connection resistance in Tables 1 and 2 From the results, it can be seen that a preferable connection resistance value is maintained even when the demagnetization rate and the phosphorus content are changed.
  • Example 2 (Demagnetization treatment by the first mode of the demagnetization method) 100 g of nickel-coated resin particles having an average particle diameter of 3 to 4 ⁇ m (undemagnetized untreated) as prepared in Example 1 in a 100 ml glass solvent-resistant cylindrical container having an inner diameter of 60 mm and a depth of 70 mm. Put. The surface of the resin particle was 20 mm from the opening. In addition, 4 mass% of phosphorus atoms were contained in nickel.
  • a disc-shaped glass plate having a diameter of 60 mm and a thickness of 10 mm was placed on the resin particle surface from the opening, and pressed with a force of 500 N, and fixed so as to be removable.
  • This glass container was attached to a penetration type demagnetizer (manufactured by Sony Chemical & Information Device Co., Ltd.), and demagnetized at a room temperature of 400 G, a demagnetization speed of 50 mm / s, and room temperature.
  • An anisotropic conductive adhesive, an anisotropic conductive film and a connection structure were prepared in the same manner as in Example 1 except that the conductive particles obtained in this example were used.
  • the obtained anisotropic conductive film and connection structure were used for test evaluation in the same manner as in Example 1, the same tendency as the evaluation result of Example 1 was shown.
  • the magnetic powder can be demagnetized in a state in which the relative positional relationship between the magnetic powders does not substantially change, so that the magnetic powder rotates and moves in accordance with a change in the magnetic field.
  • magnetic powder such as nickel-coated resin particles can be efficiently demagnetized. Therefore, the demagnetizing method of the present invention is also useful for the production of anisotropic conductive films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

磁性粉体の脱磁方法においては、磁性粉体を、開口部を有する容器に投入し、次いで容器の口部から容器内に押圧手段を挿入し、その押圧手段で磁性粉体を押圧して容器内に仮固定して脱磁処理するか、または磁性粉末を液体中に投入し、次いでその液体を凝固させて凝固物中に磁性粉末を仮固定して脱磁処理する。後者の場合、磁性粉末を液体に投入した後、脱泡処理した後に液体を凝固させる。ここで、液体の凝固は、その凝固点以下に冷却することにより行う。

Description

磁性粉体の脱磁方法
 本発明は、磁性粉体の脱磁方法に関する。
 異方性導電フィルムは、絶縁性接着剤に導電粒子を分散させ、得られた分散物をフィルム状に成形することにより製造されている。この場合、導電粒子として、配線のファインピッチ化に応じて粒径がいっそう小さなものが使用されるようになっており、また、異方性導電接続に適した導電性と変形性とを示し、しかも比較的入手コストが安いニッケルメッキ被膜で被覆された樹脂粒子(以下、ニッケル被覆樹脂粒子と称する)の使用が望まれている。
 ところが、ニッケル被覆樹脂粒子を導電粒子として使用した異方性導電フィルムで半導体チップを配線基板に異方性導電接続した場合、異方性導電接続の際に絶縁性接着剤成分を溶融流動させるため、導電粒子も移動し易くなり、結果的に磁性を有する導電粒子の凝集が発生するという問題があった。このような導電粒子の凝集が生ずることは導電粒子の局在化を招き、導通不良を生じさせたり、ショートを生じさせたりする危険性が高まる。
 そこで、ニッケル被覆樹脂粒子の絶縁性接着剤への分散の際の凝集の問題を解決するために、磁化したニッケルを脱磁することが考えられる。このようなニッケル被覆樹脂粒子のような磁性粉体の脱磁技術として、筒形の容器に磁性粉体を充填して磁性粉体の回転を抑制し、その状態で容器ごと電磁石で形成された磁場内を通過させた後、その磁場から遠ざけることにより脱磁する方法が提案されている(特許文献1)。
特開2001-284124号公報
 しかしながら、特許文献1の脱磁方法は鋼粒ショットなどの比較的粒径が大きく、高密度の金属磁性粉体を射程にしているため、その脱磁方法を、異方性導電フィルムに使用するような微小なニッケル被覆樹脂粒子などのような比較的低密度で動き易い磁性粉体に適用した場合、磁場に筒形容器を通過させたときに、磁性粉体が動いてしまい、意図したレベルにまで脱磁することができないという問題があった。この問題は、異方性導電フィルムに使用する微細なニッケル被覆樹脂粒子だけにかぎらず、磁場の中で動き易い磁性粉体を脱磁する際に一般的に生ずる。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、磁性粉体を効率よく脱磁できる方法、具体的には、磁界変化に応じて回転・移動してしまうようなニッケル被覆樹脂粒子等の磁性粉体を効率よく脱磁できる方法を提供することである。
 本発明者らは、磁性粉体を、磁性粉体同士の相対的位置関係が実質的に変動しないような状態で脱磁処理するために、非常に簡便且つ低コストの以下の(イ)又は(ロ)の手法を見出し、本発明を完成させた。
(イ)磁性粉体を開口部を有する容器に投入し、次いで容器の口部から容器内に押圧手段を挿入し、その押圧手段で磁性粉体を押圧して容器内に仮固定して脱磁処理する方法。
(ロ)磁性粉体を液体中に投入し、次いでその液体を凝固させて凝固物中に磁性粉体を仮固定して脱磁処理する方法。
 即ち、本発明は、上記(イ)に対応する脱磁方法の第1のモードとして、磁性粉体の脱磁方法であって、磁性粉体を開口部を有する容器に投入し、次いで容器の口部から容器内に押圧手段を挿入し、その押圧手段で磁性粉体を押圧して容器内に仮固定して脱磁処理することを特徴とする脱磁方法を提供する。
 また、本発明は、上記(ロ)に対応する脱磁方法の第2のモードとして、磁性粉体の脱磁方法であって、磁性粉末を液体中に投入し、次いでその液体を凝固させて凝固物中に磁性粉体を仮固定して脱磁処理することを特徴とする脱磁方法を提供する。
 本発明の脱磁方法によれば、磁性粉体を、磁性粉体同士の相対的位置関係が実質的に変動しないような状態で脱磁処理することができるので、磁界変化に応じて回転・移動してしまうようなニッケル被覆樹脂粒子等の磁性粉体を効率よく脱磁することができる。
図1は、本発明の脱磁方法の第1のモードの説明図である。 図2は、本発明の脱磁方法の第2のモードの説明図である。
 本発明の脱磁方法は、磁性粉体同士の相対的位置関係が実質的に変動しないような状態で脱磁処理するものである。ここで、磁性粉体同士の相対的位置関係が実質的に変動しないような状態とは、脱磁処理の際に、磁性粉体が印加される磁界により、他の磁性粉体に対して実質的に位置変位が生じず、しかもそれ自体の回転も実質的に生じない状態を意味する。ここで、「実質的に」という言葉を使用したのは、磁性粉体同士の相対的位置関係が僅かに変異しても発明の効果が損なわれない場合があり、そのような場合を本発明の範囲から排除しない趣旨である。
 以下、脱磁方法(脱磁処理)の第1のモード及び第2のモードについて更に詳細に説明する。
(脱磁方法の第1のモード)
 第1のモードは、磁性粉体同士の相対的位置関係が実質的に変動しないように、磁性粉体を開口部を有する容器に投入し、次いで容器の口部から容器内に押圧手段を挿入し、その押圧手段で磁性粉体を押圧して容器内に仮固定して脱磁処理する態様である。
 具体的には、第1のモードは、図1に示すように、磁性粉体1を開口部2aを有する容器2に投入し、次いで、容器2の開口部2aから容器2内に挿入された押圧手段3で磁性粉体1を押圧して容器2内に仮固定し、その容器2を、脱磁コイル10により形成された脱磁用磁場の中を、磁界強度を減衰させながら矢印の方向に移動させることにより、磁性粉体を粉体の状態で脱磁処理する態様である。この場合、容器2を往復運動させてもよい。
 第1のモードの脱磁方法で使用する容器及び後述する第2のモードの脱磁方法で使用することができる容器としては、非磁性材料から形成されたものであり、例えば、ガラス容器、アルミナ容器、磁器容器等を挙げることができる。容器の形状としては、筒型形、特に円筒形が好ましいが、多角筒形でもよい。底部はラウンド型になっていることが好ましい。また、底部が開閉可能となっていてもよい。
 押圧手段3としては、特に制限はなく、例えば、硬質あるいは弾性を示す平板3aをプッシャ3bで押しつける構成でもよい。押圧のレベルは、脱磁すべき磁性粉体にダメージを与えないように且つ脱磁処理の際に磁性粉体の動きを抑制できるレベルであり、磁性粉体の種類、大きさ、形状、脱磁条件などに応じて決めることができる。
(脱磁方法の第2のモード)
 第2のモードは、磁性粉体同士の相対的位置関係が変動しないように、磁性粉末を液体中に投入し、次いでその液体を凝固させて凝固物中に磁性粉体を仮固定して脱磁処理する態様である。
 具体的には、第2のモードは、図2に示すように、磁性粉体21を容器23に入れられた液体22中に投入し、次いで、その液体22を凝固させ、凝固物中に磁性粉体21を仮固定し、その容器23を、脱磁コイル10により形成された脱磁用磁場の中を、磁界強度を減衰させながら矢印の方向に移動させることにより、磁性粉体を粉体の状態で脱磁処理する態様である。この場合、容器23を往復運動させてもよい。なお、脱磁処理後、凝固物を融解させ、濾過処理などにより脱磁処理された磁性粉体21を取得することができる。
 なお、第2のモードでは、通常、容器23中で液体を凝固させるが、凝固させた後の脱磁処理の際には、容器23を取り除くことができる。
 本発明の第2のモードの脱磁方法においては、磁性粉体を液体に投入した後、脱泡処理した後に液体を凝固させることが好ましい。これは、脱泡していないと、液体を凝固させたときに泡も凝固物の中に取り込まれ、泡近傍の磁性粉体が動きやすくなるからである。
 液体を凝固させる具体的な手法としては、液体を、その凝固点以下に冷却することにより凝固させる方法がある。液体としては、水、エタノール等のアルコール類、ヘキサン、シクロヘキサン等のアルカン類、トルエン、ナフタレン等のアリール類などを使用することができる。凝固の具体例としては、液体として水を使用した場合には、0℃以下に冷却することにより凝固させることができる。シクロヘキサン(融点7℃)を使用した場合には、7℃以下、好ましくは-10℃に冷却することが挙げられる。この場合、脱磁処理後に、凝固物を液体の凝固点以上になるまで放置又は加熱し、脱磁処理した磁性粉体を常法により液体から分離すればよい。
 また、液体を凝固させる他の手法としては、液体に、その液体を凝固させ得る凝固剤を更に配合し、磁性粉体が投入されたあとで、その凝固剤で液体を凝固処理する方法がある。例えば、凝固剤として液体のゲル化剤を使用する方法である。具体的には、液体が水である場合に、凝固剤としてゼラチンを使用し、ゼラチンを水に加熱溶解し、それに磁性粉体を投入し、必要に応じて脱泡処理し、次いで冷却してゲル化させることが挙げられる。この場合、ゼラチン由来のゲルは加熱より消失する可逆的なものであるので、脱磁処理後に、凝固物をゲルが消失する温度にまで加熱し、脱磁処理した磁性導電粒子を常法により液体から分離すればよい。
(本発明の脱磁方法の対象となる磁性粉体)
 本発明を適用することのできる磁性粉体の具体例としては、ニッケル、鉄、酸化鉄、酸化クロム、フェライト、コバルト、センダストなどの磁性金属あるいは磁性合金の粉体、ハンダ粒子やグアナミン樹脂粒子等の導電粒子又は絶縁樹脂粒子の表面にニッケルなどの磁性材料の薄膜が形成された粉体、それらの表面に更に金メッキ薄膜が形成されたもの、あるいは絶縁性樹脂層で被覆されたものなどを挙げることができる。
 これらの中でも、異方性導電接続用の導電粒子として使用するための磁性粉体としては、製造コスト、接続時の加熱加圧での変形等を考慮すると、ニッケル被覆樹脂粒子、ニッケル金属粒子を好ましく挙げることができる。コアになる樹脂としては、特に制限はないが、耐熱性、耐薬品性を備えた無機あるいは有機の材料を好ましく使用することができる。
 また、磁性粉体を構成する磁性材料として使用するニッケル中には、生産時における最低限の凝集を防ぐためにリン元素を好ましくは1質量%以上、より好ましくは4質量%以上含有させる。また、ニッケル中に、リン元素が多すぎると接続が高抵抗となるので、好ましくは10質量%以下、より好ましくは8質量%以下とすることが望まれる。ニッケル中のリン元素は、通常、ニッケルメッキ浴のpH調整用に使用されるリン酸化合物、亜リン酸化合物等に由来するものであるが、これに制限されるものではない。
 以上説明した本発明の脱磁方法に適用する磁性粉体としては、特に制限はないが、平均粒径が小さいほど脱磁の際に動きやすいので、平均粒径が小さい磁性粉体に本発明の脱磁方法を適用すると、本発明の効果をより高いレベルで奏することができる。ただ、磁性粉体の平均粒径が小さすぎると導電粒子全体における磁性金属の割合が高くなり、磁性の影響を大きく受け、凝集が発生する傾向があり、大きすぎると脱磁し易くなるが、脱磁の効率が低下する傾向があるので、磁性粉体の平均粒径は、好ましくは0.01~10000μm、より好ましくは0.1~1000μmである。特に、異方性導電フィルムに使用する場合には、ファインピッチ接続も考慮し、ニッケル被覆樹脂粒子の平均粒子径は、好ましくは1~30μm、より好ましくは1~10μmである。
(脱磁処理手法)
 本発明の脱磁方法における脱磁処理の具体的な手法として、図1及び図2に関して説明したような手法の他、公知の手法を採用することができる。
 本発明の脱磁方法における脱磁処理の際の磁界強度は、低すぎると脱磁の効果が得られなくなり、導電粒子が凝集することとなり、高すぎると逆に導電粒子が着磁する可能性があるので、100~2000Gの範囲で適宜使用することができ、好ましくは200~2000G、より好ましくは200~400Gである。
 また、本発明の脱磁方法における脱磁処理の際の脱磁速度は、図1及び図2のような構成の場合、遅すぎると生産効率が低下し、速すぎると脱磁の効果が得られ難くなる傾向があるので、好ましくは0.1~100mm/s、より好ましくは1~100mm/s、更に好ましくは1~50mm/sである。
 以上説明した本発明の脱磁方法により粉体の状態で脱磁処理された磁性粉体は、絶縁性接着剤組成物に分散させて異方性導電ペーストやフィルムにするための導電粒子として好ましく使用することができる。例えば、電気素子のバンプと配線基板の電極とを、導電粒子を含有する異方性導電ペースト又はフィルムを介して熱圧着して異方性導電接続することにより接続構造体を製造する場合において、異方性導電ペースト又はフィルムに配合すべき導電粒子として好ましく適用することができる。
 また、ペーストの状態で脱磁処理された磁性粉体は、ペースト組成物として絶縁性接着組成物を使用した場合には、脱磁処理後の磁性粉体含有ペースト組成物を、異方性導電ペーストとして使用することができる。また、フィルムの状態で処理された磁性粉体は、フィルム形成樹脂組成物として絶縁性接着組成物を使用した場合には、脱磁処理後の磁性粉体含有フィルムを異方性導電フィルムとして使用することができる。
 なお、上述の接続構造体の製造において、電気素子、そのバンプ、配線基板、その電極、磁性粉体(導電粒子)以外の異方性導電ペースト又はフィルムの構成、熱圧着条件等については、従来の異方性導電フィルムを使用する異方性導電接続により接続構造体を製造する場合に同様の構成とすることができる。
 例えば、電気素子としては、発光素子、半導体チップ、半導体モジュールなどの公知の電気素子を適用することができる。また、バンプの材質、サイズにも特に制限はなく、従来公知のバンプを適用することができる。さらに、配線基板としても、ガラス配線基板、フレキシブル配線基板、ガラスエポキシ配線基板などの公知の配線基板を挙げることができる。配線、電極についても、特に制限はなく、銅、金、アルミ、ITOなどの公知の材料から形成されたものを適用することができる。
 異方性導電フィルムを構成する絶縁性接着剤組成物としては、従来の異方性導電接着剤において用いられている熱硬化性のバインダー樹脂組成物の中から適宜選択して使用することができる。例えば、熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等に、イミダゾール系硬化剤、アミン系硬化剤等の硬化剤を配合した絶縁性接着剤組成物を挙げることができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂をバインダー樹脂として使用した絶縁性接着剤組成物を好ましく使用することができる。
 このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100~4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。
 このような絶縁性接着剤組成物には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤などを含有させることができる。着色料、防腐剤、ポリイソシアネート系架橋剤、シランカップリング剤、溶媒などを配合することもできる。
 以下、本発明を実施例により具体的に説明する。
  実施例1(脱磁方法の第2のモードによる脱磁処理)
(導電粒子の脱磁処理)
 開口部内径10cm、深さ20cmの容量900mlのガラス製の耐溶剤性円筒形容器に、後述するように調製された、平均粒径3~4μmのニッケル被覆樹脂粒子100gを投入し、更に、シクロヘキサン500gを投入し、分散混同した。
 このシクロヘキサン混合物を-40℃に冷却し凝固させた。凝固したシクロヘキサン混合物が入ったガラス容器を貫通型の脱磁装置(ソニーケミカル&インフォメーションデバイス(株)製)に装着し、表1、表2に示した条件で脱磁処理した。脱磁処理後、室温に戻し、ニッケル被覆樹脂粒子をシクロヘキサンから濾取し、ヘキサンで洗浄し、乾燥させることにより、脱磁処理した導電粒子を得た。
(ニッケル被覆樹脂粒子の調製)
 3μmのジビニルベンゼン系樹脂粒子(5g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、種々のリン含有量を有するニッケルメッキ層(金属層)が表面に形成されたニッケル被覆樹脂粒子を導電粒子として得た。得られた導電粒子の平均粒子径は3~4μmの範囲であった。
(異方性導電フィルムの作成)
 導電粒子として脱磁処理したニッケル被覆樹脂粒子35質量部と、成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、新日化エポキシ製造(株))30質量部と、液状成分としてビスフェノールAエポキシ化合物(EP828、三菱化学(株))30質量部と、アミン系硬化剤(PHX3941HP、旭化成(株))39質量部と、エポキシシランカップリング剤(A-187、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)1質量部とを、トルエンで固形分が50質量%となるように希釈し、混合することにより異方性導電接着剤を調製した。この接着剤を剥離処理したポリエチレンテレフタレートフィルムに乾燥厚25μmとなるようにバーコーターで塗布し、80℃のオーブン中で5分間乾燥することにより、異方性導電フィルムを作成した。
(接続構造体の作成)
 更に、この異方性導電フィルムを、ITO電極を有するガラス配線基板の電極と、高さ15μmの金バンプが形成された13mm×1.5mm角のICチップのバンプとの間に配置し、フリップチップボンダーで180℃、40MPaで15秒間加熱加圧することにより接続構造体を得た。
  比較例1
(異方性導電フィルムの作成)
 脱磁処理したニッケル被覆樹脂粒子に代えて、脱磁処理していないニッケル被覆樹脂粒子を使用すること以外、実施例1と同様にして異方性導電接着剤を調製し、更に異方性導電フィルムを作成し、加えて接続構造体を得た。
(評価)
 得られた異方性導電フィルム又は接続構造体について、「絶縁性」及び「接続抵抗」を、脱磁速度可変条件下(表1)、及びリン含有量可変条件下(表2)で、以下に説明するように評価した。
<絶縁性>
 剥離処理したポリエチレンテレフタレートフィルムを引き剥がしていない実施例1及び比較例1のそれぞれの異方性導電フィルムの接着層面に、ガラス基板上に櫛の歯状に配設されたITO配線に有するショート評価用絶縁TEG(高さ15μmの金バンプが形成された13mm×1.5mm角のICチップ;バンプサイズ25×140μm;バンプ間スペース10μm)を、ボンダーで到達温度180℃、圧着時間15秒という条件で圧着した。そしてバンプ間の絶縁抵抗を測定し、ショートの発生数をカウントし、以下の評価基準に従って評価した。得られた結果を表1及び表2に示す。なお、ショート発生部分においては、光学顕微鏡を用いて導電粒子の詰まり具合等から、凝集の有無、程度についても観察した。
ランク 内容
 A: 絶縁ショート発生数が40サンプル中、10個未満
 B: 絶縁ショート発生数が40サンプル中、10個以上20個未満
 C: 絶縁ショート発生数が40サンプル中、20個以上
<接続抵抗>
 実施例1及び比較例1で得た直後の接続構造体の導通抵抗を、4端子法により測定した。得られた結果を表1及び表2に示す。
ランク 内容
 A: 接続抵抗値が10Ω未満
 B: 接続抵抗値が10Ω以上50Ω未満
 C: 接続抵抗値が50Ω以上
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<実施例1及び比較例1の総合評価>
 脱磁処理していない導電粒子を使用した比較例1の結果は、リン含量可変下において絶縁性が「B」又は「C」評価であった。それに対し、脱磁処理した導電粒子を使用した実施例1の結果は、脱磁速度可変下、リン含量可変下のいずれにおいても、極端な条件下で一部に絶縁性が「C」評価があるものの、基本的に「A」又は「B」評価であった。これらの結果から、本発明の異方性導電接着剤及び接続構造体は、使用した磁性粉体である導電粒子の脱磁が効率よく実現されていたため、良好な接続信頼性、絶縁信頼性を示したことがわかる。なお、以下に、脱磁条件の傾向についての知見を示す。
<絶縁性についての評価>
1)脱磁速度可変の場合
 表1からわかるように、脱磁速度の増大とともに、絶縁性が低下する傾向が見て取れるが、大きく低下するものではない。
2)リン含有量可変の場合
 表2の結果からわかるように、リンの含有量によらず、磁界強度が200~2000Gであれば、絶縁性が低下することはない。なお、光学顕微鏡観察の結果、「ショート」の発生した箇所では、導電粒子の凝集が観察され、特に評価「C」の場合に顕著であった。
<接続抵抗についての評価>
 脱磁処理をしない場合の接続抵抗値は低いものであり、脱磁処理をした場合にそれよりも接続抵抗値が増大しないことが望まれるが、表1及び表2の「接続抵抗」の欄の結果から、脱磁速度、リン含有量を変化させても、好ましい接続抵抗値が維持されることがわかる。
  実施例2(脱磁方法の第1のモードによる脱磁処理)
 開口部内径60mm、深さ70mmの容量100mlのガラス製の耐溶剤性円筒形容器に、実施例1で調製したものと同じ平均粒径3~4μmのニッケル被覆樹脂粒子(脱磁未処理)100gを入れた。樹脂粒子の表面は開口部から20mmの位置であった。なお、ニッケル中には、リン原子が4質量%含有されていた。
 次に、開口部から直径60mm、厚さ10mmの円盤状のガラス板を、樹脂粒子表面に置き、それを500Nの力で押しつけ、脱着可能に固定した。このガラス容器を貫通型の脱磁装置(ソニーケミカル&インフォメーションデバイス(株)製)に装着し、磁界強度400G、脱磁速度50mm/s、室温下で脱磁処理を行った。
 この実施例で得た導電粒子を使用する以外は、実施例1と同様にして異方性導電接着剤、更に異方性導電フィルムならびに接続構造体を作成した。得られた異方性導電フィルム及び接続構造体を用いて、実施例1と同様に試験評価したところ、実施例1の評価結果と同じ傾向を示した。
 本発明の脱磁方法によれば、磁性粉体を、磁性粉体同士の相対的位置関係が実質的に変動しない状態で脱磁処理することができるので、磁場変化に応じて回転・移動してしまうようなニッケル被覆樹脂粒子等の磁性粉体を効率よく脱磁することができる。従って、本発明の脱磁方法は、異方性導電フィルムの製造にも有用である。
 1、21 磁性粉体
 2、23 容器
 2a 開口部
 3 押圧手段
 3a 平板
 3b プッシャ
10 脱磁コイル
22 液体

Claims (10)

  1.  磁性粉体の脱磁方法であって、
     磁性粉体を開口部を有する容器に投入し、次いで容器の口部から容器内に押圧手段を挿入し、その押圧手段で磁性粉体を押圧して容器内に仮固定して脱磁処理することを特徴とする脱磁方法。
  2.  磁性粉体の脱磁方法であって、
     磁性粉末を液体中に投入し、次いでその液体を凝固させて凝固物中に磁性粉末を仮固定して脱磁処理することを特徴とする脱磁方法。
  3.  磁性粉末を液体に投入した後、脱泡処理した後に液体を凝固させる請求項2記載の脱磁方法。
  4.  液体を、その凝固点以下に冷却することにより凝固させる請求項2又は3記載の脱磁方法。
  5.  液体に、その液体を凝固させ得る凝固剤を更に配合し、磁性粉体が投入されたあとで、凝固剤で液体を凝固処理して固定化する請求項2又は3記載の脱磁方法。
  6.  磁性粉体の平均粒径が、0.1~1000μmである請求項1~5のいずれかに記載の脱磁方法。
  7.  磁性粉体が、ニッケル被覆樹脂粒子またはニッケル金属粒子である請求項1~6のいずれかに記載の脱磁方法。
  8.  脱磁処理の際の磁界強度を、200~2000Gに調整する請求項1~7のいずれかに記載の脱磁方法。
  9.  ニッケル中にリン元素が、1~10質量%含有されている請求項7記載の脱磁方法。
  10.  脱磁処理の際の脱磁速度が、1~100mm/sである請求項1~9のいずれかに記載の脱磁方法。
PCT/JP2011/064790 2010-07-06 2011-06-28 磁性粉体の脱磁方法 WO2012005143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180033243.XA CN102959650B (zh) 2010-07-06 2011-06-28 磁性粉体的脱磁方法
KR1020137000235A KR101412856B1 (ko) 2010-07-06 2011-06-28 자성 분체의 탈자 방법
HK13105519.6A HK1177652A1 (zh) 2010-07-06 2013-05-08 磁性粉體的脫磁方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-153848 2010-07-06
JP2010153848A JP5494299B2 (ja) 2010-07-06 2010-07-06 磁性粉体の脱磁方法

Publications (1)

Publication Number Publication Date
WO2012005143A1 true WO2012005143A1 (ja) 2012-01-12

Family

ID=45441126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064790 WO2012005143A1 (ja) 2010-07-06 2011-06-28 磁性粉体の脱磁方法

Country Status (5)

Country Link
JP (1) JP5494299B2 (ja)
KR (1) KR101412856B1 (ja)
CN (1) CN102959650B (ja)
HK (1) HK1177652A1 (ja)
WO (1) WO2012005143A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394160B2 (ja) * 2014-08-05 2018-09-26 デクセリアルズ株式会社 異方性導電接着剤、その製造方法、接続構造体及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107505A (ja) * 1982-12-13 1984-06-21 Tohoku Metal Ind Ltd 着磁された磁性粉の脱磁方法
JPS59166199U (ja) * 1983-04-23 1984-11-07 日本原子力研究所 クラツドの消磁装置
JPH09275005A (ja) * 1996-04-05 1997-10-21 Sumitomo Special Metals Co Ltd 異方性造粒粉の製造方法
JPH10125521A (ja) * 1996-10-18 1998-05-15 Sumitomo Special Metals Co Ltd 異方性造粒粉の製造方法
JP2001284124A (ja) * 2000-03-30 2001-10-12 Sintokogio Ltd 磁性粉粒体の脱磁方法及びその装置
JP2006019521A (ja) * 2004-07-01 2006-01-19 Inter Metallics Kk 磁気異方性希土類焼結磁石の製造方法及び製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890005136B1 (ko) * 1987-06-30 1989-12-11 삼성전기 주식회사 스텝모우터용 영구자석의 제조방법
JP2003034879A (ja) * 2001-07-26 2003-02-07 Sony Chem Corp Niメッキ粒子及びその製造方法
JP4728665B2 (ja) * 2004-07-15 2011-07-20 積水化学工業株式会社 導電性微粒子、導電性微粒子の製造方法、及び異方性導電材料
KR100719802B1 (ko) * 2005-12-28 2007-05-18 제일모직주식회사 이방 전도 접속용 고신뢰성 전도성 미립자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107505A (ja) * 1982-12-13 1984-06-21 Tohoku Metal Ind Ltd 着磁された磁性粉の脱磁方法
JPS59166199U (ja) * 1983-04-23 1984-11-07 日本原子力研究所 クラツドの消磁装置
JPH09275005A (ja) * 1996-04-05 1997-10-21 Sumitomo Special Metals Co Ltd 異方性造粒粉の製造方法
JPH10125521A (ja) * 1996-10-18 1998-05-15 Sumitomo Special Metals Co Ltd 異方性造粒粉の製造方法
JP2001284124A (ja) * 2000-03-30 2001-10-12 Sintokogio Ltd 磁性粉粒体の脱磁方法及びその装置
JP2006019521A (ja) * 2004-07-01 2006-01-19 Inter Metallics Kk 磁気異方性希土類焼結磁石の製造方法及び製造装置

Also Published As

Publication number Publication date
CN102959650A (zh) 2013-03-06
HK1177652A1 (zh) 2013-08-23
JP5494299B2 (ja) 2014-05-14
KR101412856B1 (ko) 2014-06-26
KR20130042542A (ko) 2013-04-26
JP2012018967A (ja) 2012-01-26
CN102959650B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5614135B2 (ja) 異方性導電接着剤、その製造方法、接続構造体及びその製造方法
KR101385330B1 (ko) 도전성 입자 및 그 제조 방법, 및 이방성 도전 필름, 접합체 및 접속 방법
JP5650611B2 (ja) 異方性導電フィルム、異方性導電フィルムの製造方法、接続方法、及び接合体
JP6624561B2 (ja) 樹脂シート、インダクタ部品
JP7259113B2 (ja) 異方導電性フィルム、これを含むディスプレイ装置及び/又はこれを含む半導体装置
JP2007317563A (ja) 回路接続用接着剤
JP4900674B2 (ja) 異方導電膜とそれを用いた電子機器の製造方法
JP5494299B2 (ja) 磁性粉体の脱磁方法
JP5609492B2 (ja) 電子部品及びその製造方法
JP2005146044A (ja) 異方導電性接着剤
JP5768676B2 (ja) 異方性導電フィルム、その製造方法、接続構造体及びその製造方法
JP2013127041A (ja) 異方性導電接着剤、その製造方法、接続構造体及びその製造方法
JP5698080B2 (ja) 異方性導電フィルム、接続方法、及び接合体
JP5505225B2 (ja) 接続構造体の製造方法
JP6394160B2 (ja) 異方性導電接着剤、その製造方法、接続構造体及びその製造方法
JP5962024B2 (ja) 磁性導電粒子の磁束密度の推定方法、及び磁性導電粒子の磁化状態の良否の判定方法
JP5890614B2 (ja) 接続方法及び接続構造体並びに接続構造体の製造方法
JP2006111807A (ja) 電子部品及びその製造法
JP6394159B2 (ja) 異方性導電接着剤、その製造方法、接続構造体及びその製造方法
JP2008084545A (ja) 電極接続用接着剤
JP2007299762A (ja) 異方導電膜とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033243.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803478

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20137000235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803478

Country of ref document: EP

Kind code of ref document: A1