WO2012004958A1 - 薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル - Google Patents

薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル Download PDF

Info

Publication number
WO2012004958A1
WO2012004958A1 PCT/JP2011/003779 JP2011003779W WO2012004958A1 WO 2012004958 A1 WO2012004958 A1 WO 2012004958A1 JP 2011003779 W JP2011003779 W JP 2011003779W WO 2012004958 A1 WO2012004958 A1 WO 2012004958A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor layer
insulating film
drain electrode
pixel
Prior art date
Application number
PCT/JP2011/003779
Other languages
English (en)
French (fr)
Inventor
中谷 喜紀
齊藤 裕一
岡本 哲也
庸輔 神崎
雄大 高西
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180034015.4A priority Critical patent/CN102986012B/zh
Priority to JP2012523517A priority patent/JP5269253B2/ja
Priority to KR1020137002683A priority patent/KR101356304B1/ko
Priority to US13/808,375 priority patent/US8623681B2/en
Publication of WO2012004958A1 publication Critical patent/WO2012004958A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133397Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • G02F1/136236Active matrix addressed cells for reducing the number of lithographic steps using a grey or half tone lithographic process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel

Definitions

  • the present invention relates to a thin film transistor substrate, a manufacturing method thereof, and a liquid crystal display panel, and more particularly, to a thin film transistor substrate provided with an auxiliary capacitor, a manufacturing method thereof, and a liquid crystal display panel.
  • An active matrix liquid crystal display panel includes a TFT substrate in which, for each pixel, which is the minimum unit of an image, for example, a thin film transistor (hereinafter referred to as “TFT”) is provided as a switching element, and a TFT substrate And a liquid crystal layer sealed between the two substrates.
  • TFT substrate an auxiliary capacitor is provided for each pixel in order to stably hold the charge charged in the liquid crystal layer of each pixel, that is, the liquid crystal capacitor.
  • the auxiliary capacitor includes, for example, a capacitor line provided on the substrate, a gate insulating film provided so as to cover the capacitor line, and a capacitor electrode provided on the gate insulating film so as to overlap the capacitor line ( For example, the drain electrode of the TFT).
  • a gate insulating film, a semiconductor layer (forming film), and a contact layer (pattern forming film) are formed so as to cover a gate line, a gate electrode, and a sustain electrode formed on an insulating substrate.
  • a conductive layer are sequentially deposited, and a photosensitive film is formed on the conductive layer by using an exposure method twice.
  • a semiconductor layer (forming film) and a contact layer (pattern are formed using the photosensitive film).
  • a film substrate and a conductor layer are etched in two stages to disclose a method for manufacturing a TFT substrate in which a data wiring, a source electrode, a semiconductor layer, a contact layer pattern, a drain electrode, and a storage capacitor conductor pattern are formed.
  • the storage capacitor corresponding to the auxiliary capacitor includes a storage electrode, a gate insulating film, a storage capacitor semiconductor layer, a storage capacitor contact layer pattern, and a storage capacitor. It is comprised by the laminated structure of the conductor pattern for capacitors.
  • the manufacturing method disclosed in Patent Document 1 in the manufacturing method of the TFT substrate in which the manufacturing process of forming the semiconductor layer, the source electrode, and the drain electrode using the same photomask is simplified, Since the semiconductor layer is disposed under the source electrode and the drain electrode, the semiconductor layer is stacked under the capacitor electrode (drain electrode) constituting the auxiliary capacitor.
  • the auxiliary capacitor configured by the laminated structure of the capacitor line, the gate insulating film, the semiconductor layer, and the drain electrode, not only the gate insulating film but also the semiconductor layer functions as a dielectric layer. Since the capacitance changes due to the MOS (Metal Oxide Semiconductor) structure and the Schottky structure changes between the semiconductor layer and the drain electrode, the pixel electrode is connected via the auxiliary capacitance. In the liquid crystal display panel that controls the potential of the pixel electrode, the pixel electrode is not controlled at a predetermined potential, and a display defect such as flicker occurs.
  • MOS Metal Oxide Semiconductor
  • the present invention has been made in view of such a point, and an object thereof is to suppress a change in the capacitance of the auxiliary capacitor caused by the semiconductor layer.
  • the present invention is such that a semiconductor layer made of an oxide semiconductor and a pixel electrode made of an oxide conductor are in contact with each other.
  • a thin film transistor substrate includes a plurality of pixel electrodes provided in a matrix, a plurality of thin film transistors provided for each of the pixel electrodes and connected to the pixel electrodes, and the pixel electrodes.
  • a plurality of auxiliary capacitors each provided, and each thin film transistor includes a gate electrode provided on the substrate, a gate insulating film provided so as to cover the gate electrode, and a gate insulating film provided on the gate insulating film
  • An electrode and a drain electrode, and each of the auxiliary capacitors is provided with a capacitor line formed of the same material in the same layer as the gate electrode, and covers the capacitor line.
  • each pixel electrode is formed of an oxide conductor
  • the semiconductor layer and the pixel electrode disposed in each pixel The band structure will be similar.
  • the semiconductor layer and the pixel electrode are in contact with each other, free carriers in the pixel electrode diffuse into the semiconductor layer and extend to the vicinity of the interface with the gate insulating film, so that the semiconductor layer in the auxiliary capacitance portion Will function as a conductor.
  • the storage capacitor configured by the stacked structure of the capacitor line, the gate insulating film, the semiconductor layer, and the drain electrode retains charge when a voltage is applied between the capacitor line and the drain electrode.
  • the dielectric layer is only the gate insulating film, a change in electric capacity is suppressed.
  • the change in the electric capacity is suppressed, so that the change in the electric capacity of the auxiliary capacitor caused by the semiconductor layer is suppressed.
  • Each of the pixel electrodes includes a first pixel electrode and a second pixel electrode that are provided adjacent to each other via the thin film transistors, and the drain electrode is connected to each of the first pixel electrode and the second pixel electrode.
  • a first drain electrode and a second drain capacitor connected to the first pixel electrode and the second pixel electrode, respectively.
  • the capacitor line has a first capacitor line and a second capacitor line provided corresponding to the first auxiliary capacitor and the second auxiliary capacitor, respectively, and the first auxiliary capacitor is the first capacitor.
  • the first drain electrode is provided.
  • the second auxiliary capacitor is provided to overlap the second capacitor line, the gate insulating film provided to cover the second capacitor line, and the second capacitor line on the gate insulating film.
  • the semiconductor layer and the second drain electrode provided on the semiconductor layer may be provided.
  • each pixel electrode has the first pixel electrode and the second pixel electrode, and the drain electrode is connected to the first pixel electrode and the second pixel electrode, respectively.
  • a storage capacitor is formed of a stacked structure of a first capacitor line, a gate insulating film, a semiconductor layer, and a first drain electrode, and a second capacitor line, a gate insulating film, a semiconductor layer, and a first capacitor line. Since each pixel has the second auxiliary capacitance configured by the stacked structure of two drain electrodes, for example, the luminance of the sub-pixels corresponding to the first pixel electrode and the second pixel electrode is different from each other.
  • a thin film transistor substrate having a multi-pixel structure in which each pixel includes a bright subpixel and a dark subpixel is specifically configured.
  • the thin film transistor substrate having a multi-pixel structure in general, in order to make the voltage applied to the liquid crystal layer of the bright subpixel different from the voltage applied to the liquid crystal layer of the dark subpixel, Since the voltage applied between the first drain electrode and the voltage applied between the second capacitor line and the second drain electrode are different, a semiconductor layer is stacked inside the first auxiliary capacitor and the second auxiliary capacitor. In this case, the electric capacity of the first auxiliary capacitor and the second auxiliary capacitor may change, and for example, the balance with the voltage of the common electrode of the counter substrate may be lost.
  • the thin film transistor substrate manufacturing method includes a plurality of pixel electrodes provided in a matrix, a plurality of thin film transistors provided for each of the pixel electrodes and connected to the pixel electrodes, A plurality of auxiliary capacitors provided for each pixel electrode, wherein each of the thin film transistors includes a gate electrode provided on the substrate, a gate insulating film provided to cover the gate electrode, and the gate insulating film And a semiconductor layer in which a channel region is disposed so as to overlap the gate electrode, and the channel layer is disposed on the semiconductor layer so that the channel region is exposed and spaced apart from each other through the channel region.
  • each of the auxiliary capacitors is provided in the same layer as the gate electrode with the same material, and the capacitor
  • the gate insulating film provided so as to cover the line; the semiconductor layer provided on the gate insulating film so as to overlap the capacitor line; and provided on the semiconductor layer and connected to the pixel electrodes.
  • a second etching step for forming each thin film transistor; and an interlayer insulation provided with a contact hole so as to reach the semiconductor layer exposed from the drain electrode after removing the resist pattern used in the second etching step An interlayer insulating film forming step for forming a film, and A pixel electrode forming step of forming each auxiliary capacitor by forming each pixel electrode made of an oxide conductor on the interlayer insulating film and bringing the semiconductor layer into contact with the pixel electrode; It is characterized by.
  • the gate electrode and the capacitor line are formed on the substrate using the first photomask, and in the resist pattern forming step, for example, the second photomask is used.
  • a resist pattern is formed, and in the first etching process, the resist pattern is used to form a source electrode, a drain electrode, and a channel region, and in the second etching process, a reflowed and modified resist pattern is used. Then, a semiconductor layer is formed to form a thin film transistor.
  • an interlayer insulating film provided with a contact hole is formed using a third photomask
  • a pixel electrode is formed using a fourth photomask to form an auxiliary capacitor, so that four sheets Using a photomask, a thin film transistor substrate provided with a storage capacitance is produced.
  • the semiconductor layer is disposed below the drain electrode.
  • the semiconductor film is formed from the drain electrode.
  • the semiconductor layer and the pixel electrode are in contact with each other in each pixel.
  • the semiconductor layer is made of an oxide semiconductor and the pixel electrode is made of an oxide conductor, the band structure of the semiconductor layer and the pixel electrode arranged in each pixel is similar.
  • the liquid crystal display panel according to the present invention is a liquid crystal display panel comprising a thin film transistor substrate and a counter substrate provided so as to face each other, and a liquid crystal layer provided between the thin film transistor substrate and the counter substrate.
  • the thin film transistor substrate is provided for each of the plurality of pixel electrodes provided in a matrix and for each of the pixel electrodes, and each of the plurality of thin film transistors connected to the pixel electrodes and for each of the pixel electrodes.
  • Each of the thin film transistors is provided with a gate electrode provided on the substrate, a gate insulating film provided so as to cover the gate electrode, and the gate electrode provided on the gate insulating film.
  • a semiconductor layer in which a channel region is disposed so as to overlap with the semiconductor layer, and the channel region provided on the semiconductor layer is exposed A source electrode and a drain electrode arranged so as to be separated from each other through the channel region, wherein each of the auxiliary capacitors is provided with a capacitor line formed of the same material in the same layer as the gate electrode;
  • the gate insulating film provided so as to cover the semiconductor layer, the semiconductor layer provided on the gate insulating film so as to overlap the capacitor line, and the semiconductor layer provided on the semiconductor layer and connected to the pixel electrodes.
  • a drain electrode; the semiconductor layer is made of an oxide semiconductor; each pixel electrode is made of an oxide conductor; and the semiconductor layer and each pixel electrode are in contact with each other. To do.
  • the semiconductor layer of each thin film transistor is made of an oxide semiconductor
  • each pixel electrode is made of an oxide conductor. Therefore, the semiconductor layer disposed in each pixel And the band structure of the pixel electrode is similar.
  • the semiconductor layer and the pixel electrode are in contact with each other, free carriers in the pixel electrode diffuse into the semiconductor layer and extend to the vicinity of the interface with the gate insulating film, so that the semiconductor layer in the auxiliary capacitance portion Will function as a conductor.
  • the storage capacitor configured by the stacked structure of the capacitor line, the gate insulating film, the semiconductor layer, and the drain electrode retains charge when a voltage is applied between the capacitor line and the drain electrode.
  • the dielectric layer is only the gate insulating film, a change in electric capacity is suppressed.
  • the change in the electric capacity is suppressed, so that in the thin film transistor substrate, the change in the electric capacity of the auxiliary capacitor due to the semiconductor layer is suppressed, and the thin film transistor substrate is provided.
  • the occurrence of display defects such as flicker is suppressed.
  • the semiconductor layer made of the oxide semiconductor and the pixel electrode made of the oxide conductor are in contact with each other, a change in the capacitance of the auxiliary capacitor caused by the semiconductor layer can be suppressed.
  • FIG. 1 is a plan view of a TFT substrate according to the first embodiment.
  • FIG. 2 is a cross-sectional view of a TFT substrate and a liquid crystal display panel having the same along the line II-II in FIG.
  • FIG. 3 is an equivalent circuit diagram of the TFT substrate according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between the voltage and the capacitance in the auxiliary capacitance of the TFT substrate according to the first embodiment.
  • FIG. 5 is a first explanatory view showing the manufacturing process of the TFT substrate according to Embodiment 1 in section.
  • FIG. 6 is a second explanatory diagram subsequent to FIG. 5, showing the manufacturing process of the TFT substrate according to the first embodiment in cross section.
  • FIG. 7 is a third explanatory diagram subsequent to FIG.
  • FIG. 6 showing a manufacturing process of the TFT substrate according to the first embodiment in cross section.
  • FIG. 8 is a cross-sectional view of the TFT substrate according to the second embodiment.
  • FIG. 9 is a first explanatory view showing the manufacturing process of the TFT substrate according to Embodiment 2 in section.
  • FIG. 10 is a second explanatory diagram subsequent to FIG. 9, showing a manufacturing process of the TFT substrate according to the second embodiment in cross section.
  • FIG. 11 is a third explanatory diagram subsequent to FIG. 10, showing a manufacturing process of the TFT substrate according to the second embodiment in cross section.
  • FIG. 12 is a fourth explanatory view, following FIG. 11, illustrating a manufacturing process of the TFT substrate according to the second embodiment in cross section.
  • FIG. 13 is a cross-sectional view of a TFT substrate according to the third embodiment.
  • Embodiment 1 of the Invention 1 to 7 show Embodiment 1 of a TFT substrate, a manufacturing method thereof, and a liquid crystal display panel according to the present invention.
  • FIG. 1 is a plan view of the TFT substrate 30a of the present embodiment.
  • FIG. 2 is a cross-sectional view of the TFT substrate 30a and the liquid crystal display panel 50 including the same along the line II-II in FIG.
  • FIG. 3 is an equivalent circuit diagram of the TFT substrate 30a.
  • the liquid crystal display panel 50 includes a TFT substrate 30a and a counter substrate 40 provided so as to face each other, a liquid crystal layer 45 provided between the TFT substrate 30a and the counter substrate 40, and a TFT substrate.
  • 30a and the counter substrate 40 are adhered to each other, and a sealing material (not shown) provided in a frame shape is provided between the TFT substrate 30a and the counter substrate 40 to enclose the liquid crystal layer 45.
  • the TFT substrate 30a includes an insulating substrate 10a, a plurality of gate lines 11a provided on the insulating substrate 10a so as to extend in parallel to each other, and one side of each gate line 11a. (The upper side in FIG. 1), provided on the other side (lower side in FIG. 1) of each of the plurality of first capacitance lines 11ba arranged so as to extend in parallel with each other, and on each gate line 11a.
  • a plurality of second capacitor lines 11bb arranged so as to extend in parallel with each other, a plurality of source lines 14a provided so as to extend in parallel with each other in a direction perpendicular to each gate line 11a, each gate line 11a, A TFT 5a provided for each intersection of the source lines 14a, that is, for each pixel P, an interlayer insulating film 15a provided so as to cover each TFT 5a, and a matrix on the interlayer insulating film 15a And a plurality of pixel electrodes arranged such that the first pixel electrode 16a and the second pixel electrode 16b are adjacent to each other via the gate line 11a, and each pixel electrode (the first pixel electrode 16a and the second pixel electrode). And an alignment film (not shown) provided to cover the electrode 16b).
  • the TFT 5a is provided on the gate electrode 11aa provided on the insulating substrate 10a, the gate insulating film 12 provided so as to cover the gate electrode 11aa, and the gate insulating film 12.
  • the first drain electrode 14ba provided on the semiconductor layer 13b and spaced apart from the source electrode 14aa via one channel region C (upper side in FIG. 1), and the other channel And a second drain electrode 14bb disposed so as to be separated from the source electrode 14aa via the region C (lower side in FIG. 1).
  • the gate electrode 11aa is a portion where each gate line 11a is formed widely as shown in FIG.
  • the semiconductor layer 13b is made of, for example, an In—Ga—Zn—O-based oxide semiconductor such as InGaZnO 4 or In 2 Ga 2 ZnO 7 .
  • the first pixel electrode 16a and the second pixel electrode 16b are made of an oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), for example.
  • the semiconductor layer 13b and the first pixel electrode 16a and the second pixel electrode 16b are in contact with each other in the contact holes 15ca and 15cb formed in the interlayer insulating film 15a, as shown in FIGS. Yes.
  • the source electrode 14aa is a portion where each source line 14a protrudes to the side as shown in FIG.
  • the first drain electrode 14ba is connected to the first pixel electrode 16a through a contact hole 15ca formed in the interlayer insulating film 15a. Further, as shown in FIGS. 1 and 2, the first drain electrode 14ba overlaps with the first capacitor line 11ba through the semiconductor layer 13b and the gate insulating film 12, thereby forming the first auxiliary capacitor 6a. Yes.
  • the second drain electrode 14bb is connected to the second pixel electrode 16b through a contact hole 15cb formed in the interlayer insulating film 15a. Further, as shown in FIG. 1, the second drain electrode 14bb overlaps the second capacitor line 11bb via the semiconductor layer 13b and the gate insulating film 12, thereby forming a second auxiliary capacitor 6b.
  • the counter substrate 40 includes an insulating substrate 10b, a black matrix 31 provided in a lattice shape on the insulating substrate 10b, a red layer, a green layer, a blue layer, and the like between the lattices of the black matrix 31.
  • a color filter 32 a common electrode 33 provided so as to cover the black matrix 31 and the color filter 32, and an alignment film (not shown) provided so as to cover the common electrode 33.
  • the liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics and negative dielectric anisotropy.
  • the liquid crystal display panel 50 having the above configuration has each subpixel Pa on the liquid crystal layer 45 disposed between each first pixel electrode 16a and each second pixel electrode 16b on the TFT substrate 30a and the common electrode 33 on the counter substrate 40.
  • the transmittance of light transmitted through the panel is adjusted for each sub-pixel Pa and Pb, and an image is displayed. It is configured.
  • the liquid crystal display panel 50 as shown in FIG.
  • a voltage of ⁇ 20V to ⁇ 5V or + 5V to + 20V is applied to the first auxiliary capacitor 6a, and ⁇ 10V to 0V or
  • a voltage of 0V to + 10V different voltages are applied to the liquid crystal capacitance (liquid crystal layer 45) of the sub-pixel Pa and the liquid crystal capacitance (liquid crystal layer 45) of the sub-pixel Pb, and the sub-pixel Pa and the sub-pixel Pb are
  • the subpixels is a bright subpixel and a dark subpixel, and an image display in which contrast inversion due to viewing angle dependency on gradation is suppressed can be performed.
  • FIG. 4 is a graph showing the relationship between the voltage and the electric capacitance in the auxiliary capacitance (first auxiliary capacitance 6a or second auxiliary capacitance 6b) of the TFT substrate.
  • the solid line A is due to the TFT substrate of the embodiment of the present embodiment in which the semiconductor layer and the pixel electrode are in contact with each other
  • the broken line B is that the pixel electrode is in contact with only the drain electrode and the semiconductor This is due to the TFT substrate of the comparative example of this embodiment in which the layer and the pixel electrode do not contact each other.
  • a range E LP is a main operating range of the positive bias of the bright sub-pixel
  • a range E LN is a main operating range of the negative bias of the bright sub-pixel based on the applied voltage range exemplified above.
  • the range E DP is the main operating range of the dark subpixel positive bias
  • the range E DN is the main operating range of the dark subpixel negative bias.
  • FIG. 5 to FIG. 7 are explanatory views showing the manufacturing process of the TFT substrate 30a of the present embodiment continuously in section corresponding to the portion of the TFT substrate 30a in the sectional view of FIG.
  • the manufacturing method of this embodiment includes a gate layer forming step, a resist forming step, a first etching step, a second etching step, an interlayer insulating film forming step, and a pixel electrode forming step.
  • a metal film such as a titanium film is formed on the entire substrate of the insulating substrate 10a such as a glass substrate by sputtering, for example, and then the metal film is used with a first photomask.
  • a gate line 11a, a gate electrode 11aa, a first capacitor line 11ba, and a second capacitor line 11bb are formed.
  • a gate insulating film 12 is formed by sequentially forming a silicon film (thickness of about 1000 to 4500 mm) and a silicon oxide film (thickness of about 500 to 1500 mm).
  • an In—Ga—Zn—O-based semiconductor film 13 (thickness such as InGaZnO 4 ) is formed on the entire substrate on which the gate insulating film 12 has been formed, for example, by sputtering.
  • a metal conductive film 14 such as a titanium film (about 1500 to 6000 mm thick) and the like are sequentially formed.
  • the photosensitive resin film is applied to the second photo film.
  • a resist pattern Raa is formed as shown in FIG.
  • the resist pattern Raa is exposed so that a part of the region overlapping the first capacitor line 11ba and the second capacitor line 11bb and a region serving as the channel region C are exposed.
  • the source line 14a, the source electrode 14aa, the first drain electrode 14ba, and the second drain electrode 14bb are formed in a region.
  • ⁇ Second etching process> First, the substrate on which the source line 14a, the source electrode 14aa, the first drain electrode 14ba, the second drain electrode 14bb, and the channel region C are formed in the first etching step is heated at about 250 ° C. to obtain FIG. ), The resist pattern Raa is reflowed to convert the resist pattern Raa into the resist pattern Rab so as to cover the semiconductor film 13a exposed from the first drain electrode 14ba and the second drain electrode 14bb and the channel region C. To do.
  • the semiconductor film 13a exposed from the resist pattern Rab is etched by wet etching, thereby forming the semiconductor layer 13b and forming the TFT 5a as shown in FIG. 6C.
  • a silicon oxide film (thickness of about 1000 to 4000 mm) or the like is formed on the entire substrate from which the resist pattern Rab has been removed, for example, by CVD, as shown in FIG. 7A.
  • An insulating film 15 is formed.
  • the inorganic insulating film 15 is preferably a silicon oxide film, but may be a laminated film of a silicon oxide film and a silicon nitride film, a silicon nitride film, or the like.
  • an interlayer insulating film 15a provided with contact holes 15ca and 15cb is formed as shown in FIG. 7B.
  • an ITO film (having a thickness of about 600 mm to 2000 mm) is formed on the entire substrate on which the interlayer insulating film 15a has been formed in the interlayer insulating film forming step, for example, by sputtering, so that FIG.
  • the transparent conductive film 16 is formed as shown in FIG.
  • the first pixel electrode 16a and the second pixel electrode 16b are formed as shown in FIG.
  • the second auxiliary electrode 6b and the second auxiliary capacitor 6b are formed by bringing the second pixel electrode 16b into contact with the semiconductor layer 13b.
  • the TFT substrate 30a can be manufactured as described above.
  • the gate electrode 11aa and the first capacitance line 11ba are formed on the insulating substrate 10a using the first photomask in the gate layer forming step.
  • the second capacitor line 11bb, the resist pattern Raa is formed using the second photomask in the resist pattern forming step, and the source electrode 14aa and the second electrode are formed using the resist pattern Raa in the first etching step.
  • the first drain electrode 14ba, the second drain electrode 14bb and the channel region C are formed, and the semiconductor layer 13b is formed by using the resist pattern Rab modified by reflowing in the second etching step, thereby forming the TFT 5a.
  • a third photomask is used to form a contact hole.
  • An interlayer insulating film 15a provided with 15ca and 15cb is formed, and in the pixel electrode forming step, the first pixel electrode 16a and the second pixel electrode 16b are formed using the fourth photomask to form the first auxiliary capacitor 6a. Since the second auxiliary capacitor 6b is formed, the TFT substrate 30a including the first auxiliary capacitor 6a and the second auxiliary capacitor 6b can be manufactured using four photomasks.
  • the semiconductor layer 13b is disposed below the first drain electrode 14ba and the second drain electrode 14bb in each of the subpixels Pa and Pb, but in the first etching step, the source electrode 14aa, When forming the first drain electrode 14ba, the second drain electrode 14bb, and the channel region C, the semiconductor film 13a is exposed from the first drain electrode 14ba and the second drain electrode 14bb. Therefore, in the pixel electrode formation step, the first pixel By forming the electrode 16a and the second pixel electrode 16b, the semiconductor layer 13b and the first pixel electrode 16a and the second pixel electrode 16b are in contact with each other in each of the subpixels Pa and Pb.
  • the semiconductor layer 13b is made of an oxide semiconductor and the first pixel electrode 16a and the second pixel electrode 16b are made of an oxide conductor, the semiconductor layer 13b disposed in each of the subpixels Pa and Pb.
  • the band structures of the first pixel electrode 16a and the second pixel electrode 16b are similar.
  • the first auxiliary capacitance 6a and the second auxiliary capacitance 6b in which the semiconductor layer 13b is stacked can suppress a change in electric capacitance, and thus the first auxiliary capacitance 6a and the second auxiliary capacitance caused by the semiconductor layer 13b can be suppressed. 2 A change in the electric capacity of the auxiliary capacitor 6b can be suppressed.
  • each pixel P has a multi-pixel structure composed of a bright subpixel (Pa) and a dark subpixel (Pb).
  • the voltage applied between the second capacitor line 11bb and the second drain electrode 14bb is different, for example, when a semiconductor layer is simply stacked inside the first auxiliary capacitor and the second auxiliary capacitor, although there is a possibility that the electric capacitances of the first auxiliary capacitance and the second auxiliary capacitance may change, as described above, in each subpixel Pa and Pb, the semiconductor layer 13b, the first pixel electrode 16a, and the second pixel electrode 16b Contact each other Therefore, the electric capacity of the first auxiliary capacitor 6a caused by the voltage applied between the first capacitor line 11ba and
  • the semiconductor layer 13b in the portions of the first auxiliary capacitor 6a and the second auxiliary capacitor 6b functions as a conductor. Therefore, even if the semiconductor layer 13b is interposed, the first pixel electrode 16a and the second pixel electrode 16b, and the first drain electrode 14ba and the second drain electrode 14bb can be satisfactorily connected to each other.
  • the capacitor electrode in order to suppress the change in the capacitance of the auxiliary capacitor, when the capacitor electrode is formed by removing the semiconductor layer of the auxiliary capacitor and connecting the pixel electrode and the drain electrode, Since there is only the side surface of the contact hole, there is a concern about poor connection between the pixel electrode and the drain electrode. If the diameter of the contact hole is increased in order to eliminate this connection failure, there is a concern that the aperture ratio of the pixel will be reduced.
  • the semiconductor layer 13b is made of an oxide semiconductor, a TFT 5a having good characteristics such as high mobility, high reliability, and low off-current can be realized. Can do.
  • Embodiment 2 of the Invention 8 to 12 show Embodiment 2 of the TFT substrate and the manufacturing method thereof according to the present invention.
  • FIG. 8 is a cross-sectional view of the TFT substrate 30b of the present embodiment.
  • 9 to 12 are explanatory views showing the manufacturing process of the TFT substrate 30b of this embodiment continuously in cross section corresponding to the cross section of FIG.
  • the same parts as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the drain electrode protrudes in the contact hole formed in the interlayer insulating film, the source layer such as the source line, the source electrode and the drain electrode, and the TFT substrate 30a in which the interlayer insulating film has a one-layer structure.
  • the drain electrode does not protrude in the contact hole formed in the interlayer insulating film, and the source layer such as the source line, the source electrode and the drain electrode, and the interlayer insulating film each have a two-layer structure.
  • An example of the TFT substrate 30b is shown.
  • the TFT substrate 30b includes an insulating substrate 10a, a plurality of gate lines (11a, see FIG. 1) provided on the insulating substrate 10a so as to extend in parallel with each other, and one of the gate lines 11a. And a plurality of first capacitor lines 11ba arranged to extend in parallel to each other and a plurality of first capacitor lines 11ba arranged to extend in parallel to each other.
  • each TFT 5b provided at each intersection of each gate line (11a) and each source line, and a first interlayer insulating film 20a and a second interlayer insulating film 21a provided to cover each TFT 5b.
  • An inter-layer insulating film 22a and an inter-layer insulating film 22a are provided in a matrix, and a first pixel electrode 23a and a second pixel electrode (not shown, refer to reference numeral 16b in FIG. 1) are provided via a gate line (11a). And a plurality of pixel electrodes arranged adjacent to each other, and an alignment film (not shown) provided to cover each pixel electrode (first pixel electrode 23a and second pixel electrode).
  • the TFT 5b includes a gate electrode 11aa provided on the insulating substrate 10a, a gate insulating film 12 provided so as to cover the gate electrode 11aa, and a gate electrode 12 provided on the gate insulating film 12.
  • a first drain electrode 19b provided so as to be separated from the source electrode 19a via one channel region C, and provided on the semiconductor layer 13b, and separated from the source electrode 19a via the other channel region C.
  • a second drain electrode (not shown, see reference numeral 14bb in FIG. 1).
  • the semiconductor layer 13d is made of, for example, an In—Ga—Zn—O-based oxide semiconductor such as InGaZnO 4 or In 2 Ga 2 ZnO 7 .
  • the 1st pixel electrode 23a and the 2nd pixel electrode are comprised by oxide conductors, such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), for example.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • the source electrode 19a is a portion where each source line protrudes to the side.
  • the first drain electrode 19b is connected to the first pixel electrode 23a through a contact hole 21c formed in the interlayer insulating film 22a.
  • the first drain electrode 19b overlaps the first capacitor line 11ba via the semiconductor layer 13d and the gate insulating film 12, thereby constituting the first auxiliary capacitor 6c.
  • the second drain electrode is connected to the second pixel electrode through a contact hole (not shown) formed in the interlayer insulating film 22a.
  • the second drain electrode forms a second auxiliary capacitor by overlapping the second capacitor line (11bb) via the semiconductor layer 13d and the gate insulating film 12.
  • the manufacturing method of this embodiment includes a gate layer forming step, a resist forming step, a first etching step, a second etching step, an interlayer insulating film forming step, and a pixel electrode forming step.
  • a metal film such as a titanium film is formed on the entire substrate of the insulating substrate 10a such as a glass substrate by sputtering, for example, and then the metal film is used with a first photomask.
  • a gate line (11a), a gate electrode 11aa, a first capacitance line 11ba, and a second capacitance line (11bb) are formed.
  • silicon nitride is formed on the entire substrate on which the gate line (11a), the gate electrode 11aa, the first capacitor line 11ba, and the second capacitor line (11bb) are formed by the CVD method, for example.
  • a gate insulating film 12 is formed as shown in FIG. 9B by sequentially forming a film (thickness of about 1000 to 4500 mm) and a silicon oxide film (thickness of about 500 to 1500 mm).
  • an In—Ga—Zn—O-based semiconductor film 13 (thickness such as InGaZnO 4 ) is formed on the entire substrate on which the gate insulating film 12 has been formed, for example, by sputtering.
  • a first metal conductive film 17 such as a molybdenum film (about 500 to 2000 mm thick) and a second metal conductive film 18 such as a copper film (thickness about 1000 to 3500 mm) are sequentially formed.
  • a photosensitive resin film (thickness of about 1.5 ⁇ m to 3.0 ⁇ m) is formed on the entire substrate on which the semiconductor film 13 and the metal laminated film 19 composed of the first metal conductive film 17 and the second metal conductive film 18 are formed. Then, the photosensitive resin film is exposed, developed and baked using a second photomask to form a resist pattern Rba as shown in FIG. 9D.
  • the resist pattern Rba as shown in FIG. 9D, a part of the region overlapping with the first capacitor line 11ba and the second capacitor line (11bb) and a region serving as the channel region C are exposed.
  • ⁇ Second etching process> First, by heating the substrate on which the source line, source electrode (19a), first drain electrode (19b), second drain electrode, and channel region C are formed in the first etching step at about 250 ° C., FIG. As shown in FIG. 5B, the resist pattern Rba is reflowed so that the resist pattern Rba is covered with the resist pattern Rba so as to cover the semiconductor film 13c exposed from the first drain electrode 19b and the second drain electrode and the channel region C. Transformed to Rbb.
  • the semiconductor film 13c exposed from the resist pattern Rbb is etched by wet etching, thereby forming a semiconductor layer 13d and forming the TFT 5b as shown in FIG.
  • the source line, the source electrode (19a) composed of the lower metal layer 17aa and the upper metal layer 18aa, the first drain electrode (19b) composed of the lower metal layer 17ba and the upper metal layer 18ba, and the second drain electrode are Etching from the side by isotropic etching by wet etching, as shown in FIG.
  • a source electrode 19a composed of a source line, a lower metal layer 17ab and an upper metal layer 18ab, and a lower metal layer 17bb It becomes the 1st drain electrode 19b which consists of upper metal layer 18bb, and a 2nd drain electrode.
  • a silicon oxide film (thickness of about 1000 to 4000 mm) or the like is formed on the entire substrate from which the resist pattern Rbb has been removed by, for example, a CVD method, as shown in FIG.
  • An insulating film 20 is formed.
  • the inorganic insulating film 20 is preferably a silicon oxide film, but may be a laminated film of a silicon oxide film and a silicon nitride film, a silicon nitride film, or the like.
  • an organic insulating film 21 is formed by applying a photosensitive resin film to the entire substrate on which the inorganic insulating film 20 has been formed, for example, by spin coating.
  • a first interlayer insulating film 20a is formed as shown in FIG.
  • An interlayer insulating film 22a composed of the film 20a and the second interlayer insulating film 21a is formed.
  • an ITO film (having a thickness of about 600 to 2000 mm) is formed on the entire substrate on which the interlayer insulating film 22a has been formed in the above-described interlayer insulating film forming process, for example, by sputtering, so that FIG. As shown in FIG. 2, a transparent conductive film 23 is formed.
  • the first pixel electrode 23a and the second pixel electrode are formed as shown in FIG. 8, and the first pixel electrode 23a and the second pixel electrode are formed.
  • the two auxiliary electrodes are formed by bringing the two pixel electrodes into contact with the semiconductor layer 13d.
  • the TFT substrate 30b can be manufactured as described above.
  • the semiconductor layer 13d made of an oxide semiconductor
  • the first pixel electrode 23a made of an oxide conductor
  • the second pixel electrodes are in contact with each other, it is possible to suppress changes in the electric capacities of the first auxiliary capacitance 6c and the second auxiliary capacitance caused by the semiconductor layer 13d.
  • FIG. 13 is a cross-sectional view of the TFT substrate 30c of this embodiment.
  • the TFT substrate 30b in which the second interlayer insulating film constituting the interlayer insulating film is formed colorless is exemplified.
  • the second interlayer insulating film constituting the interlayer insulating film is colored.
  • a color filter on array TFT substrate 30c is illustrated.
  • the second interlayer insulating film 21b constituting the upper layer side of the interlayer insulating film 22b is colored red, green, or blue, and other configurations are substantially the same as the configuration of the TFT substrate 30b of the second embodiment. It has become.
  • the TFT substrate 30c uses a photosensitive resin film colored red, green or blue in the interlayer insulating film forming step of the manufacturing method described in the second embodiment, and repeats exposure and development for three colors. Can be manufactured. Note that the configuration of the color filter is omitted in the counter substrate arranged to face the TFT substrate 30c.
  • the semiconductor layer 13d made of an oxide semiconductor
  • the first pixel electrode 23a made of an oxide conductor, and the like, as in the above embodiments. Since the second pixel electrodes are in contact with each other, it is possible to suppress changes in the electric capacities of the first auxiliary capacitance 6c and the second auxiliary capacitance caused by the semiconductor layer 13d.
  • a TFT substrate having a multi-pixel structure is illustrated, but the present invention can also be applied to a TFT substrate having a single pixel structure.
  • an In—Ga—Zn—O-based oxide semiconductor is exemplified as the semiconductor layer.
  • the present invention includes, for example, an In—Si—Zn—O-based, In—Al—Zn— O-based, Sn-Si-Zn-O-based, Sn-Al-Zn-O-based, Sn-Ga-Zn-O-based, Ga-Si-Zn-O-based, Ga-Al-Zn-O-based, In-
  • oxide semiconductors such as Cu—Zn—O, Sn—Cu—Zn—O, Zn—O, In—O, and In—Zn—O.
  • the gate line, the gate electrode, the first capacitor line, and the second capacitor line having a single layer structure are exemplified.
  • the gate line, the gate electrode, the first capacitor line, and the second capacitor line are It may have a laminated structure.
  • the gate insulating film having a laminated structure is exemplified, but the gate insulating film may have a single layer structure.
  • a method of manufacturing a TFT substrate using four photomasks by reflowing a resist pattern is exemplified.
  • the photosensitive resin film is formed in halftone or graytone.
  • the method can also be applied to a method of manufacturing a TFT substrate using four photomasks.
  • a method for manufacturing a TFT substrate in which a resist pattern is reflowed by heating is exemplified.
  • the present invention is a TFT substrate in which reflow is performed by solvent treatment (atmosphere treatment, mist treatment, local application by inkjet, etc.) This method can also be applied.
  • the TFT substrate using the TFT electrode connected to the pixel electrode as the drain electrode has been exemplified.
  • the present invention is applied to the TFT substrate called the source electrode. Can also be applied.
  • the present invention can suppress a change in the capacitance of the auxiliary capacitor due to the semiconductor layer, and thus is useful for the TFT substrate constituting the liquid crystal display panel.

Abstract

 各TFT(5a)が、ゲート電極(11aa)と、ゲート電極(11aa)を覆うように設けられたゲート絶縁膜(12)と、ゲート絶縁膜(12)上にゲート電極(11aa)に重なるようにチャネル領域(C)が設けられた半導体層(13b)と、半導体層(13b)上にチャネル領域(C)が露出すると共に、チャネル領域(C)を介して互いに離間するように設けられたソース電極(14aa)及びドレイン電極(14ba)とを備え、各補助容量(6a)が、容量線(11ba)と、容量線(11ba)を覆うように設けられたゲート絶縁膜(12)と、ゲート絶縁膜(12)上に容量線(11ba)に重なるように設けられた半導体層(13b)と、半導体層(13b)上に設けられ、各画素電極(16a)に接続されたドレイン電極(14ba)とを備え、酸化物半導体からなる半導体層(13b)と酸化物導電体からなる各画素電極(16a)とが互いに接触している。

Description

薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル
 本発明は、薄膜トランジスタ基板及びその製造方法並びに液晶表示パネルに関し、特に、補助容量が設けられた薄膜トランジスタ基板及びその製造方法並びに液晶表示パネルに関するものである。
 アクティブマトリクス駆動方式の液晶表示パネルは、画像の最小単位である各画素毎に、例えば、薄膜トランジスタ(Thin Film Transistor、以下、「TFT」とも称する)がスイッチング素子として設けられたTFT基板と、TFT基板に対向するように配置された対向基板と、両基板の間に封入された液晶層とを備えている。このTFT基板では、各画素の液晶層、すなわち、液晶容量に充電された電荷を安定に保持するために、各画素毎に補助容量が設けられている。ここで、補助容量は、例えば、基板上に設けられた容量線と、容量線を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上に容量線に重なるように設けられた容量電極(例えば、TFTのドレイン電極)とにより構成されている。
 例えば、特許文献1には、絶縁基板上に形成されたゲート線、ゲート電極及び維持電極を覆うように、ゲート絶縁膜、半導体層(を形成する膜)、接触層(パターンを形成する膜)及び導電体層を順に蒸着し、導電体層上に2回の露光方法を用いて感光膜を形成した後に、感光膜を用いて半導体層(を形成する膜)、接触層(パターンを形成する膜)及び導電体層を2段階でエッチングして、データ配線、ソース電極、半導体層、接触層パターン、ドレイン電極及び維持蓄電器用導電体パターンを形成するTFT基板の製造方法が開示されている。
特開2001-319876号公報
 ところで、特許文献1に開示された製造方法により製造されたTFT基板では、上記補助容量に相当する維持蓄電器が、維持電極、ゲート絶縁膜、維持蓄電器用半導体層、維持蓄電器用接触層パターン及び維持蓄電器用導電体パターンの積層構造により構成されている。ここで、特許文献1に開示された製造方法のように、半導体層とソース電極及びドレイン電極とを同一のフォトマスクを用いて形成する製造工程の簡略化を図ったTFT基板の製造方法では、ソース電極及びドレイン電極の下層に半導体層が配置するので、補助容量を構成する容量電極(ドレイン電極)の下層に半導体層が積層されてしまう。そうなると、容量線、ゲート絶縁膜、半導体層及びドレイン電極の積層構造により構成された補助容量では、ゲート絶縁膜だけでなく半導体層も誘電体層として機能することになり、ゲート絶縁膜と半導体層との間において、MOS(Metal Oxide Semiconductor)構造による電気容量の変化が生じると共に、半導体層とドレイン電極との間において、ショットキー構造による電気容量の変化が生じるので、補助容量を介して画素電極の電位を制御する液晶表示パネルでは、画素電極が所定の電位で制御されなくなり、フリッカーなどの表示不良が発生してしまう。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、半導体層に起因する補助容量の電気容量の変化を抑制することにある。
 上記目的を達成するために、本発明は、酸化物半導体からなる半導体層と酸化物導電体からなる画素電極とが互いに接触するようにしたものである。
 具体的に本発明に係る薄膜トランジスタ基板は、マトリクス状に設けられた複数の画素電極と、上記各画素電極毎にそれぞれ設けられ、該各画素電極に接続された複数の薄膜トランジスタと、上記各画素電極毎にそれぞれ設けられた複数の補助容量とを備え、上記各薄膜トランジスタが、基板に設けられたゲート電極と、該ゲート電極を覆うように設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられ、上記ゲート電極に重なるようにチャネル領域が配置された半導体層と、該半導体層上に設けられ、上記チャネル領域が露出すると共に、該チャネル領域を介して互いに離間するように配置されたソース電極及びドレイン電極とを備え、上記各補助容量が、上記ゲート電極と同一層に同一材料により設けられた容量線と、該容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられ、上記各画素電極に接続された上記ドレイン電極とを備えた薄膜トランジスタ基板であって、上記半導体層は、酸化物半導体により構成され、上記各画素電極は、酸化物導電体により構成され、上記半導体層及び各画素電極は、互いに接触していることを特徴とする。
 上記の構成によれば、各薄膜トランジスタの半導体層が酸化物半導体により構成されていると共に、各画素電極が酸化物導電体により構成されているので、各画素に配置された半導体層及び画素電極のバンド構造が類似することになる。そして、各画素において、半導体層と画素電極とが互いに接触しているので、画素電極内のフリーキャリアが半導体層に拡散してゲート絶縁膜との界面付近まで広がり、補助容量の部分の半導体層が導体として機能することになる。そのため、各画素において、容量線、ゲート絶縁膜、半導体層及びドレイン電極の積層構造により構成された補助容量では、容量線とドレイン電極との間に電圧が印加されたときに、電荷を保持するための誘電体層がゲート絶縁膜だけになるので、電気容量の変化が抑制される。これにより、半導体層が積層された各補助容量において、電気容量の変化が抑制されるので、半導体層に起因する補助容量の電気容量の変化が抑制される。
 上記各画素電極は、上記各薄膜トランジスタを介して互いに隣り合うように設けられた第1画素電極及び第2画素電極を有し、上記ドレイン電極は、上記第1画素電極及び第2画素電極にそれぞれ接続された第1ドレイン電極及び第2ドレイン電極を有し、上記各補助容量は、上記第1画素電極及び第2画素電極に対応してそれぞれ設けられた第1補助容量及び第2補助容量を有し、上記容量線は、上記第1補助容量及び第2補助容量に対応してそれぞれ設けられた第1容量線及び第2容量線を有し、上記第1補助容量は、上記第1容量線と、該第1容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記第1容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられた上記第1ドレイン電極とを備え、上記第2補助容量は、上記第2容量線と、該第2容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記第2容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられた上記第2ドレイン電極とを備えていてもよい。
 上記の構成によれば、各画素電極が第1画素電極及び第2画素電極を有し、ドレイン電極が第1画素電極及び第2画素電極にそれぞれ接続された第1ドレイン電極及び第2ドレイン電極を有し、補助容量が、第1容量線、ゲート絶縁膜、半導体層及び第1ドレイン電極の積層構造により構成された第1補助容量、並びに第2容量線、ゲート絶縁膜、半導体層及び第2ドレイン電極の積層構造により構成された第2補助容量を有しているので、各画素において、例えば、第1画素電極及び第2画素電極に対応する各副画素の輝度が互いに異なる、すなわち、各画素が明副画素及び暗副画素により構成されたマルチ画素構造を有する薄膜トランジスタ基板が具体的に構成される。ここで、マルチ画素構造を有する薄膜トランジスタ基板では、一般的に、明副画素の液晶層に印加する電圧と、暗副画素の液晶層に印加する電圧とを異ならせるために、第1容量線及び第1ドレイン電極の間に印加する電圧と、第2容量線及び第2ドレイン電極の間に印加する電圧とを異ならせるので、第1補助容量及び第2補助容量の内部に半導体層が積層された場合には、第1補助容量及び第2補助容量の電気容量に変化が生じ、例えば、対向基板の共通電極の電圧とのバランスが崩れるおそれがあるものの、上記の構成によれば、第1容量線及び第1ドレイン電極の間に印加する電圧に起因する第1補助容量の電気容量、並びに第2容量線及び第2ドレイン電極の間に印加する電圧に起因する第2補助容量の電気容量の変化が抑制されるので、薄膜トランジスタ基板を備えた液晶表示パネルでは、各画素において、対向基板の共通電極の電圧とのバランスが保持された状態で、明副画素及び暗副画素の各液晶層に所定の電圧が印加される。
 また、本発明に係る薄膜トランジスタ基板の製造方法は、マトリクス状に設けられた複数の画素電極と、上記各画素電極毎にそれぞれ設けられ、該各画素電極に接続された複数の薄膜トランジスタと、上記各画素電極毎にそれぞれ設けられた複数の補助容量とを備え、上記各薄膜トランジスタが、基板に設けられたゲート電極と、該ゲート電極を覆うように設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられ、上記ゲート電極に重なるようにチャネル領域が配置された半導体層と、該半導体層上に設けられ、上記チャネル領域が露出すると共に、該チャネル領域を介して互いに離間するように配置されたソース電極及びドレイン電極とを備え、上記各補助容量が、上記ゲート電極と同一層に同一材料により設けられた容量線と、該容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられ、上記各画素電極に接続された上記ドレイン電極とを備えた薄膜トランジスタ基板を製造する方法であって、基板上に上記ゲート電極及び容量線を形成するゲート層形成工程と、上記形成されたゲート電極及び容量線を覆うように、上記ゲート絶縁膜、酸化物半導体からなる半導体膜、及び金属導電膜を順に成膜した後に、該金属導電膜上において上記ソース電極及びドレイン電極となる領域に、上記チャネル領域となる領域、及び該容量線と重なる領域の一部がそれぞれ露出するようにレジストパターンを形成するレジスト形成工程と、上記レジストパターンから露出する上記金属導電膜をエッチングして、上記ソース電極、ドレイン電極及びチャネル領域を形成すると共に、該ドレイン電極から上記半導体膜を露出させる第1エッチング工程と、上記第1エッチング工程で用いたレジストパターンをリフローすることにより、上記ドレイン電極から露出する半導体膜、及び上記チャネル領域を覆うように該レジストパターンを変成した後に、該変成されたレジストパターンから露出する上記半導体膜をエッチングすることにより、上記半導体層を形成して、上記各薄膜トランジスタを形成する第2エッチング工程と、上記第2エッチング工程で用いたレジストパターンを除去した後に、上記ドレイン電極から露出する上記半導体層に到達するようにコンタクトホールが設けられた層間絶縁膜を形成する層間絶縁膜形成工程と、上記層間絶縁膜上に酸化物導電体からなる上記各画素電極を形成して、該各画素電極に上記半導体層を接触させることにより、上記各補助容量を形成する画素電極形成工程とを備えることを特徴とする。
 上記の方法によれば、ゲート層形成工程において、例えば、第1のフォトマスクを用いて、基板上にゲート電極及び容量線を形成し、レジストパターン形成工程において、例えば、第2のフォトマスクを用いて、レジストパターンを形成し、第1エッチング工程において、そのレジストパターンを用いて、ソース電極、ドレイン電極及びチャネル領域を形成し、第2エッチング工程において、リフローして変成されたレジストパターンを用いて、半導体層を形成して薄膜トランジスタを形成し、層間絶縁膜形成工程において、例えば、第3のフォトマスクを用いて、コンタクトホールが設けられた層間絶縁膜を形成し、画素電極形成工程において、例えば、第4のフォトマスクを用いて、画素電極を形成して補助容量を形成するので、4枚のフォトマスクを用いて、補助容量を備えた薄膜トランジスタ基板が製造される。そして、製造された薄膜トランジスタ基板では、各画素において、ドレイン電極の下層に半導体層が配置するものの、第1エッチング工程において、ソース電極、ドレイン電極及びチャネル領域を形成する際に、ドレイン電極から半導体膜を露出させるので、画素電極形成工程において、画素電極を形成することにより、各画素において、半導体層と画素電極とが互いに接触することになる。ここで、半導体層が酸化物半導体により構成され、画素電極が酸化物導電体により構成されているので、各画素に配置された半導体層及び画素電極のバンド構造が類似することになる。そのため、各画素において、画素電極内のフリーキャリアが半導体層に拡散してゲート絶縁膜との界面付近まで広がり、補助容量の部分の半導体層が導体として機能することになり、容量線、ゲート絶縁膜、半導体層及びドレイン電極の積層構造により構成された補助容量では、容量線とドレイン電極との間に電圧が印加されたときに、電荷を保持するための誘電体層がゲート絶縁膜だけになるので、電気容量の変化が抑制される。これにより、半導体層が積層された各補助容量において、電気容量の変化が抑制されるので、半導体層に起因する補助容量の電気容量の変化が抑制される。
 また、本発明に係る液晶表示パネルは、互いに対向するように設けられた薄膜トランジスタ基板及び対向基板と、上記薄膜トランジスタ基板及び対向基板の間に設けられた液晶層とを備えた液晶表示パネルであって、上記薄膜トランジスタ基板は、マトリクス状に設けられた複数の画素電極と、上記各画素電極毎にそれぞれ設けられ、該各画素電極に接続された複数の薄膜トランジスタと、上記各画素電極毎にそれぞれ設けられた複数の補助容量とを備え、上記各薄膜トランジスタが、基板に設けられたゲート電極と、該ゲート電極を覆うように設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられ、上記ゲート電極に重なるようにチャネル領域が配置された半導体層と、該半導体層上に設けられ、上記チャネル領域が露出すると共に、該チャネル領域を介して互いに離間するように配置されたソース電極及びドレイン電極とを備え、上記各補助容量が、上記ゲート電極と同一層に同一材料により設けられた容量線と、該容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられ、上記各画素電極に接続された上記ドレイン電極とを備え、上記半導体層は、酸化物半導体により構成され、上記各画素電極は、酸化物導電体により構成され、上記半導体層及び各画素電極は、互いに接触していることを特徴とする。
 上記の構成によれば、薄膜トランジスタ基板において、各薄膜トランジスタの半導体層が酸化物半導体により構成されていると共に、各画素電極が酸化物導電体により構成されているので、各画素に配置された半導体層及び画素電極のバンド構造が類似することになる。そして、各画素において、半導体層と画素電極とが互いに接触しているので、画素電極内のフリーキャリアが半導体層に拡散してゲート絶縁膜との界面付近まで広がり、補助容量の部分の半導体層が導体として機能することになる。そのため、各画素において、容量線、ゲート絶縁膜、半導体層及びドレイン電極の積層構造により構成された補助容量では、容量線とドレイン電極との間に電圧が印加されたときに、電荷を保持するための誘電体層がゲート絶縁膜だけになるので、電気容量の変化が抑制される。これにより、半導体層が積層された各補助容量において、電気容量の変化が抑制されるので、薄膜トランジスタ基板において、半導体層に起因する補助容量の電気容量の変化が抑制されると共に、薄膜トランジスタ基板を備えた液晶表示パネルにおいて、フリッカーなどの表示不良の発生が抑制される。
 本発明によれば、酸化物半導体からなる半導体層と酸化物導電体からなる画素電極とが互いに接触しているので、半導体層に起因する補助容量の電気容量の変化を抑制することができる。
図1は、実施形態1に係るTFT基板の平面図である。 図2は、図1中のII-II線に沿ったTFT基板及びそれを備えた液晶表示パネルの断面図である。 図3は、実施形態1に係るTFT基板の等価回路図である。 図4は、実施形態1に係るTFT基板の補助容量における電圧及び電気容量の関係を示すグラフである。 図5は、実施形態1に係るTFT基板の製造工程を断面で示す第1の説明図である。 図6は、実施形態1に係るTFT基板の製造工程を断面で示す図5に続く第2の説明図である。 図7は、実施形態1に係るTFT基板の製造工程を断面で示す図6に続く第3の説明図である。 図8は、実施形態2に係るTFT基板の断面図である。 図9は、実施形態2に係るTFT基板の製造工程を断面で示す第1の説明図である。 図10は、実施形態2に係るTFT基板の製造工程を断面で示す図9に続く第2の説明図である。 図11は、実施形態2に係るTFT基板の製造工程を断面で示す図10に続く第3の説明図である。 図12は、実施形態2に係るTFT基板の製造工程を断面で示す図11に続く第4の説明図である。 図13は、実施形態3に係るTFT基板の断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《発明の実施形態1》
 図1~図7は、本発明に係るTFT基板及びその製造方法並びに液晶表示パネルの実施形態1を示している。ここで、図1は、本実施形態のTFT基板30aの平面図である。また、図2は、図1中のII-II線に沿ったTFT基板30a及びそれを備えた液晶表示パネル50の断面図である。さらに、図3は、TFT基板30aの等価回路図である。
 液晶表示パネル50は、図2に示すように、互いに対向するように設けられたTFT基板30a及び対向基板40と、TFT基板30a及び対向基板40の間に設けられた液晶層45と、TFT基板30a及び対向基板40を互いに接着すると共に、TFT基板30a及び対向基板40の間に液晶層45を封入するために枠状に設けられたシール材(不図示)とを備えている。
 TFT基板30aは、図1~図3に示すように、絶縁基板10aと、絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線11aと、各ゲート線11aの一方の側方(図1中の上側)にそれぞれ設けられ、互いに平行に延びるように配置された複数の第1容量線11baと、各ゲート線11aの他方の側方(図1中の下側)にそれぞれ設けられ、互いに平行に延びるように配置された複数の第2容量線11bbと、各ゲート線11aと直交する方向に互いに平行に延びるように設けられた複数のソース線14aと、各ゲート線11a及び各ソース線14aの交差部分毎、すなわち、各画素P毎に設けられたTFT5aと、各TFT5aを覆うように設けられた層間絶縁膜15aと、層間絶縁膜15a上にマトリクス状に設けられ、各々、第1画素電極16a及び第2画素電極16bがゲート線11aを介して互いに隣り合うように配置された複数の画素電極と、各画素電極(第1画素電極16a及び第2画素電極16b)を覆うように設けられた配向膜(不図示)とを備えている。
 TFT5aは、図1及び図2に示すように、絶縁基板10a上に設けられたゲート電極11aaと、ゲート電極11aaを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に設けられ、ゲート電極11aaに重なるように一対のチャネル領域Cが配置された半導体層13bと、半導体層13b上に設けられ、一対のチャネル領域Cが露出するように配置されたソース電極14aaと、半導体層13b上に設けられ、一方のチャネル領域C(図1中の上側)を介してソース電極14aaに離間するように配置された第1ドレイン電極14baと、半導体層13b上に設けられ、他方のチャネル領域C(図1中の下側)を介してソース電極14aaに離間するように配置された第2ドレイン電極14bbとを備えている。
 ゲート電極11aaは、図1に示すように、各ゲート線11aが幅広く形成された部分である。
 半導体層13bは、例えば、InGaZnO4やIn2Ga2ZnOなどのIn-Ga-Zn-O系の酸化物半導体により構成されている。ここで、第1画素電極16a及び第2画素電極16bは、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの酸化物導電体により構成されている。そして、半導体層13bと第1画素電極16a及び第2画素電極16bとは、図1及び図2に示すように、層間絶縁膜15aに形成されたコンタクトホール15ca及び15cb内でそれぞれ互いに接触している。
 ソース電極14aaは、図1に示すように、各ソース線14aが側方に突出した部分である。
 第1ドレイン電極14baは、図1及び図2に示すように、層間絶縁膜15aに形成されたコンタクトホール15caを介して第1画素電極16aに接続されている。また、第1ドレイン電極14baは、図1及び図2に示すように、半導体層13b及びゲート絶縁膜12を介して、第1容量線11baに重なることにより、第1補助容量6aを構成している。
 第2ドレイン電極14bbは、図1に示すように、層間絶縁膜15aに形成されたコンタクトホール15cbを介して第2画素電極16bに接続されている。また、第2ドレイン電極14bbは、図1に示すように、半導体層13b及びゲート絶縁膜12を介して、第2容量線11bbに重なることにより、第2補助容量6bを構成している。
 対向基板40は、図2に示すように、絶縁基板10bと、絶縁基板10b上に格子状に設けられたブラックマトリクス31と、ブラックマトリクス31の各格子間に赤色層、緑色層及び青色層などがそれぞれ設けられたカラーフィルター32と、ブラックマトリクス31及びカラーフィルター32を覆うように設けられた共通電極33と、共通電極33を覆うように設けられた配向膜(不図示)とを備えている。
 液晶層40は、電気光学特性を有し、負の誘電異方性を有するネマチックの液晶材料などにより構成されている。
 上記構成の液晶表示パネル50は、TFT基板30a上の各第1画素電極16a及び各第2画素電極16bと対向基板40上の共通電極33との間に配置する液晶層45に各副画素Pa及びPb毎に所定の電圧を印加して、液晶層45の配向状態を変えることにより、各副画素Pa及びPb毎にパネル内を透過する光の透過率を調整して、画像を表示するように構成されている。そして、液晶表示パネル50では、図3に示すように、例えば、第1補助容量6aに-20V~-5V又は+5V~+20Vの電圧を印加すると共に、第2補助容量6bに-10V~0V又は0V~+10Vの電圧を印加することにより、副画素Paの液晶容量(液晶層45)及び副画素Pbの液晶容量(液晶層45)に互いに異なる電圧が印加され、副画素Pa及び副画素Pbがそれぞれ明副画素及び暗副画素となり、階調に対する視角依存性に起因するコントラストの反転が抑制された画像表示を行うことができる。ここで、図4は、TFT基板の補助容量(第1補助容量6a又は第2補助容量6b)における電圧及び電気容量の関係を示すグラフである。なお、図4において、実線Aは、半導体層と画素電極とが互いに接触する本実施形態の実施例のTFT基板によるものであり、破線Bは、画素電極がドレイン電極だけに接触して、半導体層と画素電極とが互いに接触しない本実施形態の比較例のTFT基板によるものである。また、上記例示した印加電圧の範囲に基づいて、図4において、範囲ELPは、明副画素の正バイアスの主要動作範囲であり、範囲ELNは、明副画素の負バイアスの主要動作範囲であり、範囲EDPは、暗副画素の正バイアスの主要動作範囲であり、範囲EDNは、暗副画素の負バイアスの主要動作範囲である。そして、図4から分かるように、本実施形態の実施例のTFT基板(実線A参照)では、補助容量に印加される電圧の大きさによることなく、補助容量の電気容量がほぼ一定であるのに対し、本実施形態の比較例のTFT基板(破線B参照)では、補助容量に印加される電圧の大きさによって、補助容量の電気容量が変化してしまう。
 次に、本実施形態のTFT基板30aを製造する方法について、図5~図7を用いて説明する。ここで、図5~図7は、図2の断面図におけるTFT基板30aの部分に対応して、本実施形態のTFT基板30aの製造工程を連続的に断面で示す説明図である。なお、本実施形態の製造方法は、ゲート層形成工程、レジスト形成工程、第1エッチング工程、第2エッチング工程、層間絶縁膜形成工程及び画素電極形成工程を備える。
 <ゲート層形成工程>
 ガラス基板などの絶縁基板10aの基板全体に、例えば、スパッタリング法により、チタン膜(厚さ1500Å~6000Å程度)などの金属膜を成膜した後に、その金属膜を第1のフォトマスクを用いてパターニングすることにより、図5(a)に示すように、ゲート線11a、ゲート電極11aa、第1容量線11ba及び第2容量線11bbを形成する。
 <レジスト形成工程>
 まず、上記ゲート層形成工程でゲート線11a、ゲート電極11aa、第1容量線11ba及び第2容量線11bbが形成された形成された基板全体に、例えば、CVD(Chemical Vapor Deposition)法により、窒化シリコン膜(厚さ1000Å~4500Å程度)及び酸化シリコン膜(厚さ500Å~1500Å程度)などを順に成膜することにより、図5(b)に示すように、ゲート絶縁膜12を形成する。
 続いて、ゲート絶縁膜12が形成された基板全体に、図5(c)に示すように、例えば、スパッタリング法により、InGaZnO4などのIn-Ga-Zn-O系の半導体膜13(厚さ200Å~800Å程度)、及びチタン膜(厚さ1500Å~6000Å程度)などの金属導電膜14を順に成膜する。
 さらに、半導体膜13及び金属導電膜14が成膜された基板全体に、感光性樹脂膜(厚さ1.5μm~3.0μm程度)を塗布した後に、その感光性樹脂膜を第2のフォトマスクを用いる露光、現像及び焼成することにより、図5(d)に示すように、レジストパターンRaaを形成する。ここで、レジストパターンRaaは、図5(d)に示すように、第1容量線11ba及び第2容量線11bbとそれぞれ重なる領域の一部、並びにチャネル領域Cとなる領域が露出するように、ソース線14a、ソース電極14aa、第1ドレイン電極14ba及び第2ドレイン電極14bbとなる領域に形成する。
 <第1エッチング工程>
 上記レジスト形成工程で形成されたレジストパターンRaaから露出する金属導電膜14及びその下層の半導体膜13の上層部をウエットエッチングでエッチングすることにより、図6(a)に示すように、ソース線14a、ソース電極14aa、第1ドレイン電極14ba、第2ドレイン電極14bb、及びチャネル領域C(が設けられた半導体膜13a)を形成する。
 <第2エッチング工程>
 まず、上記第1エッチング工程でソース線14a、ソース電極14aa、第1ドレイン電極14ba、第2ドレイン電極14bb及びチャネル領域Cが形成された基板を250℃程度で加熱することにより、図6(b)に示すように、レジストパターンRaaをリフローして、第1ドレイン電極14ba及び第2ドレイン電極14bbから露出する半導体膜13a、並びにチャネル領域Cを覆うように、レジストパターンRaaをレジストパターンRabに変成する。
 続いて、レジストパターンRabから露出する半導体膜13aをウエットエッチングでエッチングすることにより、図6(c)に示すように、半導体層13bを形成して、TFT5aを形成する。
 <層間絶縁膜形成工程>
 まず、図6(d)に示すように、上記第2エッチング工程でTFT5aが形成された基板からレジストパターンRabを剥離して除去する。
 続いて、レジストパターンRabが除去された基板全体に、例えば、CVD法により、酸化シリコン膜(厚さ1000Å~4000Å程度)などを成膜することにより、図7(a)に示すように、無機絶縁膜15を形成する。なお、無機絶縁膜15としては、酸化シリコン膜が望ましいが、酸化シリコン膜及び窒化シリコン膜の積層膜や窒化シリコン膜などであってもよい。
 さらに、無機絶縁膜15を第3のフォトマスクを用いてパターニングすることにより、図7(b)に示すように、コンタクトホール15ca及び15cbが設けられた層間絶縁膜15aを形成する。
 <画素電極形成工程>
 まず、上記層間絶縁膜形成工程で層間絶縁膜15aが形成された基板全体に、例えば、スパッタリング法により、ITO膜(厚さ600Å~2000Å程度)などを成膜することにより、図7(b)に示すように、透明導電膜16を形成する。
 続いて、透明導電膜16を第4のフォトマスクを用いてパターニングすることにより、図2に示すように、第1画素電極16a及び第2画素電極16bを形成すると共に、第1画素電極16a及び第2画素電極16bを半導体層13bに接触させて、第1補助容量6a及び第2補助容量6bを形成する。
 以上のようにして、TFT基板30aを製造することができる。
 以上説明したように、本実施形態のTFT基板30a及びその製造方法によれば、ゲート層形成工程において、第1のフォトマスクを用いて、絶縁基板10a上にゲート電極11aa、第1容量線11ba及び第2容量線11bbを形成し、レジストパターン形成工程において、第2のフォトマスクを用いて、レジストパターンRaaを形成し、第1エッチング工程において、レジストパターンRaaを用いて、ソース電極14aa、第1ドレイン電極14ba、第2ドレイン電極14bb及びチャネル領域Cを形成し、第2エッチング工程において、リフローして変成されたレジストパターンRabを用いて、半導体層13bを形成してTFT5aを形成し、層間絶縁膜形成工程において、第3のフォトマスクを用いて、コンタクトホール15ca及び15cbが設けられた層間絶縁膜15aを形成し、画素電極形成工程において、第4のフォトマスクを用いて、第1画素電極16a及び第2画素電極16bを形成して第1補助容量6a及び第2補助容量6bを形成するので、4枚のフォトマスクを用いて、第1補助容量6a及び第2補助容量6bを備えたTFT基板30aを製造することができる。そして、製造されたTFT基板30aでは、各副画素Pa及びPbにおいて、第1ドレイン電極14ba及び第2ドレイン電極14bbの下層に半導体層13bが配置するものの、第1エッチング工程において、ソース電極14aa、第1ドレイン電極14ba、第2ドレイン電極14bb及びチャネル領域Cを形成する際に、第1ドレイン電極14ba及び第2ドレイン電極14bbから半導体膜13aを露出させるので、画素電極形成工程において、第1画素電極16a及び第2画素電極16bを形成することにより、各副画素Pa及びPbにおいて、半導体層13bと第1画素電極16a及び第2画素電極16bとが互いに接触することになる。ここで、半導体層13bが酸化物半導体により構成され、第1画素電極16a及び第2画素電極16bが酸化物導電体により構成されているので、各副画素Pa及びPbに配置された半導体層13bと第1画素電極16a及び第2画素電極16bとのバンド構造が類似することになる。そのため、各副画素Pa及びPbにおいて、第1画素電極16a及び第2画素電極16b内のフリーキャリアが半導体層13bに拡散してゲート絶縁膜12との界面付近まで広がり、第1補助容量6a及び第2補助容量6bの部分の半導体層13bが導体として機能することになり、第1容量線11ba、ゲート絶縁膜12、半導体層13b及び第1ドレイン電極14baの積層構造により構成された第1補助容量6a、並びに第2容量線11bb、ゲート絶縁膜12、半導体層13b及び第2ドレイン電極14bbの積層構造により構成された第2補助容量6bでは、第1容量線11ba及び第2容量線11bbと第1ドレイン電極14ba及び第2ドレイン電極14bbとの間に電圧が印加されたときに、電荷を保持するための誘電体層がゲート絶縁膜12だけになるので、電気容量の変化を抑制することができる。これにより、半導体層13bが積層された各第1補助容量6a及び各第2補助容量6bにおいて、電気容量の変化を抑制することができるので、半導体層13bに起因する第1補助容量6a及び第2補助容量6bの電気容量の変化を抑制することができる。
 また、本実施形態のTFT基板30aによれば、各画素Pが明副画素(Pa)及び暗副画素(Pb)により構成されたマルチ画素構造を有しているので、明副画素(Pa)の液晶層45に印加する電圧と、暗副画素(Pb)の液晶層45に印加する電圧とを異ならせるために、第1容量線11ba及び第1ドレイン電極14baの間に印加する電圧と、第2容量線11bb及び第2ドレイン電極14bbの間に印加する電圧とを異ならせる際に、例えば、第1補助容量及び第2補助容量の内部に半導体層が単に積層された場合には、第1補助容量及び第2補助容量の電気容量に変化が生じるおそれがあるものの、上述したように、各副画素Pa及びPbにおいて、半導体層13bと第1画素電極16a及び第2画素電極16bとが互いに接触しているので、第1容量線11ba及び第1ドレイン電極14baの間に印加する電圧に起因する第1補助容量6aの電気容量、並びに第2容量線11bb及び第2ドレイン電極14bbの間に印加する電圧に起因する第2補助容量6bの電気容量の変化を有効に抑制することができる。そして、TFT基板30aを備えた液晶表示パネル50では、各第1補助容量6a及び各第2補助容量6bの電気容量の変化を抑制することができるので、各副画素Pa及びPbにおいて、対向基板40の共通電極33の電圧とのバランスが保持された状態で、明副画素(Pa)及び暗副画素(Pb)の各液晶層45に所定の電圧を印加することができ、フリッカーなどの表示不良の発生を抑制することができる。
 また、本実施形態のTFT基板30aによれば、第1補助容量6a及び第2補助容量6bの部分の半導体層13bが導体として機能するので、半導体層13bが介在しても、第1画素電極16a及び第2画素電極16bと第1ドレイン電極14ba及び第2ドレイン電極14bbとをそれぞれ良好に接続することができる。これに対して、補助容量の電気容量の変化を抑制するために、補助容量の部分の半導体層を除去して、画素電極で容量電極を形成した場合には、画素電極とドレイン電極との接続がコンタクトホールの側面だけになるので、画素電極とドレイン電極との接続不良が懸念される。そして、この接続不良を解消するために、コンタクトホールの径を大きく形成すれば、画素の開口率の低下が懸念される。
 また、本実施形態のTFT基板30aによれば、半導体層13bが酸化物半導体により構成されているので、高移動度、高信頼性及び低オフ電流などの良好な特性を有するTFT5aを実現することができる。
 《発明の実施形態2》
 図8~図12は、本発明に係るTFT基板及びその製造方法の実施形態2を示している。ここで、図8は、本実施形態のTFT基板30bの断面図である。また、図9~図12は、図8の断面図に対応して、本実施形態のTFT基板30bの製造工程を連続的に断面で示す説明図である。なお、以下の各実施形態において、図1~図7と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 上記実施形態1では、層間絶縁膜に形成されたコンタクトホール内でドレイン電極が突出し、ソース線、ソース電極及びドレイン電極などのソース層、並びに層間絶縁膜がそれぞれ1層構造を有するTFT基板30aを例示したが、本実施形態では、層間絶縁膜に形成されたコンタクトホール内でドレイン電極が突出せず、ソース線、ソース電極及びドレイン電極などのソース層、並びに層間絶縁膜がそれぞれ2層構造を有するTFT基板30bを例示する。
 TFT基板30bは、図8に示すように、絶縁基板10aと、絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線(11a、図1参照)と、各ゲート線11aの一方の側方にそれぞれ設けられ、互いに平行に延びるように配置された複数の第1容量線11baと、各ゲート線11aの他方の側方にそれぞれ設けられ、互いに平行に延びるように配置された複数の第2容量線(11bb、図1参照)と、各ゲート線(11a)と直交する方向に互いに平行に延びるように設けられた複数のソース線(不図示、図1中の符号14a参照)と、各ゲート線(11a)及び各ソース線の交差部分毎に設けられたTFT5bと、各TFT5bを覆うように設けられ、第1層間絶縁膜20a及び第2層間絶縁膜21aが積層された層間絶縁膜22aと、層間絶縁膜22a上にマトリクス状に設けられ、各々、第1画素電極23a及び第2画素電極(不図示、図1中の符号16b参照)がゲート線(11a)を介して互いに隣り合うように配置された複数の画素電極と、各画素電極(第1画素電極23a及び第2画素電極)を覆うように設けられた配向膜(不図示)とを備えている。
 TFT5bは、図8に示すように、絶縁基板10a上に設けられたゲート電極11aaと、ゲート電極11aaを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に設けられ、ゲート電極11aaに重なるように一対のチャネル領域Cが配置された半導体層13dと、半導体層13d上に設けられ、一対のチャネル領域Cが露出するように配置されたソース電極19aと、半導体層13d上に設けられ、一方のチャネル領域Cを介してソース電極19aに離間するように配置された第1ドレイン電極19bと、半導体層13b上に設けられ、他方のチャネル領域Cを介してソース電極19aに離間するように配置された第2ドレイン電極(不図示、図1中の符号14bb参照)とを備えている。
 半導体層13dは、例えば、InGaZnO4やIn2Ga2ZnOなどのIn-Ga-Zn-O系の酸化物半導体により構成されている。ここで、第1画素電極23a及び第2画素電極は、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの酸化物導電体により構成されている。そして、半導体層13dと第1画素電極23a及び第2画素電極とは、図8に示すように、層間絶縁膜22aに形成されたコンタクトホール21c内でそれぞれ互いに接触している。
 ソース電極19aは、各ソース線が側方に突出した部分である。
 第1ドレイン電極19bは、図8に示すように、層間絶縁膜22aに形成されたコンタクトホール21cを介して第1画素電極23aに接続されている。また、第1ドレイン電極19bは、半導体層13d及びゲート絶縁膜12を介して、第1容量線11baに重なることにより、第1補助容量6cを構成している。
 第2ドレイン電極は、層間絶縁膜22aに形成されたコンタクトホール(不図示)を介して第2画素電極に接続されている。また、第2ドレイン電極は、半導体層13d及びゲート絶縁膜12を介して、第2容量線(11bb)に重なることにより、第2補助容量を構成している。
 次に、本実施形態のTFT基板30bを製造する方法について、図9~図12を用いて説明する。ここで、本実施形態の製造方法は、ゲート層形成工程、レジスト形成工程、第1エッチング工程、第2エッチング工程、層間絶縁膜形成工程及び画素電極形成工程を備える。
 <ゲート層形成工程>
 ガラス基板などの絶縁基板10aの基板全体に、例えば、スパッタリング法により、チタン膜(厚さ1500Å~6000Å程度)などの金属膜を成膜した後に、その金属膜を第1のフォトマスクを用いてパターニングすることにより、図9(a)に示すように、ゲート線(11a)、ゲート電極11aa、第1容量線11ba及び第2容量線(11bb)を形成する。
 <レジスト形成工程>
 まず、上記ゲート層形成工程でゲート線(11a)、ゲート電極11aa、第1容量線11ba及び第2容量線(11bb)が形成された形成された基板全体に、例えば、CVD法により、窒化シリコン膜(厚さ1000Å~4500Å程度)及び酸化シリコン膜(厚さ500Å~1500Å程度)などを順に成膜することにより、図9(b)に示すように、ゲート絶縁膜12を形成する。
 続いて、ゲート絶縁膜12が形成された基板全体に、図9(c)に示すように、例えば、スパッタリング法により、InGaZnO4などのIn-Ga-Zn-O系の半導体膜13(厚さ200Å~800Å程度)、モリブデン膜(厚さ500Å~2000Å程度)などの第1金属導電膜17、及び銅膜(厚さ1000Å~3500Å程度)などの第2金属導電膜18を順に成膜する。
 さらに、半導体膜13並びに第1金属導電膜17及び第2金属導電膜18からなる金属積層膜19が成膜された基板全体に、感光性樹脂膜(厚さ1.5μm~3.0μm程度)を塗布した後に、その感光性樹脂膜を第2のフォトマスクを用いる露光、現像及び焼成することにより、図9(d)に示すように、レジストパターンRbaを形成する。ここで、レジストパターンRbaは、図9(d)に示すように、第1容量線11ba及び第2容量線(11bb)とそれぞれ重なる領域の一部、並びにチャネル領域Cとなる領域が露出するように、ソース線、ソース電極19a、第1ドレイン電極19b及び第2ドレイン電極となる領域に形成する。
 <第1エッチング工程>
 上記レジスト形成工程で形成されたレジストパターンRbaから露出する金属積層膜19及びその下層の半導体膜13の上層部をウエットエッチングでエッチングすることにより、図10(a)に示すように、ソース線、下層金属層17aaと上層金属層18aaとからなるソース電極(19a)、下層金属層17baと上層金属層18baとからなる第1ドレイン電極(19b)、第2ドレイン電極、及びチャネル領域C(が設けられた半導体膜13c)を形成する。
 <第2エッチング工程>
 まず、上記第1エッチング工程でソース線、ソース電極(19a)、第1ドレイン電極(19b)、第2ドレイン電極及びチャネル領域Cが形成された基板を250℃程度で加熱することにより、図10(b)に示すように、レジストパターンRbaをリフローして、第1ドレイン電極(19b)及び第2ドレイン電極から露出する半導体膜13c、並びにチャネル領域Cを覆うように、レジストパターンRbaをレジストパターンRbbに変成する。
 続いて、レジストパターンRbbから露出する半導体膜13cをウエットエッチングでエッチングすることにより、図10(c)に示すように、半導体層13dを形成して、TFT5bを形成する。このとき、ソース線、下層金属層17aaと上層金属層18aaとからなるソース電極(19a)、下層金属層17baと上層金属層18baとからなる第1ドレイン電極(19b)、及び第2ドレイン電極は、ウエットエッチングによる等方性エッチングにより側方からエッチングされて、図10(c)に示すように、ソース線、下層金属層17abと上層金属層18abとからなるソース電極19a、下層金属層17bbと上層金属層18bbとからなる第1ドレイン電極19b、及び第2ドレイン電極となる。
 <層間絶縁膜形成工程>
 まず、図10(d)に示すように、上記第2エッチング工程でTFT5bが形成された基板からレジストパターンRbbを剥離して除去する。
 続いて、レジストパターンRbbが除去された基板全体に、例えば、CVD法により、酸化シリコン膜(厚さ1000Å~4000Å程度)などを成膜することにより、図11(a)に示すように、無機絶縁膜20を形成する。なお、無機絶縁膜20としては、酸化シリコン膜が望ましいが、酸化シリコン膜及び窒化シリコン膜の積層膜や窒化シリコン膜などであってもよい。
 その後、無機絶縁膜20が形成された基板全体に、例えば、スピンコート法により、感光性樹脂膜を塗布することにより、図11(b)に示すように、有機絶縁膜21を形成する。
 そして、有機絶縁膜21を第3のフォトマスクを用いる露光、現像及び焼成することにより、図11(c)に示すように、コンタクトホール21cが設けられた第2層間絶縁膜21aを形成する。
 さらに、第1層間絶縁膜21aのコンタクトホール21cから露出する無機絶縁膜20をエッチングすることにより、図12(a)に示すように、第1層間絶縁膜20aを形成して、第1層間絶縁膜20a及び第2層間絶縁膜21aからなる層間絶縁膜22aを形成する。
 <画素電極形成工程>
 まず、上記層間絶縁膜形成工程で層間絶縁膜22aが形成された基板全体に、例えば、スパッタリング法により、ITO膜(厚さ600Å~2000Å程度)などを成膜することにより、図12(b)に示すように、透明導電膜23を形成する。
 続いて、透明導電膜23を第4のフォトマスクを用いてパターニングすることにより、図8に示すように、第1画素電極23a及び第2画素電極を形成すると共に、第1画素電極23a及び第2画素電極を半導体層13dに接触させて、第1補助容量6c及び第2補助容量を形成する。
 以上のようにして、TFT基板30bを製造することができる。
 以上説明したように、本実施形態のTFT基板30b及びその製造方法によれば、上記実施形態1と同様に、酸化物半導体からなる半導体層13dと酸化物導電体からなる第1画素電極23a及び第2画素電極とが互いに接触しているので、半導体層13dに起因する第1補助容量6c及び第2補助容量の電気容量の変化を抑制することができる。
 《発明の実施形態3》
 図13は、本実施形態のTFT基板30cの断面図である。
 上記実施形態2では、層間絶縁膜を構成する第2層間絶縁膜が無色に形成されたTFT基板30bを例示したが、本実施形態では、層間絶縁膜を構成する第2層間絶縁膜が着色されたカラーフィルターオンアレイ構造のTFT基板30cを例示する。
 TFT基板30cでは、層間絶縁膜22bの上層側を構成する第2層間絶縁膜21bが赤色、緑色又は青色に着色され、その他の構成が上記実施形態2のTFT基板30bの構成と実質的に同じになっている。
 TFT基板30cは、上記実施形態2で説明した製造方法の層間絶縁膜形成工程において、赤色、緑色又は青色に着色された感光性樹脂膜を用い、露光及び現像を3色分、繰り返すことにより、製造することができる。なお、TFT基板30cに対向して配置される対向基板では、カラーフィルターの構成が省略されている。
 以上説明したように、本実施形態のTFT基板30c及びその製造方法によれば、上記各実施形態と同様に、酸化物半導体からなる半導体層13dと酸化物導電体からなる第1画素電極23a及び第2画素電極とが互いに接触しているので、半導体層13dに起因する第1補助容量6c及び第2補助容量の電気容量の変化を抑制することができる。
 なお、上記各実施形態では、マルチ画素構造を有するTFT基板を例示したが、本発明は、シングル画素構造を有するTFT基板にも適用することができる。
 また、上記各実施形態では、半導体層として、In-Ga-Zn-O系の酸化物半導体を例示したが、本発明は、例えば、In-Si-Zn-O系、In-Al-Zn-O系、Sn-Si-Zn-O系、Sn-Al-Zn-O系、Sn-Ga-Zn-O系、Ga-Si-Zn-O系、Ga-Al-Zn-O系、In-Cu-Zn-O系、Sn-Cu-Zn-O系、Zn-O系、In-O系、In-Zn-O系などの酸化物半導体にも適用することができる。
 また、上記各実施形態では、単層構造を有するゲート線、ゲート電極、第1容量線及び第2容量線を例示したが、ゲート線、ゲート電極、第1容量線及び第2容量線は、積層構造を有するものであってもよい。
 また、上記各実施形態では、積層構造を有するゲート絶縁膜を例示したが、ゲート絶縁膜は、単層構造を有するものであってもよい。
 また、上記各実施形態では、レジストパターンをリフローすることにより、4枚のフォトマスクを用いてTFT基板を製造する方法を例示したが、本発明は、感光性樹脂膜をハーフトーン又はグレイトーンで露光してレジストパターンを形成することにより、4枚のフォトマスクを用いてTFT基板を製造する方法にも適用することができる。
 また、上記各実施形態では、レジストパターンを加熱によりリフローするTFT基板の製造方法を例示したが、本発明は、溶剤処理(雰囲気処理、ミスト処理、インクジェットでの局所塗布など)によりリフローするTFT基板の製造方法にも適用することができる。
 また、上記各実施形態では、画素電極に接続されたTFTの電極をドレイン電極としたTFT基板を例示したが、本発明は、画素電極に接続されたTFTの電極をソース電極と呼ぶTFT基板にも適用することができる。
 以上説明したように、本発明は、半導体層に起因する補助容量の電気容量の変化を抑制することができるので、液晶表示パネルを構成するTFT基板について有用である。
C     チャネル領域
Raa,Rab,Rba,Rbb  レジストパターン
5a,5b    TFT
6a,6c    第1補助容量
6b    第2保持容量
11aa  ゲート電極
11ba  第1容量線
11bb  第2容量線
12    ゲート絶縁膜
13    半導体膜
13b,13d  半導体層
14,19    金属導電膜
14aa,19a   ソース電極
14ba,19b   第1ドレイン電極
14bb  第2ドレイン電極
15a,22a,22b      層間絶縁膜
15ca,15cb,21c    コンタクトホール
16a,23a  第1画素電極
16b   第2画素電極
30a~30c  TFT基板
40    対向基板
45    液晶層
50    液晶表示パネル

Claims (4)

  1.  マトリクス状に設けられた複数の画素電極と、
     上記各画素電極毎にそれぞれ設けられ、該各画素電極に接続された複数の薄膜トランジスタと、
     上記各画素電極毎にそれぞれ設けられた複数の補助容量とを備え、
     上記各薄膜トランジスタが、基板に設けられたゲート電極と、該ゲート電極を覆うように設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられ、上記ゲート電極に重なるようにチャネル領域が配置された半導体層と、該半導体層上に設けられ、上記チャネル領域が露出すると共に、該チャネル領域を介して互いに離間するように配置されたソース電極及びドレイン電極とを備え、
     上記各補助容量が、上記ゲート電極と同一層に同一材料により設けられた容量線と、該容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられ、上記各画素電極に接続された上記ドレイン電極とを備えた薄膜トランジスタ基板であって、
     上記半導体層は、酸化物半導体により構成され、
     上記各画素電極は、酸化物導電体により構成され、
     上記半導体層及び各画素電極は、互いに接触していることを特徴とする薄膜トランジスタ基板。
  2.  請求項1に記載された薄膜トランジスタ基板において、
     上記各画素電極は、上記各薄膜トランジスタを介して互いに隣り合うように設けられた第1画素電極及び第2画素電極を有し、
     上記ドレイン電極は、上記第1画素電極及び第2画素電極にそれぞれ接続された第1ドレイン電極及び第2ドレイン電極を有し、
     上記各補助容量は、上記第1画素電極及び第2画素電極に対応してそれぞれ設けられた第1補助容量及び第2補助容量を有し、
     上記容量線は、上記第1補助容量及び第2補助容量に対応してそれぞれ設けられた第1容量線及び第2容量線を有し、
     上記第1補助容量は、上記第1容量線と、該第1容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記第1容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられた上記第1ドレイン電極とを備え、
     上記第2補助容量は、上記第2容量線と、該第2容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記第2容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられた上記第2ドレイン電極とを備えていることを特徴とする薄膜トランジスタ基板。
  3.  マトリクス状に設けられた複数の画素電極と、
     上記各画素電極毎にそれぞれ設けられ、該各画素電極に接続された複数の薄膜トランジスタと、
     上記各画素電極毎にそれぞれ設けられた複数の補助容量とを備え、
     上記各薄膜トランジスタが、基板に設けられたゲート電極と、該ゲート電極を覆うように設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられ、上記ゲート電極に重なるようにチャネル領域が配置された半導体層と、該半導体層上に設けられ、上記チャネル領域が露出すると共に、該チャネル領域を介して互いに離間するように配置されたソース電極及びドレイン電極とを備え、
     上記各補助容量が、上記ゲート電極と同一層に同一材料により設けられた容量線と、該容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられ、上記各画素電極に接続された上記ドレイン電極とを備えた薄膜トランジスタ基板を製造する方法であって、
     基板上に上記ゲート電極及び容量線を形成するゲート層形成工程と、
     上記形成されたゲート電極及び容量線を覆うように、上記ゲート絶縁膜、酸化物半導体からなる半導体膜、及び金属導電膜を順に成膜した後に、該金属導電膜上において上記ソース電極及びドレイン電極となる領域に、上記チャネル領域となる領域、及び該容量線と重なる領域の一部がそれぞれ露出するようにレジストパターンを形成するレジスト形成工程と、
     上記レジストパターンから露出する上記金属導電膜をエッチングして、上記ソース電極、ドレイン電極及びチャネル領域を形成すると共に、該ドレイン電極から上記半導体膜を露出させる第1エッチング工程と、
     上記第1エッチング工程で用いたレジストパターンをリフローすることにより、上記ドレイン電極から露出する半導体膜、及び上記チャネル領域を覆うように該レジストパターンを変成した後に、該変成されたレジストパターンから露出する上記半導体膜をエッチングすることにより、上記半導体層を形成して、上記各薄膜トランジスタを形成する第2エッチング工程と、
     上記第2エッチング工程で用いたレジストパターンを除去した後に、上記ドレイン電極から露出する上記半導体層に到達するようにコンタクトホールが設けられた層間絶縁膜を形成する層間絶縁膜形成工程と、
     上記層間絶縁膜上に酸化物導電体からなる上記各画素電極を形成して、該各画素電極に上記半導体層を接触させることにより、上記各補助容量を形成する画素電極形成工程とを備えることを特徴とする薄膜トランジスタ基板の製造方法。
  4.  互いに対向するように設けられた薄膜トランジスタ基板及び対向基板と、
     上記薄膜トランジスタ基板及び対向基板の間に設けられた液晶層とを備えた液晶表示パネルであって、
     上記薄膜トランジスタ基板は、
     マトリクス状に設けられた複数の画素電極と、
     上記各画素電極毎にそれぞれ設けられ、該各画素電極に接続された複数の薄膜トランジスタと、
     上記各画素電極毎にそれぞれ設けられた複数の補助容量とを備え、
     上記各薄膜トランジスタが、基板に設けられたゲート電極と、該ゲート電極を覆うように設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられ、上記ゲート電極に重なるようにチャネル領域が配置された半導体層と、該半導体層上に設けられ、上記チャネル領域が露出すると共に、該チャネル領域を介して互いに離間するように配置されたソース電極及びドレイン電極とを備え、
     上記各補助容量が、上記ゲート電極と同一層に同一材料により設けられた容量線と、該容量線を覆うように設けられた上記ゲート絶縁膜と、該ゲート絶縁膜上に上記容量線に重なるように設けられた上記半導体層と、該半導体層上に設けられ、上記各画素電極に接続された上記ドレイン電極とを備え、
     上記半導体層は、酸化物半導体により構成され、
     上記各画素電極は、酸化物導電体により構成され、
     上記半導体層及び各画素電極は、互いに接触していることを特徴とする液晶表示パネル。
PCT/JP2011/003779 2010-07-09 2011-07-01 薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル WO2012004958A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180034015.4A CN102986012B (zh) 2010-07-09 2011-07-01 薄膜晶体管基板及其制造方法和液晶显示面板
JP2012523517A JP5269253B2 (ja) 2010-07-09 2011-07-01 薄膜トランジスタ基板の製造方法
KR1020137002683A KR101356304B1 (ko) 2010-07-09 2011-07-01 박막 트랜지스터 기판의 제조방법
US13/808,375 US8623681B2 (en) 2010-07-09 2011-07-01 Thin film transistor substrate, method for manufacturing the same, and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010157149 2010-07-09
JP2010-157149 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012004958A1 true WO2012004958A1 (ja) 2012-01-12

Family

ID=45440952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003779 WO2012004958A1 (ja) 2010-07-09 2011-07-01 薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル

Country Status (5)

Country Link
US (1) US8623681B2 (ja)
JP (1) JP5269253B2 (ja)
KR (1) KR101356304B1 (ja)
CN (1) CN102986012B (ja)
WO (1) WO2012004958A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019857A1 (ja) * 2013-08-07 2015-02-12 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法
KR20150028997A (ko) * 2012-07-03 2015-03-17 아이엠이씨 브이제트더블유 박막 트랜지스터의 제작 방법
TWI498974B (zh) * 2012-03-03 2015-09-01 Chunghwa Picture Tubes Ltd 畫素結構的製作方法及畫素結構
WO2016104216A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法
JP2020109866A (ja) * 2013-12-27 2020-07-16 株式会社半導体エネルギー研究所 半導体装置
JP2022091789A (ja) * 2012-09-13 2022-06-21 株式会社半導体エネルギー研究所 表示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003674A (ko) * 2014-05-27 2017-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6501514B2 (ja) * 2014-12-24 2019-04-17 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
CN104795406A (zh) * 2015-04-22 2015-07-22 南京中电熊猫液晶显示科技有限公司 一种阵列基板及其制造方法
US10114263B2 (en) * 2015-12-18 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6673731B2 (ja) * 2016-03-23 2020-03-25 株式会社ジャパンディスプレイ 表示装置及びその製造方法
CN107403804B (zh) * 2016-05-17 2020-10-30 群创光电股份有限公司 显示设备
JP2020079830A (ja) * 2018-11-12 2020-05-28 凸版印刷株式会社 薄膜トランジスタアレイおよびその製造方法
CN113169231B (zh) * 2018-12-07 2024-04-05 夏普株式会社 显示装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269696A (ja) * 2005-03-23 2006-10-05 Sharp Corp 回路基板の製造方法、回路基板及び電子表示装置
JP2007522670A (ja) * 2004-02-11 2007-08-09 サムスン エレクトロニクス カンパニー リミテッド 接触部及びその製造方法、薄膜トランジスタ表示板及びその製造方法
JP2009182343A (ja) * 2001-04-26 2009-08-13 Samsung Electronics Co Ltd 配線の接触構造及びその製造方法
JP2010044419A (ja) * 2003-01-03 2010-02-25 Samsung Electronics Co Ltd 多重ドメイン液晶表示装置用薄膜トランジスタ表示板
JP2010117710A (ja) * 2008-10-16 2010-05-27 Semiconductor Energy Lab Co Ltd 発光表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686228B1 (ko) 2000-03-13 2007-02-22 삼성전자주식회사 사진 식각용 장치 및 방법, 그리고 이를 이용한 액정 표시장치용 박막 트랜지스터 기판의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182343A (ja) * 2001-04-26 2009-08-13 Samsung Electronics Co Ltd 配線の接触構造及びその製造方法
JP2010044419A (ja) * 2003-01-03 2010-02-25 Samsung Electronics Co Ltd 多重ドメイン液晶表示装置用薄膜トランジスタ表示板
JP2007522670A (ja) * 2004-02-11 2007-08-09 サムスン エレクトロニクス カンパニー リミテッド 接触部及びその製造方法、薄膜トランジスタ表示板及びその製造方法
JP2006269696A (ja) * 2005-03-23 2006-10-05 Sharp Corp 回路基板の製造方法、回路基板及び電子表示装置
JP2010117710A (ja) * 2008-10-16 2010-05-27 Semiconductor Energy Lab Co Ltd 発光表示装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498974B (zh) * 2012-03-03 2015-09-01 Chunghwa Picture Tubes Ltd 畫素結構的製作方法及畫素結構
KR102099860B1 (ko) * 2012-07-03 2020-04-13 아이엠이씨 브이제트더블유 박막 트랜지스터의 제작 방법
KR20150028997A (ko) * 2012-07-03 2015-03-17 아이엠이씨 브이제트더블유 박막 트랜지스터의 제작 방법
JP2015521804A (ja) * 2012-07-03 2015-07-30 アイメック・ヴェーゼットウェーImec Vzw 薄膜トランジスタの製造方法
JP7471483B2 (ja) 2012-09-13 2024-04-19 株式会社半導体エネルギー研究所 表示装置
JP7237213B2 (ja) 2012-09-13 2023-03-10 株式会社半導体エネルギー研究所 表示装置
JP2022091789A (ja) * 2012-09-13 2022-06-21 株式会社半導体エネルギー研究所 表示装置
CN105452949B (zh) * 2013-08-07 2019-02-19 夏普株式会社 半导体装置、显示装置和半导体装置的制造方法
WO2015019857A1 (ja) * 2013-08-07 2015-02-12 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法
JPWO2015019857A1 (ja) * 2013-08-07 2017-03-02 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法
US9583510B2 (en) 2013-08-07 2017-02-28 Sharp Kabushiki Kaisha Semiconductor device, display device, and method for manufacturing semiconductor device
CN105452949A (zh) * 2013-08-07 2016-03-30 夏普株式会社 半导体装置、显示装置和半导体装置的制造方法
JP2020109866A (ja) * 2013-12-27 2020-07-16 株式会社半導体エネルギー研究所 半導体装置
US10818795B2 (en) 2013-12-27 2020-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11380795B2 (en) 2013-12-27 2022-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor film
US11757041B2 (en) 2013-12-27 2023-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10386684B2 (en) 2014-12-26 2019-08-20 Sharp Kabushiki Kaisha Semiconductor device, display apparatus, and method of manufacturing semiconductor device
WO2016104216A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US20130214272A1 (en) 2013-08-22
CN102986012A (zh) 2013-03-20
JPWO2012004958A1 (ja) 2013-09-02
JP5269253B2 (ja) 2013-08-21
US8623681B2 (en) 2014-01-07
CN102986012B (zh) 2014-07-30
KR20130064100A (ko) 2013-06-17
KR101356304B1 (ko) 2014-01-28

Similar Documents

Publication Publication Date Title
JP5269253B2 (ja) 薄膜トランジスタ基板の製造方法
JP5095865B2 (ja) アクティブマトリクス基板及びそれを備えた表示パネル、並びにアクティブマトリクス基板の製造方法
US8957418B2 (en) Semiconductor device and display apparatus
US7916229B2 (en) Liquid crystal display device and method for fabricating the same
US8598589B2 (en) Array substrate, method of manufacturing the array substrate, and display apparatus including the array substrate
JP5347071B2 (ja) アクティブマトリクス基板の製造方法及びその方法により製造されたアクティブマトリクス基板、並びに表示パネル
JP5528475B2 (ja) アクティブマトリクス基板及びその製造方法
US20170090229A1 (en) Semiconductor device, display device and method for manufacturing semiconductor device
US9881974B2 (en) Display substrate and method of manufacturing the same
US20130092923A1 (en) Active matrix substrate and method for manufacturing the same
JP5253686B2 (ja) アクティブマトリクス基板、表示装置、およびアクティブマトリクス基板の製造方法
WO2012011217A1 (ja) アクティブマトリクス基板及びその製造方法、並びに液晶表示パネル
JP5679164B2 (ja) 液晶表示装置のアレイ基板及びその製造方法
US10243010B2 (en) Semiconductor substrate and display device
WO2012017626A1 (ja) 薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル
WO2011161875A1 (ja) 表示装置用基板及びその製造方法、表示装置
KR20130098655A (ko) 박막 트랜지스터 기판 및 그 제조 방법
US20130009160A1 (en) Active matrix substrate
KR20190071789A (ko) Coa형 액정 패널의 제조방법 및 coa형 액정 패널
WO2015110028A1 (zh) 存储电容、像素单元及存储电容的制造方法
WO2013008441A1 (ja) アクティブマトリクス基板及びその製造方法
US20230367166A1 (en) Method of manufacturing active matrix substrate and liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034015.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523517

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137002683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808375

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11803298

Country of ref document: EP

Kind code of ref document: A1